Personal Writing Recall Assistance
Contents
21
Abstract

22
Definitions

23
Problems and Solutions

23.1
Context Awareness

23.2
Efficient Searching Algorithm

33.3
Match Criteria

33.3.1
General Problem: Exact or Fuzzy

33.3.2
End Marks

33.3.3
Matching Pitfalls – Beginning with a word-suffix

53.4
Prevent UI Interference

53.4.1
When to prompt candidates

53.5
Fragments

53.5.1
Input focus changed, application switched:

53.5.2
Backspace: Pop the last character.

73.6
History Collection

73.6.1
History Import

73.6.2
Real-time Learning

73.7
Trim Down the Tree Size

84
Experiments

84.1
Importing History

94.2
Results

94.2.1
The New Letter:

94.2.2
Screenshots and Comments

105
Conclusions and Remarks

105.1.1
Personal Comments

1 Abstract
Computers have been a great help on many fields, but a little help has been done to help on a very important daily task: writing. Right now, they only helps are spelling and grammar checkers.

Here, we’ll like to generalize an old technique, AutoComplete, to help users on general writings. AutoComplete has been shown very successfully on filling in short content (name, address, email address, phone number) in specific textboxes (Run command box, browser form field, and search box). Our goal here is to use it on long content (article, diary, email body, or any other writing). It will be very useful when you’re using a device that’s difficult to input, such as a PDA or a cell phone. One interesting usage is that you can import writing history from other sources (famous quotations, Shakespeare, for example) to help your writing, saving a considerate amount of time memorizing and using them in your work right away.
Ukkonen (1992, 1995) gave a left-to-right on-line algorithm. Using this, we can build and search simultaneously, which makes real-time recalling possible to implement.
2 Definitions
Following are specific terms used in this paper.

Delimiter:
Texts were divided into words by delimiters. To ignore the difference between separators of words, such as one or N spaces, new lines, tabs, we convert them all into the same delimiter, ‘ ‘ or ‘_’ (space character), for simplicity.
Word-suffix:
a suffix of a word, e.g. “ord” is a suffix of “afford”.
Candidates:
A list of typing predictions which will be shown to use. Users can just pick on one of them to do auto-complete.
3 Problems and Solutions
3.1 Context Awareness
In simple AutoComplete, it has two contexts: text purpose (email address, user name…etc) and typed prefix. It has a database for each purpose, and the prefix is used to retrieve matched entries.

3.2 Efficient Searching Algorithm
In simple AutoComplete, searching can be done in constant time for each key stroke by constructing a binary search tree.

The generalized AutoComplete has no way to determine where the beginning is. Hence, it has to find a longest match in the database using prefix whose length is unknown. Suffix-tree can be use to solve this. And the searching time is also constant for each key stroke.

3.3 Match Criteria
A more human friendly match will enhance the user experience on all aspects.
3.3.1 General Problem: Exact or Fuzzy
Exact match requires the prefix to be identical to matched string in database. This will result in poor ability on generalization. Fuzzy match ignores trifle details (spaces, empty lines, punctuation) to increase matching rate.
Another match problem worth considering is: Is the longest match always what the user really want? Maybe we should also display shorter matches (but longer than a threshold) to users.
3.3.2 End Marks

The prediction very often can be pretty long (a few sentences). In this case, if users only want the first few predicted words, they can’t. Shorten the sentence can certainly increase the usability those match candidates.

End marks (, . ? ! ; : ()) can be used to cut candidates short.
3.3.3 Matching Pitfalls – Beginning with a word-suffix
If you type “lord_”, it may be match to the suffix of “afford_“. This is obvious a meaningless match. To prevent this, we can do as follows.
Suppress display when the max match is a word-suffix.

Before each time we display candidates to the user, we can check if it’s a word-suffix and choose not to display it.
Example

Match threshold: 3

abcd bcd one two three four five six ... tensbcd bcd

 1 2

3 4

The second “ bc” (at 4) is supposed to match the first “ bc” (at 2). But actually, the match will be at 1 and 3 (“bcd_bcd”). Consequently, “bcd” won’t be displayed to help user.

