
Linux
on the

Innovator

(Revision 1.0)

www.delcomsys.com

25 February, 2003

© 2003 Delphi Communication Systems, Inc.  All rights reserved.



Reproduction by permission only.



Revision Date By Comment
1.0 2003-02-25 wpd Initial Release

© 2003 Delphi Communication Systems, Inc.  All rights reserved.
Reproduction by permission only.





Table of Contents
1. Introduction......................................................................................................................1
2. Binary Installation............................................................................................................4

Install the Host Based Software......................................................................................4
Install RedBoot................................................................................................................5
Use RedBoot to load the kernel and the initial ramdisk................................................10
Boot the kernel..............................................................................................................11
Initialize TCP/IP............................................................................................................12
Compile and run the“Hello World” program................................................................12
Create your own initial ramdisk....................................................................................13
Where to go from here..................................................................................................15

3. Source Installation..........................................................................................................17
3.1. Compiling the Toolchain............................................................................................17
3.2. Compiling the kernel...................................................................................................19
3.3. Creating the initial ramdisk.........................................................................................22
4. Conclusion and Resources.............................................................................................25

i
© 2003 Delphi Communication Systems, Inc.  All rights reserved.

Reproduction by permission only.





1. Introduction
So, you've gotten one of the Innovator platforms with the exciting TI OMAP processor on
it and you want to run Linux on the ARM processor.  Should be simple right?  Just turn it
on!  Well, maybe not.  It didn't ship with Linux on it.  This document will discuss the
steps we took to get Linux up and running on our Innovator.  We hope others will find it
useful in getting similar results.  Feel free to send email to info@delcomsys.com
with any questions or comments you have regarding the material in this document.

This document is divided into two main sections: Binary Installation and Source
Installation.  Developers who just want to get the Linux kernel up and running on the
OMAP, should read (and follow the directions given in) the Binary Installation section.
Those who are interested in compiling everything from source code should read both
sections.
First, lets look at an overview of what we want to accomplish.  The end goal is that we
want to be able to run Linux on the Innovator.  In order to do this, we need some way to
load it on the board, ideally through the ethernet port on the breakout board (which is
significantly faster than the serial port, and even faster than plugging the bits in
one-by-one by hand).  We will also need a root file system and a set of applications to be
run by the kernel.  This document presents the technique of loading an initial ramdisk
from memory.  Other options include storing it in flash memory or mounting it via NFS.

In order to reach your goal of running Linux on your Innovator, you will need a certain
amount of hardware, software, and TCP/IP information, as described below:

Hardware
• Innovator with breakout board, ethernet cable, serial cable adapter, and a null-modem

serial cable.
• Emulator.  We use the Spectrum Digital SPI515 parallel port emulator.

• A Linux workstation
• A PC running windows.  We used Windows 98 running under Win4Lin on our Linux

development box – see Linux and Windows – Cohabitation.
• A JTAG Debugger to use with the TI development tools.  We used a Spectrum Digital

SPI515 parallel port JTAG debugger.

Software
• Linux.  We have used Red Hat 7.21 and 8.0.
• Windows
• Code Composer Studio for the OMAP (referred to as CCS throughout this document).

We used version 2.0.

1 The x86 binaries for the toolchains that are installed in Section 2 were all compiled with the RedHat 7.2
machine, so that they will run on both RedHat 7.2 and RedHat 8.0 machines.  (In other words, they are
linked against the libraries that were shipped with RH 7.2 rather than the libraries that were shipped with
RH 8.0.)

1
© 2003 Delphi Communication Systems, Inc.  All rights reserved.

Reproduction by permission only.



• Terminal emulator software.  Throughout this document, we will assume that the
terminal emulator software you use is minicom, which runs on the Linux
workstation, although you could use the HyperTerminal program installed on your
Windows PC if you desire.

• A tftp server.  We use the default one that shipped with RedHat.
• Linux on the Innovator files.  The latest version of this document, and all of the open

source files referenced therein are available at ftp  ://  ftp.delcomsys.com  /pub/  omap  /  loti.  
Everything that you need for Section 2, Binary Installation, is available in the
loti.tar.bz2 file.  All of the source distributions referenced in Section 3, Source
Installation, are available on the Delphi FTP site for your one stop shopping
convenience.

TCP/IP Information
• IP address of your Linux workstation (default server IP address).  This

may be dynamically assigned via DHCP, or statically assigned by your MIS
department.  You can use the /sbin/ifconfig command to display the IP address
of your workstation if you are unsure of what it is.

• IP address information for your Innovator.  This must be provided to you by your MIS
department and should include the items listed below.  In particular, the IP address for
your Innovator should be a static IP address.  (RedBoot does support the BOOTP and
DHCP  protocols, but life is much simpler2 if you dedicate an IP address to your
Innovator board).  The terms in parentheses will be used later when configuring the
RedBoot bootloader.

• gateway/router address (Gateway IP address)

• IP address (Local IP address)

• netmask (Local IP address mask)

• DNS server IP address (DNS server IP address)

Side Note: Linux and Windows - Cohabitation
As you get into putting Linux on the ARM side of the Innovator, you will
find that you are pulled more and more into using tools that run under some
variant of the Linux operating system - at least if  you follow this document
you will.   However, the TI Code Composer Studio (CCS) tools do not run
natively under Linux.  So, you will find that you need a Windows box
running Code Composer to build code that runs on the DSP or to perform
JTAG debugging under CCS.  We use the gcc tools for code that runs on the
ARM9 core of the OMAP.  We found it natural to use Linux versions of
those tools.  So, we needed another PC that ran Linux for this work.

2 Well, life is simpler for us, since we don't need to try to document how to set up a BOOTP server on
your network.  It's also simpler for you, since you don't need to figure out how to set up a BOOTP server
on your network.

2
© 2003 Delphi Communication Systems, Inc.  All rights reserved.

Reproduction by permission only.



Does all of this seem frustrating?  It can be.  We would sure love it if the TI
tools ran under Linux.  We did indeed get frustrated with the need to have
two boxes (Windows and Linux).  Skipping all the in-between steps (like
dual boot), we settled on a single PC setup.  The PC runs RedHat Linux with
Win4Lin (available at http  ://www.netraverse.com  ) running a Windows 98
installation in a separate window on the Linux desktop.  The great thing
about the Win4Lin approach was that the Code Composer Tools ran fine and
Win4Lin, Linux, and the parallel port handled the parallel port emulator
without a hitch.

So, with the previously described setup, we could do all of the necessary
development from one computer without any need to reboot to switch
operating systems.  It could be important.  You may be thinking, “When I
am done, I will be doing all of my development using GPL tools under
Linux and I won’t  need Windows anymore.”  We like to remember the oft
forgotten part of the OMAP, the 55x DSP.  We’re going to want to develop
code to run  there too and we will need the TI tools to do that!

3
© 2003 Delphi Communication Systems, Inc.  All rights reserved.

Reproduction by permission only.



2. Binary Installation

Install the Host Based Software
In order to run Linux on the Innovator, you will need to install some software on your
Linux and Windows workstation(s).

• Install the Code Composer Studio tools on a Windows PC (or in a Win4Lin window
on your Linux workstation) according to the instructions included with the Innovator.

