
OMAP5910
Dual-Core Processor

Technical Reference Manual

Literature Number: SPRU602B
January 2003

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services at
any time and to discontinue any product or service without notice. Customers should obtain the
latest relevant information before placing orders and should verify that such information is current
and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the
time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of
sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
used to the extent TI deems necessary to support this warranty. Except where mandated by
government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI components. To minimize the risks
associated with customer products and applications, customers should provide adequate design
and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any
TI patent right, copyright, mask work right, or other TI intellectual property right relating to any
combination, machine, or process in which TI products or services are used. Information
published by TI regarding third party products or services does not constitute a license from TI
to use such products or services or a warranty or endorsement thereof. Use of such information
may require a license from a third party under the patents or other intellectual property of that third
party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction
is without alteration and is accompanied by all associated warranties, conditions, limitations, and
notices. Reproduction of this information with alteration is an unfair and deceptive business
practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated
by TI for that product or service voids all express and any implied warranties for the associated
TI product or service and is an unfair and deceptive business practice. TI is not responsible or
liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright 2003, Texas Instruments Incorporated

iiiContents

Preface

Read This First

About This Manual

This manual describes the Texas Instruments OMAP5910 multimedia proces-
sor, hereafter called the OMAP5910 device. The OMAP5910 device supports
the development and testing of wireless device applications that use the
Microsoft Windows CE or the Symbian EPOC operating system.This manual
is intended for developers who have knowledge of the Windows CE or the
Symbian EPOC operating system and of the wireless application environ-
ment.

Notational Conventions

This document uses the following conventions.

� Program listings, program examples, and interactive displays are shown
in a special typeface similar to a typewriter’s. Examples use a bold
version of the special typeface for emphasis; interactive displays use a
bold version of the special typeface to distinguish commands that you
enter from items that the system displays (such as prompts, command
output, error messages, etc.).

Here is a sample program listing:

0011 0005 0001 .field 1, 2
0012 0005 0003 .field 3, 4
0013 0005 0006 .field 6, 3
0014 0006 .even

Here is an example of a system prompt and a command that you might
enter:

C: csr –a /user/ti/simuboard/utilities

Notational Conventions

iv

� In syntax descriptions, the instruction, command, or directive is in a bold
typeface font and parameters are in an italic typeface. Portions of a syntax
that are in bold should be entered as shown; portions of a syntax that are
in italics describe the type of information that should be entered. Here is
an example of a directive syntax:

.asect ”section name”, address

.asect is the directive. This directive has two parameters, indicated by sec-
tion name and address. When you use .asect, the first parameter must be
an actual section name, enclosed in double quotes; the second parameter
must be an address.

� Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
don’t enter the brackets themselves. Here’s an example of an instruction
that has an optional parameter:

LALK 16–bit constant [, shift]

The LALK instruction has two parameters. The first parameter, 16-bit con-
stant, is required. The second parameter, shift, is optional. As this syntax
shows, if you use the optional second parameter, you must precede it with
a comma.

Square brackets are also used as part of the pathname specification for
VMS pathnames; in this case, the brackets are actually part of the path-
name (they are not optional).

� Braces ({ and }) indicate a list. The symbol | (read as or) separates items
within the list. Here’s an example of a list:

{ * | *+ | *– }

This provides three choices: *, *+, or *–.

Unless the list is enclosed in square brackets, you must choose one item
from the list.

� Some directives can have a varying number of parameters. For example,
the .byte directive can have up to 100 parameters. The syntax for this di-
rective is:

.byte value1 [, ... , valuen]

This syntax shows that .byte must have at least one value parameter, but
you have the option of supplying additional value parameters, separated
by commas.

Notational Conventions

vRead This First

Information About Cautions and Warnings

This book may contain cautions and warnings.

This is an example of a caution statement.

A caution statement describes a situation that could potentially
damage your software or equipment.

This is an example of a warning statement.

A warning statement describes a situation that could potentially
cause harm to you.

The information in a caution or a warning is provided for your protection.
Please read each caution and warning carefully.

Related Documentation From Texas Instruments

TMS320C55x DSP CPU Reference Guide (SPRU371D)

TMS320C55x DSP Functional Overview (SPRU312)

TMS320C55x DSP Function Library (DSPLIB) Programmer’s Reference
(SPRU422D)

TMS320C55x Technical Overview (SPRU393)

TMS320C55x DSP Programmer’s Guide (SPRU376A)

TMS320C55x DSP Mnemonic Instruction Set Ref Guide (SPRU374F)

TMS320C55x Assembly Language Tools User’s Guide (SPRU280D)

TMS320C55x Optimizing C Compiler User’s Guide (SPRU281C)

The MultiMediaCard System Specification Version 3.1 – June 2001. MMCA
Technical Committee

SD Memory Card Specifications: Part 1 Physical Layer Specification, Version
1.0 – March 2000 + Supplementary Notes Part 1 June 2000. SD Group

Information About Cautions and Warnings / Related Documentation From Texas Instruments

Trademarks

vi

Trademarks

Bluetooth is a trademark owned by the Bluetooth SIG, Inc. and licensed to
Texas Instruments.

TMS320C5510, TMS320C55x, C55x, and Code Composer Studio are
trademarks of Texas Instruments.

Microsoft, Windows, Windows CE, Windows CE Platform Builder, and
Windows NT are trademarks of Microsoft Corporation.

Other trademarks are the property of their respective owners.

Contents

vii

Contents

1 Introduction 1-1.
Introduces the setup, components, and features of the OMAP5910 processor and provides a
high-level view of the device architecture.
1.1 Overview 1-2.
1.2 Description 1-4.
1.3 Features 1-6.
1.4 Architecture 1-8.
1.5 Memory Maps 1-9.
1.6 Software Compatibility 1-11.

1.6.1 OMAP Driver Compatibility Conventions 1-11.

2 MPU Subsystem 2-1.
Describes the core, caches, memory management units (MMUs), interface, and bridges of the
OMAP5910 multimedia processor microprocessor unit (MPU) subsystem.
2.1 Introduction 2-2.
2.2 MPU Core 2-4.
2.3 Instruction Cache 2-5.

2.3.1 Operation 2-5.
2.3.2 Validity 2-5.

2.4 Data Cache 2-6.
2.4.1 D-Cache Operation 2-6.
2.4.2 Validity 2-7.
2.4.3 Double-Mapped Space 2-8.

2.5 Write Buffer 2-8.
2.5.1 Operation 2-9.
2.5.2 SWAP Instruction 2-9.

2.6 Coprocessor 15 2-10.
2.6.1 CP15 Access 2-10.
2.6.2 Register Descriptions 2-10.

2.7 MPU Memory Management Unit 2-26.
2.7.1 Translation Look-Aside Buffer 2-26.
2.7.2 Translation Table 2-27.
2.7.3 Domains and Access Permissions 2-27.
2.7.4 MMU Program-Accessible Registers 2-28.
2.7.5 Address Translation 2-28.
2.7.6 Translation Process 2-29.
2.7.7 MMU Faults and MPU Aborts 2-39.
2.7.8 Fault Address and Fault Status Registers (FAR and FSR) 2-41.
2.7.9 Domain Access Control 2-42.
2.7.10 Permission Access 2-43.

Contents

viii

2.7.11 Fault Checking Sequence 2-43.
2.7.12 External Aborts 2-46.
2.7.13 Buffered Writes 2-46.

2.8 DSP Memory Management Unit 2-47.
2.9 MPU Interface 2-55.

2.9.1 Functional Features 2-56.
2.9.2 MPUI Registers 2-57.

2.10 MPU TI Peripheral Bus Bridges 2-65.
2.10.1 8-Bit, 16-Bit, and 32-Bit Word Access 2-65.
2.10.2 TIPB Allocation 2-66.
2.10.3 Access Factor and Time-Out 2-66.
2.10.4 MPU Posted Write 2-67.
2.10.5 Pipeline Mode 2-67.
2.10.6 Abort 2-67.
2.10.7 TIPB Bridge Registers 2-67.

2.11 Endianism Conversion 2-71.
2.11.1 Conversion Through the DSP MMU 2-72.
2.11.2 Conversion Through the MPUI 2-74.

2.12 ETM Environment 2-75.
2.12.1 ETM Features 2-75.
2.12.2 ETM Interface 2-75.
2.12.3 Operation 2-77.
2.12.4 Additional Reference Materials 2-78.

3 DSP Subsystem 3-1.
Describes the OMAP5910 multimedia processor DSP subsystem.

3.1 Architecture Overview 3-2.
3.1.1 DSP Core 3-5.

3.2 TMS320C55x DSP CPU Overview 3-6.
3.2.1 On-Chip Memory 3-6.
3.2.2 Hardware Acceleration Modules 3-7.
3.2.3 CPU Overview 3-7.

3.3 DSP Memory 3-9.
3.3.1 Internal Memory 3-10.
3.3.2 Instruction Cache 3-11.
3.3.3 System Memory 3-12.
3.3.4 Memory Map 3-12.
3.3.5 Peripheral Register Addresses 3-14.

3.4 DMA Controller 3-16.
3.4.1 Key Features of the DMA Controller 3-16.
3.4.2 DMA Controller Configuration Registers 3-21.
3.4.3 DSP DMA Event Mapping 3-26.

3.5 TIPB Bridge 3-27.
3.5.1 Control Mode Register (CMR) 3-29.
3.5.2 Idle Control and Idle Status Registers (ICR and ISTR) 3-31.

Contents

ixContents

3.6 MPU Interface 3-33.
3.6.1 HOM/SAM Change Outside of Reset 3-34.
3.6.2 ST3—HOM_P Bit (Bit 8) 3-34.
3.6.3 ST3—HOM_R Bit (Bit 9) 3-35.

3.7 EMIF 3-36.
3.7.1 EMIF Global Control Register (EMIF_GCR) 3-36.
3.7.2 EMIF Global Reset Register (EMIF GRR) 3-37.

3.8 DSP Memory Management Unit 3-37.
3.9 DSP Subsystem Clocking and Reset Control 3-38.
3.10 System Operating Details 3-39.

3.10.1 DSP Private Peripherals 3-39.
3.10.2 DSP Public Peripherals 3-39.
3.10.3 DSP/MPU Shared Peripherals 3-40.
3.10.4 Boot Mode for DSP Subsystem 3-40.

4 Memory Interface Traffic Controller 4-1.
Describes the OMAP5910 multimedia processor memory interface traffic controller (TC).

4.1 Introduction 4-2.
4.2 Memory Map 4-6.
4.3 Memory Interfaces 4-12.

4.3.1 Internal Memory Interface 4-12.
4.3.2 External Memory Interface Slow 4-13.
4.3.3 External Memory Interface Fast 4-25.

4.4 Traffic Controller Memory Interface Registers 4-42.
4.5 Interfacing Memories With the OMAP5910 Device 4-57.

5 System DMA Controller 5-1.
Describes the system DMA controller for the OMAP5910 multimedia processor.

5.1 Introduction 5-2.
5.2 External Connections 5-8.
5.3 Generic Channels 5-9.

5.3.1 Transfers 5-9.
5.3.2 Addressing Modes 5-13.
5.3.3 Data Packing and Bursting 5-17.
5.3.4 Data/Address Alignment 5-21.
5.3.5 Constraint on Channel Configuration Parameters 5-21.
5.3.6 Endianism 5-22.
5.3.7 Interrupt Generation 5-23.
5.3.8 Memory Space Protection 5-25.

5.4 LCD Dedicated Channel 5-26.
5.4.1 Functional Description 5-26.
5.4.2 Addressing Units 5-27.
5.4.3 LCD Channel Usage Restrictions 5-28.
5.4.4 LCD Transfer Examples 5-29.

5.5 DMA Request Mapping 5-32.
5.6 Registers 5-34.

5.6.1 Generic Channel Registers 5-41.

Contents

x

6 MPU Private Peripherals 6-1.
Describes the OMAP5910 multimedia processor MPU private peripherals.

6.1 Overview 6-2.
6.2 Timer Description 6-3.

6.2.1 Programming the Timer 6-5.
6.2.2 Timer Registers 6-6.

6.3 Watchdog Timer 6-8.
6.3.1 Introduction 6-8.
6.3.2 Programming the Watchdog Timer in Watchdog Mode 6-10.
6.3.3 Programming the Watchdog Timer in Timer Mode 6-11.
6.3.4 Watchdog Timer Registers 6-12.

6.4 MPU Interrupt Handlers 6-14.
6.4.1 MPU Level 1 Interrupt Handler 6-14.
6.4.2 MPU Level 2 Interrupt Handler 6-16.

6.5 Level 1 and Level 2 Interrupt Mapping 6-17.
6.6 Interrupt Handler Level 1 and Level 2 Registers 6-20.
6.7 Configuration Module 6-24.

6.7.1 Configuration Register Capabilities 6-24.
6.7.2 OMAP5910 Native and Compatibility Modes 6-24.
6.7.3 OMAP5910 Generic Pin Multiplexing and Pullup/Pulldown Control 6-25.
6.7.4 OMAP5910 MMC/SD Pin Multiplexing 6-26.
6.7.5 OMAP5910 Pullups and Pulldowns 6-26.

6.8 OMAP5910 Configuration Registers 6-27.
6.9 Device Identification 6-70.

6.9.1 Identification Code Register 6-70.
6.9.2 Die Identification (ID) 6-71.

7 MPU Public Peripherals 7-1.
Describes the OMAP5910 multimedia processor MPU public peripherals.

7.1 MPU Public Peripherals 7-2.
7.2 Camera Interface 7-3.

7.2.1 Functional Architecture 7-3.
7.2.2 Clock Switching Procedures 7-16.

7.3 MPU I/O 7-17.
7.3.1 MPU I/O Interrupts 7-17.
7.3.2 MPU I/O Clocks and Reset 7-17.
7.3.3 MPUIO Keyboard Interface 7-19.
7.3.4 MPUIO General-Purpose I/O Interface 7-20.
7.3.5 GPIO Interrupt Reset 7-21.
7.3.6 GPIO Interrupt Masking 7-22.
7.3.7 Event Capture Module 7-24.
7.3.8 MPU I/O Registers 7-25.

Contents

xiContents

7.4 MicroWire Interface 7-30.
7.4.1 MicroWire Registers 7-30.
7.4.2 Protocol Description 7-38.
7.4.3 Example of Protocol Using a Serial EEPROM (XL93LC66) 7-39.
7.4.4 Example of Protocol Using an LCD Controller (COP472-3) 7-42.
7.4.5 Example of Protocol Using Autotransmit Mode 7-43.
7.4.6 Example of Autotransmit Mode With DMA Support 7-45.

7.5 32-kHz Timer 7-46.
7.5.1 Operating System Scalable Clock-Tick Interrupt Function 7-46.
7.5.2 32-kHz Timer Registers 7-48.

7.6 Pseudonoise Pulse-Width Light Modulator 7-50.
7.6.1 PWL Functional Description 7-50.
7.6.2 PWL Registers 7-51.

7.7 Pulse-Width Tone 7-52.
7.7.1 Overview 7-52.
7.7.2 PWT Features 7-52.
7.7.3 PWT Registers 7-53.
7.7.4 PWT Programming 7-54.

7.8 Inter-Integrated Circuit Controller 7-57.
7.8.1 I2C Protocol Description 7-57.
7.8.2 OMAP5910 I2C (Master/Slave I2C Controller) 7-64.
7.8.3 Programming 7-87.
7.8.4 Flowcharts 7-88.

7.9 LED Pulse Generator 7-100.
7.9.1 Features 7-100.
7.9.2 LPG Design 7-101.
7.9.3 LPG Power Management 7-101.
7.9.4 LPG Registers 7-101.

7.10 McBSP2 7-104.
7.10.1 McBSP2 Application Example: Communication Interface 7-108.

7.11 USB Function Overview 7-117.
7.12 MMC/SD Host Controller 7-120.

7.12.1 MMC/SD Host Controller Features 7-122.
7.12.2 MMC/SD Host Controller Signals Pads 7-122.
7.12.3 MMC/SD Host Controller Clocks and Reset 7-124.
7.12.4 MMC/SD Host Controller DMA Request 7-124.
7.12.5 MMC/SD Host Controller Interrupt 7-124.
7.12.6 MMC/SD Internal Pullups 7-125.
7.12.7 MMC/SD Registers 7-126.
7.12.8 Command Flow 7-161.
7.12.9 DMA Operation 7-166.
7.12.10 Local Host (IRQ/Polling) Mode 7-168.

7.13 Real-Time Clock 7-169.
7.13.1 Register Descriptions 7-170.
7.13.2 Register Access 7-170.
7.13.3 Register Descriptions and Mapping 7-177.

Contents

xii

7.14 USB Host Controller Overview 7-185.
7.15 HDQ and 1-Wire Protocols 7-185.

7.15.1 Functional Description 7-185.
7.15.2 Power-Down Mode 7-194.
7.15.3 HDQ and 1-Wire Battery Monitoring Serial Interface 7-194.
7.15.4 Software Interface 7-195.

7.16 Frame Adjustment Counter 7-198.
7.16.1 Features 7-198.
7.16.2 Synchronization and Counter Control 7-199.
7.16.3 FAC Interrupt 7-202.
7.16.4 FAC Clocks and Reset 7-202.
7.16.5 Software Interface 7-202.

8 DSP Private Peripherals 8-1.
Describes the DSP private peripherals for the OMAP5910 multimedia processor.
8.1 DSP Private Peripherals 8-2.
8.2 Timers 8-3.

8.2.1 Timer Interrupt Levels 8-4.
8.2.2 Timer Characteristics 8-5.
8.2.3 Programming the Timer 8-5.
8.2.4 Timer Registers 8-6.

8.3 Watchdog Timer 8-10.
8.3.1 Programming the Watchdog Timer in Watchdog Mode 8-12.
8.3.2 Programming the Watchdog Timer in Timer Mode 8-12.
8.3.3 Watchdog Timer Registers 8-13.

8.4 Interrupt Handlers 8-15.
8.4.1 Level 1 Interrupts 8-16.
8.4.2 Level 2 Interrupts 8-17.

8.5 DSP Interrupt Interface 8-26.
8.5.1 Functional Description 8-26.
8.5.2 Edge-Triggered Interrupts 8-26.
8.5.3 Level-Sensitive Interrupts 8-28.
8.5.4 Internal Registers 8-28.

9 DSP Public Peripherals 9-1.
Describes the DSP public peripherals for the OMAP5910 multimedia processor.
9.1 Introduction 9-2.
9.2 McBSPs 9-3.
9.3 McBSP1 9-4.

9.3.1 McBSP1 Pin Descriptions 9-4.
9.3.2 McBSP1 Interrupt Mapping 9-6.
9.3.3 McBSP1 DMA Request Mapping 9-6.
9.3.4 McBSP1 Application Example: I2S Interface 9-7.

9.4 McBSP3 9-11.
9.4.1 McBSP3 Pin Descriptions 9-11.
9.4.2 McBSP3 Interrupt Mapping 9-14.
9.4.3 McBSP3 DMA Request Mapping 9-14.
9.4.4 McBSP3 Application Example: Optical Interface 9-14.

Contents

xiiiContents

9.5 Multichannel Serial Interfaces 9-27.
9.5.1 Communication Protocol 9-28.
9.5.2 MCSI Register Descriptions 9-44.

9.6 MCSI1 9-52.
9.6.1 MCSI1 Pin Description 9-52.
9.6.2 MCSI1 Interrupt Mapping 9-52.
9.6.3 MCSI1 DMA Request Mapping 9-52.

9.7 MCSI2 9-54.
9.7.1 MCSI2 Pin Description 9-54.
9.7.2 MCSI2 Interrupt Mapping 9-54.
9.7.3 MCSI2 DMA Request Mapping 9-54.

9.8 McBSP and MCSI Memory and Peripheral Mapping 9-56.
9.8.1 MCSI Addresses and Mapping 9-57.

10 MPU/DSP Shared Peripherals 10-1.
Describes the MPU/DSP shared peripherals for the OMAP5910 multimedia processor.

10.1 Introduction 10-2.
10.2 Interprocessor Communication 10-3.

10.2.1 Mailbox Register Data Structure 10-3.
10.3 General-Purpose I/O 10-7.

10.3.1 Input/Outputs of the GPIO Module 10-7.
10.3.2 GPIO Port Registers 10-7.

10.4 UART1, UART2, and UART3/IrDA 10-11.

11 LCD Controller 11-1.
Describes the LCD controller module of the OMAP5910 device.

11.1 Module Overview 11-2.
11.2 Display Specifications 11-7.
11.3 LCD Controller Operation 11-9.

11.3.1 Frame Buffer 11-9.
11.4 Lookup Palette 11-14.
11.5 Color/Grayscale Dithering 11-15.
11.6 Output FIFO 11-16.
11.7 LCD Controller Pins 11-17.

11.7.1 Passive Monochrome Panels 11-18.
11.7.2 Passive Color (STN) Panels 11-18.
11.7.3 Active Color (TFT) Panels 11-19.

11.8 LCD Controller Registers 11-23.
11.8.1 LCD Control Register 1 (LCDControl) 11-24.
11.8.2 LCD Timing 0 Register (LcdTiming0) 11-32.
11.8.3 LCD Timing 1 Register (LcdTiming1) 11-36.
11.8.4 LCD Timing 2 Register (LcdTiming2) 11-40.
11.8.5 LCD Status Register (LcdStatus) 11-45.

11.9 Interface to LCD Panel Signal Reset Values 11-49.

Contents

xiv

12 UART Devices 12-1.
Describes the universal asynchronous receiver/transmitter (UART) devices in the OMAP5910
multimedia processor.
12.1 UART Introduction 12-2.

12.1.1 Main UART Features (UART1/2/3) 12-3.
12.2 UART Environments 12-6.

12.2.1 UART1 Environment 12-6.
12.2.2 UART2 Environment 12-8.
12.2.3 UART3 Environment 12-11.
12.2.4 TIPB Switch 12-13.
12.2.5 Switching Procedures 12-16.

12.3 UART/Autobaud Control and Status Registers 12-17.
12.3.1 UART/Autobaud Modem Register Mapping 12-17.

12.4 UART/Autobaud Modes of Operation 12-37.
12.4.1 UART Mode 12-37.
12.4.2 UART Mode With Autobauding 12-38.

12.5 UART/Autobaud Functional Description 12-38.
12.5.1 UART/Autobaud Functional Block Diagram 12-38.
12.5.2 Trigger Levels 12-39.
12.5.3 Interrupts 12-39.
12.5.4 FIFO Polled Mode 12-42.
12.5.5 FIFO DMA Mode 12-42.
12.5.6 Sleep Mode 12-44.
12.5.7 Break and Time-out Conditions 12-45.
12.5.8 Programmable Baud Rate Generator 12-45.
12.5.9 Hardware Flow Control 12-46.
12.5.10 Software Flow Control 12-47.
12.5.11 Autobauding Mode 12-48.

12.6 UART/Autobaud Configuration Example 12-50.
12.6.1 UART SW Reset 12-51.
12.6.2 UART FIFO Configuration 12-51.
12.6.3 Baud Rate Data and Stop Configurations 12-51.

12.7 UART/IrDA Control and Status Registers 12-52.
12.8 UART/IrDA Modes of Operation 12-83.

12.8.1 UART Mode 12-83.
12.8.2 SIR Mode 12-83.

12.9 UART/IrDA Functional Description 12-88.
12.9.1 UART/IrDA Functional Block Diagram 12-88.
12.9.2 Trigger Levels 12-88.
12.9.3 Interrupts 12-89.
12.9.4 FIFO Interrupt Mode 12-91.
12.9.5 FIFO Polled Mode Operation 12-92.
12.9.6 FIFO DMA Mode Operation 12-93.
12.9.7 Sleep Mode 12-95.
12.9.8 Break and Time-Out Conditions 12-96.
12.9.9 Programmable Baud Rate Generator 12-96.
12.9.10 Hardware Flow Control 12-97.

Contents

xvContents

12.9.11 Software Flow Control 12-98.
12.9.12 Frame Closing 12-99.
12.9.13 Store and Controlled Transmission 12-100.
12.9.14 Underrun During Transmission 12-100.
12.9.15 Overrun During Receive 12-100.
12.9.16 Status FIFO 12-100.

12.10 UART/IrDA Configuration Example 12-101.
12.11 UART Software Reset 12-101.
12.12 UART FIFO Configuration 12-102.

12.12.1 Baud Rate Data and Stop Configuration 12-102.

13 USB Function Module 13-1.
Describes the components and features of the OMAP5910 universal serial bus (USB) function
module.

13.1 Overview 13-2.
13.1.1 OMAP5910 Inputs/Outputs 13-2.
13.1.2 USB Function Interrupts 13-2.
13.1.3 USB Function Clocks and Reset 13-5.
13.1.4 USB Function DMA Requests 13-5.
13.1.5 USB Detection 13-6.
13.1.6 Software Disconnect 13-8.

13.2 Register Map 13-9.
13.2.1 Revision Register (REV) 13-11.
13.2.2 Endpoint Selection Register (EP_NUM) 13-11.
13.2.3 Data Register (DATA) 13-13.
13.2.4 Control Register (CTRL) 13-14.
13.2.5 Status Register (STAT_FLG) 13-17.
13.2.6 Receive FIFO Status Register (RXFSTAT) 13-22.
13.2.7 System Configuration Register 1 (SYSCON1) 13-22.
13.2.8 System Configuration Register 2 (SYSCON2) 13-24.
13.2.9 Device Status Register (DEVSTAT) 13-26.
13.2.10 Start of Frame Register (SOF) 13-29.
13.2.11 Interrupt Enable Register (IRQ_EN) 13-30.
13.2.12 Interrupt Source Register (IRQ_SRC) 13-31.
13.2.13 Non-Isochronous Endpoint Interrupt Status Register (EPN_STAT) 13-36.
13.2.14 Non-Isochronous DMA Interrupt Status Register (DMAN_STAT) 13-37.
13.2.15 Receive DMA Channels Configuration Register (RXDMA_CFG) 13-38.
13.2.16 Transmit DMA Channels Configuration Register (TXDMA_CFG) 13-40.
13.2.17 DMA FIFO Data Register (DATA_DMA) 13-42.
13.2.18 Transmit DMA Control Registers (TXDMA0...TXDMA2) 13-43.
13.2.19 Receive DMA Control Registers (RXDMA...RXDMA2) 13-45.
13.2.20 Endpoint 0 Configuration Register (EP0) 13-46.
13.2.21 Receive Endpoint Configuration Registers (EP1_RX...EP15_RX) 13-47.
13.2.22 Transmit Endpoint Configuration Registers (EP1_TX...EP15_TX) 13-50.

