'}
Q TEXAS
INSTRUMENTS S e s

Programming Considerations for Developing
Next-Generation Wireless Embedded Applications

OMAP))

TEXAS INSTRUMENTS TECHNOLOGY

By Justin Helmig, Senior Technical Staff - Wireless Software Applications,
Texas Instruments Wireless Terminals Business Unit

Summary

Today's advanced-generation and tomorrow's third-generation (2.5G and 3G) wireless systems
are adding not only multimedia capabilities but also applications that are common today in
personal digital assistants (PDAs). Software developers who are targeting the new wireless
systems often come from a PC background and are not familiar with embedded platforms.
These developers need to be aware of the differences they will find in the new hardware and
software environment. Important among these are the media transmission rates, memory
resources, user interface, power requirements, processing core architectures and development
environments. Developers who are aware of these differences can plan and execute their
software more effectively as they create multimedia and PDA-like applications for next-
generation wireless systems.

The Growth of Wireless Applications

The technology of wireless communications is evolving quickly, and with it the demand for
advanced wireless services continues to grow. While the first two generations of wireless
handsets provided exclusively voice services, new standards will enable third-generation (3G)
wireless networks to transmit audio-video and data as well as voice. Today's advanced wireless
networks are already adding data services to voice as an intermediate (2.5G) step toward the
full-featured multimedia services of the future. Along with new types of communications,
wireless handsets are beginning to offer a greater range of personal applications, such as those
currently found in PDAs. The result is a whole new array of mobile communications equipments,
ranging from smart handsets to wireless PDAs, notebooks and Web appliances.

Realizing the business potential of the growing wireless market, many software developers are
beginning to create applications that can be used on the new types of mobile equipment. To
date, though, relatively few applications developers have much experience with wireless
systems, or even with non-wireless handheld systems such as PDAs. By far, the largest group
of applications programmers has been trained to work with PCs, and they are comfortable with
PC hardware, operating systems (OSs) and development environments, as well as with the
wired networks that offer nearly ubiquitous communication among PCs. It is from this large pool
of experienced PC programmers that development teams for many new wireless applications
will be drawn.



‘9 TEXAS Programming Considerations for Developing
INSTRUMENTS Next-Generation Wireless Embedded Applications

Programmers who are accustomed to working only with the relatively mature development
technology of PCs and wired networks need to be aware of differences that exist in wireless
systems and networks. Wireless transmission rates are slower than wired rates, and portable
systems have more stringent constraints in power consumption, available memory and the user
interface than PCs do. Wireless systems are built on digital signal processors (DSPs) as well as
RISC processors, so developers need to recognize the advantages of each type of processor as
they build their programs. Since many of the new types of wireless systems are in their infancy,
the applications development environment is less sophisticated, resembling the PC environment
of earlier years in many respects. Developers who are aware of these differences can plan and
execute their software more effectively as they create next-generation wireless applications.

Narrow Bandwidth

The first big difference is the narrower transmission bandwidth available in the wireless medium
today. PC developers are accustomed to relying on wired Ethernet networks with 10 megabits
per second (Mbps) of data transfer. Wired telecommunications tend to be slower, since they rely
on transfer rates as low as those of analog modems, with 56 kilobits per second (kbps)
upstream and 33 kbps downstream. This picture is changing, though, as virtual private networks
(VPNSs) bring Ethernet speeds to interoffice networks, and as digital subscriber line (DSL) and
cable modems open up megabit broadband transmission rates to private users.

By contrast, the digital wireless networks that are in place today, which were designed for voice
services, offer about 15 to 20 kbps per channel, with the rate varying somewhat among
transmission standards. Newer 2.5G schemes multiply this rate a few times, so that the end
result is comparable to an analog modem or faster in bandwidth. When 3G wireless networks
are eventually deployed, transmission speeds under optimum conditions will be comparable to
broadband. The ITU/UMTS definition of 3G is 384 Kbps for mobile communications, with

2 Mbps for low mobility and fixed wireless. These are best-case numbers, however, since actual
transfer rates will vary from connection to connection, depending on factors such as signal noise
and strength, environmental interference, and overall saturation of the waveband by callers in a
given area. 3G networks will also support 2G and 2.5G rates for lower-speed communications.

The wireless transfer rate factors into applications development because developers need to
think in terms of which type of network to target. In the long run, 3G networks will offer the most
potential for video, imaging and other high-bandwidth transfers. However, 2G infrastructure is in
place today, and 2G speeds will continue to reach the largest group of subscribers for some
time to come. 2.5G falls in the middle of this calculation in terms of transmission rates and time
of availability.