• Install  your favorite tftp server.  If you use a RedHat workstation, you should be able
to install the tftp server RPM with a command similar to:
prompt# rpm -ivh /mnt/cdrom/RedHat/RPMS/tftp-server-0.17-14.i386.rpm

Consult the documentation that came with your Linux distribution for more details.
Note that once you install the tftp server you must arrange for it to be enabled by
editing the appropriate configuration file, most likely /etc/xinetd.d/tftp or
possibly /etc/inetd.conf.  You will also have to create a root directory for tftp
transfers if it was not created with the rpm command.  We suggest that you use
/tftpboot.  (Whatever you choose, it  must match the directory given with the -s
option in the configuration file listed above.)  You will have to create the directory as
root, but we suggest that you make it writable from your normal user account.  (There
are some operations that must be performed as root when dealing with embedded
Linux development, but simply copying files to a directory so that they may be fetched
over the network is not one of them.)  Finally, you may have to (re)configure the
firewall settings on your workstation to allow TFTP transfers to take place.
Instructions for configuring your firewall settings are beyond the scope of this
document, but if you think that everything is set up properly, but you still cannot
transfer files from your workstation using TFTP, consider disabling your firewall (for
the duration of a simple test) using a command similar to the following:

prompt# /etc/init.d/iptables stop

or
prompt# /etc/init.d/ipchains stop

If that solves your problem, then reconfigure your firewall settings to allow UDP port
69 through, or convince somebody more knowledgeable about Linux and firewall
settings to do that for you.

• Make sure that you have write access to /usr/local/xtools.  We have found
that the simplest way to do this is to create a group3 named xtools; add yourself and
whomever else you want to be able to write to the /usr/local/xtools directory

3 If you are unfamiliar with the concept of groups in Linux, consult your documentation, or any of the
books available about Linux system administration.  You may also find it simpler to run the GUI tool
provided by RedHat for user group management.

4
© 2003 Delphi Communication Systems, Inc.  All rights reserved.

Reproduction by permission only.



to that group; change the group ownership of /usr/local/xtools  to be
xtools; and make it group writable and “set-group-id” (sgid).  This is summarized in
the example below:

Edit /etc/groups as root and add a new group called xtools  with whomever
you want in the group.  Then...
prompt# mkdir /usr/local/xtools
prompt# chgrp xtools /usr/local/xtools
prompt# chmod g+ws /usr/local/xtools

• Now we get to the fun stuff: loti.tar.bz2.  This file contains the RedBoot
bootloader, the binary image of the Linux kernel, the binary image of the initial root
file system, and the toolchain required to build ARM Linux executables.  Unpacking
and installing this file requires two steps.  First create a working directory.
Throughout this document, we assume that loti.tar.bz2  was unpacked in a
directory named ~/omaplinux.  Unpack the tarball.  Then change to the
/usr/local/xtools directory and unpack the toolchain.  The example below
shows these steps.  It is assumed that loti.tar.bz2  was downloaded to a
directory named /dist/omap  on the local workstation.

prompt$ mkdir ~/omaplinux
prompt$ cd ~/omaplinux
prompt$ tar xjf /dist/omap/loti.tar.bz2
prompt$ cd /usr/local/xtools
prompt$ tar xjf ~/omaplinux/toolchain.tar.bz2

At the completion of these steps, you should have the following files installed in
~/omaplinux:

hello.c initrd mkrd redboot-sram.out toolchain.tar.bz2
Image initrd.dir redboot-flash.bin rootfs

Don't forget to add /usr/local/xtools/arm-uclibc-3.2.1/bin  to your
path using a command similar to the one shown below (if you use bash):

prompt$ export PATH=/usr/local/xtools/arm-uclibc-3.2.1/bin:$PATH

or, if you prefer csh variants:

prompt$ setenv PATH /usr/local/xtools/arm-uclibc-3.2.1/bin:$PATH

Most people add this in their .bashrc  or .cshrc  file so that it is always available.

Install RedBoot
The Linux kernel is not self-booting.  It relies on a bootloader to establish a stable system
state, to gather system information, to feed it to the kernel, and to start (boot) the kernel.
Since we have successfully used the eCos real time kernel (RTK) in other projects, and

5
© 2003 Delphi Communication Systems, Inc.  All rights reserved.

Reproduction by permission only.



since it includes a very full-featured bootloader, (called RedBoot), we decided to port
RedBoot to the OMAP.  Also, we felt confident that we could get ethernet support
running under RedBoot fairly quickly so that we could download code via ethernet
instead of the serial port.  (As an aside, if you are looking for a very configurable, low-
profile, open-source RTK for an embedded OMAP application you might want to check
out eCos at http://  sources.redhat.com  /  ecos.    It could be the OS for you.)

One of the files that you unpacked from loti.tar.bz2 was redboot-sram.out.
This file contains a limited version of the RedBoot bootloader that we shall use to install
the full version in FLASH.  In order to run this program, you must have a working
version of Code Composer Studio.  You will also need a serial port terminal program,
such as minicom.
All of the instructions we have seen for installing software on the Innovator start off by
stating that you should set the DIP switches in a certain manner.  So, we shall follow suit.
We have found that if we leave the DIP switches in their default factory configuration
(DIP switch 1 on and switches 2, 3, and 4 off), then we never have to think of them again.
(This maps the boot flash to chip select 0, or, equivalently, address 0.  Since the code in
RedBoot assumes that the boot flash is at physical address 0, and makes no assumptions
about the user flash devices, this seems to be the safest way to go).  Depending on what is
installed in the boot flash, Code Composer may not operate cleanly.  The most common
problem we have seen is that CCS is unable to access the DSP from its startup GEL
script.  Since we are not concerned with the DSP at this point of the installation, you can
safely ignore any warnings or error messages regarding the DSP.  The second most
common problem we have seen is that CCS is unable to disassemble the instructions in
memory correctly.  Our current theory is that the MMU is not fully supported by CCS
and that it fetches instructions and data based on the physical address rather than the
virtual address given.  Regardless, if you follow the instructions given below, this should
not be an issue.
• Install the emulator, ensure that jumpers JP1 and JP2 are on pins 2-3 so that the TI

emulator header is selected.
• Connect the serial port cable to the Interface Module.
• Connect a null-modem cable between the (Innovator) serial port connector labeled

“COM1” and your PC running minicom.

• Configure minicom for 115200 baud, 8 bits, no parity.
• Apply power to the board.  Turn the switch on if you need to.  (We have found that the

simplest way to turn the board on and off is to plug the power supply “brick” into a
power strip dedicated to this purpose and to simply turn the power strip on and off.)

• Start CCS (we assume you have already run Code Composer Setup and have setup for
your emulator and for the Innovator).  As we stated earlier, you may safely ignore any
warnings regarding the inability of CCS to communicate with the DSP.  You may not
ignore warnings regarding the inability of CCS to communicate with the ARM
processor.

• Open a debug window for the ARM processor.

6
© 2003 Delphi Communication Systems, Inc.  All rights reserved.

Reproduction by permission only.



• Select “Tools|TMS470R2x Advanced Features...”
• Check the box marked “Break on Reset”
• Press the F5 key (some people do this by selecting “Debug|Run”).  You will be

presented with a dialog box that warns you that you have not loaded any code on the
processor yet and which asks you if you want to continue.  Select “Yes”.