Contents

xvi

13.3 USB Transactions 13-52.
13.3.1 Non-Isochronous, Non-Setup OUT (USB HOST -> LH) Transactions 13-52. . . .
13.3.2 Non-Isochronous IN (LH->USB HOST) Transactions 13-57.
13.3.3 Isochronous OUT (USB HOST-> LH) Transactions 13-61.
13.3.4 Isochronous IN (LH->USB HOST) Transactions 13-63.
13.3.5 Control Transfers on Endpoint 0 13-65.

13.4 Device Initialization 13-79.
13.5 Preparing for Transfers 13-83.
13.6 Interrupt Service Routine (ISR) Flowcharts 13-86.

13.6.1 Important Note on USB Interrupts 13-86.
13.6.2 Parsing the General USB Interrupt 13-87.
13.6.3 Setup Interrupt Handler 13-87.
13.6.4 Endpoint 0 RX Interrupt Handler 13-91.
13.6.5 Endpoint 0 TX Interrupt Handler 13-91.
13.6.6 Device States Changed Handler 13-96.
13.6.7 Device States Attached/Unattached Handler 13-99.
13.6.8 USB Reset Interrupt Handler 13-100.
13.6.9 Suspend/Resume Interrupt Handler 13-100.
13.6.10 Parsing the Non-Isochronous Endpoint-Specific Interrupt 13-100.
13.6.11 Non-Isochronous, Non-Control OUT Endpoint Receive

Interrupt Handler 13-105.
13.6.12 Non-Isochronous, Non-Control IN Endpoint Transmit

Interrupt Handler 13-105.
13.6.13 SOF Interrupt Handler 13-105.
13.6.14 Summary of USB-Related Interrupts 13-113.

13.7 DMA Operation 13-114.
13.7.1 Receive DMA Channels Overview 13-114.
13.7.2 Non-Isochronous OUT (USB HOST -> LH) DMA Transactions 13-114.
13.7.3 Isochronous OUT (USB HOST -> LH) DMA Transactions 13-119.
13.7.4 Transmit DMA Channels Overview 13-120.
13.7.5 Non-Isochronous IN (LH -> USB HOST) DMA Transactions 13-120.
13.7.6 Isochronous IN (USB HOST -> LH) DMA Transactions 13-124.
13.7.7 Important Note on DMA Requests 13-124.
13.7.8 Note on DMA Channel Deconfiguration 13-126.

13.8 Power Management 13-127.

14 Universal Serial Bus Host 14-1.
Describes the universal serial bus (USB) host of the OMAP5910 multimedia processor.

14.1 USB Host Controller 14-2.
14.2 USB Open Host Controller Interface Functionality 14-5.

14.2.1 OHCI Controller Overview 14-5.
14.2.2 OMAP5910 USB Host Controller Differences from OHCI Specification

for USB 14-5.
14.2.3 OMAP5910 Implementation of OHCI Specification for USB 14-7.

Contents

xviiContents

14.3 USB Host Controller Registers 14-8.
14.3.1 USB Host Controller Reserved Registers and Reserved Bit Fields 14-45.
14.3.2 Endianism and USB Host Controller Registers 14-45.
14.3.3 USB Host Controller Registers, USB Reset, and USB Clocking 14-45.

14.4 USB Host Controller Interrupt Sources 14-46.
14.4.1 OHCI Interrupts 14-46.
14.4.2 Local Bus MMU Interrupts 14-47.

14.5 USB Pin Multiplexing 14-48.
14.5.1 Host Controller Connectivity With USB Transceivers 14-48.
14.5.2 USB Function Controller Connectivity With USB Transceivers 14-49.
14.5.3 On-Board Transceiverless Connection Using OMAP5910

Transceiverless Link Logic 14-50.
14.5.4 USB Signal Multiplexing Mode Diagrams 14-52.
14.5.5 Ports Shown as Unconnected 14-80.
14.5.6 Conflicts Between USB Signal Multiplexing and Top-Level Multiplexing 14-80. . .

14.6 USB Host Controller Access to System Memory 14-81.
14.6.1 Local Bus Virtual Addressing 14-82.
14.6.2 Cache Coherency in OHCI Data Structures and Data Buffers 14-84.
14.6.3 Local Bus Addressing and OHCI Data Structure Pointers 14-84.
14.6.4 NULL Pointers 14-91.
14.6.5 Endianism and USB Host Controller Access to System Memory 14-91.

14.7 OMAP5910 Local Bus 14-93.
14.7.1 LB Register Descriptions 14-93.
14.7.2 LB MPU Time-out Register (LB_MPU_TIMEOUT) 14-94.
14.7.3 LB Hold Timer Register (LB_HOLD_TIMER) 14-95.
14.7.4 LB Priority Register (LB_PRIORITY_REG) 14-95.
14.7.5 LB Clock Divider Register (LB_CLOCK_DIV) 14-96.
14.7.6 LB Abort Address Register (LB_ABORT_ADD) 14-98.
14.7.7 LB Abort Data Register (LB_ ABORT_DATA) 14-98.
14.7.8 LB Abort Status Register (LB_ABORT_STATUS) 14-99.
14.7.9 LB IRQ Output Register (LB_IRQ_OUTPUT) 14-99.
14.7.10 LB IRQ Input Register (LB_IRQ_INPUT) 14-100.
14.7.11 Local Bus Initialization 14-100.
14.7.12 Local Bus Virtual Addressing 14-101.

14.8 OMAP5910 Local Bus MMU 14-101.
14.8.1 OMAP5910 Local Bus MMU Registers 14-102.
14.8.2 Local Bus MMU Programming for USB Host Controller Operation 14-114.

14.9 USB Host Controller Reset and Clock Control 14-115.
14.9.1 USB Host Controller Clock Control 14-115.
14.9.2 Initializing ULPD to Generate the 48-MHz Clock 14-115.
14.9.3 USB Host Controller Hardware Reset 14-116.
14.9.4 USB Host Controller OHCI Reset 14-116.
14.9.5 USB Host Controller Power Management 14-117.
14.9.6 Local Bus Clock 14-117.

Contents

xviii

14.10 OMAP5910 USB Hardware Considerations 14-118.
14.10.1 VBUS Power Switching For USB Type A Host Receptacles 14-118.
14.10.2 Transient Suppression for USB Connectors 14-118.
14.10.3 VBUS Monitoring for USB Function Controller 14-118.
14.10.4 USB D+ Pullup Enable for USB Function Controller 14-118.
14.10.5 Port Passthrough Mode 14-119.
14.10.6 UART1 Connectivity when

CONF_MOD_USB_HOST_HMC_MODE_R = 2, 10, 18, and 24 14-120.
14.10.7 MPU_BOOT Signal Sharing 14-120.
14.10.8 USB D+, D- Pulldown for USB Function Controller 14-120.

15 Clock Generation and System Reset Management 15-1.
Describes clock generation and system reset for the OMAP5910 multimedia processor.
15.1 Introduction 15-2.

15.1.1 Clock Generation and System Reset Control 15-2.
15.2 Clock Generation 15-8.

15.2.1 Clocking Schemes 15-9.
15.2.2 Operating Modes 15-10.
15.2.3 External Master Mode 15-11.
15.2.4 CLKM1 15-12.
15.2.5 CLKM2 15-14.
15.2.6 CLKM3 15-17.
15.2.7 Clock Distribution and Synchronization 15-19.
15.2.8 Low-Power Mode 15-20.

15.3 Power Management 15-21.
15.3.1 DSP Idle Modes 15-24.
15.3.2 MPU Idle Modes 15-26.
15.3.3 Traffic Controller Idle Modes 15-30.
15.3.4 Chip Idle and Wake-Up Control 15-32.
15.3.5 Power-Saving Capability 15-38.
15.3.6 ULPD Power Management State Machine 15-39.
15.3.7 32-kHz Oscillator 15-43.
15.3.8 12-MHz Oscillator 15-43.
15.3.9 Reset Protocol 15-44.
15.3.10 Power Control for External Devices 15-48.
15.3.11 Configuring Clocks After a Reset 15-49.

15.4 Clock Generation and Reset Control Registers 15-50.
15.4.1 DPLL Operation Mode Registers 15-70.

A Input/Output Descriptions A-1.
Describes the inputs and outputs (I/O) for the OMAP5910 device.
A.1 I/O Signals A-2.
A.2 I/O Functional Multiplexing A-15.

B Switching Clock Modes B-1.
Describes the programming guidelines for switching clock modes in the OMAP5910 device.
B.1 Switching Procedure B-2.
B.2 Main Code B-3.
B.3 Delay Procedure B-4.

Figures

xixFigures

Figures

1-1 OMAP5910 Master Block Diagram 1-3.
1-2 OMAP5910 Diagram 1-5.
1-3 MPU Memory Map 1-9.
1-4 DSP Memory Map 1-10.
2-1 Highlight of MPU Subsystem 2-3.
2-2 MRC, MCR Bit Pattern 2-10.
2-3 Format of the CP15 Translation Table Base Register 2-17.
2-4 Format of the CP15 Domain Access Control Register 2-17.
2-5 Format of the Fault Address Register 2-19.
2-6 D-Cache Clean/Flush Single Entry Operand Format 2-20.
2-7 Format of the Lock-Down Registers 2-22.
2-8 Format of the I_min and I_max Registers 2-25.
2-9 Format of the Thread-ID Register 2-25.
2-10 Address Translation Process 2-29.
2-1 1 Translation Table Base Register 2-30.
2-12 Accessing the Translation Table Level 1 Descriptors 2-31.
2-13 Level 1 Descriptors 2-32.
2-14 Section Translation 2-34.
2-15 Page Table Entry (Level 2 Descriptor) 2-35.
2-16 Tiny Page Translation 2-37.
2-17 Small Page Translation 2-38.
2-18 Large Page Translation 2-40.
2-19 Domain Access Control Register Format 2-42.
2-20 Sequence for Checking Faults 2-44.
2-21 Nonaligned Read Word Access 2-45.
2-22 MPUI Simplified Block Diagram 2-55.
2-23 MPU TI Peripheral Bus Bridge Connections 2-65.
2-24 DSP Endian Conversion, 32-Bit Aligned Data 2-73.
2-25 DSP Endian Conversion, MPUI Port Boundary 2-74.
2-26 Trace Signals Multiplexing 2-76.
2-27 Required System for ETM Usage 2-77.
3-1 Highlight of DSP Subsystem 3-2.
3-2 DSP Subsystem and Modules 3-3.
3-3 DSP Core and Internal Bus Designations 3-5.
3-4 C55x DSP Architecture 3-8.
3-5 DSP Memory Connections 3-10.
3-6 DSP Memory Space 3-13.
3-7 DMA and Ports 3-17.
3-8 Example of DMA Configuration 3-19.
3-9 DSP Subsystem Modules 3-28.

Figures

xx

4-1 TC Block Diagram 4-2.
4-2 Traffic Controller 4-3.
4-3 Asynchronous 16-Bit Read Operation on a 16-Bit Width Device 4-18.
4-4 Asynchronous Page Mode 8x16-Bit Read Operation on a 16-Bit Width Device

(8 Words per Page) 4-20.
4-5 Asynchronous Page Mode 8x16-Bit Read With Page Crossing on 16-Bit Width Device

(4 Words per Page) 4-20.
4-6 Synchronous Burst Read With Page Alignment 4-22.
4-7 Asynchronous Write With WE Operation 4-23.
4-8 SDRAM Write Single 32-Bit Word With Burst Stop 4-31.
4-9 SDRAM Write Single 16-Bit Half-Word With Burst Stop 4-32.
4-10 SDRAM Write Single 16-Bit Half-Word Followed by Write Burst 8 4-33.
4-1 1 SDRAM Read Single 16-Bit Half-Word With Burst Stop 4-34.
4-12 SDRAM Read Single 16-Bit Half-Word Followed by Read Burst 8 Half-Word 4-35.
4-13 SDRAM Write Burst 32-Bit Word Followed by Read Burst 8 Half-Word 4-36.
4-14 SDRAM Single Half-Word Followed by a Read Burst 6 Half-Words 4-37.
4-15 SDRAM Read Burst 4 Half-Words Followed by a Write Burst 3 Half-Words 4-38.
4-16 SDRAM Read Single Half-Word Followed by a Write Byte 4-39.
4-17 SDRAM Write Single Followed by Write Burst 6 on the Same Bank and

Different Page 4-40.
4-18 SDRAM Read Single Half-Word Followed by a Read Burst 8 With Page Crossing 4-41. . . .
4-19 External Memory Interconnection Using Intel Flash Memory 4-58.
4-20 External Memory Interconnection Using Hitachi Flash Memory 4-59.
5-1 Highlight of DMA Controller 5-2.
5-2 DMA Controller Block Diagram 5-3.
5-3 System DMA External Connections 5-8.
5-4 Time-Sharing on a DMA Port 5-9.
5-5 Basic Flow of DMA Transfer 5-10.
5-6 Memory Representation 5-14.
5-7 Endianism Adaptation on Transferred Data 5-22.
5-8 Data Read Format—Two Shared Physical Channels 5-24.
5-9 Data Read Format—One Physical Channel 5-25.
5-10 LCD Channel 5-26.
5-1 1 LCD One Frame Mode Transfer Scheme 5-30.
5-12 LCD Dual-Frame Mode Transfer Scheme 5-31.
6-1 MPU Private Peripherals 6-2.
6-2 32-Bit Timer 6-3.
6-3 Timer Diagram 6-5.
6-4 Watchdog Timer 6-8.
6-5 Timer Diagram 6-11.
6-6 MPU Interrupt Handlers 6-15.
7-1 MPU Public Peripherals Area 7-2.
7-2 Camera Interface Block Diagram 7-4.
7-3 Image Data Transfer 7-5.
7-4 Timing Chart of Image Data Transfer (POLCLK = 1) 7-6.
7-5 Order of Camera Data on TIPB (Not Swapped) 7-7.
7-6 Order of Camera Data on TIPB (Swapped) 7-7.
7-7 DMA Request 7-8.

Figures

xxiFigures

7-8 FIFO Buffer Parts 7-9.
7-9 IRQ Generated on VSYNC Falling Edge 7-10.
7-10 MPU I/O Environment 7-18.
7-1 1 Keyboard Process Block Diagram 7-20.
7-12 GPIO Process 7-21.
7-13 GPIO_INT Register Read Timing 7-22.
7-14 MPU I/O Input Masking Timing 7-23.
7-15 GPIO_CLK Timing 7-24.
7-16 Event Capture Process 7-25.
7-17 Block Diagram 7-30.
7-18 Behavior of a X25C02 EEPROM Read Cycle 7-39.
7-19 Behavior of a XL93LC66 EEPROM Read Cycle 7-39.
7-20 Read Cycle in Autotransmit Mode 7-44.
7-21 PWL Block Diagram 7-50.
7-22 PWT Block Diagram 7-53.
7-23 I2C System Overview 7-57.
7-24 Data Validity on the I2C Bus 7-59.
7-25 Start and Stop Conditions 7-59.
7-26 I2C Data Transfer 7-60.
7-27 I2C Data Transfer Formats 7-61.
7-28 Arbitration Procedure Between Two Master Transmitters 7-62.
7-29 Synchronization of Two I2C Clock Generators 7-63.
7-30 Prescale Sampling Clock Divider Value 7-65.
7-31 Setup Procedure 7-88.
7-32 Master Transmitter Mode, RM = 1 7-89.
7-33 Master Receiver Mode, RM = 1, Polling 1 (Software Counter, Number of the

Receive Data Fixed) 7-90.
7-34 Master Receiver Mode, RM =1 , Polling 2 (Number of the Receive Data is

Variable, Data Contents Dependent) 7-91.
7-35 Master Transmitter Mode, RM = 0, Polling 7-92.
7-36 Master Receiver Mode, RM = 0, Polling 7-93.
7-37 Master Transmitter Mode, RM = 0, Interrupt 7-94.
7-38 Master Receiver Mode, RM = 0, Interrupt 7-95.
7-39 Master Transmitter Mode, RM = 0, DMA 7-96.
7-40 Master Receiver Mode, RM = 0, DMA 7-97.
7-41 Slave Transmitter/Receiver Mode, Polling 7-98.
7-42 Slave Transmitter/Receiver Mode, Interrupt 7-99.
7-43 LED Pulse Generator Block Diagram 7-100.
7-44 McBSP2 Interface Diagram 7-107.
7-45 Communication Processor Data Interface 7-108.
7-46 Waveform Example 7-112.
7-47 Waveform Example 7-116.
7-48 MMC/SD Host Controller Environment 7-121.
7-49 Clock Control 7-133.
7-50 SPI Mode C/S Timings Controls (POL = 0) 7-152.
7-51 SPI Mode C/S Timings Controls (POL = 1) 7-152.
7-52 SPI Master Configuration Bits 7-155.
7-53 Command Flow 7-161.

Figures

xxii

7-54 Initialization Phase 7-162.
7-55 Detail of Basic Operation 7-162.
7-56 Command Transfer 7-163.
7-57 Data Transfer 7-164.
7-58 Data Transfer in MMC/SD Mode Example 7-165.
7-59 RTC Clock Diagram 7-169.
7-60 Time and Calendar Registers and Alarm Register Access 7-171.
7-61 Compensation Scheduling 7-173.
7-62 IRQ Generation Waveform 7-174.
7-63 IRQ Alarm Interrupt Waveform 7-175.
7-64 Positive and Negative Compensation Effect 7-176.
7-65 Read Timing Diagram 7-191.
7-66 Reset Timing Diagram 7-191.
7-67 Write Timing Diagram 7-191.
7-68 Write State Machine #1 7-192.
7-69 Read State Machine #1 7-192.
7-70 HDQ and 1-Wire Overview 7-194.
7-71 FAC Top-Level Diagram 7-199.
7-72 FAC Module Counters and Clock Synchronization 7-200.
7-73 Synchronization Circuit for Frame Synchronization and Frame Start Signals 7-201.
7-74 Synchronization Circuit Waveforms 7-201.
8-1 Highlight of DSP Peripherals 8-2.
8-2 DSP Timers 8-3.
8-3 DSP Interrupt Handler Cascade 8-15.
8-4 Level 2 Interrupt Control Flow 8-18.
8-5 Interrupt Channel Implementation 8-27.
8-6 Level-Sensitive Interrupt Clear Commands 8-31.
9-1 Highlight of Public Peripherals Area 9-2.
9-2 McBSP1 Interface Diagram 9-5.
9-3 I2S Audio Codec Interface 9-7.
9-4 Waveform Example 9-11.
9-5 McBSP3 Interface Diagram 9-12.
9-6 Optical Audio Interface 9-15.
9-7 Waveform Example 9-22.
9-8 Waveform Example 9-26.
9-9 Communication µ-Law Interface Interrupts Waveform Example 9-31.
9-10 Receive Interrupt Timing Diagram 9-33.
9-1 1 Transmit Interrupt Timing Diagram 9-33.
9-12 Frame Duration Error—Too Many (Long) 9-34.
9-13 Frame Duration Error—Too Few (Short) 9-35.
9-14 Transmit DMA Transfers 9-36.
9-15 Receive DMA Transfers 9-37.
9-16 Single-Channel/Alternate Long Framing 9-39.
9-17 Single-Channel/Alternate Long Framing/Burst 9-39.
9-18 Single-Channel/Alternate Short Framing/Continuous/Burst 9-40.
9-19 Multichannel/Normal Short Framing/Channel4 Disable 9-40.
9-20 Multichannel/Alternate Long Framing/Continuous/Burst 9-40.
9-21 Multichannel/Normal Short Framing/Burst 9-41.

Figures

xxiiiFigures

9-22 Single-Channel/Normal Short Framing 9-41.
9-23 Single-Channel/Normal Short Framing/Burst 9-41.
9-24 Single-Channel/Normal Long Framing 9-42.
9-25 Single-Channel/Normal Long Framing/Burst 9-42.
9-26 Single-Channel/Normal Long/Continuous 9-43.
9-27 Single-Channel/Alternate Short Framing 9-43.
9-28 Single-Channel/Alternate Short Framing/Burst 9-43.
9-29 MCSI1 Interface Diagram 9-53.
9-30 MCSI2 Interface Diagram 9-55.
10-1 Highlight of MPU/DSP Peripherals 10-2.
10-2 Interrupt Generating Mechanism 10-6.
10-3 GPIO Module Architecture 10-8.
11-1 LCD Controller on Board the OMAP5910 Device 11-3.
11-2 LCD Controller Block Diagram 11-4.
11-3 256 Palette Entry/Buffer Format (8 BPP) 11-10.
11-4 16 Palette Entry/Buffer Format (1, 2, 4, 12, 16 BPP) 11-10.
11-5 2 BPP Frame Buffer Memory Organization 11-12.
11-6 4 BPP Frame Buffer Memory Organization 11-12.
11-7 8 BPP Frame Buffer Memory Organization 11-12.
11-8 12 BPP Frame Buffer Memory Organization 11-13.
11-9 16 BPP Frame Buffer Memory Organization 11-13.
11-10 Dither Logic 11-27.
11-1 1 Passive Mode Pixel Clock and Data Pin Timing 11-29.
11-12 Active Mode Pixel Clock and Data Pin Timing 11-30.
11-13 Active Mode End of Line Timing 11-34.
11-14 Passive Mode End of Line Timing 11-34.
11-15 Active Mode End of Frame Timing 11-37.
11-16 Passive Mode End of Frame Timing 11-38.
11-17 Signal Timing When PHSVS_ON_OFF = 0 11-42.
11-18 Signal Timing When PHSVS_ON_OFF = 1 11-43.
11-19 LCD Subpanel Display Register (LcdSubpanel) 11-48.
12-1 UART Modem Module 12-2.
12-2 UART Signals 12-4.
12-3 UART1 Environment 12-7.
12-4 UART2.RX Wakeup Sequence 12-9.
12-5 UART2 Environment 12-10.
12-6 UART3 Environment 12-12.
12-7 UART Data Format 12-38.
12-8 Functional Block Diagram 12-38.
12-9 Receive FIFO IT Request Generation 12-41.
12-10 Transmit FIFO IT Request Generation 12-41.
12-1 1 Receive FIFO DMA Request Generation 12-43.
12-12 Transmit FIFO DMA Request Generation 12-43.
12-13 Autobaud State Machine 12-50.
12-14 IrDA Frame Format 12-84.
12-15 IrDA Encoder Mechanism 12-86.
12-16 IrDA Decoder Mechanism 12-87.
12-17 Functional Block Diagram 12-88.

Figures

xxiv

12-18 Receive FIFO IT Request Generation 12-91.
12-19 Transmit FIFO IT Request Generation 12-92.
12-20 Receive FIFO DMA Request Generation 12-93.
12-21 Transmit FIFO DMA Request Generation 12-94.
13-1 USB Function Module 13-3.
13-2 USB Function Environment 13-4.
13-3 Non-Isochronous, Non-Control OUT Endpoint Handshaking Conditions 13-53.
13-4 Non-Isochronous IN Transaction Phases and Interrupts 13-58.
13-5 Isochronous OUT Transaction Phases and Interrupts 13-62.
13-6 Isochronous IN Transaction Phases and Interrupts 13-64.
13-7 Stages and Transaction Phases of Autodecoded Control Transfers 13-66.
13-8 Stages and Transaction Phases of Non-Autodecoded Control Transfers 13-67.
13-9 Example of RAM Organization 13-80.
13-10 Device Configuration Routine 13-81.
13-1 1 Endpoint Configuration Routine 13-82.
13-12 Prepare for USB RX Transfer Routine 13-84.
13-13 Prepare for TX Transfer on Endpoint n Routine 13-85.
13-14 General USB Interrupt ISR Source Parsing Flowchart 13-88.
13-15 Setup Interrupt Handler 13-89.
13-16 Parse Command Routine (Setup Stage Control Transfer Request) 13-90.
13-17 Endpoint 0 RX Interrupt Handler 13-92.
13-18 Prepare for Control Write Status Stage Routine 13-93.
13-19 Endpoint 0 TX Interrupt Handler 13-94.
13-20 Prepare for Control Read Status Stage Routine 13-95.
13-21 USB Function Device State Transitions 13-97.
13-22 Typical Operation for USB Device State Changed Interrupt Handler 13-98.
13-23 Attached/Unattached Handler 13-99.
13-24 USB Reset Handler Flowchart I 13-101.
13-25 USB Reset Handler Flowchart II 13-102.
13-26 Typical Operation for USB Suspend/Resume General USB Interrupt Handler 13-103.
13-27 Non-Isochronous Endpoint-Specific (Except ER 0) ISR Flowchart 13-104.
13-28 Non-Isochronous Non-Control Endpoint Receive Interrupt Handler 13-106.
13-29 Read Non-Isochronous RX FIFO Data Flowchart 13-107.
13-30 Non-Isochronous Non-control Endpoint Transmit Interrupt Handler 13-108.
13-31 Write Non-Isochronous TX FIFO Data Flowchart 13-109.
13-32 SOF Interrupt Handler Flowchart 13-110.
13-33 Read Isochronous RX FIFO Data Flowchart 13-111.
13-34 Write Isochronous TX FIFO Data Flowchart 13-112.
13-35 Non-Isochronous RX DMA Transaction Example (RX_TC = 2) 13-115.
13-36 Non-Isochronous RX DMA Start Routine 13-116.
13-37 Non-Isochronous RX DMA EOT Interrupt Handler 13-117.
13-38 Non-Isochronous RX DMA Transaction Count Interrupt Handler 13-118.
13-39 Isochronous RX DMA Transaction 13-119.
13-40 Isochronous RX DMA Start Routine 13-119.
13-41 File Transfer Size 13-121.
13-42 Non-Isochronous TX DMA DMA Start Routine 13-122.
13-43 Non-Isochronous TX DMA Done Interrupt Handler 13-123.
13-44 Isochronous TX DMA Start Routine 13-125.