Modify Suffix-Tree construction algorithm

Do not grow a tree that begins with a half-word from root. If no tree begins with half word, such match cannot exist as well. What to need to be careful about is that the modified version suffix-tree will not cause additional problems on matching.
Branch out occurred:

from an edge

from a joint

After branch, it tries to find next longest match by removing the first character from current matched prefix P.

Focus on the point that a new tree from the root is going to be grown. In this case, P has a length of 0 (no match), and C is the new pushed character which:

1) has a branch already

2) no branch exist

We’ll decide to grow iff C doesn’t follow a letter.
In conclusion, root can only has a child, which begins with a delimiter (‘ ‘, user defined).

In original version, every time a mismatch occurred (a new edge will be created), it reduce the prefix by one (prefix = prefix – first(1)), and try again. Because there is only one first level tree beginning with a delimiter, the prefix will reduce more than one (prefix - first(k)), until the first character is a delimiter.
Suffix links will all be affected. They will link to a tree contains a path “prefix - first(k)”, beginning with a delimiter of course. The tree will become small since the first level has one tree only, therefore, fewer suffix links. A test on 23770 bytes long document show it cut down the node number from 23762 to 6616 (27.8%), compared to the original suffix tree. The original suffix tree can be built with a maximum of 2N nodes.
Example

Content:

_a_a_b

Tree:

_a_a

| b

+b
(T2)

Travel through suffix to root, and change prefix

_a_b

to

_b

before moving down the edge. After create T2, fill the suffix-link between the 2 bs.

Content:

_a_a_b_a_b_c

Tree:

_a_a

| b_c

+b_c
(T2)

+c

Travel through suffix to T2 (the suffix link is created in previous step), and change prefix

_a_b_c
(original suffix)

to

_b_c

before moving down the edge. Because the suffix link does not link to root, but a tree begin with the second delimiter from the original path suffix-linked from, the characters to remove can be determined by height difference of the two trees to suffix-linked nodes:
Reduced length = oldTree.Depth – newTree.Depth
which is 2 in this case.

[image: image1.png]e
i
-
ot
o
by
L.
1
s
b
o
b
im
ot st e o P cnat
e e
b
i
.
Lo
i
s 8 0 ADE 3 i e 0t v
i
L
bt s O e g s s
A s
o
b
o
PR T

Figure 1 Modified Suffix Tree (No word-suffix)
3.4 Prevent UI Interference

Providing too much undesired information can be worse than providing no information at all. It is important to help users without causing any additional trouble.
3.4.1 When to prompt candidates
Although this is designed to be use anywhere, we should set the match count to 0 when users switch programs since all of them share a suffix-tree. And how to do while with interrupt tree construction is an issue worth thinking about.
3.5 Fragments
At first, we assume it works in a simple model: one text box with continuous typing without revision. In reality, problems emerge when user switch programs or modify typed text. With proper handling, collected text becomes meaningless. On easy way to avoid this problem: Do not learn while typing. Only learn from completed document files.

3.5.1 Input focus changed, application switched:

We can assume that’s a break of writing, and push a delimiter into the suffix-tree.

3.5.2 Backspace: Pop the last character.

Implement a suffix tree might be complex. An quick an naive solution is to simulate the search of N(prefix)-1 characters.

For example, we have:

one_two ………_Dear_John ……_Dear_

When backspace is pressed, we duplicate “_Dear” and push them back to the tree as following:

one_two ………_Dear_John ……_Dear__Dear

The result is ugly due to the slef-match. (Dear_Dear_...)

A better solution is to undo the suffix-tree construction by one character. In some case, we’ll have to travel back through reversed suffix-links. This means we’ll have to maintain more suffix link. Besides, if previous match is longer, we’ll have to search the lost characters in order to get back.
Backspace is not a frequent event; therefore, we can consider using a tradeoff solution that takes more computing power, saving memory and maintenance hassle.
Suffix-Pop Algorithm (without backward suffix-links)
Definition:

c: the character to pop out

n: current length of content

P(1, n): current content, = {a1, …, an}, where ai are characters.
L(n): the last n character of P.
p: a pointer points to the last matched character of an edge

m: match count, m <= n

e: edge where p stays on

v: the content array

Objective:

Find the match count m’ before c is added. And remove all leaves of c.
Explanation:

If m > m’, then the case is simple. The last push resulted in a match, and only the branch pointer is moved by one. To undo this, simply move the pointer back by one.
If m <= m’, then the match was reduced to q, m = q+1, q < m’.
Pseudo-code:

if n = 0, terminate.

remove an.

q = max(m-1, 0)
// using m = q+1
for(;path of L(q) exist; q++) {

// assert p points to the end, and e has leaf x of length 1, beginning with c

remove x

if e has only one child, merge e and x
}
q-- // now q is original match count (m’)
Prevent Over-Popped
We should also prevent popping out previous characters from other places. One way to do this is to maintain the ConsecutiveCharacters (CC).