• Press the RESET button on the Innovator.  (By the way, if you missed this in the
manual, if you press and hold the RESET button for 2 seconds or longer, it generates a
full Power On reset.  If you just tap it, it generates an ARM only reset – either reset is
fine here).

• At this point, the Disassembly window should show that the PC is at its reset vector
address of 0.  This sequence (Start  CCS, check the “Break on Reset” box, run the
processor, press the reset button) is a handy technique for getting the processor into a
consistent state with which CCS is happy.  And, we didn't have to muck with any DIP
switches!

• Load the redboot-sram.out  program on the processor.  You will receive some
error messages from CCS stating that it is unable to load memory at address 0x20,
etc... You may safely ignore any of these messages as long as the address is less than
0x20000000.  Someday, we might figure out a way to generate an ELF file with the
GNU tools that CCS is happy to load without any problems.  Unfortunately, today is
not that day.

• Run the application you just loaded (i.e. press F5 or select “Debug|Run”).  You should
see a output similar to the following in your minicom window:

+FLASH configuration checksum error or invalid key

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 13:07:29, Jan 28 2003

Platform: Innovator (ARM9)
Copyright (C) 2000, 2001, 2002, Red Hat, Inc.

RAM: 0x00000000-0x02000000, 0x0000e238-0x01fed000 available
FLASH: 0x10000000 - 0x10400000, 64 blocks of 0x00010000 bytes each.
RedBoot>

• The final line is the “RedBoot” prompt.  The examples that follow all start with such a
prompt.

• Initialize the “flash image system”.  This is a file system stored on the flash device that
may be manipulated with RedBoot.

RedBoot> fis init -f

7
© 2003 Delphi Communication Systems, Inc.  All rights reserved.

Reproduction by permission only.



You will see a display similar to the following:
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Erase from 0x10020000-0x103e0000:
............................................................
... Erase from 0x103f0000-0x103f0000:
... Erase from 0x10400000-0x10400000:
... Erase from 0x103f0000-0x10400000: .
... Program from 0x01fef000-0x01fff000 at 0x103f0000: .
RedBoot>

• Load the ROM (i.e. flash) version of RedBoot using the ymodem protocol.  This is
probably a good time to tell you that you should have started minicom in the same
directory as you unpacked the files from the loti.tar.bz2 tarball (i.e
~/omaplinux).  If you did that, then when you attempt to send the
redboot-flash.bin file to the Innovator, you won't have to search very far for it.
At the RedBoot>  prompt, enter the following:

RedBoot> load -r -b 0x80000 -m ymodem

This commands RedBoot to load a raw (-r) file into memory starting at a base address
(-b) of 0x800004  and to use the Y-Modem protocol to receive the file via the serial
port.  You will need to command minicom to download the file by typing
Control-a S, selecting ymodem, and scrolling down to the redboot-flash.bin
file, pressing the space bar to select it, and pressing enter to start the download.  When
the download completes, you will be presented with a RedBoot>  prompt once again
and you should see output similar to the following:

Raw file loaded 0x00080000-0x0009f5eb, assumed entry at 0x00080000
xyzModem - CRC mode, 1007(SOH)/0(STX)/0(CAN) packets, 4 retries
RedBoot>

4 Earlier we stated that by configuring the DIP switches the way we did, that flash would be at address 0.
It is tempting to think that this command will download the image directly to flash starting at address
0x80000.  Unfortunately, this is not the case.  eCos, and hence, RedBoot, requires that RAM be at
address 0 so that it can overwrite the interrupt vector table.  RedBoot, and hence eCos, uses the MMU in
the ARM to swap the addresses of flash and SDRAM.  Thus, flash occupies virtual memory from
address 0x10000000  to 0x10400000  while SDRAM occupies virtual memory from address
0x00000000 to 0x02000000.

8
© 2003 Delphi Communication Systems, Inc.  All rights reserved.

Reproduction by permission only.



• At this point, you have successfully transferred the RedBoot image from your host
computer to RAM on the Innovator.  Now it is time to write it to the flash using the
commands shown below:

RedBoot> fis write -f 0x10000000 -b 0x80000 -l 0x30000
* CAUTION * about to program FLASH

at 0x10000000..0x1002ffff from 0x00080000 - continue (y/n)? y
... Erase from 0x10000000-0x10030000: ...
... Program from 0x00080000-0x000b0000 at 0x10000000: ...
RedBoot>

This commands RedBoot to write to the flash starting at address 0x10000000  from
memory starting at address 0x80000  and to write 0x30000  bytes.  Since you are
mucking about with the flash, RedBoot kindly asks you if you are out of your mind or
not.

• Now you have erased the iBoot bootloader (or whatever else was stored in the Boot
flash) and replaced it with RedBoot.  Exit CCS, turn off the power to the board, unplug
the emulator, (or unplug it while it's hot, if you dare), and turn the board back on.
After a little while, you should see the following on the serial terminal:

+FLASH configuration checksum error or invalid key
no link
no link
no link
no link
Ethernet eth0: MAC address 00:0b:36:00:01:74
Can't get BOOTP info for device!

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 09:12:44, Jan 27 2003

Platform: Innovator (ARM9)
Copyright (C) 2000, 2001, 2002, Red Hat, Inc.

RAM: 0x00000000-0x02000000, 0x00015c18-0x01fe1000 available
FLASH: 0x10000000 - 0x10400000, 64 blocks of 0x00010000 bytes each.
RedBoot>

Don't be alarmed by the long pause at the beginning of the boot sequence.  By default,
RedBoot attempts to determine its IP settings using the BOOTP protocol.  Once that
times out, RedBoot continues with its boot sequence.

9
© 2003 Delphi Communication Systems, Inc.  All rights reserved.

Reproduction by permission only.



• Now it is time to tell RedBoot about all of those IP parameters we told you to obtain
way back at the beginning of this document.  We do this with the fconfig command
as shown in the example below.  Remember to supply your own parameters
appropriate to your network settings.

RedBoot> fconfig
Run script at boot: false
Use BOOTP for network configuration: false
Gateway IP address: 10.1.0.100
Local IP address: 10.1.3.2
Local IP address mask: 255.255.0.0
Default server IP address: 10.1.0.201
DNS server IP address: 63.110.40.25
GDB connection port: 9000
Force console for special debug messages: false
Network hardware address [MAC]: 0x00:0x00:0x00:0x00:0x84:0xDF
Network debug at boot time: false
Update RedBoot non-volatile configuration - continue (y/n)? y
... Erase from 0x103e0000-0x103e1000: .
... Program from 0x01fe2000-0x01fe3000 at 0x103e0000: .
RedBoot>

Now that you have configured the IP settings, if you press the reset button, or power
cycle the board, you should see:

+Ethernet eth0: MAC address 00:0b:36:00:01:74
IP: 10.1.3.2/255.255.0.0, Gateway: 10.1.0.100
Default server: 10.1.0.201, DNS server IP: 63.110.40.25

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 09:12:44, Jan 27 2003

Platform: Innovator (ARM9)
Copyright (C) 2000, 2001, 2002, Red Hat, Inc.

RAM: 0x00000000-0x02000000, 0x00015c18-0x01fe1000 available
FLASH: 0x10000000 - 0x10400000, 64 blocks of 0x00010000 bytes each.
RedBoot>

Congratulations!  You now have an Innovator capable of loading and running arbitrary
programs from the flash, the ethernet, or the serial port.  Read on to see how to load
one of those arbitrary programs (namely, Linux).