Figures

xxvFigures

13-45 Power Management Signal Values 13-128.
14-1 OMAP5910 USB Host Controller Block Diagram 14-3.
14-2 OMAP5910 USB Host Controller 14-4.
14-3 Typical USB Host Connections 14-48.
14-4 Typical USB Function Connections 14-49.
14-5 OMAP5910 USB Host Controller Connection—With and Without the OMAP5910

Transceiverless Link Logic 14-51.
14-6 OMAP5910 USB Function Connection—With and Without the OMAP5910

Transceiverless Link Logic 14-52.
14-7 OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 0 14-55.
14-8 OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 1 14-56.
14-9 OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 2 14-57.
14-10 OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 3 14-58.
14-1 1 OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 4 14-59.
14-12 OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 5 14-60.
14-13 OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 6 14-61.
14-14 OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 7 14-62.
14-15 OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 9 14-63.
14-16 OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 10 14-64.
14-17 OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 11 14-65.
14-18 OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 12 14-66.
14-19 OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 13 14-67.
14-20 OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 14 14-68.
14-21 OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 15 14-69.
14-22 OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 16 14-70.
14-23 OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 17 14-71.
14-24 OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 18 14-72.
14-25 OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 19 14-73.
14-26 OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 20 14-74.
14-27 OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 21 14-75.
14-28 OMAP5910 Configured for HMC_MODEs 22, 26-31 14-76.
14-29 OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 23

(Transceiverless Connection Uses TXD+, TXD- Signaling) 14-77.
14-30 OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 24

(Transceiverless Connection Uses TXD+, TXD- Signaling) 14-78.
14-31 OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 25

(Transceiverless Connection Uses TXD+, TXD- Signaling) 14-79.
14-32 OMAP5910 USB Host Controller Data Path to System Memory 14-81.
14-33 Relationships Between Processor Virtual Address, Processor Physical

Address, and Local Bus Virtual Address with Local Bus MMU Disabled 14-82.
14-34 Relationships Between Processor Virtual Address, Processor Physical

Address, and Local Bus Virtual Address with Local Bus MMU Enabled 14-83.

Figures

xxvi

15-1 OMAP5910 Device Clock and Reset Management 15-2.
15-2 OMAP5910 Clock Scheme 15-3.
15-3 Modules Controlling Clock and Reset Management 15-4.
15-4 Clock Generation and System Reset Module 15-8.
15-5 MPU Clock Distribution 15-12.
15-6 DSP Clock Distribution 15-14.
15-7 Traffic Controller Clock Distribution 15-17.
15-8 OMAP5910 Clock Distribution and Synchronization 15-19.
15-9 Low-Voltage Mode 15-20.
15-10 Power Management State Machine 15-22.
15-1 1 Wake-up Control Module 15-23.
15-12 Code Example 15-28.
15-13 Chip Idle and Wake-Up Control 15-32.
15-14 ULPD Controlled Wake-Up Sequences 15-37.
15-15 External Power Control During A Reset Sequence 15-45.

Tables

xxviiTables

Tables

2-1 Data Cache Configuration 2-6.
2-2 Write Buffer Configuration 2-9.
2-3 CP15 Register Summary 2-11.
2-4 Reading From CP15 Register 0 2-12.
2-5 CP15 ID Register 2-12.
2-6 CP15 Cache Information Register (CIR) 2-12.
2-7 CP15 Control Register 2-14.
2-8 Domain Configuration 2-18.
2-9 CP15 Fault Status Register 2-18.
2-10 Cache Operations 2-19.
2-1 1 TLB Operations 2-21.
2-12 Lockdown Operations 2-22.
2-13 TI Operations 2-23.
2-14 TI925T Configuration Register 2-23.
2-15 TI925T_status Register 2-25.
2-16 CP15 Registers or Functions Used by the MMU 2-28.
2-17 Level 1 Fine Page Table Descriptor 2-32.
2-18 Interpreting Level 1 Descriptor Bits 1-0 2-32.
2-19 Level 1 Coarse Page Table Descriptor 2-33.
2-20 Level 1 Section Descriptor 2-33.
2-21 Level 2 Section Descriptor 2-35.
2-22 Interpreting Page Table Entry Bits 1-0 2-36.
2-23 Priority Encoding of the Fault Status Register 2-41.
2-24 Interpreting Access Bits in Domain Access Control Register 2-42.
2-25 Interpreting Access Permission 2-43.
2-26 DSP Memory Management Unit Registers 2-47.
2-27 Prefetch Register (PREFETCH_REG)) - Offset Address (hex): 00 2-48.
2-28 Prefetch Status Register (WALKING_ST_REG) - Offset Address (hex): 04 2-48.
2-29 Control Register (CNTL_REG) - Offset Address (hex): 08 2-49.
2-30 Fault Address Register MSB (FAULT_AD_H_REG) - Offset Address (hex): 0C 2-49.
2-31 Fault Address Register LSB (FAULT_AD_L_REG) - Offset Address (hex): 10 2-49.
2-32 Fault Status Register (F_ST_REG)) - Offset Address (hex): 14 2-50.
2-33 IT Acknowledge Register (IT_ACK_REG) - Offset Address (hex): 18 2-50.
2-34 TTB Register MSB (TTB_H_REG) - Offset Address (hex): 1C 2-50.
2-35 TTB Register LSB (TTB_L_REG) - Offset Address (hex): 20 2-50.
2-36 Lock Counter Register (LOCK_REG) - Offset Address (hex): 24 2-51.
2-37 Load Entry in TLB Register (LD_TLB_REG) - Offset Address (hex): 28 2-51.
2-38 CAM Entry Register MSB (CAM_H_REG) - Offset Address (hex): 2C 2-51.
2-39 CAM Entry Register LSB (CAM_L_REG) - Offset Address (hex): 30 2-51.
2-40 RAM Entry Register MSB (RAM_H_REG) - Offset Address (hex): 34 2-52.
2-41 RAM Entry Register LSB (RAM_L_REG) - Offset Address (hex): 38 2-52.

Tables

xxviii

2-42 Global Flush Register (GFLUSH_REG) - Offset Address (hex): 3C 2-53.
2-43 Individual Flush Register (FLUSH_ENTRY_REG) - Offset Address (hex):40 2-53.
2-44 CAM Entry Register MSB (READ_CAM_H_REG) - Offset Address (hex): 44 2-53.
2-45 CAM Entry Register LSB (CAM_CAM_L_REG) - Offset Address (hex): 48 2-53.
2-46 RAM Entry Register MSB (READ_RAM_H_REG) - Offset Address (hex): 4C 2-54.
2-47 RAM Entry Register LSB (READ_RAM_L_REG) - Offset Address (hex): 50 2-54.
2-48 MPUI Registers 2-57.
2-49 Control Register (CTRL_REG) - Offset: x00 2-58.
2-50 Debug Address Register (DEBUG_ADDR) - Offset: x04 2-59.
2-51 Debug Data Register (DEBUG_DATA) - Offset: x08 2-60.
2-52 Debug Flag Register (DEBUG_FLAG) - Offset: x0C 2-60.
2-53 Status Register (STATUS_REG) - Offset: x10 2-61.
2-54 DSP Status Register (DSP_STATUS_REG) - Offset: x14 2-62.
2-55 DSP Boot Configuration Register (DSP_BOOT_CONFIG) - Offset: x18 2-63.
2-56 DSP MPUI Configuration Register (DSP_API_CONFIG) - Offset: x1C 2-64.
2-57 Decoding SARAM 0 Through SARAM 11 on 8K Boundaries 2-64.
2-58 Access Factor 2-66.
2-59 TIPB (Private) Bridge Registers 2-67.
2-60 TIPB (Public) Bridge Registers 2-68.
2-61 TIPB Control Register (TIPB_CNTL) - Offset: x00 2-68.
2-62 TIPB Bus Allocation Register (TIPB_BUS_ALLOC) - Offset: x04 2-68.
2-63 MPU TIPB Control Register (MPU_TIPB_CNTL_REG) - Offset: x08 2-69.
2-64 Enhanced TIPB Control Register (ENHANCED_TIPB_CNTL) - Offset: x0C 2-69.
2-65 Address Debug Register (ADDRESS_DBG) - Offset: x10 2-69.
2-66 Data Debug Register LSB (DATA_DEBUG_LOW) - Offset: x14 2-69.
2-67 Data Debug Register MSB (DATA_DEBUG_HIGH) - Offset: x18 2-70.
2-68 Debug Control Signals Register (DEBUG_CNTR_SIG) - Offset: x1C 2-70.
2-69 Little Endian Data Format 2-71.
2-70 Big Endian Format 2-71.
2-71 DSP Data Format 2-72.
3-1 DSP I-Cache Input/Output Memory-Mapped Control Registers 3-12.
3-2 DSP Peripheral Mapping 3-15.
3-3 Possible DMA Transfers 3-18.
3-4 Read/Write Synchronization 3-20.
3-5 DMA Controller Configuration Registers 3-21.
3-6 DSP DMA Mapping 3-26.
3-7 Control Mode Register (CMR) - Value at Reset is 0xFE4D 3-29.
3-8 Wait States 3-30.
3-9 Idle Configuration Register (ICR) 3-32.
3-10 Idle Status Register (ISTR) 3-32.
3-1 1 EMIF Global Control Register (EMIF GCR) 3-36.
3-12 DSP Boot Configuration 3-40.
3-13 Boot Modes 3-41.
3-14 External Memory Boot Table for 16-Bit Boot Download 3-42.
3-15 External Memory Boot Table for 32-Bit Boot Download 3-43.

Tables

xxixTables

4-1 Controller Access Mode and Data Access Width 4-4.
4-2 Device Types Associated With Chip-Select 4-6.
4-3 MPU Memory Map 4-7.
4-4 External Memory Interface Slow Signal List 4-13.
4-5 FCLKDIV Settings and Resulting EMIFS Reference Clock 4-17.
4-6 External Memory Interface Fast Signal List 4-25.
4-7 Possible SDRAM Configurations 4-27.
4-8 Traffic Controller Registers 4-42.
4-9 IMIF Priority Register (IMIF_PRIO) 4-43.
4-10 EMIF Slow Priority Register (EMIFS_PRIO) 4-43.
4-1 1 EMIF Fast Priority Register (EMIFF_PRIO) 4-43.
4-12 EMIF Slow Interface Configuration Register (EMIFS_CONFIG_REG) 4-44.
4-13 EMIF Slow Chip-Select Configuration Registers

(EMIFS_CS0_CONFIG...EMIFS_CS3_CONFIG) 4-45.
4-14 Memory Type 4-46.
4-15 Wait Cycles Insertion 4-47.
4-16 EMIF Fast Interface SDRAM Configuration Register 1

(EMIFF_SDRAM_CONFIG) 4-47.
4-17 SDRAM Internal Organization 4-49.
4-18 Frequency Range 4-50.
4-19 SDRAM Timing Requirements 4-51.
4-20 EMIF Fast Interface SDRAM MRS Register—Default (EMIFF_MRS) 4-52.
4-21 EMIF Fast Interface SDRAM MRS Register—EMRS Mode (EMIFF_MRS) 4-53.
4-22 Time-Out 1 Register (TIMEOUT1) 4-54.
4-23 Time-Out 2 Register (TIMEOUT2) 4-54.
4-24 Time-Out 3 Register (TIMEOUT3) 4-54.
4-25 Endianism Register (ENDIANISM) 4-55.
4-26 EMIF Fast Interface SDRAM Configuration Register 2

(EMIFF_SDRAM_CONFIG_2) 4-55.
4-27 EMIF Slow Wait State Configuration (EMIFS_CFG_DYN_WAIT) 4-56.
5-1 Possible Data Transfers 5-7.
5-2 Possible Transfer Sizes and Types 5-7.
5-3 Autoinitialization Configuration Bits Summary 5-13.
5-4 Packing and Splitting Summary 5-18.
5-5 Data Block to Transfer 5-20.
5-6 Address and Access Types 5-20.
5-7 EMIF to LCD Register Settings—One Frame 5-29.
5-8 IMIF LCD Register Settings—Two Frames 5-30.
5-9 DMA Request Mapping 5-32.
5-10 DMA Controller Registers 5-34.
5-1 1 DMA Global Control register (DMA_GCR) 5-40.
5-12 Channel Source Destination Parameters Register (DMA_CSDP) 5-41.
5-13 DMA Channel Control Register (DMA__CCR) 5-45.
5-14 DMA Channel Interrupt Control Register (DMA_CICR) 5-48.
5-15 DMA Channel Status Register (DMA_CSR) 5-49.
5-16 DMA Channel Source Start Address-Lower Bits Register (DMA_CSSA_L) 5-51.
5-17 DMA Channel Source Start Address-Upper Bits Register (DMA_CSSA_U) 5-51.
5-18 DMA Channel Destination Start Address-Lower Bits Register (DMA_CDSA_L) 5-51.

Tables

xxx

5-19 DMA Channel Destination Start Address-Upper Bits Register (DMA_CDSA_U) 5-52.
5-20 DMA Channel Element Number Register (DMA_CEN) 5-52.
5-21 DMA Channel Frame Number Register (DMA_CFN) 5-52.
5-22 DMA Channel Frame Index Register (DMA_CFI) 5-52.
5-23 DMA Channel Element Index Register (DMA_CEI) 5-53.
5-24 DMA Channel Progress Counter Register (DMA_CPC) 5-53.
5-25 DMA LCD Control Register (DMA_LCD_CTRL) 5-54.
5-26 LCD Top Address for Frame Buffer 1—Lower Bits Register

(DMA_LCD_TOP_F1_L) 5-55.
5-27 LCD Top Address for Frame Buffer 1—Upper Bits Register

(DMA_LCD_TOP_F1_U) 5-55.
5-28 LCD Bottom Address for Frame Buffer 1 Register—Lower Bits Register

(DMA_LCD_BOT_F1_L) 5-56.
5-29 LCD Bottom Address for Frame Buffer 1 Register—Upper Bits Register

(DMA_LCD_BOT_F1_U) 5-56.
5-30 LCD Top Address for Frame Buffer 2—Lower Bits Register

(DMA_LCD_TOP_F2_L) 5-57.
5-31 LCD Top Address for Frame Buffer 2—Upper Bits Register

(DMA_LCD_TOP_F2_U) 5-57.
5-32 LCD Bottom Address for Frame Buffer 2—Lower Bits Register

(DMA_LCD_BOT_F2_L) 5-58.
5-33 LCD Bottom Address for Frame Buffer 2—Upper Bits Register

(DMA_LCD_BOT_F2_U) 5-58.
6-1 Timer Level 1 Interrupt 6-3.
6-2 PTV Value and Corresponding Division Value 6-4.
6-3 Timer Characteristics 6-4.
6-4 Timer Registers 6-6.
6-5 Control Timer Register (CNTL_TIMER) 6-6.
6-6 Load Timer Register (LOAD_TIMER) 6-7.
6-7 Read Timer Register (READ_TIMER) 6-7.
6-8 Watchdog Timer Level 1 Interrupt 6-8.
6-9 PTV Value and Associated Divisor Value 6-9.
6-10 Watchdog Timer Characteristics 6-10.
6-1 1 Watchdog Timer Registers 6-12.
6-12 Control Timer Register (CNTL_TIMER) 6-12.
6-13 Load Timer Register (LOAD_TIM) 6-13.
6-14 Read Timer Register (READ_TIM) 6-13.
6-15 Timer Mode Register (TIMER_MODE) 6-13.
6-16 Level 1 and Level 2 OMAP5910 MPU Interrupt Mapping 6-17.
6-17 Interrupt Handler Registers 6-20.
6-18 Interrupt Input Register (ITR) 6-22.
6-19 Mask Interrupt Register (MIR) 6-22.
6-20 Binary-Coded Source IRQ Register (SIR_IRQ_CODE) 6-22.
6-21 Binary-Coded Source FIQ Register (SIR_FIQ_CODE) 6-23.
6-22 Control Register (CONTROL_REG) 6-23.
6-23 Interrupt Level Registers (ILR0...ILR31) 6-23.
6-24 Interrupt Set Register (ISR) 6-23.
6-25 Functional Pin Multiplexing Control Register 3

(FUNC_MUX_CTRL3...FUNC_MUX_CTRLD) 6-26.

Tables

xxxiTables

6-26 Configuration Registers 6-27.
6-27 Functional Multiplexing Control 0 Register (FUNC_MUX_CTRL_0) 6-28.
6-28 Functional Multiplexing Control 1 Register (FUNC_MUX_CTRL_1) 6-30.
6-29 Functional Multiplexing Control 2 Register (FUNC_MUX_CTRL_2) 6-31.
6-30 Compatibility Mode Control 0 Register (COMP_MODE_CTRL_0) 6-32.
6-31 Functional Multiplexing Control 3 Register (FUNC_MUX_CTRL_3) 6-32.
6-32 Functional Multiplexing Control 4 Register (FUNC_MUX_CTRL_4) 6-32.
6-33 Functional Multiplexing Control 5 Register (FUNC_MUX_CTRL_5) 6-33.
6-34 Functional Multiplexing Control 6 Register (FUNC_MUX_CTRL_6) 6-35.
6-35 Functional Multiplexing Control 7 Register (FUNC_MUX_CTRL_7) 6-37.
6-36 Functional Multiplexing Control 8 Register (FUNC_MUX_CTRL_8) 6-38.
6-37 Functional Multiplexing Control 9 Register (FUNC_MUX_CTRL_9) 6-39.
6-38 Functional Multiplexing Control A Register (FUNC_MUX_CTRL_A) 6-40.
6-39 Functional Multiplexing Control B Register (FUNC_MUX_CTRL_B) 6-41.
6-40 Functional Multiplexing Control C Register (FUNC_MUX_CTRL_C) 6-42.
6-41 Functional Multiplexing Control D Register (FUNC_MUX_CTRL_D) 6-44.
6-42 Pulldown Control 0 Register (PULL_DWN_CTRL_0) 6-45.
6-43 Pulldown Control 1 Register (PULL_DWN_CTRL_1) 6-46.
6-44 Pulldown Control 2 Register (PULL_DWN_CTRL_2) 6-53.
6-45 Pulldown Control 3 Register (PULL_DWN_CTRL_3) 6-59.
6-46 Gate and Inhibit Control 0 Register (GATE_INH_CTRL_0) 6-60.
6-47 Voltage Control 0 Register (VOLTAGE_CTRL_0) 6-62.
6-48 Test Debug Control 0 Register (TEST_DBG_CTRL_0) 6-63.
6-49 Module Configuration Control 0 Register (MOD_CONF_CTRL_0) 6-64.
6-50 ID Code Register (IDCODE) 6-70.
6-51 ID Code Register (IDCODE) Bits 6-70.
6-52 Die ID Address Space—Private TIPB Bridge 6-71.
7-1 Clock Ratios 7-9.
7-2 Default Configuration at Reset 7-11.
7-3 Camera Interface Registers 7-12.
7-4 Clock Control Register (CTRLCLOCK) 7-12.
7-5 Interrupt Source Status Register (IT_STATUS) 7-13.
7-6 Camera Interface Mode Configuration Register (MODE) 7-14.
7-7 Status Register (STATUS) 7-15.
7-8 Camera Interface GPIO Register (GPIO) 7-15.
7-9 Image Data Register (CAMDATA) 7-16.
7-10 FIFO Peak Counter Register (PEAK_COUNTER) 7-16.
7-1 1 Keyboard Scanning Sequence 7-19.
7-12 MPU Input/Output Registers 7-25.
7-13 General-Purpose Input Register (INPUT_LATCH) 7-26.
7-14 Output Register (OUTPUT_REG) 7-26.
7-15 Input/Output Control Register (IO_CNTL) 7-26.
7-16 Keyboard Row Inputs Register (KBR_LATCH) 7-27.
7-17 Keyboard Column Outputs Register (KBC_REG) 7-27.
7-18 GPIO Event Mode Register (GPIO_EVENT_MODE_REG) 7-27.
7-19 GPIO Interrupt Edge Register (GPIO_INT_EDGE_REG) 7-27.
7-20 Keyboard Interrupt Register (KBD _INT) 7-28.
7-21 GPIO Interrupt Register (GPIO_INT) 7-28.

Tables

xxxii

7-22 Keyboard Mask Interrupt Register (KBD_ MASKIT) 7-28.
7-23 GPIO Mask Interrupt Register (GPIO_MASKIT) 7-28.
7-24 GPIO Debouncing Register (GPIO_DEBOUNCING_REG) 7-29.
7-25 GPIO Latch Register (GPIO_LATCH_REG) 7-29.
7-26 MicroWire Registers 7-30.
7-27 Transmit Data Register (TDR) 7-31.
7-28 Receive Data Register (RDR) 7-31.
7-29 Control and Status Register (CSR) 7-32.
7-30 Setup Register 1 (SR1) 7-33.
7-31 Setup Register 2 (SR2) 7-35.
7-32 Setup Register 3 (SR3) 7-36.
7-33 Setup Register 4 (SR4) (Read/Write) 7-36.
7-34 Setup Register 5 (SR5) (Read/Write) 7-37.
7-35 Timer Interrupt Period 7-47.
7-36 32-kHz Timer Registers 7-48.
7-37 Read/Write Synchronization 7-48.
7-38 Timer Control Register (CR) 7-49.
7-39 Tick Value Register (TVR) 7-49.
7-40 Tick Counter Register (TCR) 7-49.
7-41 PWL Registers 7-51.
7-42 PWL Level Register (PWL_LEVEL) 7-51.
7-43 PWL Control Register (PWL_CTRL) 7-51.
7-44 PWT Registers 7-53.
7-45 PWT Frequency Control Register (FRC) 7-54.
7-46 PWT Volume Control Register (VRC) 7-54.
7-47 PWT General Control Register (GCR) 7-54.
7-48 Buzzer Frequencies 7-55.
7-49 Buzzer Volume 7-56.
7-50 Signal Pads 7-58.
7-51 Reset State of I2C Signals 7-58.
7-52 I2C Registers 7-67.
7-53 I2C Module Version Register (I2C_REV) 7-68.
7-54 I2C Interrupt Enable Register (I2C_IE) 7-68.
7-55 I2C Status Register (I2C_STAT) 7-69.
7-56 Register Access Ready (ARDY) Set Conditions 7-73.
7-57 I2C Interrupt Vector Register (I2C_IV) 7-74.
7-58 Interrupt Code (INTCODE) Conditions 7-75.
7-59 I2C Buffer Configuration Register (I2C_BUF) 7-75.
7-60 I2C Data Counter Register (I2C_CNT) 7-76.
7-61 I2C Data Access Register (I2C_DATA) 7-77.
7-62 I2C Configuration Register (I2C_CON) 7-78.
7-63 Operating Modes 7-80.
7-64 Repeat Mode Conditions 7-80.
7-65 STT Settings 7-81.
7-66 I2C Own Address Register (I2C_OA) 7-82.
7-67 I2C Slave Address Register (I2C_SA) 7-82.
7-68 I2C Clock Prescaler Register (I2C_PSC) 7-83.
7-69 I2C SCL Low-Time Control Register (I2C_SCLL) 7-83.

Tables

xxxiiiTables

7-70 I2C SCL High Time Control Register (I2C_SCLH) 7-84.
7-71 I2C System Test Register (I2C_SYSTEST) 7-84.
7-72 TMODE Settings 7-85.
7-73 LED Pulse Generator Receive and Transmit Registers 7-101.
7-74 LPG Control Register (LCR) 7-102.
7-75 LED Blinking Period 7-102.
7-76 LED On Time 7-103.
7-77 Power Management Register (PMR) 7-103.
7-78 McBSP2 Pin Descriptions 7-105.
7-79 McBSP2 Registers 7-105.
7-80 Pin Control Register Configuration 7-109.
7-81 Receive Control Register 1 Configuration 7-110.
7-82 Receive Control Register 2 Configuration 7-110.
7-83 Transmit Control Register 1 Configuration 7-110.
7-84 Transmit Control Register 2 Configuration 7-111.
7-85 Pin Control Register Configuration 7-113.
7-86 Receive Control Register 1 Configuration 7-114.
7-87 Receive Control Register 2 Configuration 7-114.
7-88 Transmit Control Register 1 Configuration 7-114.
7-89 Transmit Control Register 2 Configuration 7-115.
7-90 USB Function Registers 7-117.
7-91 MMC/SD Signal Pads 7-123.
7-92 MMC_CMD Pullups 7-125.
7-93 MMC_DAT Pullups 7-125.
7-94 MMC/SD Registers 7-126.
7-95 MMC Command Register (MMC_CMD) 7-127.
7-96 MMC Argument Low Register (MMC_ARGL) 7-130.
7-97 MMC Argument High Register (MMC_ARGH) 7-130.
7-98 MMC System Configuration Register (MMC_CON) 7-131.
7-99 MMC_CLK/SPI_CLK High-/Low-Time Computation 7-134.
7-100 MMC System Status Register (MMC_STAT) 7-135.
7-101 Response Types 7-136.
7-102 MMC System Interrupt Register (MMC_IE) 7-142.
7-103 MMC Command Time-out Register (MMC_CTO) 7-143.
7-104 MMC Data Time-out Register (MMC_DTO) 7-144.
7-105 Data Time-out Conditions 7-144.
7-106 MMC Data Access Register (MMC_DATA) 7-145.
7-107 MMC Block Length Register (MMC_BLEN) 7-146.
7-108 MMC Number of Blocks Register (MMC_NBLK) 7-147.
7-109 MMC Buffer Configuration Register (MMC_BUF) 7-148.
7-1 10 MMC SPI Configuration Register (MMC_SPI) 7-150.
7-1 11 Chip-Select Control (SPI Mode) 7-153.
7-1 12 MMC SDIO Mode Configuration Register (MMC_SDIO) 7-155.
7-1 13 MMC System Test Register (MMC_SYST) 7-156.
7-1 14 MMC Module Version Register (MMC_REV) 7-158.
7-1 15 MMC/SD Command Response Register 0 (MMC_RSP0) 7-159.
7-1 16 MMC/SD Command Response Register 1 (MMC_RSP1) 7-159.
7-1 17 MMC/SD Command Response Register 2 (MMC_RSP2) 7-159.