In addition, developers need to think in terms of whether their applications can operate with
different feature sets and image quality, depending on the bandwidth available. Bandwidth will
vary not only on the type of transmission available (2G, 2.5G or 3G), but also on the network
conditions at a given time. If the application can continue to operate under varying transmission
conditions, it will be more widely useful than if it always requires a high-bandwidth connection.

2 OMAP) SWPY002

TEXAS INSTRUMENTS TECHNOLOGY



Programming Considerations for Developing ‘@ TEXAS
Next-Generation Wireless Embedded Applications INSTRUMENTS

System Resources

Wireless bandwidths must be considered together with system resources in making decisions
about client-server applications. With all networks, developers must determine where the
processing will take place--in the local system or in the network server. Factors that enter into
this determination not only include the transfer rate, but also the amount of performance
available in the local system. In the case of mobile, battery-operated systems, the power
consumption required by a program is an issue, and so is the available memory.

All of these factors make a difference in determining how much of the processing should be
performed in the handset and how much can be offloaded to the network. Generally speaking, if
the application produces a lot of data, especially in real time, the goal will be to reduce the need
for data transfer through compression and decompression. On the other hand, if the application
is computation-intensive but involves relatively little data, the goal will be to offload as much
processing to the network as possible.

Different types of operations lend themselves to each approach. For instance, searching a large
data base for information would produce relatively little data for the amount of processing
involved. This application, which is limited by processing rather than by bandwidth, is clearly
better performed on a server. On the other hand, decoding an MP3 file is more appropriate for
handset processing. Bandwidth is the constraint in this case, and the goal is to minimize the
amount of data that has to be transmitted.

Memory Constraints

Within the system itself, an important constraint for programmers is the amount of available
memory. Whereas PCs today have gigabytes of program storage and virtual swapped memory,
wireless handsets typically have 16 to 32 Megabytes (MB) that is shared between stored and
active program memory. This memory is not readily expanded by upgrading, and it cannot be
virtually enlarged, since hard disk drives are not a component of most hand-held wireless
systems.

Memory constraints make it essential that applications programmers minimize program and
data space requirements by optimizing software and removing any unnecessary features.
Optimization may require a more granular approach than PC developers are accustomed to,
with a line-by-line analysis of the source code to examine how compact it can be made, as well
as how efficiently it executes. Programs may need to be designed modularly, so that more
routines operate at the server end than with PCs, or so that individual program features can be
downloaded through the network to the handset only when they are required during the course
of a session.

Programmers who are accustomed to the transparency of memory utilization in PCs and
workstations should realize that memory management in embedded OSes is not as
sophisticated. Since there is no virtual swap space on hard disk drives, dynamic memory
allocations must be monitored carefully to avoid running out of memory. In addition, some

SWPY002 OMAP)) 3

TEXAS INSTRUMENTS TECHNOLOGY



‘9 TEXAS Programming Considerations for Developing
INSTRUMENTS Next-Generation Wireless Embedded Applications

embedded OSes will not clean up all allocated memory when exiting processes. Therefore, the
application should not only eliminate unnecessary memory allocations, but it should also free all
memory allocations on exiting processes to prevent memory leaks.

Among programming techniques, developers should beware of recursive functions and other
procedures that push stacks to large sizes. When applications must use a function that calls
itself, the function should not be deeply nested. Similarly, copying large objects or passing them
by value should be avoided whenever possible in favor of using pointers or passing the objects
by reference.

Display Limitations

Anyone who has looked even briefly at a handheld system realizes that the display is smaller
and has a lower resolution than that of a PC. While 1024 x 768 pixels is a common resolution on
PCs, mobile devices typically have screens with resolutions of 240 x 320 pixels or less. Within
this small space, wireless OSs do not normally support multiple windows, though dialog boxes
for input, messages and so forth may be available.

The limitations of handheld displays seem obvious, yet they have profound implications when it
comes to designing the "look and feel" of the application. Developers must take care to
eliminate unnecessary data from the screen in order to present a simple, intuitive interface that
best uses the available space. Often the appeal of an application in a larger system lies in
taking advantage of the extensive capabilities of the display and system graphics. In a handheld
system, with its small, low-resolution screen and simple graphics, the application will have to be
more limited in its video output. Here the challenge for the software developer is to take less
and make the most of it to create a satisfactory visual experience for the user.

Power Conservation

In mobile systems, power consumption is an overriding concern, so developers should be aware
of and use low-power system features that are available to them. Wireless OSs typically provide
power management features that allow for the partial shutdown of the system when there are
idle cycles. Therefore, it is important for the application to return control to the OS when it is
waiting for a system resource. For example, if the application needs input from a button on the
keyboard, it should create an event, then wait for the OS to inform it that the event has
occurred. Doing so eliminates so-called "busy waiting," when the application does not return
control to the OS while it is idling, thus saving power and enabling longer use of the system
between battery charges.