Use RedBoot to load the kernel and the initial ramdisk
In this section, we present instructions for downloading the kernel and the initial ramdisk
and writing them to the flash.  In the next section, we will present instructions for loading
the initial ramdisk and the kernel from flash for execution.  It should be noted that it is
not required that you first write the component (i.e. the kernel or the initial ramdisk) to
the flash before executing the kernel.  During development, it is often easiest to keep one
component in the flash while downloading the other one.
In order to perform the steps described in this section, you must first ensure that you have
a tftp server running, presumably on your Linux host.   Instructions for doing this were
given previously in this document.  If you skipped those instructions, go back and reread
them now.  Once you have created the /tftpboot  directory and made it writable by

10
© 2003 Delphi Communication Systems, Inc.  All rights reserved.

Reproduction by permission only.



you, copy the Image  and initrd  files from your ~/omaplinux  directory to
/tftpboot.  Once you have done all of that, follow the steps below to load the Linux
kernel (which is in the file named Image) and the initial ramdisk (which is in the file
named initrd) into flash.
• Download the kernel using a command similar to the one shown below.  Note that if

you set the “Default Server IP Address” parameter in fconfig to the IP address of your
workstation running the TFTP server, you may omit the
-h <<server IP address>>  option below.  This command loads a raw (-r)
binary file named Image  into memory at a base address of 0x80000  from a tftp
server at address <<server IP address>>.  While it is downloading, the cursor
will display a “spinning helicopter” pattern (-v).

RedBoot> load -v -r -b 0x80000 -h <<server IP address>> Image
/
Raw file loaded 0x00080000-0x001bccbf, assumed entry at 0x00080000
RedBoot>

• Write the kernel to flash using a command similar to the one shown below.  This
creates a new file in the flash image system named, oddly enough, Image.  Note that
if a file already exists by that name, you will be questioned as to whether or not you
want to overwrite it.  Also note that, if you choose to overwrite the existing file with a
new one, the new one must be small enough to fit in the space allocated for the
existing one.  If that is not the case (and you will be informed if it is not the case),
simply delete the existing file (using the fis delete  command) and try again.

RedBoot> fis create Image
... Erase from 0x10030000-0x10170000: ....................
... Program from 0x00080000-0x001bccc0 at 0x10030000: ....................
... Erase from 0x103f0000-0x10400000: .
... Program from 0x01fef000-0x01fff000 at 0x103f0000: .
RedBoot>

• Download the initial ramdisk using a command similar to the one shown below.
RedBoot> load -v -r -b 0x400000 -h <<server IP address>> initrd
/
Raw file loaded 0x00400000-0x0042de8b, assumed entry at 0x00400000
RedBoot>

• Write the initial ramdisk to flash using a command similar to the one shown below.  
RedBoot> fis create initrd
... Erase from 0x10170000-0x101a0000: ...
... Program from 0x00400000-0x0042de8c at 0x10170000: ...
... Erase from 0x103f0000-0x10400000: .
... Program from 0x01fef000-0x01fff000 at 0x103f0000: .
RedBoot>

Boot the kernel
At this point, you have RedBoot, a Linux kernel, and an initial ramdisk stored in the flash
(along with some configuration parameters used by RedBoot).  We are finally ready to try

11
© 2003 Delphi Communication Systems, Inc.  All rights reserved.

Reproduction by permission only.



running our Linux kernel.  This is surprisingly easy, as the next set of commands show:
RedBoot> fis load initrd
RedBoot> fis load Image
RedBoot> exec -r 0x400000
Using base address 0x00080000 and length 0x00140a1c
Linux version 2.4.19-rmk4 (wpd@akula) (gcc version 3.2.1) #1 Fri Jan 31 09:55:18
EST 2003

CPU: ARM/TI Arm925Tsid(wb) revision 2
Machine: Innovator/OMAP1510

... (output deleted)

The first command copies the initial ramdisk from flash into RAM (starting at the address
where it was originally downloaded, namely 0x400000).  The second command copies
the kernel from flash into RAM (at address 0x80000).  The final command starts
execution of the kernel and tells it to find its initial ramdisk at address 0x400000.  Note
that the order of the two “load” commands is important.  You must load the initial
ramdisk image prior to loading the kernel (because the exec  command assumes that the
kernel was the last file loaded).  As mentioned previously, you can load either (or both)
the initial ramdisk or the kernel via tftp from your host computer or, as shown above,
from the flash.  Typically, when we are developing applications to run in Linux, we keep
the kernel in flash and simply reload the initial ramdisk via tftp each time we reboot the
Innovator5.  Other options, such as mounting the root filesystem via NFS, or using a
ROM filesystem or a compressed RAM filesystem are beyond the scope of this
document.
If everything worked properly, you should see messages similar to the following:

RAMDISK: Compressed image found at block 0
Freeing initrd memory: 4096K
VFS: Mounted root (ext2 filesystem).
Freeing init memory: 72K
init started: BusyBox v0.60.5 (2003.01.17-14:50+0000) multi-call binary
Starting Network

Please press Enter to activate this console.

Press Enter and you should see the following:

BusyBox v0.60.5 (2003.01.17-22:02+0000) Built-in shell (ash)
Enter 'help' for a list of built-in commands.

#

Now you are ready to initialize your TCP/IP parameters for the Linux kernel.

5 You can even use the fconfig RedBoot command to specify a startup script that loads one image via
TFTP and the other from the flash and then runs the kernel.  That way you can simply reboot the
Innovator to get the latest version of which ever image you are playing with on a given day.

12
© 2003 Delphi Communication Systems, Inc.  All rights reserved.

Reproduction by permission only.



Initialize TCP/IP
The initial ramdisk included in loti.tar.bz2  does not enable the network for the
simple reason that we have no idea what your network parameters are.  So you must
manually enter three commands to initialize the network.  Enter commands similar to the
ones shown below, but substitute the appropriate IP address, netmask, broadcast address6,
gateway address, and name server address for the 10.1.3.2, 255.255.0.0, 10.1.255.255,
10.1.0.100, and 63.110.40.25 values shown below.  Note that these parameters are
identical to the ones you used for your RedBoot bootloader.
# ifconfig eth0 10.1.3.2 netmask 255.255.0.0 broadcast 10.1.255.255
# route add default gw 10.1.0.100 eth0
# echo nameserver 63.110.40.25 > /etc/resolv.conf

The first command configures the ethernet interface named eth0 (which is the only
ethernet interface on the Innovator) with an IP address of 10.1.3.2, a netmask of
255.255.0.0, and a broadcast address of 10.1.255.255.  The second command
specifies the default gateway (10.1.0.100) to be used to route packets destined for
hosts that are not on the local subnet.  This is not required if you never intend to
communicate with hosts outside of your local subnet.  The third command specifies the
IP address of the DNS nameserver (63.110.40.25) which is used to resolve textual
host names such as www.ti.com into raw IP addresses such as 192.91.75.198.
Once again, this is not required if you never intend to resolve textual host names.