Tables

xxxiv

7-1 18 MMC/SD Command Response Register 3 (MMC_RSP3) 7-159.
7-1 19 MMC/SD Command Response Register 4 (MMC_RSP4) 7-159.
7-120 MMC/SD Command Response Register 5 (MMC_RSP5) 7-159.
7-121 MMC/SD Command Response Register 6 (MMC_RSP6) 7-160.
7-122 MMC/SD Command Response Register 7 (MMC_RSP7) 7-160.
7-123 Time and Calendar Register Values 7-170.
7-124 Timer Interrupts 7-174.
7-125 RTC Registers 7-177.
7-126 Seconds Register (SECONDS_REG) 7-178.
7-127 Minutes Register (MINUTES_REG) 7-178.
7-128 Hours Register (HOURS_REG) 7-178.
7-129 Days Register (DAYS_REG) 7-179.
7-130 Months Register (MONTHS_REG) 7-179.
7-131 Years Register (YEARS_REG) 7-179.
7-132 Weeks Register (WEEKS_REG) 7-179.
7-133 Alarm Seconds Register (ALARM_SECONDS_REG) 7-180.
7-134 Alarm Minutes Register (ALARM_MINUTES_REG) 7-180.
7-135 Alarm Hours Register (ALARM_HOURS_REG) 7-180.
7-136 Alarm Days Register (ALARM_DAYS_REG) 7-181.
7-137 Alarm Months Register (ALARM_MONTHS_REG) 7-181.
7-138 Alarm Years Register (ALARM_YEARS_REG) 7-181.
7-139 RTC Control Register (RTC_CTRL_REG) 7-182.
7-140 RTC Status Register (RTC_STATUS_REG) 7-183.
7-141 RTC Interrupts Register (RTC_INTERRUPTS_REG) 7-183.
7-142 RTC Compensation LSB Register (RTC_COMP_LSB_REG) 7-184.
7-143 RTC Compensation MSB Register (RTC_COMP_MSB_REG) 7-184.
7-144 Memory Map Summary 7-195.
7-145 Registers Accessible From TIPB 7-196.
7-146 FAC Registers 7-202.
7-147 Frame Adjustment Reference Count Register (FARC) 7-203.
7-148 Frame Start Count Register (FSC) 7-203.
7-149 FAC Control and Configuration Register (CTRL) 7-204.
7-150 FAC Status Register (STATUS) 7-204.
8-1 Timer Interrupts Levels 8-4.
8-2 PTV Divisors: 32-Bit Timers 8-4.
8-3 Timer Characteristics 8-5.
8-4 Timer Registers 8-6.
8-5 Control Timer Register (CNTL_TIMER) 8-6.
8-6 Load Timer High Register (LOAD_TIM_HI) 8-7.
8-7 Load Timer Low Register (LOAD_TIM_LO) 8-7.
8-8 Read Timer High Register (VALUE_TIM_HI) 8-8.
8-9 Read Timer Low Register (VALUE_TIM_LO) 8-8.
8-10 DSP Timer 1 Registers 8-9.
8-1 1 DSP Timer 2 Registers 8-9.
8-12 DSP Timer 3 Registers 8-9.
8-13 Watchdog Timer Interrupt 8-10.
8-14 PTV Divisors: Watchdog Timer 8-11.
8-15 Watchdog Timer Characteristics 8-11.

Tables

xxxvTables

8-16 DSP Watchdog Timer Registers 8-13.
8-17 Control Timer Register (CNTL_TIMER) 8-13.
8-18 Load Timer Register (LOAD_TIM) 8-14.
8-19 Read Timer Register (READ_TIM) 8-14.
8-20 Timer Mode (TIMER_MODE) 8-14.
8-21 Level 1 Interrupt Mapping 8-16.
8-22 Interrupt Handler Level 2 Registers 8-20.
8-23 Interrupt Input Register (ITR) 8-21.
8-24 Mask Interrupt Register (MIR) 8-21.
8-25 IRQ Binary-Coded Source Register (SIR_IRQ) 8-22.
8-26 FIQ Binary-Coded Source Register (SIR_FIQ) 8-22.
8-27 Interrupt Control Register (CONTROL_REG) 8-23.
8-28 Interrupt Level Registers (ILR0...ILR15) 8-23.
8-29 Interrupt Level Registers (ILR0...ILR15) 8-24.
8-30 DSP Level 2 Interrupt Mapping 8-25.
8-31 Edge-Triggered/Level-Sensitive Control Register Low 8-29.
8-32 Edge-Triggered/Level-Sensitive Control Register High 8-29.
8-33 Level-Sensitive Clear Low Register (RST_LVL_LO) 8-30.
8-34 Level-Sensitive Clear High Register (RST_LVL_HI) 8-30.
9-1 McBSP1 Pin Descriptions 9-4.
9-2 Available McBSP1 Signals 9-6.
9-3 McBSP1 Interrupt Mapping 9-6.
9-4 DMA Request Mapping—McBSP1 9-6.
9-5 Pin Control Register Configuration (DSP_Write(0x0000) => PCR) 9-8.
9-6 Receive Control Register 1 Configuration (DSP_Write(0x00a0) => RCR1) 9-9.
9-7 Receive Control Register 2 Configuration (DSP_Write(0x80a1) => RCR2) 9-9.
9-8 Transmit Control Register 1 Configuration (DSP_Write(0x00a0) => XCR1) 9-9.
9-9 Transmit Control Register 2 Configuration (DSP_Write(0x80a1) => XCR2) 9-10.
9-10 McBSP3 Pin Descriptions 9-11.
9-1 1 Available McBSP3 Signals in R = 0 Mode 9-13.
9-12 Available McBSP3 Signals in R = 1 Mode 9-13.
9-13 McBSP3 Interrupt Mapping 9-14.
9-14 DMA Request Mapping—McBSP3 9-14.
9-15 Serial Port Control Register Configuration (DSP_Write(0x1000) => SPCR) 9-16.
9-16 Pin Control Register Configuration (DSP_Write(0x0a0b) => PCR) 9-17.
9-17 Receive Control Register 1 Configuration (DSP_Write(0x0000) => RCR1) 9-18.
9-18 Receive Control Register 2 Configuration (DSP_Write(0x0000) => RCR2) 9-18.
9-19 Transmit Control Register 1 Configuration (DSP_Write(0x0000) => XCR1) 9-19.
9-20 Transmit Control Register 2 Configuration (DSP_Write(0x0000) => XCR2) 9-19.
9-21 Sample Rate Generator 1 Configuration (SRGR[1,2])

(DSP_Write (0x00FF) => SRGR1) 9-20.
9-22 Sample Rate Generator 2 Configuration (SRGR[1,2])

(DSP_Write (0x2000) => SRGR2) 9-20.
9-23 Serial Port Control Register Configuration (DSP_Write(0x1000) => SPCR1) 9-22.
9-24 Pin Control Register Configuration (DSP_Write(0x0a0b) => PCR) 9-23.
9-25 Receive Control Register 1 Configuration (DSP_Write(0x0000) => RCR1) 9-24.
9-26 Receive Control Register 2 Configuration (DSP_Write(0x0000) => RCR2) 9-24.
9-27 Transmit Control Register 1 Configuration (DSP_Write(0x0000) => XCR1) 9-25.

Tables

xxxvi

9-28 Transmit Control Register 2 Configuration (DSP_Write(0x0000) => XCR2) 9-25.
9-29 Channel Selection Register (CHANNEL_USED_REG) 9-44.
9-30 Clock Frequency Register (CLOCK_FREQUENCY_REG) 9-45.
9-31 Oversized Frame Dimension Register (OVER_CLOCK_REG) 9-45.
9-32 Interrupt Masks Register (INTERRUPTS_REG) 9-46.
9-33 Main Parameters Register (MAIN_PARAMETERS__REG) 9-46.
9-34 Activity Control Register (CONTROL_REG) 9-48.
9-35 Interface Status Register (STATUS_REG) 9-49.
9-36 Receive Word Register (RX_REG[15:0]) 9-50.
9-37 Transmit Word Register (TX_REG[15:0]) 9-51.
9-38 MCSI1 Pin Descriptions 9-52.
9-39 MCSI1 Interrupt Mapping 9-52.
9-40 TDMA Request Mapping—MCSI1 9-52.
9-41 MCSI2 Pin Descriptions 9-54.
9-42 MCSI2 Interrupt Mapping 9-54.
9-43 DMA Request Mapping—MCSI2 9-54.
9-44 McBSP Registers 9-56.
9-45 MCSI Register Mapping 9-58.
10-1 Mailbox Registers 10-5.
10-2 GPIO Port Registers 10-8.
10-3 Data Input Register (DATA_INPUT_REG) 10-9.
10-4 Data Output Register (DATA_OUTPUT_REG) 10-9.
10-5 Direction Control Register (DIRECTION_CONTROL_REG) 10-9.
10-6 Interrupt Control Register (INTERRUPT_CONTROL_REG) 10-10.
10-7 Interrupt Mask Register (INTERRUPT_MASK_REG) 10-10.
10-8 Interrupt Status Register (INTERRUPT_STATUS_REG) 10-10.
10-9 MPU GPIO Pin Control Register (PIN_CONTROL_REG) 10-11.
10-10 DSP GPIO Pin Control Status Register (PIN_CONTROL_STATUS_REG) 10-11.
11-1 Interface to LCD Panel Signal Descriptions 11-6.
11-2 Bits Per Pixel Encoding for Palette Entry 0 Buffer 11-11.
11-3 Color/Grayscale Intensities and Modulation Rates 11-15.
11-4 Passive Monochrome Panel Inputs 11-18.
11-5 8-Bit Panel 11-18.
11-6 16-Bit Per Pixel and 12-Bit Panel 11-19.
11-7 16-Bit or Per Pixel and 15-Bit Panel 11-20.
11-8 16-Bit Per Pixel and 18-Bit Panel 11-21.
11-9 16-Bit-Per-Pixel and 24-Bit Panel 11-22.
11-10 LCD Controller Registers 11-23.
11-1 1 LCD Control Register (LCDControl) 11-24.
11-12 LCD Control Register Settings 11-26.
11-13 12-Bit STN Data in Frame Buffer 11-26.
11-14 16-Bit STN Data in Frame Buffer 11-27.
11-15 TFT Alternate Signal Mapping Output 11-28.
11-16 Control Bit 0 And Control Bit 1 Mapping by Display Types 11-28.
11-17 LCD Controller Data Pin Utilization for Mono/Color, Passive/Active Panels 11-31.
11-18 LCD Timing 0 Register (LcdTiming0) 11-32.
11-19 LCD Timing 1 Register (LcdTiming1) 11-36.
11-20 LCD Timing 2 Register (LcdTiming2) 11-40.

Tables

xxxviiTables

11-21 Minimum Pixel Clock Divider (PCD) 11-45.
11-22 LCD Status Register (LcdStatus) 11-46.
11-23 LCD Subpanel Register (LcdSubpanel) 11-47.
11-24 LCD Panel Signals Reset Values 11-49.
12-1 I/O Description 12-5.
12-2 Available UART1 Signals 12-6.
12-3 Available UART2 Signals 12-8.
12-4 Available UART3 Signals in IrDA = 1 Mode 12-11.
12-5 Available UART3 Signals in IrDA = 0 Mode 12-11.
12-6 MPU Registers 12-13.
12-7 TIPB Switch Configuration MPU Register (RHSW_ARM_CNF) 12-13.
12-8 TIPB Switch Status MPU Register (RHSW_ARM_STA) 12-14.
12-9 DSP Registers 12-14.
12-10 TIPB Switch Configuration DSP Register (RHSW_DSP_CNF) 12-15.
12-1 1 TIPB Switch Status DSP Register (RHSW_DSP_STA) 12-15.
12-12 UART Modem Register Program 12-17.
12-13 UART/Autobaud Registers 12-18.
12-14 Receive Holding Register (RHR) 12-20.
12-15 Transmit Holding Register (THR) 12-20.
12-16 FIFO Control Register (FCR) 12-20.
12-17 Supplementary Control Register (SCR) 12-22.
12-18 Line Control Register (LCR) 12-23.
12-19 UART Mode Line Status Register (LSR) 12-24.
12-20 Supplementary Status Register (SSR) 12-26.
12-21 Modem Control Register (MCR) 12-26.
12-22 Modem Status Register (MSR) 12-27.
12-23 UART Mode Interrupt Enable Register (IER) 12-28.
12-24 UART Mode Interrupt Identification Register (IIR) 12-29.
12-25 Enhanced Feature Register (EFR) 12-29.
12-26 EFR[0-3]: Software Flow Control Options 12-30.
12-27 XON1 Register (XON1) 12-31.
12-28 XON2 Register (XON2) 12-31.
12-29 XOFF1 Register (XOFF1) 12-31.
12-30 XOFF2 Register (XOFF2) 12-31.
12-31 Scratchpad Register (SPR) 12-31.
12-32 Divisor Latch Low Register (DLL) 12-32.
12-33 Divisor Latch High Register (DLH) 12-32.
12-34 Transmission Control Register (TCR) 12-33.
12-35 Trigger Level Register (TLR) 12-33.
12-36 TX FIFO Trigger Level Setting Summary 12-34.
12-37 RX FIFO Trigger Level Setting Summary 12-34.
12-38 Mode Definition Register 1 (MDR1) 12-35.
12-39 Autobauding Status Register (UASR) 12-35.
12-40 OSC_12_MHz Register Select (OSC_12M_SEL) 12-36.
12-41 Module Version Register (MVR) 12-37.
12-42 Generic Interrupt Descriptions in Modem Mode 12-39.
12-43 UART IrDA Register Program 12-52.
12-44 UART/IrDA Registers 12-53.

Tables

xxxviii

12-45 Receive Holding Register (RHR) 12-55.
12-46 Transmit Holding Register (THR) 12-55.
12-47 FIFO Control (FCR) Register 12-56.
12-48 Supplementary Control Register (SCR) 12-58.
12-49 Line Control Register (LCR) 12-59.
12-50 UART Mode Line Status Register (UART_LSR) 12-60.
12-51 SIR Mode Line Status Register (SIR_LSR) 12-62.
12-52 Supplementary Status Register (SSR) 12-63.
12-53 Modem Control Register (MCR) 12-64.
12-54 Modem Status Register (MSR) 12-65.
12-55 UART Mode Interrupt Enable Register (UART_IER) 12-66.
12-56 SIR Mode Interrupt Enable Register (SIR_IER) 12-67.
12-57 UART Mode Interrupt Identification Register (UART_IIR) 12-68.
12-58 SIR Mode Interrupt Identification Register (SIR_IIR) 12-69.
12-59 Enhanced Feature Register (EFR) 12-70.
12-60 EFR[0:3]: Software Flow Control Options 12-71.
12-61 XON1/Address Register 1 (XON1/ADDR1) 12-71.
12-62 XON2/Address Register 2 (XON2/ADDR2) 12-71.
12-63 XOFF1 Register (XOFF1) 12-71.
12-64 XOFF2 Register (XOFF2) 12-72.
12-65 Scratchpad Register (SPR) 12-72.
12-66 Divisor Latch Low Register (DLL) 12-72.
12-67 Divisor Latch High Register (DLH) 12-72.
12-68 Transmission Control Register (TCR) 12-73.
12-69 Trigger Level Register (TLR) 12-73.
12-70 Transmit FIFO Trigger Level Setting Summary 12-74.
12-71 Receive FIFO Trigger Level Setting Summary 12-74.
12-72 Mode Definition 1 Register (MDR1) 12-75.
12-73 Mode Definition Register 2 (MDR2) 12-76.
12-74 Transmit Frame Length Low Register (TXFLL) 12-76.
12-75 Transmit Frame Length High Register (TXFLH) 12-76.
12-76 Received Frame Length Low Register (RXFLL) 12-77.
12-77 Received Frame Length High Register (RXFLH) 12-77.
12-78 Status FIFO Line Status Register (SFLSR) 12-78.
12-79 Resume Register (RESUME) 12-78.
12-80 Status FIFO Register Low (SFREGL) 12-79.
12-81 Status FIFO Register High (SFREGH) 12-79.
12-82 BOF Control Register (BLR) 12-79.
12-83 BOF Length Register (EBLR) 12-80.
12-84 DIV1.6 Register (DIV16) 12-80.
12-85 Auxiliary Control Register (ACREG) 12-81.
12-86 OSC 12-MHz Select Register (OSC_12M_SEL) 12-82.
12-87 Module Version Register (MVR) 12-82.
12-88 Generic Interrupt Functions in Modem Mode 12-89.
12-89 Generic Interrupt Functions in SIR Mode 12-90.

Tables

xxxixTables

13-1 USB Function Module Registers 13-9.
13-2 Revision Register (REV) 13-11.
13-3 Endpoint Selection Register (EP_NUM) 13-11.
13-4 Data Register (DATA) 13-13.
13-5 Control Register (CTRL) 13-14.
13-6 Status Register (STAT_FLG) 13-17.
13-7 Receive FIFO Status Register (RXSTAT) 13-22.
13-8 System Configuration Register 1(SYSCON1) 13-22.
13-9 SYSCON2 – System Configuration Register 2 (SYSCON2) 13-24.
13-10 Device Status Register (DEVSTAT) 13-26.
13-1 1 Start of Frame Register (SOF) 13-29.
13-12 Interrupt Enable Register (IRQ_EN) 13-30.
13-13 Interrupt Source Register (IRQ_SRC) 13-31.
13-14 Non-Isochronous Endpoint Interrupt Status Register (EPN_STAT) 13-36.
13-15 Non-Isochronous DMA Interrupt Status Register (DMAN_STAT) 13-37.
13-16 Receive DMA Channels Configuration Register (RXDMA_CFG) 13-39.
13-17 Transmit DMA Channels Configuration Register (TXDMA_CFG) 13-40.
13-18 DMA FIFO Data Register (DATA_DMA) 13-42.
13-19 Transmit DMA Control Registers (TXDMA...TXDMA2) 13-43.
13-20 Receive DMA Control Registers (RXDMA0...RXDMA2) 13-45.
13-21 Endpoint 0 Configuration Register (EP0) 13-46.
13-22 Receive Endpoint n Configuration Registers (EP1_RX...EP15_RX) 13-47.
13-23 Endpoint n Size Values 13-48.
13-24 Transmit Endpoint Configuration Registers (EP1_TX...EP15_TX) 13-50.
13-25 Autodecoded Versus Non-Autodecoded Control Requests 13-75.
13-26 USB Interrupt Type by Endpoint Type 13-113.
14-1 USB Host Controller Registers 14-8.
14-2 OHCI Revision Number Register (HcRevision) 14-10.
14-3 HC Operating Mode Register (HcControl) 14-10.
14-4 HC Command and Status Register (HcCommandStatus) 14-13.
14-5 HC Interrupt Status Register (HcInterruptStatus) 14-14.
14-6 HC Interrupt Enable Register (HcInterruptEnable) 14-15.
14-7 HC Interrupt Disable Register (HcInterruptDisable) 14-18.
14-8 HC HCAA Address Register (HcHCCA) 14-19.
14-9 HC Current Periodic Register (HcPeriodCurrentED) 14-19.
14-10 HC Head Control Register (HcControlHeadED) 14-20.
14-1 1 HC Current Control Register (HcControlCurrentED) 14-20.
14-12 HC Head Bulk Register (HcBulkHeadED) 14-21.
14-13 HC Current Bulk Register (HcBulkCurrentED) 14-21.
14-14 HC Head Done Register (HcDoneHead) 14-22.
14-15 HC Frame Interval Register (HcFmInterval) 14-22.
14-16 HC Frame Remaining Register (HcFmRemaining) 14-23.
14-17 HC Frame Number Register (HcFmNumber) 14-23.
14-18 HC Periodic Start Register (HcPeriodicStart) 14-24.
14-19 HC Low-Speed Threshold Register (HcLSThreshold) 14-24.
14-20 HC Root Hub A Register (HcRhDescriptorA) 14-25.
14-21 HC Root Hub B Register (HcRhDescriptorB) 14-27.
14-22 HC Root Hub Status Register (HcRhStatus) 14-28.

Tables

xl

14-23 HC Port 1 Status and Control Register (HcRhPortStatus1) 14-30.
14-24 HC Port 2 Status and Control Register (HcRhPortStatus2) 14-34.
14-25 HC Port 3 Status and Control Register (HcRhPortStatus3) 14-38.
14-26 Host UE Address Register (HostUEAddr) 14-42.
14-27 Host UE Status Register (HostUEStatus) 14-43.
14-28 Host Time-out Control Register (HostTimeoutCtrl) 14-44.
14-29 Host Revision Register (HostRevision) 14-44.
14-30 USB Signal Multiplexing Modes 14-53.
14-31 MPU MMU Programming for Address Conversion Example 14-87.
14-32 MPU Memory Allocations for Address Conversion Example 14-88.
14-33 Physical Addresses for Address Conversion Example 14-88.
14-34 Local Bus MMU Programming for Address Conversion Example 14-89.
14-35 Local Bus Virtual Addresses for Address Conversion Example 14-89.
14-36 Some Data Structure Initializations for Address Conversion Example 14-90.
14-37 Little Endian Data Alignment Within 32-Bit Word 14-92.
14-38 Local Bus Control Registers 14-93.
14-39 LB MPU Time-out Register (LB_MPU_TIMEOUT) 14-94.
14-40 LB Hold Timer Register (LB_HOLD_TIMER) 14-95.
14-41 LB Priority Register (LB_PRIORITY_REG) 14-95.
14-42 LB Clock Divider Register (LB_CLOCK_DIV) 14-96.
14-43 LB Abort Address Register (LB_ABORT_ADD) 14-98.
14-44 LB Abort Data Register (LB_ ABORT_DATA) 14-98.
14-45 LB Abort Status Register (LB_ABORT_STATUS) 14-99.
14-46 LB IRQ Output Register (LB_IRQ_OUTPUT) 14-99.
14-47 LB IRQ Input Register (LB_IRQ_INPUT) 14-100.
14-48 Local Bus MMU Registers 14-102.
14-49 LB MMU Walking Status Register (LB_MMU_WALKING_ST_REG) 14-103.
14-50 LB MMU Control Register (LB_MMU_CNTL_REG) 14-104.
14-51 LB MMU Fault Address High Register (LB_MMU_FAULT_AD_H_REG) 14-104.
14-52 LB MMU Fault Address Low Register (LB_MMU_FAULT_AD_L_REG) 14-105.
14-53 LB MMU Fault Status Register (LB_MMU_FAULT_ST_REG) 14-105.
14-54 LB MMU Interrupt Acknowledge Register (LB_MMU_IT_ACK_REG) 14-106.
14-55 LB MMU TTB Address High Register (LB_MMU_TTB_H_REG) 14-106.
14-56 LB MMU TTB Address Low Register (LB_MMU_TTB_L_REG) 14-106.
14-57 LB MMU Lock Counter Register (LB_MMU_LOCK_REG) 14-106.
14-58 Local Bus MMU TLB Read/Write Register 14-108.
14-59 Local Bus MMU CAM High Register 14-108.
14-60 Local Bus MMU CAM Low Register 14-109.
14-61 Local Bus MMU RAM High Register 14-110.
14-62 Local Bus MMU RAM Low Register 14-110.
14-63 Local Bus MMU Global Flush Register 14-111.
14-64 Local Bus MMU Entry Flush Register 14-111.
14-65 Local Bus MMU CAM Read High Register 14-112.
14-66 Local Bus MMU RAM Read High Register 14-113.
14-67 Local Bus MMU RAM Read Low Register 14-113.
14-68 CONF_MOD_USB_HOST_HMC_MODE_R=7 Internal Connectivity 14-119.
14-69 CONF_MOD_USB_HOST_HMC_MODE_R = 2, 10, 18, and 24 UART Signal

Assignments 14-120.

Tables

xliTables

15-1 Clocking Scheme Selection 15-9.
15-2 CLKM Source Selection—Set via the MPU System Status Register 15-9.
15-3 OMAP5910 Wake-Up Peripherals and External Signals 15-23.
15-4 Recommended Control Switch Settings 15-41.
15-5 MPU Clock/Reset/Power Mode Control Registers - Base Address: FFFE:CE00 15-51.
15-6 MPU Clock Control Register (ARM_CKCTL) 15-51.
15-7 TC_CK and LCD_CK Frequency Selections 15-53.
15-8 DSP_CK Frequency Selections 15-53.
15-9 ARM_CK and MPUPER_CK Frequency Selections 15-54.
15-10 MPU Idle Mode Entry 1 Register (ARM_IDLECT1) 15-54.
15-1 1 MPU Idle Mode Entry 2 Register (ARM_IDLECT2) 15-57.
15-12 MPU External Wake-up Register (ARM_EWUPCT) 15-59.
15-13 MPU Reset Control 1 Register (ARM_RSTCT1) 15-60.
15-14 MPU Reset Control 2 Register (ARM_RSTCT2) 15-61.
15-15 MPU System Status Register (ARM_SYSST) 15-61.
15-16 Clocking Schemes for OMAP5910 15-63.
15-17 DSP Clock/Reset/Power Mode Control Registers 15-64.
15-18 DSP Clock Control Register (DSP_CKCTL) - Offset Address: 0x00 15-64.
15-19 GPIO_CK Selections 15-65.
15-20 DSP Idle Mode Entry 1 Register (DSP_IDLECT1) - Offset Address: 0x04 15-66.
15-21 DSP Idle Mode Entry 2 Register (DSP_IDLECT2) - Offset Address: 0x08 15-67.
15-22 DSP Reset Control 2 Register (DSP_RSTCT2) - Offset Address: 0x14 15-68.
15-23 DSP System Status Register (DSP_SYSST) - Offset Address: 0x18 15-68.
15-24 DPLL Control Registers 15-71.
15-25 DPLL Control Register (CTL_REG) 15-72.
15-26 ULPD Registers - MPU Base Address: FFFE:0800 15-73.
15-27 Counter 32 LSB Register (COUNTER_32_LSB_REG) 15-74.
15-28 Counter 32 MSB Register (COUNTER_32_MSB_REG) 15-74.
15-29 Counter High Frequency LSB Register (COUNTER_HIGH_FREQ_LSB_REG) 15-74.
15-30 Counter High Frequency MSB Register (COUNTER_HIGH_FREQ_MSB_REG) 15-75.
15-31 Gauging Control Register (GAUGING_CTRL_REG) 15-75.
15-32 Setup Analog Cell3 ULPD1 Register (SETUP_ANALOG_CELL3_ULPD1_REG) 15-75. . . .
15-33 Interrupt Status Register (IT_STATUS_REG) 15-76.
15-34 Clock Control Register (CLOCK_CTRL_REG) 15-76.
15-35 Software Clock Request Register (SOFT_REQ_REG) 15-77.
15-36 Counter 32 FIQ Register (COUNTER_32_FIQ_REG) 15-77.
15-37 DPLL Control Register (DPLL_CTRL_REG) 15-78.
15-38 Status Request Register (STATUS_REQ_REG) 15-79.
15-39 Lock Time Register (LOCK_TIME) 15-80.
15-40 APLL Control Register (APLL_CTRL_REG) 15-80.
15-41 Power Control Register (POWER_CTRL_REG) 15-81.
15-42 DSP Idle Registers 15-82.
15-43 DSP Idle Configuration Register (ICR) 15-82.
15-44 DSP Idle Status Register (ISR) 15-83.
A-1 Input and Output Signals for the OMAP5910 Device A-2.
A-2 Configuration Programming A-15.

1-1

Introduction

This chapter introduces the setup, components, and features of the
OMAP5910 processor and provides a high-level view of the device
architecture.

Topic Page

1.1 Overview 1-2.

1.2 Description 1-4.

1.3 Features 1-6.

1.4 Architecture 1-8.

1.5 Memory Maps 1-9.

1.6 Software Compatibility 1-11.

Chapter 1

Overview

 1-2

1.1 Overview

The OMAP5910 is a highly integrated hardware and software platform
designed to meet the application processing needs of next-generation
embedded devices.