Other power-saving measures that programmers should employ include using memory
efficiently and eliminating unnecessary processing steps and data transmission. Even when the
handset has plenty of performance available, it may still help conserve power to offload some
tasks to the network instead of performing them locally.

4 OMAP) SWPY002

TEXAS INSTRUMENTS TECHNOLOGY



Programming Considerations for Developing ‘@ TEXAS
Next-Generation Wireless Embedded Applications INSTRUMENTS

Single—Versus Dual-processor Platforms

The wireless system may be based on a single-processor or dual-processor platform, with the
better solution usually determined by the dominant system application. A single microcontroller
provides the performance needed for applications normally found in PDAs, but it is inadequate
by itself for handling streaming video and other multimedia applications. Adding a DSP for
handling the mathematically intensive algorithms involved in multimedia not only increases real-
time performance and response, but it also saves power and allows the microcontroller to
operate more efficiently on system-level tasks.

System developers must consider a variety of issues in choosing a platform. Since a PDA-only
design may need to grow to include multimedia functionality, a single-core platform and its
software architecture should support rescaling for dual-core development. The software
architecture should be designed to simplify code partitioning between the cores for greater
performance and power efficiency, and it should make the underlying hardware as transparent
as possible for applications programmers. With well-designed software architecture, appropriate
tools and a wide selection of off-the-shelf multimedia modules available, wireless developers
can enjoy the performance and power advantages of a dual-processor platform with the
straightforward development approach of a single-processor platform.

For application programmers, the key concern is optimizing the software to take advantage of
the architecture. In a dual-core platform, the developer needs to decide which portions of the
application run better on the DSP, and which run better on the microprocessor. Well-balanced
software architecture enables the most efficient use of the system, and the most satisfying
experience for the user.

Development Environment

The wireless development environment is different from that of PCs. Embedded OSs offer fewer
application programming interfaces (APIs) than PCs do, and the APIs in some OSs will feel
unfamiliar to those who have programmed only PCs. OSs that use a subset of PC APIs can
reduce the learning curve and make it easier to port software, but programmers need to be
aware that not all PC functionality is supported in mobile systems. The various OSs available
each have different advantages, but in all cases the functionality of mobile systems is more
limited than that of PCs.

Although development tools for mobile systems continue to improve, they typically do not have
all the features of tools designed for a PC host. As a result, applications developers have to be
prepared to improvise, and they need to be aware of the impact of their programs on the system
as a whole. They are also faced with a choice that is unfamiliar to many PC programmers:
whether to debug the application on a PC simulator, or remotely on the target embedded
system itself. The support situation is changing rapidly as the wireless embedded systems and
applications evolve, but for now PC developers are faced with a challenging environment as
they turn their efforts to creating wireless applications.

SWPY002 OMAP)) 5

TEXAS INSTRUMENTS TECHNOLOGY



‘9 TEXAS Programming Considerations for Developing
INSTRUMENTS Next-Generation Wireless Embedded Applications

Considerations In Developing Wireless Applications

The growing market for wireless multimedia and PDA-type systems makes it inevitable that
applications developers will cross over from PCs to the new types of embedded systems. The
following list summarizes many of the issues that PC programmers need to consider as they
turn for the first time to applications development for wireless systems.

1. Remember that data bandwidth is narrow compared with wired networks.

2. Determine how much of the processing will be performed on the handset and how much can
be offloaded to the network.

3. Keep code and program data requirements small, since memory resources are limited.

4. Carefully track dynamic memory allocation for the best use of resources and to avoid
memory leaks.

5. Beware of recursive functions and other procedures that push stacks to large sizes.
6. Design for a small, low-resolution screen with a single window.

7. Return control to the OS to keep power consumption low.

8. Partition code to gain maximum performance from dual-processor hardware.

9. Make do with fewer APIs in wireless OSs.

10. Be prepared to improvise, since there are fewer support tools for embedded systems than
PCs.

OMAP is a trademark of Texas Instruments. All other trademarks are the property of their respective
owners.

© 2001 Texas Instruments Incorporated

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold
subject to TI's standard terms and conditions of sale. Customers are advised to obtain the most current and complete information
about Tl products and services before placing orders. Tl assumes no liability for applications assistance, customer’s applications or
product designs, software performance, or infringement of patents. The publication of information regarding any other company’s
products or services does not constitute TI's approval, warranty or endorsement thereof.

6 OMAP) SWPY002

TEXAS INSTRUMENTS TECHNOLOGY



	Texas Instruments Wireless Terminals Business Unit
	Summary
	The Growth of Wireless Applications
	Narrow Bandwidth
	System Resources
	Memory Constraints
	Display Limitations
	Power Conservation
	Single—Versus Dual-processor Platforms
	Development Environment
	Considerations In Developing Wireless Applications