If you want to verify that the network is set up properly, you can use the ping  command
as shown below.
# ping www.ti.com
PING www.ti.com (192.91.75.198): 56 data bytes
64 bytes from 192.91.75.198: icmp_seq=0 ttl=237 time=70.0 ms
64 bytes from 192.91.75.198: icmp_seq=1 ttl=237 time=70.0 ms
64 bytes from 192.91.75.198: icmp_seq=2 ttl=237 time=70.0 ms
^C
--- www.ti.com ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 70.0/70.0/70.0 ms
#

Compile and run the“Hello World” program.
Now that you have Linux running on your Innovator, you probably want to start running
your own Linux application.  Instructions for writing your own application for your new
multimedia enhanced, wireless, USB capable, ultra low power, lemony scented super
duper application are beyond the scope of this document, but we can help you get started
by showing you how to compile and run the traditional “Hello World” program.  We'll
start by showing you the program:

6 The broadcast address may be obtained by ANDing the netmask with your IP address and replacing the
least significant “0” bits with “1” bits.

13
© 2003 Delphi Communication Systems, Inc.  All rights reserved.

Reproduction by permission only.



#include <stdio.h>

int
main(int argc, char *argv[])
{

printf(“Hello World\n”);
return(0);

}

If you are particularly lazy, and don't want to type this in yourself, you can find this
program in the hello.c file in the omaplinux  directory.  Compile this program on
your Linux workstation using the arm-uclibc-gcc  compiler you installed way back
at the beginning of this document:
prompt$ arm-uclibc-gcc -static -o hello hello.c
prompt$ cp hello /tftpboot

The first command compiles and statically links the program.  By default, gcc will
generate an executable that uses shared libraries (also known as a “dynamically linked”
executable).  Since we have not installed all of the shared libraries in the initial ramdisk,
the program will not run.  The second command is particularly important, since we need
to transfer the program to the Innovator using tftp.  It needs to be placed in the
/tftpboot  directory so that your tftp server can find it.

Once you have executed these two commands, you are ready to transfer the program to
the Innovator and to run it using commands similar to the ones shown below (which are
to be executed on the Innovator – i.e. in the minicom terminal):
# tftp -g -r hello 10.1.0.201
# chmod a+x hello
# ./hello
Hello World
#

The first command uses the tftp  program to get (-g) a file named “hello” (-r hello)
from the tftp server running on the host with an IP address of 10.1.0.201.  (Don't
forget to substitute the IP address of your Linux workstation for 10.1.0.201.)  The
second command makes the file executable.  The third command runs the application.
Pretty neat, huh?

Create your own initial ramdisk
Well, now you are probably thinking,  “This is great!  I am running Linux on my
Innovator.  The network works.  And, I know how to compile, download, and run my
own applications.  But it sure is a pain to have to type in those IP parameters every time I
reboot the Innovator.  And, once I am done writing my application, I don't want to have to
type in those silly tftp  and chmod  commands every time I want to run it.  Isn't there
an easier way?”  The answer is, “Of course there is an easier way!”  Actually, there are
approximately 546,231,284 easier ways, but we shall only examine one of them.  The
remaining  546,231,283 easier ways are beyond the scope of this document.  The

14
© 2003 Delphi Communication Systems, Inc.  All rights reserved.

Reproduction by permission only.



particular easier way we shall examine here is to create your own custom initial ramdisk.

Fortunately, you will not have to create an initial ramdisk from scratch.  You can modify
the initial ramdisk files that were installed in ~/omaplinux/rootfs.  To make the
changes we discussed above, follow the steps listed below:

• The very first time you do this (after unpacking loti.tar.bz2), you will have to
create device nodes for the Innovator with the following commands:
prompt$ su
password:
prompt# mknod rootfs/dev/console c 5 1
prompt# mknod rootfs/dev/ttyS0 c 4 64
prompt# mknod rootfs/dev/ram0 b 1 0
prompt# exit
prompt$

The mknod command is a UNIX command that creates a “device node” in the file
system.  Since device nodes are the only way to gain direct, low level, access to
devices such as the hard disk, creation of such nodes is restricted to the superuser. This
is why the start of the previous sequence of commands is the su  (“switch user”, or
“superuser”)  command.  This, incidentally, is also the reason why the mkrd script we
present below must be executed as root.  It indirectly creates device nodes via the tar
command sequence that is used to copy the contents of the rootfs directory to the
initrd.dir  directory.

• Edit ~/omaplinux/rootfs/etc/init.d/rcS  using your favorite text editor.
(For what it's worth, our favorite text editor is Emacs.)  You will find two lines in that
file that have been commented out (with a # at the beginning of the lines) that contain
the ifconfig  and route  commands we executed previously.  Modify those lines
appropriately for your environment and remove the # from the beginning of the lines.

• Create ~/omaplinux/rootfs/etc/resolv.conf containing the nameserver
information you manually entered previously.

• Copy your application (i.e. hello) to an appropriate location in
~/omaplinux/rootfs.  Logical places are ~/omaplinux/rootfs,
~/omaplinux/rootfs/bin, and ~/omaplinux/rootfs/usr/bin.  Note
that you should not have to execute the chmod  command that we executed previously
after copying the file from one location on your workstation to another, but it will do
no harm to execute it. 

• Create a new initrd file using commands similar to the ones shown below.  Note
that most of these commands need to be executed as root.
prompt# dd if=/dev/zero of=initrd.img bs=1k count=4096
prompt# mke2fs -F -m0 initrd.img
prompt# mount -o loop initrd.img initrd.dir
prompt# (cd rootfs; tar cf - .) | (cd initrd.dir ; tar xpBf -)
prompt# umount initrd.dir/
prompt# gzip -c -9 initrd.img > /tftpboot/initrd

15
© 2003 Delphi Communication Systems, Inc.  All rights reserved.

Reproduction by permission only.



The dd command creates a file named initrd.img that contains 4Mbytes of zeros.
The mke2fs command writes the appropriate headers to that file to create an
(empty)“ext2” filesystem.  (This is the same command you would execute to create an
empty file system on your hard disk.)  The mount command grafts the empty “ext2”
filesystem contained in initrd.img onto the filesystem on your workstation under
the initrd.dir directory.  The funny looking (cd ... tar xpBf -)
command makes a copy of the rootfs directory in the initrd.dir directory,
preserving file permissions, device nodes, etc...  (This is a general purpose incantation
that can be used any time you want to make an exact duplicate of one directory tree on
another).  The umount command unmounts the filesystem.  That is, it  removes the
“graft” we created with the mount command previously.  Finally, the gzip command
compresses the initrd.img file (which now contains a valid file system that
duplicates the files and subdirectories under the rootfs  directory) and places the
result in the /tftpboot directory in a file conveniently named initrd.  You can
use RedBoot to transfer that file to your Innovator using the commands we discussed
previously.
Once again, we are going to claim that we know what you are probably thinking.  This
time, we claim that you are probably thinking, “Gee, do I really have to type those six
commands in every time I want to generate a new initial ramdisk?  That's going to be a
pain, especially that (cd ... tar xpBf -) command.”  If you are thinking that,
then the answer is “no, and you're right, typing that (cd ... tar xpBf -) could
be a pain, but you actually get used to the pain after a while.  But if you don't really
want to type all of those commands in each time, you don't have to.  You can simply
run the mkrd script (as root) that we conveniently placed in the ~/omaplinux
directory for you.