The OMAP5910 processor features a unique dual-core architecture that com-
bines the command and control capabilities of the TI-enhanced ARMTM 925
processor (TI925T) with the high-performance and low-power capabilities of
the TMS320C55xTM DSP core. These two key components of the OMAP5910
processor are:

� A TI reduced instruction set computer (RISC) microprocessor unit (MPU)
subsystem. The MPU subsystem is based on the TI925T control proces-
sor, peripherals, and other components. The TI925T processor is based
on the Advanced RISC Machines ARM9TDMI technology.

� A TI digital signal processor (DSP) subsystem. The DSP subsystem
incorporates a TI TMS320C55x DSP, peripherals, and other components.

The OMAP5910 processor is available in the small 289-pin MicroStarTM BGA
package (12x12 mm).

Figure 1–1 is a master block diagram of the 289-pin OMAP5910 processor.
Figure 1–2 shows the OMAP5910 in more detail.

Overview

1-3Introduction

Figure 1–1. OMAP5910 Master Block Diagram

MPU core
(TI925T)

(instruction
cache, data

cache, MMU)

System
DMA

controller

TMS320C55x DSP
(Instruction cache, SARAM

 DARAM, DMA,
 H/W accelerators)

MPU
peripheral

bridge

LCD
I/F

MPU
Interface

SRAM

SDRAM
memories

Flash and
SRAM

memories

DSP
MMU

16

16

32

16

32

32

32

32

32

32

16

MPU privatePeripherals bus

DSP public (shared) pheripheral bus

32
MPU public

16

DSP

DSP public peripherals

McBSP1

McBSP3

MPU public peripherals

USB Host I/F

JTAG/
emulation

I/F
OSC

12 MHz Clock

OSC

OMAP5910

ETM9

Timers (3)

MPU/DSP shared peripherals

Mailbox

MPU private peripherals

Timers (3)

16

Memory interface

Reset External clock

MPU Bus

32 kHz

1.5M bits

traffic controller (TC)

Watchdog timer

Level 1/2 interrupt handlers

Configuration registers

Clock and reset management

Watchdog timer
Level 1/2

Private peripherals

GPIO I/F

USB Function I/F

Camera I/F
MPUIO

32-kHz timer
PWT
PWL

M
I
F
S

M
I
F
F

I
M
I
F

MCSI1
MCSI2

Keyboard I/F

request

E

E

TIPB
switch

UART1
UART2

UART3 IrDA

32

MMC/SD
LPG x2

HDQ / 1-WIRE

DSP private
peripheral bus

peripherals bus

McBSP2

Device identification

RTC

interrupt handlers

I2C
µWire

Frame adjstument
counter

32

32

32

32

Description

 1-4

1.2 Description

The OMAP5910 processor features the first generation of the Texas
Instruments Incorporated OMAP� architecture.

The OMAP platform enables OEMs and ODMs to quickly bring to market
devices featuring rich user interfaces, high processing performance, and long
battery life through the maximum flexibility of a fully integrated mixed
processor solution.

The dual-core architecture provides benefits of both DSP and RISC technolo-
gies, incorporating a TMS320C55x DSP core and a high-performance TI925T
core.

The OMAP5910 device is designed to run leading open and embedded RISC-
based operating systems, as well as the Texas Instruments (TI) DSP/BIOS
software kernel foundation, and is available in a 289-ball MicroStar BGA
package.

The OMAP5910 is targeted for the following applications:

� Applications processing devices

� Mobile communications

� 802.11

� Bluetooth wireless technology

� Proprietary government and other

� Video and image processing (MPEG4, JPEG, Windows Media Video, etc.)

� Advanced speech applications (text-to-speech, speech recognition)

� Audio processing (MPEG-1 Audio Layer3 [MP3], AMR, WMA, AAC, and
other GSM speech codecs)

� Graphics and video acceleration

� Generalized web access

� Data processing (fax, encryption/decryption, authentication, signature
verification and watermarking)

Description

1-5Introduction

Figure 1–2. OMAP5910 Diagram

M
P

U
 c

or
e

(T
I9

25
T

)
(I

ns
tr

uc
tio

n
ca

ch
e,

 d
at

a
ca

ch
e.

 M
M

U
)

S
ys

te
m

D
M

A

co
nt

ro
lle

r

T
M

S
32

0C
55

x
D

S
P

(I
ns

tr
uc

tio
n

ca
ch

e,
 S

A
R

A
M

,
 D

A
R

A
M

, D
M

A
,

 H
/W

 a
cc

es
er

at
or

s)

M
P

U

pe
rip

he
ra

l

br
id

ge

LC
D

I/F

M
P

U
in

te
rf

ac
e

S
R

A
M

D
S

P
M

M
U

16 16 32

16

32

32

32

32

32

32

32

16

M
P

U
 P

riv
at

e
P

er
ip

he
ra

l B
us

D
S

P

32

M
P

U
pe

rip
he

ra
l

JT
A

G
/

em
ul

at
io

n
I/F

O
S

C

12
 M

H
z

O
S

C

O
M

A
P

59
10

28
9

pi
n

pa
ck

ag
e

E
T

M
9

16

M
em

or
y

in
te

rf
ac

e

R
es

et
E

xt
 C

lk
R

eq
s

M
P

U
 B

us

1.
5M

 b
its

tr
af

fic
 c

on
tr

ol
le

r
(T

C
)

C
lo

ck
 a

nd
 r

es
et

 m
an

ag
em

en
t

M I F S M I F F I M I F

pe
rip

he
ra

l b
us

bu
s

S

F

S

l a s h

R A M D R A M

M
od

em
C

hi
ps

et

M
cB

S
P

1

M
cB

S
P

3

M
C

S
I2

U
A

R
T

2

M
cB

S
P

2

M
P

U
IO

G
P

IO

U
A

R
T

3

M
M

C
/S

D

U
A

R
T

1

M
C

S
I1

U
S

B
 F

un
ct

io
n

an
d

H
os

t

C
am

er
a

I/F

I2
S

au
di

o
co

de
c

S
pe

ak
er

s

O
pt

ic
al

 o
r

to
uc

hs
cr

ee
n

de
vi

ce

K
ey

bo
ar

d

G
P

IO
 (1

9)

S
m

ar
t c

ar
d

B
lu

et
oo

th
ba

se
ba

nd
B

lu
et

oo
th

R
F

P
ow

er
 c

on
tr

ol
 I/

C

U
S

B
pl

ug
C

am
er

a

C
on

tr
ol

32
 k

H
z

R
T

C

32
 k

H
z

C
lo

ck

X
D

S
 5

10
em

ul
at

or
pa

d

A
gi

le
nt

T
P

A
30

1

LC
D

 d
is

pl
ay

N
ot

e:
 F

or
 d

et
ai

le
d

in
fo

rm
at

io
n

on
 D

S
P

 a
nd

 M
P

U
 c

on
ne

ct
io

ns
 to

 p
er

ip
he

ra
ls

, s
ee

 F
ig

ur
e

1–
1.

Ir
D

A

B
at

te
ry

(6
 x

 5
)

or
 (

8
x

8)

P
W

T

B
uz

ze
r

P
W

L

M
M

C
/S

D
 o

r
m

em
or

y

H
D

Q
/1

-w
ire

 I/
F

32
 K

hz

LP
G

 x
 2

S
tic

k
I/F

M
M

C
, S

D
 o

r
M

S
 c

ar
d

D P R A M

I2
C

µW
ire

R
T

C

O
M

A
P

59
10

 p
er

ip
he

ra
ls

32

3232 32

Note: As a system real-time time clock, there are two possible solutions:
� The OMAP5910 internal solution (internal RTC and 32-kHz oscillator pads) is not a low-power solution, because

the OMAP5910 RTC power supply is not separate from the OMAP5910 core power supply.
� The OMAP5910 external solution (external RTC and 32-kHz oscillators) is the recommended solution for low IDDQ.

Features

 1-6

1.3 Features

The OMAP5910 device has the following features:

� Ability to support reduced instruction set computer (RISC) and DSP
operating systems

� TI925T MPU subsystem with:

� Instruction cache (16K bytes) and data cache (8K bytes)
� Memory management unit (MMU)
� A 17-word write buffer (WB)

� DSP subsystem (C55x DSP core and subsystems) with:

� Internal 32K-word dual-access RAM (DARAM), 48K-word single
access RAM (SARAM), 16K-word ROM

� Software-configurable instruction cache (12K words, 128-bit line size,
2-way set-associative + RAM set)

� Hardware accelerators for video processing, pixel interpolation, and
motion estimation

� Six-channel DMA controller for high-speed data movement without
DSP intervention

� DSP MMU for address translation and access permission checks

� System DMA controller with:

� Six ports and nine independently programmable generic channels

� An additional dedicated DMA channel tied to the liquid crystal display
(LCD) controller

� Ability to transfer 8-,16-, or 32-bit data between the external memory,
the MPU, and peripherals with byte alignment and packing capability

� Ability to perform simultaneous transfers (single or multiple burst) if no
resources conflict

� Low-power design (no clocking when idle)

� Two external memory interfaces that allow glueless hookup to:

� A 16-bit bus interface to external memory interface slow (EMIFS),
such as flash/SRAM/ROM/page-mode ROM/SB flash/DPRAM), with
128M bytes of memory space

� A 16-bit bus interface to external memory interface fast (EMIFF), such
as memory SDRAM, with 64M bytes of memory space

Features

1-7Introduction

� 192K bytes of 32-bit-wide internal SRAM memory that allows local storage
of operating system (OS) critical routines and that provides a direct path
from the SRAM to the LCD controller

� An external memory traffic controller (TC) that allows asynchronous
operation among the external memory interface, the MPU, and the DSP

� Mailboxes (two for MPU-to-DSP and two for DSP-to-MPU) for
interprocessor communication

� Endianism conversion (default bypass, selectable, and configurable)
between the DSP and the traffic controller and between the DSP and the
MPU interface (MPUI) port boundaries

� Elastic buffering between the traffic controller and the MPU/DSP
controllers to facilitate fully synchronous and synchronous scalable mode
clock operations

� JTAG port for test, debug, and emulation

� Clock management:

� One digital phase-locked loop (DPLL) and three clock management
units for MPU, DSP, and traffic controller clock generation and
management

� System power management for idle mode and power-down functions

� Peripherals available for the OS, general-purpose housekeeping, and
application-specific functions:

� For the MPU:

� Three 32-bit timers

� A 16-bit watchdog timer

� An interrupt handler

� An LCD controller

� Configuration registers

� McBSP2 (multichannel buffered serial port)

� Inter-integrated circuit (I2C) interface

� MicroWire interface

� Keyboard interface

� Universal serial bus (USB) function and host interface

Architecture

 1-8

� Camera interface

� Five MPUIO general-purpose input/output signals in default
multiplexing mode; five more available through alternative pin
multiplexing modes

� 32-kHz timer

� Pulse-width tone (PWT) module

� Pulse-width light (PWL) module

� Real-time clock (RTC) module

� Multimedia card (MMC) or serial data (SD) card interface

� HDQ and 1-Wire serial interface

� Two light emitting diode (LED) pulse generator modules

� Frame adjustment counter

� For the DSP:

� Three 32-bit timers

� A 16-bit watchdog timer

� An interrupt handler

� McBSP1: Multichannel buffered serial port

� McBSP3: Multichannel buffered serial port

� MCSI1: Multichannel serial voice interface

� MCSI2: Multichannel serial voice interface

� Shared peripherals:

� UART1: UART modem with autobaud (16C750 compatible)

� UART2: UART modem with autobaud (16C750 compatible)

� UART3: UART modem with IrDA (16C750 compatible)

� Fourteen general-purpose input/output (GPIO)

� Mailbox

1.4 Architecture

The OMAP5910 device includes the MPU subsystem, the DSP subsystem, a
memory interface traffic controller, general-purpose peripherals, dedicated
multimedia application (MMA) peripherals, and multiple interfaces. The MPU
is the master of the platform, and it has access to the entire 16M bytes of
memory space and to the 128K bytes of I/O space of the DSP subsystem.
Additionally, the MPU and DSP share access to the internal SRAM and
external memory interfaces.

Features / Architecture

Memory Maps

1-9Introduction

1.5 Memory Maps

Figure 1–3 shows the MPU memory map. Figure 1–4 shows the DSP memory
map.

Figure 1–3. MPU Memory Map

TI
peripheral bus

I/O space

Reserved for HIVECT (high
interrupts vectors)0xFFFF FFFF

TI peripherals and control
registers

DSP coprocessor interface

Reserved (not used for OMAP)

Local bus interface

Internal memory interface

External fast memory interface

External slow memory interface
(cs0, cs1, cs2, cs3)

0xFFFF 0000

0xF000 0000

0xE000 0000

0x8000 0000

0x3000 0000

0x2000 0000

0x1000 0000

0x0000 0000

DSP space

Local bus

Internal SRAM

SDRAM space

Flash space

Reserved

0x2002 FFFF

Memory Maps

 1-10

Figure 1–4. DSP Memory Map

DARAM 64K bytes

000000h

010000h

028000h

400000h

800000h

C00000h

FF8000h

FFFFFF

4M bytes less
160K bytes

4M bytes

4M bytes

4M bytes less
32K bytes

32K bytes

Dual-access
random access memory

Single-access
random access memory

External memory
CE0 space

External Memory
CE1 space

External memory
CE2 space

External memory
CE3 space

Program and data
read-only memory

SARAM

PDROM

External

External

External

External

96K bytes

Byte Address Size

The programmable DSP MMU configures how the DSP external address
range is physically mapped to the MPU address range. For more information,
see Section 2.8, DSP Memory Management Unit.

Software Compatibility

1-11Introduction

1.6 Software Compatibility

Code compatibility with future OMAP59x devices is only possible if driver
writers adhere to the conventions detailed in Section 1.6.1.

1.6.1 OMAP Driver Compatibility Conventions

All locations marked as reserved or unused in the documentation are written
as zero, and, in general, values read from reserved locations are not used.

In practice, read-mask-update operations can be applied to registers that
include reserved bits, provided the register is initialized by writing 0 to all
reserved bits when the register is first used.

These conventions allow use of reserved bits to enable new features in future
implementations. Initialization of the complete register, including reserved
bits, is required to avoid problems in these future devices when a new driver
uses (sets) some of the previously reserved bits. In this case, a following
legacy driver must clear the bits.

All software that comes into contact with hardware registers in OMAP devices
must follow these conventions.

2-1

MPU Subsystem

This chapter describes the core, caches, memory management units (MMUs),
interface, and bridges of the OMAP5910 multimedia processor microprocessor
unit (MPU) subsystem.

Topic Page

2.1 Introduction 2-2.

2.2 MPU Core 2-4.

2.3 Instruction Cache 2-5.

2.4 Data Cache 2-6.

2.5 Write Buffer 2-8.

2.6 Coprocessor 15 2-10.

2.7 MPU Memory Management Unit 2-26.

2.8 DSP Memory Management Unit 2-47.

2.9 MPU Interface 2-55.

2.10 MPU TI Peripheral Bus Bridges 2-65.

2.11 Endianism Conversion 2-71.

2.12 ETM Environment 2-75.

Chapter 2

Introduction

 2-2

2.1 Introduction

The MPU of the OMAP5910 device controls the memory management units
(MMUs), the system direct memory access (DMA) controller, the MPU TI
peripheral bus (TIPB) bridge, and peripherals.

Figure 2–1 shows the OMAP5910 device with the MPU subsystem high-
lighted. The subsystem contains the following components:

� MPU core (see Section 2.2, MPU Core)

� Traffic controller (see Chapter 4, Memory Interface Traffic Controller)

� MPU MMU (see Section 2.7, MPU Memory Management Unit)

� DSP MMU (see Section 2.8, DSP Memory Management Unit)

� System DMA controller (see Chapter 5, System DMA Controller)

� LCD controller (see Chapter 11, LCD Controller)

� MPU TIPB bridge (see Section 2.10, MPU TI Peripheral Bus Bridges)

� Clock manager (see Chapter 15, Clock Generation and System Reset
Management)

� Interrupt handler (see Section 6.4.1, MPU Level 1 Interrupt Handler,
Section 6.4.2, MPU Level 2 Interrupt Handler, and Section 8.4, [DSP]
Interrupt Handlers)

� Timers (see Section 6.2, [MPU] Timer Description and Section 8.2, [DSP]
Timers)

� Watchdog timer (see Section 6.3, [MPU] Watchdog Timer and Section 8.3,
[DSP] Watchdog Timer)

� Interprocessor communication (see Section 10.2, Interprocessor
Communication)

� 1.5M-bit SRAM internal memory

Introduction

2-3MPU Subsystem

Figure 2–1. Highlight of MPU Subsystem

MPU core
(TI925T)

(instruction
cache, data

cache, MMU)

System
DMA

controller

TMS320C55x DSP
(Instruction cache, SARAM

 DARAM, DMA,
 H/W accelerators)

MPU
peripheral

bridge

LCD
I/F

MPU
Interface

SRAM

SDRAM
memories

Flash and
SRAM

memories

DSP
MMU

16

16

32

16

32

32

32

32

32

32

16

MPU privatePeripherals bus

DSP public (shared) pheripheral bus

32
MPU public

16

DSP

DSP public peripherals

McBSP1

McBSP3

MPU public peripherals

USB Host I/F

JTAG/
emulation

I/F
OSC

12 MHz Clock

OSC

OMAP5910

ETM9

Timers (3)

MPU/DSP shared peripherals

Mailbox

MPU private peripherals

Timers (3)

16

Memory interface

Reset External clock

MPU Bus

32 kHz

1.5M bits

traffic controller (TC)

Watchdog timer

Level 1/2 interrupt handlers

Configuration registers

Clock and reset management

Watchdog timer
Level 1/2

Private peripherals

GPIO I/F

USB Function I/F

Camera I/F
MPUIO

32-kHz timer
PWT
PWL

M
I
F
S

M
I
F
F

I
M
I
F

MCSI1
MCSI2

Keyboard I/F

request

E

E

TIPB
switch

UART1
UART2

UART3 IrDA

32

MMC/SD
LPG x2

HDQ / 1-WIRE

DSP private
peripheral bus

peripherals bus

McBSP2

Device identification

RTC

interrupt handlers

I2C
µWire

Frame adjstument
counter

32

32

32

32

MPU Core

 2-4

2.2 MPU Core

The MPU core is a TI925T reduced instruction set computer (RISC) processor.
The TI925T is a 32-bit processor core that performs 32-bit or 16-bit instructions
and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all
parts of the processor and memory system can operate continuously.

The MPU core incorporates:

� A coprocessor 15 (CP15) and protection module

� Data and program memory management units (MMUs) with table look-
aside buffers.

� A separate 16K-byte instruction cache and 8K-byte data cache. Both are
two-way associative with virtual index virtual tag (VIVT).

� A 17-word write buffer (WB)

� A local bus interface

The OMAP5910 device uses the TI925T core in little endian mode only.

To reduce effective memory access time, the TI925T has an instruction cache,
a data cache, and a write buffer. In general, these are transparent to program
execution.

Instruction Cache

2-5MPU Subsystem

2.3 Instruction Cache

The 16K-byte instruction cache (I-cache) has 1024 lines of 16 bytes arranged
as a two-way set-associative cache. It uses the virtual addresses generated
by the processor core. The I-cache is always reloaded one line at a time. It can
be enabled or disabled via the CP15 control register (I_CP15 bit) and is
disabled and flushed upon reset.

Disabling the I-cache does not invalidate it.

You can enable the I-cache independently from the MMU.

2.3.1 Operation

When the I-cache is enabled, it is searched whenever the processor requests
an instruction. If the cache hits, data is returned to the core whether the MMU
is enabled or not. If a cache read misses, a line fetch is performed and data
is written to the cache following a least recently used (LRU) replacement algo-
rithm. For best performance, enable the I-cache as soon as possible after
reset. If the I-cache is disabled, it is not searched. All instruction fetches
generate a single 16-bit or 32-bit external access. An instruction miss
generates line load.

2.3.2 Validity

The flush I-cache instruction is fetched at cycle time 0, for example, but not
executed until cycle time 4 (the TI925T uses a five-stage opcode pipe). Thus,
four additional opcodes potentially are still fetched from the I-cache before the
flush I-cache opcode is executed. Once executed, the entire I-cache is invali-
dated before the next opcode executes. Typically, four non-opcodes following
the CP15 instruction flush the cache to avoid confusion.

The I-cache content is not flushed when the I-cache is disabled. Its contents
remain valid and are accessible again when the I-cache is reenabled.

Data Cache

 2-6

2.4 Data Cache

The 8K-byte data cache (D-cache) has 512 lines of 16 bytes arranged as a
two-way set-associative cache. It uses the virtual addresses generated by the
processor. The D-cache is always reloaded one line at a time, because it
always requires the MMU to be enabled. The MMU can operate in write-
through (WT) or in copy-back (CB) mode. The translation lookaside buffer
(TLB) descriptors that are placed in memory determine which mode is used.

You can enable or disable the D-cache via the CP15 control register: the
D-cache is disabled and flushed upon reset. The D-cache supports byte,
half-word, and word accesses.

The D-cache is always disabled when the MMU is off.

2.4.1 D-Cache Operation

If the D-cache is enabled (C_CP15 = 1), it is searched whenever the processor
performs a data load or store. If the cache hits on a load, data is returned to
the core regardless of the C_MMU bit. If a cache read misses, the C_MMU bit
is examined. If it is 1, a line fetch is performed and the line is written to the cache
following an LRU (least recently used) replacement algorithm. If C_MMU is 0,
a single external access is performed and the cache is not updated. Stores that
hit the D-cache always update it, regardless of the C_MMU bit, to keep the
D-cache contents consistent with the external memory. Stores that miss do not
update the D-cache (see Table 2–1).

Table 2–1. Data Cache Configuration

C_CP15 C_MMU B_MMU Functional Description

0 X X No cache search

1 0 X Cache search active

• Read and write misses are not cached.

• Cache serves read hits.

• Write hits update the cache.

• Read misses and writes generate external accesses.

Note: The load multiple instruction does not perform a burst read.

Data Cache

2-7MPU Subsystem

Table 2–1. Data Cache Configuration (Continued)

C_CP15 Functional DescriptionB_MMUC_MMU

1 1 0 Cache search active: write through mode (WT)

• Read hits do not generate external accesses.

• Write hits update the cache and the external memory.

• Read misses cause a line load.

• Write misses generate external accesses.

1 1 1 Cache search active: copy-back mode (CB)

• Read and write hits do not perform external accesses.

• Read misses cause a line load.

• Write misses do not update the cache, and they generate an external
access.

Note: The load multiple instruction does not perform a burst read.

If C_CP15 = 0, the D-cache is disabled and it is not searched. If a memory
region is changed from cacheable to noncacheable and data must come from
external memory, the cache must be flushed.

2.4.2 Validity

The D-cache always requires that the MMU be enabled, so virtual addresses
are always in use. The TLB descriptors in memory can be cached or not
cached. When software is switching virtual address maps, take care to
invalidate the data cache so that the wrong data value is not returned (that is,
so that a false D-cache hit does not occur). To do this, the CP15 register allows
software to invalidate the entire D-cache. As noted before, disabling the
D-cache and reenabling it does not invalidate it.

If CB mode is used (see Table 2–1), software must first clean the cache to
make it coherent with main memory (this is not necessary in WT mode,
because main memory is continuously updated as the data cache is used).

For CB mode, the VIVT algorithm must be used if software is to avoid missing
interrupts during the clean operation. Timer interrupts, for example, can be
missed.

To avoid this problem, the hardware clean operation can be interrupted, so the
software algorithm must check the min/max registers (CP15 registers) to
determine if the clean operation has completed. If not, it must repeat the
operation until complete.

Write Buffer

 2-8

Note:

Cleaning is not the same as flushing.

The entire D-cache can be invalidated with a single flush D-cache instruction
through the CP15 cache operation register. The D-cache is flushed upon
reset.

If the D-cache is disabled, its content is maintained valid and is accessible
when the cache is reenabled.

2.4.3 Double-Mapped Space

The D-cache works with virtual addresses, and it is assumed that every virtual
address maps to a different physical address. If more than one virtual address
corresponds to the same physical location, the cache cannot maintain its
consistency because each virtual address has a separate entry in the cache
and only one entry is updated on a processor write operation. To avoid any
cache inconsistency, double-mapped virtual addresses must be marked as
uncacheable.

2.5 Write Buffer

The write buffer (WB) increases system performance and can buffer up to
seventeen 32-bit words of data. The MMU attributes B (B_MMU) and C
(C_MMU) (which are part of the TLB descriptor) and the CP15 control register
W bit (W_CP15) control WB behavior.

Clearing W_CP15 and C_CP15 upon reset ensures that all accesses are non-
bufferable until the MMU is enabled. To use the write buffer, you must enable
the MMU. However, you can enable the two functions simultaneously with a
single write to the CP15 control register.

The write buffer is always disabled when the MMU is off.

Clearing bit 3 in the CP15 control register disables the write buffer. Any writes
already in the write buffer complete normally.

It is not possible to abort buffered writes externally, because the s_abort
external signal is ignored and data is simply discarded. Areas of memory that
can generate aborts must be marked as unbufferable in the MMU page tables.

Data Cache / Write Buffer

Write Buffer

2-9MPU Subsystem

2.5.1 Operation

The WB operation is controlled by four control bits, as shown in Table 2–2.

Table 2–2. Write Buffer Configuration

C_CP15 W_CP15 C_MMU B_MMU Functional Description

0 0 X x

0 1 X 0 Writes are not buffered.

1 0 X x See Note

1 1 0 0

0 1 X 1 Noncacheable, buffered (NCB)

1 1 0 1 NCB

1 1 1 0 Writes are buffered, write-through mode.

1 1 1 1 Writes are buffered, copy-back mode.

Note: In copy-back mode with the WB disabled (1011 configuration), dirty lines are saved to the external memory via the WB
regardless of W_CP15. Write misses go directly to the external memory. If the WB is disabled and the system is config-
ured in copy-back mode, only write misses stall the system.

When writes are not buffered, the processor stalls until the external write
access is complete.

2.5.2 SWAP Instruction

When bit L of the CP15 TI925T configuration register is set, the write phase
of the SWAP instruction (interlocked read-write) is treated as unbuffered when
data belongs to an noncacheable, nonbuffered (NCNB) or NCB region, even
if it is marked as buffered. The S_LOCK signal is active through the read and
write accesses. If the read of the SWAP instruction hits the cache, S_LOCK
is asserted during the read despite the fact that no external access is
performed. The write is performed both in the cache and externally with
S_LOCK active.