Push(key) {
if(IsCharacter(key)) CC++;

else if(key is Backspace)

Pop();
CC--;

else CC = 0;

…
}

3.6 History Collection

In order for the program to learn user’s typing pattern, a typing history must be provided in advance. For a new user, his typing history will be collected day by day from nothing. This will take a long time.

3.6.1 History Import
To increase the knowledge of typing history database, one quick way is to load text from the user’s documents (school papers, diary, emails…etc). If you are interested in certain writing style (Shakespeare, popular novels), you can import them as well.
3.6.2 Real-time Learning

To learn to error-prone typing is a big challenge compared to importing finished text documents. Searching & tree construction are done together.

3.7 Trim Down the Tree Size

The suffix tree can not grow indefinitely. We need an algorithm to clean up junk information so that memory can be used in a proper amount. It’s essential when you are performing a real-time learning filled with typos. A mechanism to erase those typos will bring user’s better resulted candidates.
4 Experiments
Writing emails can occurred quite frequently in the information age.

4.1 Importing History

The first step to run this application is importing history. We collected 4 sample emails, and import them to PWA history.

	Letter
	Letter Body

	1
	Dear Professor Wu:

My roommate got really sick and needs my help to get over this difficult time. Therefore, I can't attend the meeting today.

Have a nice day!

Sincerely,

Viktor Chang

	2
	Dear John:

How have you been recently? Just write to check if you are alright.

Have a nice day!

Best regards,

Viktor Chang

	3
	Dear Mary:

I have something really important to ask you. I’m going to have a final exam next week. So, can I borrow your book, Wireless Communication, for a few days? Call me immediately once you see this letter.

Have a nice day!

Best wishes,

Viktor Chang

	4
	Dear Tom:

It’s gotten really cold today. Can I borrow some clothes from you? I’m looking forward into your answer!

Have a nice day!

Cordially,

Viktor Chang

4.2 Results
Right after the history importing, we open up e-mail software and beginning to write a new letter. Following are the key screenshots during the writing.

4.2.1 The New Letter:

Dear Professor Wu:

Be prepared! Our project is almost finished, and we still got a lot to talk about.

Have a nice day!

Best regards,

Viktor Chang

4.2.2 Screenshots and Comments
	[image: image2.png]Dear

Jom
Mary
Professor Wu
Tom

	Show all previous contacts correctly.

	[image: image3.png]Have a nice day/|

Best regards,
Cordially,
Sincerely,

	“Have a nice day!” is a cue here for enclosing a letter. Complements come up right after.

	[image: image4.png]Have anice day!

et regards,
o5t wishes,

	“Best wishes” only shows up when users choose the path beginning with “B”. Showing all branches might be too much.

	[image: image5.png]Best regards.

w

[Vidor Ghiang Dear ery:
Count=1, Len=23, PreLen=15|

	Because all delimiters (linefeed, tab, space…) are translated into a single space. The signature stuck with the beginning of the next letter.

All the email typing can be correctly recalled.
5 Conclusions and Remarks
The ultimate goal is to simulate how our brains work to generate writing. The first step, we exploit computer advantage of high storage capacity. It’s said that you must read a lot in order to write something good. Brains can retrieve data efficiently using associative memory. Computer memory is linear. In order to retrieve at real-time, efficient indexing and searching must be provided, which has been demonstrated in the paper.
The implementation here only simulates memory storage and retrieval. It is similar to a search engine showing the most closely related at each key stroke. The database contains the user’s personal writing history. Consequently, it can only “assist” writers since it can not create anything based on autonomous reasoning.
5.1.1 Personal Comments
Linked-list-based suffix-tree is extremely error prone during the development. Through out the development, most time was spent on this part.

PAGE
4