• In the future, when you make changes to the rootfs directory that you want to try
out on your Innovator, simply execute the mkrd script (as root) as shown in the
example below.

prompt# ./mkrd
4096+0 records in
4096+0 records out
mke2fs 1.23, 15-Aug-2001 for EXT2 FS 0.5b, 95/08/09
Filesystem label=
OS type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)
1024 inodes, 4096 blocks
0 blocks (0.00%) reserved for the super user
First data block=1
1 block group
8192 blocks per group, 8192 fragments per group
1024 inodes per group

Writing inode tables: done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 30 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.
prompt#

16
© 2003 Delphi Communication Systems, Inc.  All rights reserved.

Reproduction by permission only.



• Here is a tip:  If you boot the kernel with your new initial ramdisk, but you never see
the Please press Enter to activate this console prompt, go back
and make sure that created the rootfs/dev/console device node correcty as
described on page 15.

Where to go from here
We hope that this simple introduction has proved informative.  Obviously, there are a
number of different variations on the theme presented here.  The most obvious first step is
the selection of a more appropriate root filesystem.  The initial ramdisk concept in Linux
is just that - an initial file system suitable for loading in necessary modules before
initializing the rest of the system.  Although there is nothing intrinsicly wrong with using
the initial ramdisk for development, you will quickly notice its limitations.  For example,
it is (with the default configuration) limited to be less than 4 Megabytes in length.  Also,
the cycle of: compile your application; create a new initial ramdisk (using the mkrd script
we presented above); reset the board; load the new initial ramdisk via tftp; load the old
kernel from the flash; boot the new kernel; gets long and tiresome after a while.  Using an
NFS mounted root filesystem is an excellent technique for eliminating these tiresome
steps, but is beyond the scope of this document.  (If you are interested, look at the file
Documentation/nfsroot.txt  in your favorite Linux kernel source tree).  Also,
for production systems (where you may not have network access to the root file system
inconveniently stored on your personal workstation), you should probably investigate
other options for the root file system such as ROMFS, CRAMFS, or JFFS2.
Finally, we have deliberately ignored the most exciting part of the OMAP device: the '55x
DSP that lives along side of the ARM processor that we have been playing with for the
last 10 pages or so.  But that is the subject of a different paper...

17
© 2003 Delphi Communication Systems, Inc.  All rights reserved.

Reproduction by permission only.



3. Source Installation
If you have read this far, one of the things you might be thinking is “Gee, it's awfully nice
that they provided precompiled binaries for the toolchain, the kernel, and the contents of
the initial ramdisk, but I thought that the whole point of Open Source Software was that I
would have to compile those pieces from the original source code myself.”  As we have
just demonstrated, you are not required to compile Open Source Software from scratch.
On the other hand, under the terms of the GNU Public License (GPL), which is the
license under which the toolchain, kernel, and the contents of the initial ramdisk, we are
obligated to make the source code available for the binaries that we distribute.7  With that
bit of trivia in mind, let us see how the files you found in loti.tar.bz2 were
generated.8

Compile the Toolchain
The toolchain consists of the compiler, assembler, linker, C runtime libraries, and other
miscellaneous utilities that you installed in /usr/local/xtools back at the
beginning of this document.  The compiler we use is gcc-3.2.1.  The assembler, linker,
and “other miscellaneous utilities” that we use are provided by binutils  -2.13.2  .    The C
runtime libraries are provided by uClibc  -0.9.17  .  Erik Andersen, the maintainer of uClibc,
has provided a simple mechanism for downloading and compiling all of these
independent pieces in one swell foop.  We describe that mechanism below.

• Go to http://  www.uclibc.org  /  cgi  -bin/  cvsweb  /toolchain/gcc-3.2.1   and click on the
“Download tarball” link near the lower left corner.  The instructions that follow
assume that you download the tarball to /dist/omap.  Alternatively, you may
choose to download toolchain-src.tar.bz2, from the Delphi FTP site:
ftp://ftp.delcomsys.com/pub/omap/loti.  (Note that all of the source files described
in Section 3 are available on the Delphi FTP site in addition to the official source
sites described here)

• Create a working directory for building the toolchain.  The instructions that follow
assume that the toolchain directory is ~/xtools.

• Unpack the gcc-3.2.1.tar.gz  tarball:
prompt$ mkdir ~/xtools
prompt$ cd ~/xtools
prompt$ tar xzf /dist/omap/gcc-3.2.1.tar.gz
prompt$ cd gcc-3.2.1

7 We are not obligated to write a document describing how to use that source code, that's just a bonus
feature you get by reading this document.

8 This section omits the instructions for generating RedBoot.  See our separate document about running
eCos on the Innovator for a description of how to compile RedBoot.

18
© 2003 Delphi Communication Systems, Inc.  All rights reserved.

Reproduction by permission only.



• Modify the top level Makefile to suit our installation.  (Note that, if you fetch
gcc-3.2.1.tar.gz  from www.uclibc.org, some of these modifications
may have already been made for you.  If you fetch toolchain-src-tar.bz2
from ftp.delcomsys.com, all of these modifications will have been made).9

• Set TARGET_PATH  to /usr/local/xtools/arm-uclibc-3.2.1

• Set ARCH  to arm

• Set USE_UCLIBC_SNAPSHOT  to false

• Change uClibc-0.9.16 to uClibc-0.9.17  in the macro definitions for
UCLIBC_SOURCE  and UCLIBC_DIR

• Now build the toolchain.  This will take a while.  (And, will take even longer if you
fetched gcc-3.2.1.tar.gz  from www.uclibc.org  because, unlike the
version at ftp.delcomsys.com, Erik's version does not include the distribution
files for binutils, gcc, and uClibc.  It downloads them automatically as part of the
build process.  This is why his version downloaded significantly faster than the
version at ftp.delcomsys.com.)
prompt$ make > makelog 2>&1 &
prompt$ tail -f makelog

(lots of output deleted - press ^C to exit the tail program).

The first command listed above executes the make  program, but directs its output
(>), including its error output (2>&1), to a file named makelog.  (Note that this
syntax for directing stdout and stderr is specific to the Bourne shell (i.e. bash)).  The
second command simply monitors the contents of the makelog file so you can see
what is happening and notice when it completes.  You will notice when it
completes because it will display “Finally finished!”10

• Don't forget to add /usr/local/xtools/arm-uclibc-3.2.1/bin  to
your path.  Most people add this in their .bashrc  or .cshrc  file so that it is
always available.

9 Conversely, it is possible that, if you fetch the latest, greatest version from Erik's website, you will get
other modifications that do not match what is presented here.  But, if you want the official source for the
toolchain, Erik's site is the place to go.

10 Alternatively, you could execute the command: make 2>&1 | tee makelog, but this form allows
you to halt the tail command and disconnect from the machine to which you are remotely logged in
(using SSH right?) and go home at the end of the day.

19
© 2003 Delphi Communication Systems, Inc.  All rights reserved.

Reproduction by permission only.