For WT- or CB-mode regions, S_LOCK is not active and accesses are
performed like ordinary read or write accesses.

When bit L of the CP15 TI925T configuration register is reset, S_LOCK stays
low during the SWAP instruction regardless of the memory region type (NCNB,
NCB, WT, or CB). If marked as buffered, data is written to the write buffer and
reaches the system bus after an undetermined delay.

Coprocessor 15

 2-10

2.6 Coprocessor 15

TI925T operation and configuration are controlled with coprocessor instruc-
tions, configuration pins, and the MMU translation tables. The coprocessor in-
structions manipulate on-chip registers, which control the configuration of the
cache memories, write buffer, MMU, and a number of other options described
in the following sections.

2.6.1 CP15 Access

The CP15 defines 16 registers. Table 2–3 shows the registers available for
reading and for writing. While most registers are used to control various opera-
tions, some, such as register 0, only provide information. MRC and MCR
instructions can access CP15 registers in privileged mode only. Figure 2–2
contains the instruction bit pattern of the MCR and MRC instructions.

Figure 2–2. MRC, MCR Bit Pattern

31 28 27 24 23 22 21 20 19 18 17 16

Cond 1110 Opcode_1 L Crn

15 12 11 8 7 5 4 3 0

Rd 1111 Opcode_2 1 CRm

The CRn field specifies the coprocessor register to access. The CRm field and
opcode_2 fields specify a particular action when addressing some registers
or shadow registers. The TI925T takes the undefined instruction trap upon
executing CDP, LDC, STC, and unprivileged MCR/MRC instructions on CP15.

2.6.2 Register Descriptions

The following terms and abbreviations are used throughout the register
descriptions:

� Unpredictable (UNP): Reading from such a location returns data of unpre-
dictable value. Writing to this location causes unpredictable behavior or
an unpredictable change in device configuration.

� Undefined (UND): Any access to such registers makes TI925T take the
undefined instruction trap.

� Should be zero (SBZ): All bits written to this field must be 0.

Coprocessor 15

2-11MPU Subsystem

� Ignored: Writing to such a location does not affect the system behavior.

� VA: Virtual address (data or instruction)

In all cases, reading data values from or writing any data values to any CP15
register, including those fields specified as unpredictable or SBZ, causes no
permanent damage to the TI925T.

Table 2–3. CP15 Register Summary

Register Reads Writes Access RD

0 ID register Ignored Read-only 31..0

1 Control register Control register Read/Modify/Write 14..0

2 Translation table base Translation table base Read/Write 31..14

3 Domain access control Domain access control Read/Write 31..0

4 Unpredictable Ignored -

5 Fault status Fault status Read/Write 8..0

6 Fault address Fault address Read/Write 31..0

7 Unpredictable Cache operations Write-only 31..0

8 Unpredictable TLB operations Write-only 31..0

9 Unpredictable Ignored -

10 TLB lock-down TLB lock-down Read/Write 31..0

11 Unpredictable Ignored -

12 Unpredictable Ignored -

13 PID PID Read/Write 31..25

14 Unpredictable Ignored -

15 TI operations TI operations Read/Write 31..0

2.6.2.1 ID Register and Cache Information Register

Reading from CP15 register 0 returns either an identification defined by archi-
tecture and implementation for the processor or information on the cache,
depending on the op-code_2 used. CRm SBZ when reading.

Writing to register 0 is ignored.

Coprocessor 15

 2-12

Table 2–4. Reading From CP15 Register 0

Function Opcode_2 CRm Rd Instruction

Read ID† 0bXXX 0bXXXX TI925T ID MRC p15, 0, Rd, c0, c0, 0

Read CIR 0b001 0b0000 Cache info MRC p15, 0, Rd, c0, c0, 1

† All opcodes [opcode_2,CRm] except [1,0] return the TI925T ID.

Table 2–5. CP15 ID Register

Bit Name Function

31–24 Implementers Contains the ASCII code of the implementer trademark (0x54 = Texas
Instruments)

23–16 Architecture version Contains the architecture version (0x02 Version v4T)

15–4 Part number Contains a 3-digit part number in binary-coded decimal format.The OS bit
O in the TI925T configuration register sets the value of these fields as
follows:

915 in TI925T mode
925 in Windows CE mode

3–0 Reserved Contains the microprocessor revision number 2

Table 2–6. CP15 Cache Information Register (CIR)

Bit Name Value Function

31–29 Reserved 0 Read as 0.

28–25 Cache type Cache type: read as 0010. The cache provides clean-cache
entry and flush-cache-entry with a cache index in addition of the
operations with virtual address (also called clean-cache-step or
flush-cache-step). The format of the clean-cache-entry is given
in the Register 7: Cache Operations section.

24 ID 0 Unified I-/D-cache

1 Harvard cache

23–21 Reserved 0 Read as 0.

20–18 D-cache information Base value of D-cache size (same format as for I-cache)

17–15 D-cache information Base value of D-cache associativity (same format as for I-cache)

Coprocessor 15

2-13MPU Subsystem

Table 2–6. CP15 Cache Information Register (CIR) (Continued)

Bit FunctionValueName

14 D-Cache information Parameter to calculate the real D-cache associativity and size:

0 D-cache associativity and D-cache size = base value

1 D-cache associativity and D-cache size = 3/2 of the base value.
Exception: If base value of associativity is 1, a 1 indicates that
there is no D-cache and 0 indicates that D-cache is really
direct-map.

13–12 D-cache information Indicate line length of D-cache (same format as for I-cache)

11–9 Reserved 0 Read as 0.

8–6 I-cache information Base value of I-cache size:

0000 512 bytes

0001 1K byte

0010 2K bytes

0011 4K bytes

0100 8K bytes

0101 16K bytes

0110 32K bytes

0111 64K bytes

Note: 2 (bits 8–6 – bits 5–3 – bits 1–0) gives the number of
lines.

5–3 I-cache information Base value of I-cache associativity:

0000 Direct map

0001 2-way associative

0010 4-way associative

0011 8-way associative

0100 16-way associative

0101 32-way associative

0110 64-way associative

0111 128-way associative

Coprocessor 15

 2-14

Table 2–6. CP15 Cache Information Register (CIR) (Continued)

Bit FunctionValueName

2 I-cache information Parameter to calculate the real I-cache associativity and size:

0 I-cache associativity and I-cache size are equal to the base
value.

1 I-cache associativity and I-cache size are equal to 3/2 of the
base value. Exception: If base value of associativity is 1, a 1
indicates here that there is no I-cache; 0 indicates that I-cache is
really direct-map.

1–0 I-cache information Indicates line length of the I-cache:

00 8 bytes

01 16 bytes

10 32 bytes

11 64 bytes

This register specifies the configuration of the TI925T core. It is recommended
that the register be written using a read-modify-write routine.

Reading from CP15 register 1 reads the control bits. The CRm and opcode_2
fields are ignored when reading CP15 register 1, but must be zero.

Writing to CP15 register 1 sets the control bits. The CRm and opcode_2 fields
are not used when writing CP15 register 1, but must be zero.

All control bits but V are set to zero upon reset.

Table 2–7. CP15 Control Register

Bit Name Value Function

31–15 Reserved: Do not rely on any particular value in these bit locations
during a read (ensure they are masked properly). Write these bits as
zero.

14 0 Read as 0. Write is ignored.

13 V Alternate vector select. Sets the address of the exception vector from
address 0x00000000 to 0x0000001F when at zero and from
0xFFFF0000 to 0xFFFF001F when at 1. This bit takes the value of the
HIVECS signal port upon reset. After reset, it can be changed by
software.

Coprocessor 15

2-15MPU Subsystem

Table 2–7. CP15 Control Register (Continued)

Bit FunctionValueName

12 1 Instruction cache enable/disable

0 Instruction cache disabled

1 Instruction cache enabled

11–10 0 Read as 0. Write is ignored.

9 R ROM protection. This bit modifies the MMU protection system (see
Table 2–24).

8 S System protection. This bit modifies the MMU protection system (see
Table 2–24).

7 B Little/big endian configuration. The TI925T on the OMAP5910 device
supports only little endian mode due to the system architecture of the
device. This bit must always be written as 0.

0 Little endian

1 Reserved (do not use)

6–4 1 Read as 1. Write is ignored.

3 W Write buffer enable/disable

2 C Data cache enable/disable

0 Data cache disabled

1 Data cache enabled

1 A Alignment fault enable/disable

0 Address alignment fault checking disabled

1 Address alignment fault checking enabled

Note: The alignment is checked only on data; code alignment is always
on a 32-bit boundary. If address alignment fault is enabled, words must
be word-aligned, and half-words must be half-word-aligned.

Coprocessor 15

 2-16

Table 2–7. CP15 Control Register (Continued)

Bit FunctionValueName

0 M Memory management unit (MMU) enable/disable

0 MMU disabled

1 MMU enabled

The MMU must be enabled before or at the same time as the data cache
(C) and write buffer (W). The instruction cache can be enabled
independently. When the MMU is disabled and no address translation
occurs, the D-cache and write buffer are forced OFF.

Note:

Care must be taken if the translated address differs from the non-translated
address, because the instructions following the enabling of the MMU are
fetched using no address translation. Enabling the MMU may be considered
as an instruction with delayed execution. A similar situation occurs when the
MMU is disabled.

The following code segment example shows correct MMU enabling which
takes into account the latency to transition to virtual addressing:

ldr r0, =bVirtualStart; Load r0 with virtual jump
location; Enable the MMU.

mrc p15, 0, r1, c1, c0, 0; Read the control register.

orr r1, r1, #BIT0; Set the M bit to enable MMU.

nop

mcr p15, 0, r1, c1, c0, 0; Write the control register.

mov pc, r0; Jump to the virtual address.

nop

bVirtualStart

nop

nop

The MMU, I-cache, and D-cache can be enabled or disabled independently.
If the data cache or write buffer are enabled when the MMU is not
enabled, the data cache and the write buffer stay off, preventing invalid com-
binations.

The functions MMU, D-cache, I-cache, and WB can be enabled simultaneous-
ly with a single write to the control register.

Coprocessor 15

2-17MPU Subsystem

Figure 2–3. Format of the CP15 Translation Table Base Register

31 14 13 0

Translation Table Base UNP/SBZ

Reading from CP15 register 2 returns the pointer to the currently active first-
level translation table in bits 31–14 and an unpredictable value in bits 13–0.
The CRm and opcode_2 fields are SBZ when reading this register.

Writing to CP15 register 2 updates the pointer to the currently active first-level
translation table from the value in bits 31–14 of the written value. Bits 13–0
must be written as zero. The CRm and opcode_2 fields are SBZ when writing
to this register.

Figure 2–4. Format of the CP15 Domain Access Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

D15 D14 D13 D12 D11 D10 D9 D8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D7 D6 D5 D4 D3 D2 D1 D0

Reading from CP15 register 3 returns the value of the domain access control
register. The CRm and opcode_2 fields are SBZ when reading this register.

Writing to CP15 register 3 writes the value of the domain access control
register.

The CRm and opcode_2 fields are SBZ when writing to this register.

The domain access control register consists of sixteen two-bit fields, each
defining the access permissions for one of the 16 domains (D15-D0).
Table 2–8 gives more details on the meaning of each field.

Data, instructions, or both can use each of these domains. Two basic kinds of
users are supported: clients and managers.

Coprocessor 15

 2-18

Table 2–8. Domain Configuration

Value Access Type Description

0b00 No access Any access generates a domain fault.

0b01 Client Access rights are checked against the permission given by the page
descriptor.

0b10 Reserved Behaves like no access

0b11 Manager The access rights are not checked; permission faults cannot be generated.

Reading CP15 register 5 returns the value of the fault status register (FSR).
The FSR contains the source of the last data fault. Only the bottom 9 bits are
returned. The top 23 bits are unpredictable. The FSR indicates the domain and
type of access being attempted when an abort occurred.

Table 2–9. CP15 Fault Status Register

Bit Name Function

31–9 UNP/SB Reserved: Do not rely on any particular value in these bit locations during a read
(ensure they are masked properly). Write these bits as zero.

8 0 Read as 0.

7–4 Domain Specify which of the 16 domains (D15–D0) was being accessed when the last
fault occurred.

3–0 Status Indicate the type of fault due to the last access being attempted. The encoding of
these bits is shown in Table 2–23, Priority Encoding of the Fault Status Register.

The FSR is only updated for data access faults, not for instruction fetch faults.
When a fault occurs during a load or store multiple (LDM or STM instructions), the
FSR records the domain corresponding to the first fault caused by LDM or STM.
For example, an LDM performing 12 accesses may cross a page boundary with,
say, four accesses in one page and eight in the next page. If accessing the
second page causes an abort, the FSR and FAR record the information related to
the fifth access.

The CRm and opcode_2 fields are SBZ when reading this register. Writing CP15
register 5 sets the fault status register to the value of the data written. The upper
24 bits written are SBZ. The CRm and opcode_2 fields are SBZ when writing to
this register.

Coprocessor 15

2-19MPU Subsystem

Figure 2–5. Format of the Fault Address Register

31 0

Fault Address

Reading CP15 register 6 returns the value of the fault address register (FAR).
The FAR holds the virtual address of the access that was attempted when a
fault occurred. The FAR is only updated for data access faults, not for instruc-
tion fetch faults. When a fault occurs during a load or store multiple (LDM or
STM instructions), the FAR records the domain corresponding to the first fault
caused by LDM or STM (see example in FSR section above).

The CRm and opcode_2 fields are SBZ when reading this register. Writing
CP15 register 6 sets the fault address register to the value of the data written.
The CRm and opcode_2 fields are SBZ when writing to this register.

2.6.2.2 Cache Operations

The CP15 register 7 is a write-only pseudoregister managing the instruction
and data caches. Several cache operations are defined and are selected by
the opcode_2 and CRm fields.

Table 2–10. Cache Operations

Function Opcode_2 CRm Rd Instruction

Flush I- and D-cache 0b000 0b0111 SBZ MCR p15, 0, Rd, c7. c7, 0

Flush I-cache (1) 0b000 0b0101 SBZ MCR p15, 0, Rd, c7, c5, 0

Flush I-cache entry 0b001 0b0101 VA MCR p15, 0, Rd, c7, c5, 1

Flush D-cache (1, 2) 0b000 0b0110 SBZ MCR p15, 0, Rd, c7, c6, 0

Flush D-cache entry (2) 0b001 0b0110 VA MCR p15, 0, Rd, c7, c6, 1

Clean D-cache entry 0b001 0b1010 VA MCR p15, 0, Rd, c7, c10, 1

Clean and flush D-cache entry 0b001 0b1110 VA MCR p15, 0, Rd, c7, c14, 1

Flush D-cache entry (2) 0b010 0b0110 Set/Index (3) MCR p15, 0, Rd, c7, c6, 2

Notes: 1) Flush I- and D-cache operations invalidate all entries in the I-cache and D-cache respectively. The flush D-cache
also discards any dirty lines present in the D-cache.

2) The flush D-cache and D-cache entry operations do not clean the D-cache entries before they are invalidated.
A clean and flush D-cache requires two cache operations; there is a specific operation for cleaning and flushing
a D-cache entry at once. First clean then flush the entire cache; this requires two CP15 operations (bear in mind
the VIVT clean algorithm). You can clean and flush individual entries in one CP15 operation.

3) Figure 2–6 shows the format of the Rd value for all D-cache operations on a single entry.

4) TI925T supports high performance full cache clean operation with the VIVT algorithm.

Coprocessor 15

 2-20

Table 2–10. Cache Operations (Continued)

Function InstructionRdCRmOpcode_2

Clean D-cache entry 0b010 0b1010 Set/Index (3) MCR p15, 0, Rd, c7, c10, 2

Clean and flush D-cache entry 0b010 0b1110 Set/Index (3) MCR p15, 0, Rd, c7, c14, 2

Clean D-cache (4) 0b000 0b1010 SBZ MCR p15, 0, Rd, c7, c10, 0

Prefetch I-line 0b001 0B1101 VA MCR p15, 0, Rd, c7, c13, 1

Wait-for-interrupt 0b100 0b0000 SBZ MCR p15, 0, Rd, c7, c0, 4

Drain write buffer 0b100 0b1010 SBZ MCR Rd, c7, c10, 4

Notes: 1) Flush I- and D-cache operations invalidate all entries in the I-cache and D-cache respectively. The flush D-cache
also discards any dirty lines present in the D-cache.

2) The flush D-cache and D-cache entry operations do not clean the D-cache entries before they are invalidated.
A clean and flush D-cache requires two cache operations; there is a specific operation for cleaning and flushing
a D-cache entry at once. First clean then flush the entire cache; this requires two CP15 operations (bear in mind
the VIVT clean algorithm). You can clean and flush individual entries in one CP15 operation.

3) Figure 2–6 shows the format of the Rd value for all D-cache operations on a single entry.

4) TI925T supports high performance full cache clean operation with the VIVT algorithm.

Figure 2–6. D-Cache Clean/Flush Single Entry Operand Format

31 X Y Z 0

A SBZ L SBZ

There are two valid fields. The A-field depends on the level of associativity of
the cache. The L-field depends on the number of lines per set.

The CIR register (cache information) provides all the information to calculate
x, y, and z following the equations below:

x = 32 – CIR[17–15] – CIR[14]

y = 8 + CIR[20–18] – CIR[17-15]

z = CIR[13–12] + 3

In addition, one bit (D-cache clean entry mode) of TI925T configuration regis-
ter allows cleaning of one entry in both sets at a time. D[31] becomes don’t care
when the D-cache clean entry mode is zero (see CP15 register 15 description).
In this mode, the software clean operation just cleans one block of virtual
memory with an increment corresponding to the line size.

Coprocessor 15

2-21MPU Subsystem

2.6.2.3 TLB Operations

The CP15 register 8 is a write-only pseudoregister that manages the transla-
tion look-aside buffers (TLBs). TI925T includes separate instruction and data
TLBs. Several TLB functions are defined and are selected by the opcode_2
and CRm fields.

The flush-I and flush-D functions, respectively, flush (invalidate) all unpres-
erved entries of the instruction and data TLB.

The flush entry functions flush a single entry of the TLB corresponding to the
virtual address present in Rd, regardless of its state (preserved/unpreserved).

All unused values of opcode_2 and CRm are ignored. Reading register 8 is
ignored.

Table 2–11. TLB Operations

Function Opcode_2 CRm Rd Instruction

Flush I TLB 0b000 0b0101 SBZ MCR p15, 0, Rd, c8, c5, 0

Flush I TLB entry 0b001 0b0101 VA MCR p15, 0, Rd, c8, c5, 1

Flush D TLB 0b000 0b0110 SBZ MCR p15, 0, Rd, c8, c6, 0

Flush D TLB 0b001 0b0110 VA VA MCR p15, 0, Rd, c8, c6, 1

Flush I + D TLB 0b000 0b0111 SBZ MCR p15, 0, Rd, c8, c7, 0

2.6.2.4 TLB Lock-Down Registers

There is a TLB lock down register for both TLBs; the value of opcode_2 deter-
mines which TLB register is accessed.

� Opcode_2 = 0 selects the register associated with the D-TLB.
� Opcode_2 = 1 selects the register associated with the I-TLB.

Each TLB has its own victim counter. These registers and counters are set to
zero upon reset.

Reading register 10 returns the value of the TLB victim counter base value reg-
ister, the current value of the victim counter, and the state of the preserved bit.
Bits 20–1 are unpredictable when read.

Writing to register 10 updates the base value, the current victim pointer, and
the preserved register value. Bits 20–1 are ignored on write but SBZ.

Coprocessor 15

 2-22

Table 2–12. Lockdown Operations

Function Opcode_2 CRm Data Instruction

Read D-TLB lock 0b000 0b0000 Value MRC p15, 0, Rd, c10, c0, 0

Write D-TLB lock 0b000 0b0000 Value MCR p15, 0, Rd, c10, c0, 0

Read I-TLB lock 0b001 0b0000 Value MRC p15, 0, Rd, c10, c0, 1

Write I-TLB lock 0b001 0b0000 Value MCR p15, 0, Rd, c10, c0, 1

Figure 2–7. Format of the Lock-Down Registers

31 26 25 20 19 16

Base Value Current Victim UNP/SBZ

15 1 0

UNP/SBZ P

Loading of the TLB is managed by a victim counter, which counts from the pro-
grammed base value up to 63. Therefore, some pages or sections can be
locked inside the TLB if loaded between the entry 0 and the entry pointed to
by the base value register.

Flush operations invalidate both locked and non-locked entries. An entry can
also be maintained in the TLB during a global flush if the preserved bit was set
during the loading of this entry in the TLB. A flush entry operation invalidates
a TLB entry regardless of its state (preserved/unpreserved).

The flush operation does not modify the base value register but reinitializes the
victim counter to the base value.

The following code sequence locks a page/section in entry 3:

{flush page/section from TLB}

MCR p15, 0, Rd, c10, c0, 1

Rd content indicates base value = 4, current victim = 3

MRC p15, 0, Rd, c7, c13, 1

Prefetch I-line with VA in Rd generates a miss TLB that loads entry 3 (victim
counter is automatically updated to 4).

Coprocessor 15

2-23MPU Subsystem

2.6.2.5 Context Switch (or PID: Process Identifier) Register

The PID register is used in Windows CE mode only. The register is used in con-
junction with the fast-context switch hardware support and is only used when
the Windows CE mode bit is enabled. More information is available upon
request.

2.6.2.6 TI Operations

Register 15 controls specific TI features. Opcode_2 and CRm select the
different available registers or operations.

The wait-for-interrupt is write-only. The cache size is hard-wired and read-only.
The others are read/write registers.

Table 2–13. TI Operations

Function Opcode_2 CRm Rd Instruction

Set TI925T configuration 0b000 0b0001 Value MCR p15, 0, Rd, c15, c1, 0

Read TI925T configuration 0b000 0b0001 Value MRC p15, 0, Rd, c15, c1, 0

Read I_max 0b000 0b0010 Value MRC p15, 0, Rd, c15, c2, 0

Set I_max 0b000 0b0010 Value MCR p15, 0, Rd, c15, c2, 0

Read I_min 0b000 0b0011 Value MRC p15, 0, Rd, c15, c3, 0

Set I_min 0b000 0b0011 Value MCR p15, 0, Rd, c15, c3, 0

Read thread-ID 0b000 0b0100 Value MRC p15, 0, Rd, c15, c4, 0

Set thread-ID 0b000 0b0100 Value MCR p15, 0, Rd, c15, c4, 0

TI925T_status 0b000 0b1000 Value MRC p15, 0, Rd, c15, c8, 0

Wait-for-interrupt 0b010 0b1000 Ignored MCR p15, 0, Rd , c15, c8,2

Note: Required for backward code compatibility. Developers must use the wait-for-interrupt described in register 7.

All control bits except L (lock enable) and O (OS type) are set to zero upon
reset.

Table 2–14. TI925T Configuration Register

Bit Name Value Function

7 S Instruction cache streaming disable

0 I-cache is set in streaming mode. This is the default state after reset.

1 I-cache is set in nonstreaming mode.

Coprocessor 15

 2-24

Table 2–14. TI925T Configuration Register (Continued)

Bit FunctionValueName

6 R 0 Must be written to as 0.

5 O OS configuration. This bit takes the value of the OS_TYPE input signal
upon reset. It is dependent on the hardware application and may be
changed by software. This bit controls the value of the ID register and
the enabling of the PID register. The MPU915T_lock input signal forces
TI925T into MPU915T mode whatever os_type is.

0 TI925T (Windows CE mode)

1 MPU915T (MPU915T mode)

4–3 W SBZ

2 C D-cache clean and flush entry mode (See Section 2.6.2.2, Register 7:
Cache Operations)

0 The value held in Rd determines the entry of D-cache to clean and the
clean operation is done in both sets at a time. This is the default state
after reset.

1 D[31] selects the set targeted by the clean operation.

1 T Transparent mode

0 Line loads follow line copy-backs adding some additional latency. This is
the default state after reset.

1 When TI925T is connected to a 16-bit external memory, line loads can
hide line copy-backs. There is no extra latency. If the external memory is
32 bits wide, setting this bit to 1 generates an error during copy-back.

0 L Lock enable

0 Lock signal stays low during the SWAP instruction (atomic read-write
sequence). If marked as buffered, data is sent to the write buffer and
reaches the system bus after a slight delay.

1 The write phase of the SWAP instruction is handled as unbuffered even
if it is specified as NCB (non-cacheable and buffered). The S_LOCK
signal is active during the SWAP and may be used in a multiprocessor
environment. The S_LOCK signal stays low during SWAP instruction
accessing regions defined as write-through or copy-back. The L bit is set
to one upon reset.

Coprocessor 15

2-25MPU Subsystem

Figure 2–8. Format of the I_min and I_max Registers

31 Y Z 0

UNP/SBZ l_min UNP/SBZ

31 Y Z 0

UNP/SBZ l_max UNP/SBZ

I_max indicates the maximum index of the data cache containing a dirty line.

I_min indicates the minimum index of the data cache containing a dirty line.

Upon reset, D-cache flush or end of the full D-cache clean, the value of I_max
is cleared and the value of all the I_min bits is set to 1.

The TI debugger uses this register to support multithread debug capability.

Figure 2–9. Format of the Thread-ID Register

31 16 15 16

UNP/SBZ Thread ID

Table 2–15. TI925T_status Register

Bit Name Function

31 dcache_dirty When at 1, indicates the data cache may contain lines marked as dirty.

4 S_abort When at 1, indicates that external abort occurred. This bit is set to zero
upon reset and when read by TI925T.

3 dtlb_mode When at 1, indicates that DTLB counter is in random mode.

Default is set to sequential mode. This bit is set to zero upon reset.

2 Itlb_mode When at 1, indicates that ITLB counter is in random mode.

Default is set to sequential mode. This bit is set to zero upon reset.

1 wb_full When at 1, indicates that write buffer is full. This bit is set to zero upon
reset.

0 buffered_write_aborted Set to one by the hardware when the system bus controller receives an
s_abort following external write from the WB. This is simply an indication
for the debug. This bit is set to zero upon reset and when read by TI925T.

MPU Memory Management Unit

 2-26

2.7 MPU Memory Management Unit

The MPU MMU performs virtual-to-physical address translations and access
permission checks for access to the system memory, and it provides the flexi-
bility and security required for the OS to manage physical memory space
shared by the DSP subsystem and the MPU subsystem. The MPU MMU
provides no protection from DSP shared memory accesses.

The MMU hardware required to perform these functions consists of:

� A 64-entry translation look-aside buffer for instructions (I_TLB)
� A 64-entry translation look-aside buffer for data (D_TLB)
� Access control logic
� Translation table walking logic

The MMU supports memory accesses based on sections or pages:

� Sections represent memory blocks of 1M byte.
� Three different page sizes are supported:

� Large pages consist of 64K-byte blocks of memory.
� Small pages consist of 4K-byte blocks of memory.
� Tiny pages consist of 1K-byte blocks of memory.

Sections and large pages are supported to allow mapping of large regions of
memory while using only a single entry in the TLB.

2.7.1 Translation Look-Aside Buffer

The TLB contains entries for virtual-to-physical address translation and ac-
cess permission checking. If the TLB contains a translated entry for the virtual
address, the access control logic determines whether the access is permitted.
If access is permitted, the MMU generates the appropriate physical address
corresponding to the virtual address. If access is not permitted, the MMU
sends an abort signal to TI925T.

Upon a TLB miss (that is, the TLB does not contain an entry corresponding to
the virtual address requested), the translation table walking hardware re-
trieves the translation and access permission information from the translation
table in physical memory. Once retrieved, the page or section descriptor is
stored into the TLB at a random location.

Note:

Because the load and store multiple instructions can cross a page boundary,
the permission access is checked for each sequential address.

MPU Memory Management Unit

2-27MPU Subsystem

Unpredictable behavior occurs if two TLB entries correspond to overlapping
areas of memory in the virtual space. This can occur if the TLB is not flushed
after the memory is remapped with different-sized pages (leaving an old map-
ping with different sizes in the TLB and using a new mapping that is loaded into
a different TLB location).

2.7.2 Translation Table

The translation table held in main memory has two levels:

� The first-level table can hold both section translation entries and pointers
to second-level tables (either fine tables or coarse tables).

� The second-level tables can hold large, small, and tiny page translations
entries.

2.7.3 Domains and Access Permissions

The MMU also supports domains. Domains are areas of memory that can be
defined to have individual access rights. The CP15 domain access control reg-
ister can specify access rights for up to 16 separate domains. This register is
shared by the instruction access permission logic and data access permission
logic.

When the MMU is disabled, there is no address translation and no memory
access permission checks are performed.

Small pages are further divided into 1K-byte subpages, and large pages are
further divided into 16K-byte subpages with separate access permission
rights.

Tiny pages and sections are not divided into subpages (single access
permission rights).

MPU Memory Management Unit

 2-28

2.7.4 MMU Program-Accessible Registers

The system control coprocessor (CP15) registers listed in Table 2–16, in con-
junction with the translation tables stored in memory, determine the operation
of the MMU or hold the MMU state for access by the processor.

Table 2–16. CP15 Registers or Functions Used by the MMU

Register Number Bits

Control register 1 M, A, S, R

Translation table base 2 31..14

Domain access control 3 31..0

Fault status 5 (D) 8..0

Fault address 6 (D) 31..0

TLB operations 8 8 31..0

TLB lock operation 10 (I &D) 31.. 20, 0

All of these registers (except register 8) contain state and can be read from and
written to. The MMU also updates registers 5 and 6 upon a data abort to record
the cause and address of the abort (see Section 2.6, Coprocessor 15 for more
details on CP15).

2.7.5 Address Translation

Translation information, which consists of both the address translation data
and the access permission data, resides in a translation table located in physi-
cal memory. The MMU provides the logic needed to traverse this translation
table, obtain the translated address, and check the access permission.

There are four routes by which the address translation (hence access permis-
sion) takes place. The route taken depends on whether the address in ques-
tion has been marked as a section-mapped access or a page-mapped access.
There are three sizes of page-mapped access (large, small, and tiny pages).
However, the translation process always starts out in the same way, as
described below, with a level 1 fetch. A section-mapped access only requires
a level 1 fetch, but a page-mapped access also requires a level 2 fetch.

MPU Memory Management Unit

2-29MPU Subsystem

2.7.6 Translation Process

The MMU translates virtual addresses generated by the CPU into physical
addresses to access the external memory and checks the access permission
using a translation look-aside buffer (TLB) (see Figure 2–10).

The MMU table walking hardware is used to add entries to the TLB.

Figure 2–10. Address Translation Process

Virtual address

Page
domain

fault

No access (D0)
Reserved (10)

Section
domain

fault

Alignment
faultMisaligned

Page
translation

fault

Invalid
Section

transistor
fault

Section

Get level 1 descriptor

Page

Check address alignment

Invalid

Manager (0.1)

Client (0.1)

Check domain status

Check access
permissionsViolation

Section
permission

fault

Physical address

No access (D0)
Reserved (10)

Section Page

Client (0.1)

Violation
Subpage

permission
fault

Check access
permissions

Get page
table entry

MPU Memory Management Unit

 2-30

2.7.6.1 Translation Table Base

The translation process is initiated when the on-chip TLB does not contain an
entry corresponding to the requested virtual address (that is, when a TLB-miss
occurs). The CP15 translation table base (TTB) register points to the base of
a table in physical memory, which contains section and page table descriptors.
The 14 LSBs of the TTB register are always set to zero, so the table must start
on a 16K-byte boundary.

Figure 2–11.Translation Table Base Register

31 16

Translation Table Base (TTB)

15 14 13 0

Translation
Table Base

The translation table has up to 4096 32-bit entries, each describing 1M byte
of virtual memory. This allows the addressing of up to 4G bytes of virtual
memory.

MPU Memory Management Unit

2-31MPU Subsystem

2.7.6.2 Level 1 Fetch

Bits 31–14 of the TTB register are concatenated with bits 31–20 of the virtual
address to produce a 30-bit address (see Figure 2–12) by accessing the
translation table level 1 descriptors (see Section 2.7.6.3). This address selects
a four-byte translation table entry, which is a level 1 descriptor for either a
section or a page table.

Figure 2–12. Accessing the Translation Table Level 1 Descriptors

31 20 19

18 12

14 13

2 1

00

0
Virtual Address

Table index Section index

Translation base

Translation table base

First-level descriptor

Table indexTranslation base

31

31

31

0

0

0

14 13

MPU Memory Management Unit

 2-32

2.7.6.3 Level 1 Descriptor

The level 1 descriptor returned is either a coarse or fine page table descriptor
or a section descriptor. Its format varies accordingly, as shown in Figure 2–13.

Figure 2–13. Level 1 Descriptors

Fault

Coarse
Page

Section

Fine
Page

Domain

AP

1

C B

0

31 2019 12 11 10 9 8 5 4 3 2 1

Domain

Domain

1

1

0

0

0

1

1 0

1 1

Coarse Page Table Base Address

Section Base Address

Fine Page Table Base Address

Note: Bits in gray areas are ignored. They must be written to as 0. The two least significant bits indicate the descriptor type and
validity and are interpreted as shown below.

Table 2–17. Level 1 Fine Page Table Descriptor

Bit Name Function

31–12 FINE_PG_BASE Base address used to access the fine page table entry. The fine page
table index selecting an entry is derived from the virtual address as
illustrated in Figure 2–16, Tiny Page Translation.

11–9 RESERVED Reserved. Must be written as 0.

8–5 DOMAIN Specify which one of the sixteen domains (held in the domain access
control register) contains the primary access controls.

4 RESERVED Reserved. Must be written to as 1 for backward compatibility.

3–0 RESERVED Reserved. Must always be written as 0.

1–0 RESERVED Reserved. Must always be written as 1.

If a page table descriptor is returned from the level 1 fetch (Bit 0 = 1), a level
2 fetch is initiated.

Table 2–18. Interpreting Level 1 Descriptor Bits 1–0

Value Meaning Notes

00 Invalid Generates a section translation fault

01 Coarse Indicates a coarse page descriptor

10 Section Indicates a section descriptor

11 Fine Indicates a fine page descriptor

MPU Memory Management Unit

2-33MPU Subsystem

Table 2–19. Level 1 Coarse Page Table Descriptor

Bit Name Function

31–10 COARSE_PG_BASE Base address used to access the coarse page table entry. The coarse
page table index selecting an entry is derived from the virtual address. If a
page table descriptor is returned from the level 1 fetch (Bit 0 = 1), a level
2 fetch is initiated.

9 RESERVED Reserved. Must always be written to as 0.

8–5 DOMAIN Specify which one of the 16 domains (held in the domain access control
register) contains the primary access controls.

4 RESERVED Reserved. Must be written to as 1 for backward compatibility.

3–2 RESERVED Reserved. Must be written as 0.

1–0 RESERVED Reserved. Must be written as 1.

Table 2–20. Level 1 Section Descriptor

Bit Name Function

31–20 SECTION_BASE The 12 MSBs of the address of the section in physical memory (section
base address).

19–12 Reserved Must always be written to as 0.

11–10 AP Specify the access permissions for this section (see Table 2–24).

9 Reserved Must always be written to as 0.

8–5 DOMAIN Specify which one of the 16 domains (held in the domain access control
register) contains the primary access controls.

4 Reserved Must be written to as 1 for backward compatibility.

3 C Cacheable (C_MMU): indicates that data or instructions at this address
are placed in the cache if the cache is enabled.

2 B Bufferable (B_MMU): indicates that data writes at this address are
buffered if the write buffer is enabled.

MPU Memory Management Unit

 2-34

2.7.6.4 Translating Section References

Figure 2–14 illustrates the complete section translation sequence. The access
permissions contained in the level 1 descriptor must be checked before the
physical address is put on the address bus.

Figure 2–14. Section Translation

31 20 19

18 12

14 13

2 1

00

0
Virtual address

Table index Section index

Translation base

Translation table base

First-level descriptor

Table indexTranslation base

31

31

31

0

0

0

14 13

Physical address

Section index

AP C BDomain 1 1 0Section base address

Section base address

12

31 0

9 8 5 4 3 2 120 19 12 1110

12

20 19

MPU Memory Management Unit

2-35MPU Subsystem

2.7.6.5 Level 2 Descriptor

The level 1 fetch, when returning a coarse or fine page table descriptor, pro-
vides the base address of the page table to be used. The page table is then
accessed, and a level 2 descriptor is returned. This descriptor defines a tiny,
small, or large page access. Figure 2–15 shows the format of level 2 descrip-
tors.

Figure 2–15. Page Table Entry (Level 2 Descriptor)

Fault

Large Page

Small Page

Tiny Page

C B

0

31 20 19 12 11 10 9 8 5 4 3 2 1

0

0

0

1

1 0

1 1

Large Page Base Address

Small Page Base Address

Tiny Page Base Address

16 15 67

B

B

C

C

ap0

ap1

ap2ap3

ap3 ap2

ap1

ap0

ap

Coarse page tables have 256 entries, and each entry describes 4K bytes.
These entries provide a base address for either small or large pages. Large
page descriptors must be repeated in 16 consecutive entries.

Fine page tables have 1024 entries, and each entry describes 1K byte. These
entries provide a base address for tiny, small, or large pages. Small page
descriptors must be repeated in four consecutive entries. Large page descrip-
tors must be repeated in 64 consecutive entries.

The two least significant bits indicate the page size and validity and are
interpreted as follows.

Table 2–21. Level 2 Section Descriptor

Bit Name Function

31–10 PG_BASE Bits 31–10 (tiny pages), bits 31–12 (small pages), or bits 31–16 (large pages) are
used to form the corresponding bits of the physical address—the physical page
number. The page index is derived from the virtual address.

11–4 AP Specify the access permissions (ap3-ap0) for the four subpages within large and
small pages. Tiny pages do not have subpages and bits 5-4 specify the access
permission (see Table 2–24). For large pages, bits 15-12 SBZ.

3 C Cacheable (C_MMU): indicates that data or instructions at this address are
placed in the cache if the cache is enabled.

2 B Indicates that data writes at this address are buffered if the write buffer is
enabled.

MPU Memory Management Unit

 2-36

Table 2–22. Interpreting Page Table Entry Bits 1–0

Value Meaning Notes

00 Invalid Generates a page translation fault

01 Large page Indicates a 64K-byte page

10 Small page Indicates a 4K-byte page

11 Tiny page Indicates a 1K-byte page

2.7.6.6 Translating Tiny Pages References

Figure 2–16 illustrates the complete translation sequence for a 1K-byte tiny
page. Page translation involves one additional step beyond that of a section
translation; the level 1 descriptor is the page table descriptor and is used to
point to the level 2 descriptor or page table entry. For pages, the access per-
missions are contained in the level 2 descriptor and must be checked before
the physical address is put on the s_add bus.

MPU Memory Management Unit

2-37MPU Subsystem

Figure 2–16. Tiny Page Translation

31 20 19

18

12

14 13

2 1

00

0
Virtual address

Table index L2 table index

Translation base

Translation table index

First-level descriptor

Table indexTranslation base

31

31

31

0

0

0

14 13

L2 table index

C B

Domain 1

1 1

Fine page table base address

Page table base address

31

0

9 8 5 4 2 112

12 11

Page base address

31 0

Page indexPage base address
31 0

10
10

10 9

Page index

11

2 1

0

12 1110 123456789

ap

Second-level descriptor

Physical address
10 9

0

MPU Memory Management Unit

 2-38

2.7.6.7 Translating Small Page References

Figure 2–17 illustrates the complete translation sequence for a 4K-byte small
page. If a small page descriptor is included in a fine page table, the upper two
bits of the index of the page overlap the lower two bits of the index of the fine
page table. In other words, four consecutive entries must be used for a small
page in a fine page table.

Figure 2–17. Small Page Translation

31 20 19

18

12

14 13

2 1

00

0
Virtual address

Table index L2 table index

Translation base

Translation table index

First-level descriptor

Table indexTranslation base

31

31

31

0

0

0

14 13

L2 table index

C B

Domain 1

1 0

Page table base address

Page table base address

31

0

9 8 5 4 2 110

10 9

Page base address

31 0

Page indexPage base address
31 0

8
12

12 11

Page index

10

2 1

0

12 1110 123456789

ap0

Second-level descriptor

Physical address
12 11

0

ap1ap2ap3

MPU Memory Management Unit

2-39MPU Subsystem

2.7.6.8 Translating Large Page References

Figure 2–18 illustrates the complete translation sequence for a 64K-byte large
page. As the upper four bits of the page index and the lower four bits of the
coarse page table index overlap, each coarse page table entry for a large page
descriptor must be duplicated 16 times (in consecutive memory locations). If
the large page is included in a fine page table, the large page descriptor must
be duplicated 64 times.

2.7.7 MMU Faults and MPU Aborts

The MMU generates the following types of faults:

� Alignment fault (on data access only)
� Translation fault
� Domain fault
� Permission fault

In addition, an external abort can be raised on certain types of external data
accesses.

When the MMU is off, the only fault generated is the alignment fault.

The access control mechanism of the MMU detects the conditions that pro-
duce these faults. If a fault is detected as the result of a memory access, the
MMU aborts the access and signals the fault condition to the MPU. The MMU
is also capable of retaining the type and address information of the abort. The
MPU recognizes two types of aborts: data and prefetch aborts. The MMU has
no FAR or FSR registers.

The MMU detects access violations before starting the external memory
access. External aborts do not necessarily inhibit the external access, as
described in Section 3.10, System Operating Details.

MPU instructions are prefetched, so a prefetch abort simply flags the instruc-
tion as it enters the instruction pipeline. An abort does not occur yet, because
a previously fetched instruction could render the rest of the pipe moot. For
example, if a branch instruction executes first or an interrupt occurs, the
instruction that causes the abort never executes. This instruction actually
causes the abort to take place only if it is executed. No abort takes place if the
instruction is not used (when it is branched around).

MPU Memory Management Unit

 2-40

Figure 2–18. Large Page Translation

31 20 19

18

12

14 13

2 1

00

0
Virtual address

Table index L2 table index

Translation base

Translation table base

First-level descriptor

Table indexTranslation base

31

31

31

0

0

0

14 13

L2 table index

C B

Domain 1

10

Page table base address

Page table base address

31

0

9 8 5 4 2 110

10 9

Page base address

31 0

Page indexPage base address
31 0

8
16

12 11

Page index

10

2 1

0

12 1110 123456789

ap0

Second-level descriptor

Physical address
16 15

0

ap1ap2ap3

16 15

16 15

MPU Memory Management Unit

2-41MPU Subsystem

2.7.8 Fault Address and Fault Status Registers (FAR and FSR)

If an illegal data access (data abort) occurs, the MMU places an encoded 4-bit
value FS[3–0] and the 4-bit encoded domain number in the fault status register
(FSR). In addition, the virtual address associated with the data abort is stored
into the fault address register (FAR). If an access violation results from multiple
causes, the faults are encoded according to the priorities given in Table 2–23.
Faults that occur during an instruction fetch are not stored in FSR and FAR.

The following sections describe the various access permissions and controls
supported by the MMU and detail how they are interpreted to generate faults.

Table 2–23. Priority Encoding of the Fault Status Register

Source Priority Domain [3-0] FAR

Highest priority

Alignment† 0b0001 Invalid‡ VA of access causing abort§

External abort on transaction First level 0b1100 Invalid VA of access causing abort

Second
level

0b1110 Valid

Transaction Section 0b0101 Invalid VA of access causing abort

Page 0b0111 Valid

Domain Section 0b1001 Valid VA of access causing abort

Page 0b1011 Valid

Permission Section 0b1101 Valid VA of access causing abort

Page 0b1111 Valid

External abort on line fetch Section 0b0100 Valid VA of start of cache line being
loaded

Page 0b0110 Valid

External abort on NCNB access Section 0b1000 Valid VA of access causing abort

Page 0b1010 Valid

Lowest priority

† Alignment faults write 0b0001 into FS[3-0].
‡ Invalid values in domain[3-0] occur because the fault is raised before a valid domain field has been selected.
§ Fixing the primary abort and restarting the instruction can regenerate any abort masked by the priority encoding.

MPU Memory Management Unit

 2-42

2.7.9 Domain Access Control

MMU accesses are primarily controlled via domains. There are 16 domains,
and each domain has a 2-bit field to define it. Two kinds of users are supported:
clients and managers. Clients use a domain; managers control the behavior
of the domain. The domains are defined in the domain access control register.
The following figure illustrates how the 32 bits of the register are allocated to
define the sixteen 2-bit domains.

Figure 2–19. Domain Access Control Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

Table 2–24 defines how the bits within each domain are interpreted to specify
the access permissions.

Table 2–24. Interpreting Access Bits in Domain Access Control Register

Value Access Type Description

0b00 No access Any access generates a domain fault.

0b01 Client Access permission is checked against the permission
given by the page descriptor.

0b10 Reserved Behaves like no access

0b11 Manager The access permission is not checked; permission
faults are not generated.

MPU Memory Management Unit

2-43MPU Subsystem

2.7.10 Permission Access

Both instructions and data need access permission checks, but their respec-
tive access violations are handled differently. A data access error generates
a DABORT and stores the status, domain, and address in FSR and FAR. An
instruction fetch generates an IABORT only; it does not update FSR and FAR
as it is possible the aborted instruction is not executed (if it is branched
around). The IABORT flags the instruction as it enters the TI925T.

When the MMU is turned off, the physical address is output directly and no
memory access permission checks are performed.

Table 2–25. Interpreting Access Permission

Domain AP S R Supervisor User Description

x0 xx x x No access No access Generates a domain fault

01 00 0 0 No access No access Generates a permission fault

01 00 1 0 Read only No access Supervisor read only permitted

01 00 0 1 Read only Read only Any write generates a permission fault.

01 00 1 1 Reserved Reserved Generates a permission fault

01 01 x x Read/write No access Access allowed only in supervisor mode.†

01 10 x x Read/write Read only User writes cause a permission fault.†

01 11 x x Read/write Read/write All accesses are allowed.†

01 xx 1 1 Reserved Reserved Generates a permission fault

11 xx x x Full access Full access No permission fault can be generated.

† In client mode, the combination S/R = 11 is reserved and generates a permission fault. Therefore, on these three lines, S/R can
only take the values 00, 01, or 10.

2.7.11 Fault Checking Sequence

The sequence by which the MMU checks for access faults is slightly different
for sections and pages. Figure 2–20 illustrates the sequence for both. The
following sections describe the conditions that generate each of the faults.

MPU Memory Management Unit

 2-44

Figure 2–20. Sequence for Checking Faults

Virtual address

Page
domain

fault

No access (D0)
Reserved (10)

Section
domain

fault

Alignment
faultMisaligned

Page
translation

fault

Invalid
Section

transistor
fault

Section

Get level 1 descriptor

Page

Check address alignment

Invalid

Manager (0.1)

Client (0.1)

Check domain status

Check access
permissionsViolation

Section
permission

fault

Physical address

No access (D0)
Reserved (10)

Section Page

Client (0.1)

Violation
Subpage

permission
fault

Check access
permissions

Get page
table entry

2.7.11.1 Alignment Fault

If an alignment fault is enabled (bit 1 in CP15 control register 1), the MMU gen-
erates an alignment fault upon 16-bit and 32-bit data accesses that are
improperly aligned (not on an address multiple of 2 and 4, respectively). The
TI925T checks the alignment even if the MMU is disabled.

Instruction fetches do not generate alignment faults; they always access
memory on 32-bit word boundaries.

MPU Memory Management Unit

2-45MPU Subsystem

If the access generates an alignment fault, the access sequence aborts with-
out checking access rights.

If a nonaligned read access is executed and the alignment fault is disabled,
data is accessed at a word address and rotated inside the core as shown be-
low. If a nonaligned half-word or word write is executed while the alignment
fault is disabled, the write is done on a half-word or word address boundary.

Figure 2–21 is an example of read word access on byte 11.

Figure 2–21. Nonaligned Read Word Access
11 10 01 00

aa bb cc dd

bb cc dd aa

Word address in memory

Read Access on Address Byte 11

Word is rotated inside the MPU core

2.7.11.2 Translation Fault

There are two types of translation fault: section and page.

� A section translation fault is generated if the level 1 descriptor is marked
as invalid. This happens if bits [1–0] of the descriptor are both 0.

� A page translation fault is generated if the page table entry is marked as
invalid. This happens if bits [1–0] of the page table entry are both 0.

2.7.11.3 Domain Fault

There are two types of domain faults: section and page. In both cases, the level
1 descriptor holds the 4-bit domain field that selects one of the sixteen 2-bit
domains in the domain access control register. The two bits of the specified
domain are then checked for access permissions, as detailed in Table 2.15.

� In the case of a section, the domain is checked once the level 1 descriptor
is returned.

� In the case of a page, the domain is checked once the page table entry is
returned.

A section or page domain fault occurs if the permission access is either no
access (00) or reserved (10).

2.7.11.4 Permission Fault

There are two types of permission faults: section and subpage. Permission
fault is checked at the same time as the domain fault. If the 2-bit domain field
returns client (01), then the permission access check is invoked as follows:

MPU Memory Management Unit

 2-46

� Section: If the level 1 descriptor defines a section-mapped access, its AP
bits define whether or not the the access is allowed (see Table 2–24).
Their interpretation is dependent upon the setting of the S bit (CP15 con-
trol register bit 8). If the access is not allowed, a section permission fault
is generated.

� Subpage: If the level 1 descriptor defines a page-mapped access, the
level 2 descriptor specifies four access permission fields (ap3..ap0), each
corresponding to one quarter of the page. ap0 corresponds to the subpage
located at the lowest addresses. The selected AP bits are then interpreted
in the same way as for a section and may generate a subpage permission
fault.

2.7.12 External Aborts

In addition to the MMU-generated aborts, the TI925T has an external s_abort
port, which can be used to flag errors on external memory accesses. However,
not all accesses can be aborted this way, so this signal must be used with great
care. This section describes the restrictions.

The accesses listed below can be aborted and restarted safely. In the case of
an interlocked read-write (SWAP instruction) in which the read aborts, the
write does not happen.

� Reads
� Unbuffered writes
� Level-1 descriptor fetch
� Level-2 descriptor fetch
� Interlocked read-write (SWAP)
� Cacheable reads (line fetches)

A cache line fetch can be safely aborted on any word in the transfer. If an abort
occurs during the line fetch, the cache line is invalidated. In addition, if the abort
happens upon or before the instruction the TI925T requested, the instruction
is aborted. If the abort happens after, the cache line is simply marked as
invalid.

2.7.13 Buffered Writes

Buffered writes cannot be aborted externally. Therefore, the system must be
configured in such a way that it does not perform buffered writes to areas of
memory that can generate an external abort.

There are three instances of MMU: the DSP MMU, the MPU instruction cache
MMU, and the MPU data cache MMU. The MPU MMU is that of the TI925T.
Because there are multiple MMUs, it is the responsibility of the OS (system
software) to ensure data coherence.

DSP Memory Management Unit

2-47MPU Subsystem

2.8 DSP Memory Management Unit
The DSP MMU handles the external memory space mapping of the DSP in the
entire shared memory space of the OMAP5910 device. The DSP MMU trans-
lates addresses coming from the DSP (virtual address) to addresses mapped
by the traffic controller. The MMU is used when the DSP software accesses
external memory. This memory can be any mapped on the OMAP5910
address space, on the internal SRAM, or on an external SDRAM.

The DSP MMU sees 16M bytes of virtual program and 16M bytes of virtual data
spaces. The 16M bytes of DSP external addresses can be mapped to any of
the 4G bytes of addresses on the OMAP5910 device. If a memory protection
or memory access violation occurs, the DSP MMU sends an interrupt to the
MPU via the second-level interrupt handler on IRQ_28. Information about the
violation can be found in the MMU fault address and fault status registers.

The DSP MMU is programmed by the TI925T processor. In general, the MMU
is initialized at boot time, but it also can be reprogrammed dynamically. The
MMU is programmed through the TI peripheral bus registers. The DSP MMU
registers are listed in Table 2–26 and detailed in this section.