Compile the kernel
Now that you have a toolchain, you are ready to compile the kernel.  In order to start from
scratch, you must obtain three files: the official 2.4.19 Linux kernel source tree; the
official ARM patch for that tree; and the official OMAP patch for the ARM patch source
tree.  The kernel source is available at http://  www.kernel.org  .  Make sure you download
linux-2.4.19.tar.bz2 if you want to follow the directions we give precisely.  The
ARM patch is available at http://  www.arm.linux.org.uk  /developer/v2.4/  .  Make sure you
download patch-2.4.19-rmk4.bz2  if you want to follow the directions we give
precisely.  Finally, the OMAP patch is available at
ftp://source.mvista.com/pub/omap/patch-2.4.19-rmk4-ggd2.bz2.  The instructions that
follow assume that you have downloaded these files to /dist/omap  on your Linux
workstation and that you use bash as your shell.
• Unpack and patch the kernel.  The instructions presented below assume that you

unpack the kernel in your ~/omaplinux/kernel directory.
prompt$ mkdir ~/omaplinux/kernel
prompt$ cd ~/omaplinux/kernel
prompt$ tar xjf /dist/omap/linux-2.4.19.tar.bz2
prompt$ cd linux-2.4.19
prompt$ bzcat /dist/omap/patch-2.4.19-rmk4.bz2 | patch -p1
prompt$ echo $?

Note that the echo $? command checks to see if the patch was successful.  It should
display 0 as its result.  If it does not, then make sure that you typed in the commands
precisely as they were shown.
prompt$ bzcat /dist/omap/patch-2.4.19-rmk4-ggd2.bz2 | patch -p1
prompt$ echo $?

These commands create a working directory (named ~/omaplinux/kernel);
unpack the baseline source tree into it; and apply the patchfiles to it.  In the interest of
brevity, we have omitted the output from the two patch commands, so don't be
surprised when you see mounds of output from those two commands.  Note that all of
the steps that follow assume that the current working directory is
~/omaplinux/kernel/linux-2.4.19.

• There are still a few more patches to be made, this time by hand.  These steps will not
be required once these patches are fed back into the OMAP and ARM source trees.

• Edit linux-2.4.19/arch/arm/mach-omap/innovator.c and add a line
that reads BOOT_PARAMS(0x10000100) after line 358.  For reference, line 358
should read: BOOT_MEM(0x10000000, 0xe0000000).

• Edit linux-2.4.19/drivers/net/Config.in and change
dep_tristate to tristate on lines 29 and 112.

20
© 2003 Delphi Communication Systems, Inc.  All rights reserved.

Reproduction by permission only.



• We are almost ready to start building your custom kernel.  The next step is to make
two changes to the top level makefile (in linux-2.4.19/Makefile).  (I know,
you thought you were done making patches.  Sorry.)  Find the line that sets the ARCH
macro and change it to read:
ARCH := arm

Then find the line that sets the CROSS_COMPILE macro and change it to read:
CROSS_COMPILE = arm-uclibc-

• Now it is time to install the baseline configuration file for the Innovator.  The next two
commands copy the baseline configuration file to .config and process it to make
sure that it is compatible with the current kernel release.
prompt$ make innovator_config
prompt$ make oldconfig

• Run the graphical Linux Kernel Configuration tool to modify a few parameters to
match the setup presented in this paper.  When you execute the next command, you
will be presented with a new X window showing the Linux Kernel Configuration
options.  (Note that this assumes that you are running the X windowing system on your
Linux workstation.  If you are not, you can still configure the kernel, but you will have
to read a different paper.)
prompt$ make xconfig

• Click on the button labeled General Setup.  (It should be the fourth button down on
the left.)  This will result in the display of a new X window labeled General Setup.

• Use the scroll bar (in the new window) to scroll through the list of options to the
end.  Search for the option labeled Default kernel command string.  You will see
(part of) the default value in the option box to the left of the label.  By default, it
contains “mem=32M console=ttyS0,115200n8 noinitrd
root=/dev/nfs ip=bootp”  Change it so that it reads “
console=ttyS0,115200n8”  (i.e. remove everything from the default value
except for the console=... part).  This configures the kernel so that its startup
console is the serial port running at 115200 baud, no parity, and 8 bits per character.

• Click on the button labeled Main Menu.
• Click on the button labeled File systems.  (It should be the last button in the middle

column).  This will result in the display of a new X window labeled, by a bizarre set
of circumstances, File systems.

• Use the scroll bar to scroll through the list of options, almost to the end, to find the
option labeled Second extended fs support (also known as “ext2”).  On the left hand
side of the window, you should see that the “m” option is selected (indicating that
ext2 support is provided via a loadable module).  Click on the “y” option
(indicating that yes, you want ext2 support to be built into the kernel).  This enables
support for the second extended file system to be built into the kernel directly
instead of a as a separately loaded module.  The initial ramdisk that we create later

21
© 2003 Delphi Communication Systems, Inc.  All rights reserved.

Reproduction by permission only.



is created as an ext2 filesystem, so support for this type of filesystem must be built
into the kernel.

• Click on the button labeled Main Menu.

• Click on the button labeled Save and Exit.
• Click on the button labeled OK.
Congratulations!  You have just configured your first Linux kernel for the Innovator.
Once you verify that the kernel works (which we shall do shortly), feel free to return to
the configuration tool and browse the options.  Some of them will, undoubtedly,
provoke interesting thoughts and ideas.  Go ahead, play!

• Now that you have configured your kernel, it is time to build it.  First you must update
the dependencies (which is not really required for a clean install, but it is a great habit
to get into), and then you can build the kernel image itself.  We use the following two
commands (using our trick of logging the output to a file, and watching that file,
instead of wishing that we could have seen what the first three lines of output were
long after they have scrolled off of the screen):
prompt$ make dep Image > makelog 2>&1 &
prompt$ tail -f makelog

• Once the build completes, you are ready to copy it to /tftpboot and try it out using
your existing (presumably known to be working) initial ramdisk:
prompt$ cp arch/arm/boot/Image /tftpboot

Load the new kernel on your Innovator using RedBoot as we described in Section 2.

22
© 2003 Delphi Communication Systems, Inc.  All rights reserved.

Reproduction by permission only.



Create the initial ramdisk
In Section 2 of this document, we described the process of creating an initial ramdisk
image for the Innovator from an existing directory structure on your workstation.  We
even discussed how to modify or add files to that directory structure, but we carefully did
not discuss how that directory structure was created in the first place.  Now we are ready
to show you how it was created.  Most of the directory structure was created as a result of
configuring, building, and installing a single application called BusyBox.  BusyBox is the
self proclaimed “Swiss Army Knife of Embedded Linux”.  It is a single application that
“... combines tiny versions of many common UNIX utilities into a single small
executable. It provides minimalist replacements for most of the utilities you usually find
in GNU fileutils, shellutils, etc. The utilities in BusyBox generally have fewer options
than their full-featured GNU cousins; however, the options that are included provide the
expected functionality and behave very much like their GNU counterparts. BusyBox
provides a fairly complete POSIX environment for any small or embedded system. “  In
particular, BusyBox provides an implementation of the typical UNIX utilities such as ls
and more as well as the ifconfig and route commands we typed in (and later
added to the /etc/init.d/rcS file) in the previous section.

• The first step is to create the empty root file system and a few useful directories.
However, before performing this step, you should remove/rename the old rootfs
directory, as shown in the commands below:
prompt$ cd ~/omaplinux
prompt$ mv rootfs rootfs.old
prompt$ mkdir -p rootfs/{etc/init.d,dev,proc} initrd.dir

The mkdir command creates a total of six directories: rootfs, rootfs/etc,
rootfs/etc/init.d, rootfs/dev, rootfs/proc, and initrd.dir.  (The
last directory listed doesn't contribute to the filesystem going onto the device, but we
will need it, and, since we are busy creating directories anyway, we might as well
create it here).  We use a nifty feature of the bash shell to save us some typing by
grouping all of the subdirectories of rootfs together inside the curly braces.11  If you
use csh (or one of its derivatives) as your shell, your mileage may vary.  We also use a
nifty feature of the mkdir command wherein it will create an entire path of directories
when given the -p option.  (Otherwise, we would have had to make the rootfs
directory first, then the rootfs/etc directory, then the rootfs/etc/init.d
directory, etc...)

• Create the rootfs/etc/fstab  file containing the following:
# <file system> <mount point> <type> <options> <dump> <pass>
/dev/ram0 / ext2 defaults 1 1
proc /proc proc defaults 0 0

This file is used by the mount command to determine which devices (or
pseudo-devices) should be mounted on which directories.  The first line is a comment.

11 This is shorthand for rootfs/etc/init.d rootfs/dev rootfs/proc.

23
© 2003 Delphi Communication Systems, Inc.  All rights reserved.

Reproduction by permission only.



The second and third lines specify the parameters for mounting the root and proc
filesystems.

• Create the rootfs/etc/init.d/rcS file containing something similar to the
following.  Note that you must change the network parameters in the last two lines
(and remove the comment characters) to match your local network settings as shown
previously in Section 2.
#!/bin/sh
/bin/mount -n -o remount,rw /

/bin/mount -a
echo Starting Network

/sbin/ifconfig lo 127.0.0.1 netmask 255.0.0.0 broadcast 127.255.255.255
/sbin/route add -net 127.0.0.0 netmask 255.0.0.0 lo
#/sbin/ifconfig eth0 10.1.3.2 netmask 255.255.0.0 broadcast 10.1.255.255
#/sbin/route add default gw 10.1.0.100 eth0

This file is executed by the /sbin/init program when the kernel boots.  (Actually,
it is executed by the /linuxrc program, but we won't go into that here.)  It contains
commands to initialize whatever you need to initialize at boot time.  None of the
commands are, strictly speaking, required, but, as we saw in Section 2, if you don't
want to set up the network by hand every time you boot Linux on your Innovator, you
should add the commands to this file.  The same is true if, for example, you wanted to
use tftp to fetch a program from your workstation each time you boot, although, at
that point, an NFS mounted root filesystem, with shared library support,  would
probably be more appropriate.  (That last bit is beyond the scope of this document.
Don't you get tired of reading that?)

• Since the rootfs/etc/init.d/rcS file is executed by init, it must be made
executable with the chmod command as shown in the command below:
prompt$ chmod a+x rootfs/etc/init.d/rcS

If you forget this step, you will see a funny warning message the next time you boot
with your new initial ramdisk, but none of the commands in your
/etc/init.d/rcS will have been executed.  (Trust us on this one – or try it
yourself and see...)

• Create the device nodes with the following commands:
prompt$ su
password:
prompt# mknod rootfs/dev/console c 5 1
prompt# mknod rootfs/dev/ttyS0 c 4 64
prompt# mknod rootfs/dev/ram0 b 1 0
prompt# exit
prompt$

• Back at the beginning of this section, we discussed an application called BusyBox, and
then proceeded to ignore it for lo these many pages.  Now is the time that we finally
get to do something with it.  BusyBox is available at http://  www.busybox.net   (as well
as at ftp.delcomsys.com).  The directions that follow assume that you have

24
© 2003 Delphi Communication Systems, Inc.  All rights reserved.

Reproduction by permission only.



downloaded busybox-0.60.5.tar.bz2 to the /dist/omap directory.

• Unpack the BusyBox application:
prompt$ mkdir ~/omaplinux/userapps
prompt$ cd ~/omaplinux/userapps
prompt$ tar xjf /dist/omap/busybox-0.60.5.tar.bz2

• Edit the busybox-0.60.5/Config.h file to enable the following options.  In
each case, the option is commented out (with a C++ // style comment line) and must
be enabled by removing the comment characters at the beginning of the line:
BB_IFCONFIG
BB_PING
BB_ROUTE
BB_TFTP
BB_FEATURE_IFCONFIG_STATUS

• Build the BusyBox applications and install them in your root filesystem:
prompt$ cd busybox-0.60.5
prompt$ make CROSS=arm-uclibc- DOSTATIC=true PREFIX=../../rootfs all \
install > makelog 2>&1 &

(Note that the last command is continued on a second line.  You may type it all on
one line, omitting the trailing backslash, or split it across two lines as shown,
provided that you press the return key immediately following the trailing
backslash.)
prompt$ tail -f makelog

Congratulations!  You have just configured your first BusyBox application.  You are
now ready to regenerate the initial ramdisk from the contents of the rootfs as
described in Section 2.

25
© 2003 Delphi Communication Systems, Inc.  All rights reserved.

Reproduction by permission only.



4. Conclusion and Resources
This document has walked you through the steps of installing Linux on your Innovator,
from precompiled binaries and from raw source code.  As you can see, there is a lot more
to running Linux than simply downloading the source code and compiling it.  In addition
to the kernel, you need a toolchain capable of compiling the kernel (and, ideally, the
applications that will run on top of the kernel), a root file system of some type (we present
an initial ramdisk as the root filesystem), and applications that live on the root file system.
Once you have all of those tools in place, you will be ready to develop your Linux based
application for the OMAP.
Hopefully this has given you enough of an introduction that you can pursue your own
Linux system integration on your own, or enough knowledge to decide whether it makes
more sense to outsource the Linux integration and enable you to focus on your
application.

For your convenience, all of the online resources referenced in this paper (as well as a few
that are not) are listed below.

•••• Linux Kernel Resources
• The Linux Kernel Archives

http://www.kernel.org
• The Linux Documentation Project

http:  //  www.tldp.org  
• The ARM Linux Project

http://www.arm.linux.org.uk

•••• Toolchain Resources
• uClibc

http://www.uclibc.  org  
• The glibc based toolchain recommended by the ARM Linux developers

ftp://  ftp.arm.linux.org.uk  /pub/linux/arm/toolchain/cross-2.95.3.tar.bz2  
• The Emdebian toolchain

http://  www.emdebian.org  /  downloads.htm  

26
© 2003 Delphi Communication Systems, Inc.  All rights reserved.

Reproduction by permission only.



•••• Other Resources
• Texas Instruments OMAP homepage

http://focus.ti.com/omap/docs/omaphomepage.tsp
• eCos

http://sources.redhat.com/ecos
• Linux From Scratch

http://  www.linuxfromscratch.org  
• The "From Power Up To Bash Prompt" HOWTO

http://  www.netspace.net.au  /~gok/power2bash  
• uClinux

http://  www.uclinux.org  
• cross-GCC FAQ

http://  www.objsw.com  /  CrossGCC  /  
• Win4Lin

http://  www.netraverse.com  /  

•••• OMAP Technology Centers supporting Linux
• Delphi

http://  www.delcomsys.com  

27
© 2003 Delphi Communication Systems, Inc.  All rights reserved.

Reproduction by permission only.