Table 2–26. DSP Memory Management Unit Registers

Name Description R/W Size Address Reset Value

PREFETCH_REG Prefetch register R/W 16 bits FFFE:D200 0x0000

WALKING_ST_REG Prefetch status register R 16 bits FFFE:D204 0x0000

CNTL_REG Control register R/W 16 bits FFFE:D208 0x0000

FAULT_AD_H_REG Fault address register MSB R 16 bits FFFE:D20C 0x0000

FAULT_AD_L_REG Fault address register LSB R 16 bits FFFE:D210 0x0000

F_ST_REG Fault status register R 16 bits FFFE:D214 0x0000

IT_ACK_REG Interrupt acknowledge register W 16 bits FFFE:D218 0x0000

TTB_H_REG TTB register MSB R/W 16 bits FFFE:D21C 0x0000

TTB_L_REG TTB register LSB R/W 16 bits FFFE:D220 0x0000

LOCK_REG Lock counter R/W 16 bits FFFE:D224 0x0000

LD_TLB_REG Load entry in TLB R/W 16 bits FFFE:D228 0x0000

CAM_H_REG CAM entry register MSB R/W 16 bits FFFE:D22C 0x0000

CAM_L_REG CAM entry register LSB R/W 16 bits FFFE:D230 0x0000

RAM_H_REG RAM entry register MSB R/W 16 bits FFFE:D234 0x0000

DSP Memory Management Unit

 2-48

Table 2–26. DSP Memory Management Unit Registers (Continued)

Name Reset ValueAddressSizeR/WDescription

RAM_L_REG RAM entry register LSB R/W 16 bits FFFE:D238 0x0000

GFLUSH_REG Global flush register R/W 16 bits FFFE:D23C 0x0000

FLUSH_ENTRY_REG Individual flush register R/W 16 bits FFFE:D240 0x0000

READ_CAM_H_REG Read CAM MSB R/W 16 bits FFFE:D244 0x0000

READ_CAM_L_REG Read CAM LSB R/W 16 bits FFFE:D248 0x0000

READ_RAM_H_REG Read RAM MSB R/W 16 bits FFFE:D24C 0x0000

READ_RAM_L_REG Read RAM LSB R/W 16 bits FFFE:D250 0x0000

Table 2–27. Prefetch Register (PREFETCH_REG)) – Offset Address (hex): 00

Bit Function Size Access

Value at
Hardware

Reset

15 Reserved 1

14 The data to prefetch is data when 1, program when 0. 1 R/W 0

13–0 MSB of virtual address tag of the TLB entry to be prefetched 14 R/W 0

Table 2–28. Prefetch Status Register (WALKING_ST_REG) – Offset Address (hex): 04

Bit Function Size Access

Value at
Hardware

Reset

15–2 Reserved 14

1 When 1, table walking is running. 1 R 0

0 Writing in the prefetch data register sets this bit; the acknowl-
edge of the prefetch resets the bit.

1 R 0

DSP Memory Management Unit

2-49MPU Subsystem

Table 2–29. Control Register (CNTL_REG) – Offset Address (hex): 08

Bit Function Size Access

Value at
Hardware

Reset

15–6 Reserved 10

5 Enables the 16-bit burst management. Active high. 1 R 0

4 Reserved 1

3 Reserved 1

2 When 1, enables the walking table logic. When 0, the walking
table is disabled and access to the TLB and lock counter are
disabled.

1 R 0

1 Enables MMU. Active high. 1 R 0

0 Resets module. Active low. 1 R 0

Table 2–30. Fault Address Register MSB (FAULT_AD_H_REG) – Offset Address (hex): 0C

Bit Function Size Access

Value at
Hardware

Reset

15–9 Reserved 7

8 The access that generated a permission fault is data when 1 or
program when 0.

1 R 0

7–0 MSB of virtual address of the access that generated a permission
fault

8 R 0

Table 2–31. Fault Address Register LSB (FAULT_AD_L_REG) – Offset Address (hex): 10

Bit Function Size Access

Value at
Hardware

Reset

15–7 LSB of virtual address of the access that generated a permission
fault

9 R 0

6–0 Reserved 7

DSP Memory Management Unit

 2-50

Table 2–32. Fault Status Register (F_ST_REG)) – Offset Address (hex): 14

Bit Function Size Access

Value at
Hardware

Reset

15–4 Reserved 12

3 Error occurred during a prefetch. Active high. 1 R 0

2 Permission fault. Active high. 1 R 0

1 TLB miss. Active high. 1 R 0

0 Translation fault. Active high. 1 R 0

Table 2–33. IT Acknowledge Register (IT_ACK_REG) – Offset Address (hex): 18

Bit Function Size Access

Value at
Hardware

Reset

15–1 Reserved 15

0 Write a 1 to this bit to acknowledge the interrupt. A write of 0 has
no effect; a write of 1 clears the bit automatically.

1 W 0

Table 2–34. TTB Register MSB (TTB_H_REG) – Offset Address (hex): 1C

Bit Function Size Access

Value at
Hardware

Reset

15–0 MSB of TTB 16 R 0

Table 2–35. TTB Register LSB (TTB_L_REG) – Offset Address (hex): 20

Bit Function Size Access

Value at
Hardware

Reset

15–7 LSB of TTB 9 R 0

6–0 Reserved 7

DSP Memory Management Unit

2-51MPU Subsystem

Table 2–36. Lock Counter Register (LOCK_REG) – Offset Address (hex): 24

Bit Function Size Access

Value at
Hardware

Reset

15–10 Locked entries base value 6 R/W 0

9–4 Current entry pointed by the WTL 6 R/W 0

3–0 Reserved 4

Table 2–37. Load Entry in TLB Register (LD_TLB_REG) – Offset Address (hex): 28

Bit Function Size Access

Value at
Hardware

Reset

15–2 Reserved 14

1 Read data in TLB when 1. 1 R/W 0

0 Load data in TLB when 1. 1 R/W 0

Table 2–38. CAM Entry Register MSB (CAM_H_REG) – Offset Address (hex): 2C

Bit Function Size Access

Value at
Hardware

Reset

15–6 Reserved 10

5–0 Table index level 1 MSB 6 R/W 0

Table 2–39. CAM Entry Register LSB (CAM_L_REG) – Offset Address (hex): 30

Bit Value Function Size Access

Value at
Hardware

Reset

15–10 Table index level 1 LSB 6 R/W 0

9–4 Tiny page bits 9–0 (10 bits long)

Small page bits 9–2 (8 bits long)

Large page bits 9–6 (4 bits long)

6 R/W 0

DSP Memory Management Unit

 2-52

Table 2–39. CAM Entry Register LSB (CAM_L_REG) – Offset Address (hex): 30(Continued)

Bit

Value at
Hardware

ResetAccessSizeFunctionValue

3 Preserved bit 1 R/W 0

0 CAM entry not preserved

1 CAM entry preserved

2 Valid bit: 1 R 0

0 CAM entry not valid

1 CAM entry valid

1–0 00 Section (1 MB) 2 R/W 0

01 Large pages (64 KB)

10 Small pages (4 KB)

11 Tiny page (1 KB)

Table 2–40. RAM Entry Register MSB (RAM_H_REG) – Offset Address (hex): 34

Bit Function Size Access

Value at
Hardware

Reset

15–0 MSB physical address 16 R/W 0

Table 2–41. RAM Entry Register LSB (RAM_L_REG) – Offset Address (hex): 38

Bit Function Size Access

Value at
Hardware

Reset

15–10 LSB physical address 6 R/W 0

9–8 Access permission bits 2 R/W 0

7–0 Reserved 8

DSP Memory Management Unit

2-53MPU Subsystem

Table 2–42. Global Flush Register (GFLUSH_REG) – Offset Address (hex): 3C

Bit Function Size Access

Value at
Hardware

Reset

15–1 Reserved 15

0 Toggle bit. Flush all nonprotected TLB entries when 1 is written.
Always 0 when read. Automatically reset.

1 R/W 0

Table 2–43. Individual Flush Register (FLUSH_ENTRY_REG) – Offset Address (hex):40

Bit Function Size Access

Value at
Hardware

Reset

15–1 Reserved 15

0 Toggle bit. Active high. Always 0 when read. 1 R/W 0

Table 2–44. CAM Entry Register MSB (READ_CAM_H_REG) – Offset Address (hex): 44

Bit Function Size Access

Value at
Hardware

Reset

15–10 Reserved 6

9–0 Table index level 1 MSB 10 R/W 0

Table 2–45. CAM Entry Register LSB (CAM_CAM_L_REG) – Offset Address (hex): 48

Bit Value Function Size Access

Value at
Hardware

Reset

15–10 Table index level 1 LSB 6 R/W 0

9–4 Tiny page bits 9–0 (10 bits long)

Small page bits 9–2 (8 bits long)

Large page bits 9–6 (4 bits long)

6 R/W 0

DSP Memory Management Unit

 2-54

Table 2–45. CAM Entry Register LSB (CAM_CAM_L_REG) – Offset Address (hex): 48
(Continued)

Bit

Value at
Hardware

ResetAccessSizeFunctionValue

3 Preserved bit 1 R/W 0

0 CAM entry not preserved

1 CAM entry preserved

2 Valid bit: 1 R 0

0 CAM entry not valid

1 CAM entry valid

1–0 00 Section (1 MB) 2 R/W 0

01 Large pages (64 KB)

10 Small pages (4 KB)

11 Tiny page (1 KB)

Table 2–46. RAM Entry Register MSB (READ_RAM_H_REG) – Offset Address (hex): 4C

Bit Function Size Access

Value at
Hardware

Reset

15–0 MSB physical address 16 R/W 0

Table 2–47. RAM Entry Register LSB (READ_RAM_L_REG) – Offset Address (hex): 50

Bit Function Size Access

Value at
Hardware

Reset

15–10 LSB physical address 6 R/W 0

9–8 Access permission bits 2 R/W 0

7–0 Reserved 8

MPU Interface

2-55MPU Subsystem

2.9 MPU Interface

The MPU interface (MPUI) allows the TI925T and the system DMA controller
to communicate with the DSP and its peripherals via the DSP MPUI port (part
of the DSP); see Figure 2–22. The MPUI provides the capability for the TI925T
and the system DMA controller to access the full memory space (16M bytes)
of the DSP and the DSP peripheral buses, except the private peripherals.
Thus, the TI925T and the system DMA controller have both read and write
access to the complete DSP I/O space (128K bytes), including the control
registers of the internal DSP peripherals such as the DSP TIPB bridge itself.

Figure 2–22. MPUI Simplified Block Diagram

MPU bus interface
System DMA

controller interface
 (API port)

Arbiter
(programmable priority scheme)

Control and
configuration

registers

MPU bus MPUI data port

To DSP MPUI port

MPUI interface

TI

16

32 32

peripheral
bus

MPU bus

MPU Interface

 2-56

2.9.1 Functional Features

The MPUI supports the following features:

� Four access modes:

� Single-access mode (SAM) for SARAM, DARAM, memory interface
access

� Single-access mode (SAM) for peripheral bus access

� Host-only mode (HOM) for SARAM access

� Host-only mode (HOM) for peripheral bus access

� An interrupt sent to the TI925T if a time-out occurs

� Programmable priority scheme (TI925T, DMA, etc.) that must be config-
ured during the system boot process

� Packing and unpacking (16-bits to 32-bits, and vice versa)

� 32-bit single access support

� Software control endianism conversion (default is word swap for all
access, byte swap for memory access only)

� DMA access to full memory space (16M bytes)

� DMA access to the DSP peripheral bus shared peripherals (up to 128K
bytes)

In host-only mode (HOM), the MPUI interface does not have access to the
DARAM (0x00 0000 to 0x00 FFFF). All SARAM (0x01 0000 to 0x04 FFFF) is
accessible by the MPUI, but the type of access depends on the DSP status
(HOM or single-access mode (SAM)) and on the MPUI size register
(DSP_API_CONFIG). The following rules apply:

� Before the MPU reset (resetting the DSP MPUI logic) is released, the
MPUI cannot access any SARAM.

� After the MPU reset is released and before the DSP reset is released,
the DSP is in HOM. The default MPUI size register value (after the
MPU_nRESET is released) is 0xFFFF, and the MPUI has exclusive
access to all SARAM.

� Shared access: Both the DSP and MPU can access MPUI memory, but
the memory space they access is mutually exclusive. The MPUI register
controls which memory space (SARAM0, 1, 2...) is accessed by the DSP
or the MPU.

� After the DSP reset is released, the DSP goes automatically into SAM;
consequently, whatever the value of the MPUI size register, all SARAM is
shared between the DSP and the MPUI.

MPU Interface

2-57MPU Subsystem

In SAM, all the DSP internal memory is accessible by the MPUI interface. If
both the DSP and the MPU controllers (TI925T and system DMA) access the
same memory at the same time, priority is given to the DSP controllers. The
access is synchronized to the internal DSP CPU clock.

HOM is more efficient than SAM, because there is no synchronization in-
volved. However, HOM depends on the host operating frequency, which is nor-
mally slower than the internal DSP CPU clock. The system software can switch
between HOM and SAM or vice versa, if desired, and it is up to the software
to manage the system resources.

Note: MPUI Port Accesses

MPUI port accesses to the DSP subsystem external address space via the
DSP MMU are not supported. MPU and system DMA should access all traffic
controller resources (EMIFS, EMIFF, and IMIF) directly through the traffic
controller and not via the MPUI port and DSP MMU.

2.9.2 MPUI Registers

Table 2–48 lists the MPUI registers. Table 2–49 through Table 2–56 describe
the register bits.

Table 2–48. MPUI Registers

Register Name Description R/W Size
Address
(FFFE:x) Reset Value

CTRL_REG Control R/W 32 bits C900 0x0003
FF1F

DEBUG_ADDR Debug address—has the address from
last operation in case an abort occurs.

R 32 bits C904 0x00FF
FFFF

DEBUG_DATA Debug data —has the data from last op-
eration in case an abort occurs.

R 32 bits C908 0xFFFF
FFFF

DEBUG_FLAG Debug flag R 32 bits C90C 0x0000
0000

STATUS_REG MPUIF status R 32 bits C910 0x0000
1FFF

DSP_STATUS_REG Current DSP status R 32 bits C914 U

DSP_BOOT_CONFIG Boot DSP configuration R/W 32 bits C918 0x0000
0000

DSP_API_CONFIG MPUI size information R/W 32 bits C91C 0x0000
FFFF

MPU Interface

 2-58

Table 2–49. Control Register (CTRL_REG) – Offset: x00

Bit Value Function Size Access

Value at
Hardware

Reset

22–21 Control word swap on the MPUI/DSP interface for a
32-bit access

2 R/W 00

00 Word swap for all the accesses (OMAP1509 behavior)

01 Word swap only for non-APIMEM accesses

10 Word swap only for APIMEM accesses

11 Turn off word swap for all accesses

20–18 MPUIF access priority between MPU, reserved port, and
DMA requests. The reserved port is not used in the
OMAP5910 device and can be disregarde.

Note: the lower the number, the higher the priority.

3 R/W 000

000 MPU-1, DMA-2, reserved port–3

001 MPU-1, DMA-3, reserved port–2

010 MPU-2, DMA-1, reserved port–3

011 MPU-2, DMA-3, reserved port–1

1X0 MPU-3, DMA-1, reserved port–2

1X1 MPU-3, DMA-2, reserved port–1

17–16 Control byte swap on the MPUI/DSP interface 2 R/W 11

00 Turn off byte swap for all accesses

01 Byte swap only for non-APIMEM accesses

10 Byte swap for all accesses

11 Byte swap only for APIMEM accesses

15–8 MPUI bus access time out 8 R/W 0xFF

7–4 Division factor of APIF_HNSTROBE. For the OMAP5910
device, this field must be set to 2 (10b) or greater.
Settings of 00b or 01b should not be used.

4 R/W 0x1

MPU Interface

2-59MPU Subsystem

Table 2–49. Control Register (CTRL_REG) – Offset: x00 (Continued)

Bit

Value at
Hardware

ResetAccessSizeFunctionValue

3 1 Enables sending IRQ_ABORT interrupt to the MPU when
an abort condition is indicated by the MPU port from the
DSP system.

1 R/W 1

0 Disables this interrupt source 1 R/W 1

2 Reserved 1 R/W 1

1 1 Enables the time-out feature. An IRQ_ABORT interrupt is
sent to the MPU if a time-out occurs.

1 R/W 1

0 Disables this interrupt source 1 R/W 1

0 Frequency mode 1 R/W 1

0 Low-frequency MPU clock

1 High-frequency MPU clock

Note: In the MPUI, there are three sources which can generate an IRQ_ABORT:

1) Abort from the DSP: This can be masked by setting CTRL_REG[3] to 0.
2) Time-out event occurred: This can be masked by setting CTRL_REG[1] to 0. But masking the time-

out interrupt can cause system to wait forever, if DSP never responds to the MPU request.
3) Burst access detected: This cannot be masked.

These interrupt sources are assigned to the IRQ_ABORT line of the level 1 MPU interrupt handler. The
DEBUG_FLAG register contains the information related to which one of these three sources caused
the interrupt.

Apart from the MPUI, there are other modules such as the TIPB Bridge which can also generate the
IRQ_ABORT interrupt.

Table 2–50. Debug Address Register (DEBUG_ADDR) – Offset: x04

Bit Function Size Access

Value at
Hardware

Reset

31–24 Reserved 8 R 0x00

23–0 Bits of address bus from MPU/DMA interface. Saved on abort or
access mismatch.

24 R 0xFF FFFF

MPU Interface

 2-60

Table 2–51. Debug Data Register (DEBUG_DATA) – Offset: x08

Bit Function Size Access
Value at Hard-

ware Reset

31–0 Value of S_DATA_R is saved when a read access has a size
mismatch, and S_DATA_W is saved when a write access is
aborted or has a size mismatch.

32 R 0xFFFFFFFF

Table 2–52. Debug Flag Register (DEBUG_FLAG) – Offset: x0C

Bit Value Function Size Access

Value at
Hardware

Reset

31–16 Reserved 16 R 0x0000

15–13 Reserved 3

12–11 Encoded access mode for MPUI 2 R 00

00 SAM_M and SAM_R

01 SAM_M and HOM_R

10 HOM_M and SAM_R

11 HOM_M and HOM_R

10–9 Chip-select. Saved on abort. These bits indicate wheth-
er memory space or TIPB space was accessed just
before the abort was generated.

2 R 00

01 Memory access

10 Peripheral bus or MPUI control register access

8–7 Burst size saved on abort 3 R 000

6 Read not write on MPUI bus 1 R 0

5 Read not write on MPUI bus. This bit indicates whether
a read or write access was active just before the abort
was generated.

1 R 0

1 Read access

0 Write access

4 Flag set to 1 when access size saved on abort is 32
bits

1 R 0

MPU Interface

2-61MPU Subsystem

Table 2–52. Debug Flag Register (DEBUG_FLAG) – Offset: x0C (Continued)

Bit

Value at
Hardware

ResetAccessSizeFunctionValue

3 Flag set to 1 when burst size saved on abort is not
equal to 000

1 R 0

2 Flag set to 1 when MPUIF access is aborted by internal
time out

1 R 0

1 Flag set to 1 when MPUI aborts access 1 R 0

0 Flag set to 1 when MPUI port on DSP subsystem
aborts the access

1 R 0

The STATUS_REG checks the status of the MPU interface during suspend
mode (for example, after hitting an emulator breakpoint). The register is for
OMAP5910 device chip designers to use for debugging.

Table 2–53. Status Register (STATUS_REG) – Offset: x10

Bit Value Function Size Access

Value at
Hardware

Reset

12–11 Current access in progress is: 2 R 11

00 MPU access

01 DMA access

10 Reserved port access, should not occur

11 No access

10–3 Current value of time-out counter 8 R 0xFF

2 Enable chip-select bit indicates when MPU wait states
are being inserted, which forces chip-selects to inac-
tive:

1 R 1

0 CSs are forced to inactive state (high).

1 CSs are enabled and can be asserted.

1 0 MPUIF is accessing MPUI. 1 R 1

1 No access in progress

MPU Interface

 2-62

Table 2–53. Status Register (STATUS_REG) – Offset: x10 (Continued)

Bit

Value at
Hardware

ResetAccessSizeFunctionValue

0 Current access mode when ACCESS_DONE = 0 or
last access mode when ACCESS_DONE = 1

1 R 1

0 SAM

1 HOM

Table 2–54. DSP Status Register (DSP_STATUS_REG) – Offset: x14

Bit Value Function Size Access

Value at
Hardware

Reset

11 HOM or SAM for accessing DSP peripherals (from
DSP)

1 R 1

0 SAM

1 HOM

10 HOM or SAM for accessing MPUI peripherals (from
DSP)

1 R 1

0 SAM

1 HOM

9 Asynchronous reset controlled by emulation 1 R 1

8 Idle peripherals 1 R 1

0 Functional mode

1 Idle

Linked to bit 7 of the ISTR register (from DSP)

7 Idle peripherals 1 R 1

0 Functional mode

1 Idle

Linked to bit 6 of the ISTR register (from DSP)

MPU Interface

2-63MPU Subsystem

Table 2–54. DSP Status Register (DSP_STATUS_REG) – Offset: x14 (Continued)

Bit

Value at
Hardware

ResetAccessSizeFunctionValue

6 Idle peripherals 1 R 1

0 Functional mode

1 Idle

Linked to bit 4 of the ISTR register (from DSP)

5 Idle peripherals 1 R 1

0 Functional mode

1 Idle

LInked to bit 3 of the ISTR register (from DSP)

4 Interrupt acknowledged by the DSP (from DSP) 1 R 1

3 Output of TMS320C55x CPU ST3 register (from DSP),
which is the CPUAVIS bit

1 R 1

2 XF is a signal from the C55x DSP core. On standard
DSP devices such as the TMS320C5510, XF is con-
nected to a pin and used as an external flag. The
OMAP5910 device does not have an XF pin, so this bit
is provided to show tha value of the XF bit in the DSP
core status register (ST3)

1 R 1

1 Reset signal from MPU to DSP 1 R 1

0 Master reset (active low) 1 R 1

Table 2–55. DSP Boot Configuration Register (DSP_BOOT_CONFIG) – Offset: x18

Bit Function Size Access

Value at
Hardware

Reset

15–10 Reserved 6 R/W 0

9–4 Reserved 6 R/W 0

3–0 DSP boot mode inputs (see Section 3.10.4, Boot Mode for DSP
Subsystem, for more detail.

4 R/W 0

MPU Interface

 2-64

Table 2–56. DSP MPUI Configuration Register (DSP_API_CONFIG) – Offset: x1C

Bit Function Size Access

Value at
Hardware

Reset

15–0 APISIZE: Specify which blocks of SARAM are accessible by the
MPUI in HOM (exclusive access).

The amount of SARAM is calculated by this formula:
API_SIZE/2) * 8K bytes, starting from SARAM0

16 R/W 0xFFFF

Table 2–57 decodes SARAM 0 through SARAM 11 on 8K boundaries.

Table 2–57. Decoding SARAM 0 Through SARAM 11 on 8K Boundaries

SARAM

APISIZE (15..0) 11 7 3 0

0X0000 – 0X0001 0000 0000 0000

0X0002 – 0X0003 0000 0000 0001

0X0004 – 0X0005 0000 0000 0011

0X0006 – 0X0007 0000 0000 0111

0X0008 – 0X0009 0000 0000 1111

0X000A – 0X000B 0000 0001 1111

0X000C – 0X000D 0000 0011 1111

0X000E – 0X000F 0000 0111 1111

0X0010 – 0X0011 0000 1111 1111

0X0012 – 0X0013 0001 1111 1111

0X0014 – 0X0015 0011 1111 1111

0X0016 – 0X0017 0111 1111 1111

0X0018 – OTHERS 1111 1111 1111

Notes: 1) 0: Shared-access RAM

2) 1: Host-only RAM (no DSP access)

MPU TI Peripheral Bus Bridges

2-65MPU Subsystem

2.10 MPU TI Peripheral Bus Bridges

The MPU TI peripheral bus (TIPB) bridges (see Figure 2–23) connect the
TI925T to its peripherals. Two MPU TIPBs, one private and one nonprivate or
public, are implemented to reduce access latency and improve system perfor-
mance. Concurrent transfers are possible if there are no resource conflicts; for
example, DMA transfers to the public TIPB and the TI925T both access the
private TIPB simultaneously. The timers are connected on the private periph-
eral bus for low-latency access by an operating system, and the camera is
located on the public peripheral bus for access by the DMA.

The private and public peripheral bridges are compatible with the TIPB
specification.

Figure 2–23. MPU TI Peripheral Bus Bridge Connections

System
DMA

controller

MPU

TI

bridge
(private)

bridge
(shared)

Logic
Mux

Logic

TI peripheral bus)

Private TI peripheral bus)

Public TI peripheral bus

32

32

peripheral
bus

TI
peripheral

bus

TI peripheral bus

Mux

2.10.1 8-Bit, 16-Bit, and 32-Bit Word Access

The MPU TIPB handles 8-bit, 16-bit, and 32-bit word accesses. Data is loaded
and stored in little endian fashion. Data is always right-justified on the TIPB.

MPU TI Peripheral Bus Bridges

 2-66

2.10.2 TIPB Allocation

The MPU TIPBs are shared between the MPU and the DMA controller. A bus-
allocation module is provided to resolve conflicts and prioritize accesses.

The value written in the TIPB_BUS_ALLOC register defines the priority. If the
value is 0, the MPU memory interface has priority over the DMA controller. If
the value equals n (n from 1 to 7), the DMA controller has priority over the MPU
and it can perform n accesses before yielding to the MPU.

2.10.3 Access Factor and Time-Out

The MPU TIPB handles peripherals of varying speeds. To accommodate slow
peripherals, the access cycle (strobe period) is programmable.

The frequency of the MPU public and private TIPB strobe 1 and 0 are derived
from the traffic controller clock (CLKM3). For both TIPBs, you can use bits 3–0
(strobe 0) and bits 7–4 (strobe 1) of the TIPB control register (TIPB_CNTL) to
configure the access factor and consequently the strobe frequencies (as
shown in Table 2–58).

Table 2–58. Access Factor

Number of Wait States
(Access Factor) Strobe Frequency

0 TC Clk/1

1 TC Clk/2

2 TC Clk/3

3 TC Clk/4

... ...

15 TC Clk/16

Each bridge in OMAP has two strobe lines, and a different division factor can
be programmed on each line.

A TIPB access time-out limits the maximum time a peripheral can stall the
processor. When starting a cycle on TIPB, the time-out counter is loaded with
this value (see TIPB_CNTL and ENHANCED_TIPB_CNTL registers). If the
current cycle is not finished when the counter reaches 0, the cycle is aborted
and an abort exception is generated to the MPU. The maximum value is 256
bridge clock cycles.

MPU TI Peripheral Bus Bridges

2-67MPU Subsystem

2.10.4 MPU Posted Write

The MPU can perform a posted write. When posted write is enabled inside the
ARM_TIPB_CNTL register, data sent by the MPU is buffered in the MPU TIPB
and the MPU can keep going to another access. The bridge takes care of the
access towards the TIPB; hence the MPU is not stalled during the access.

2.10.5 Pipeline Mode

When pipeline mode is enabled in the ENHANCED_TIPB_CNTL register,
incoming signals from MPU and DMA are buffered. Use pipeline mode when
running at a high frequency.

2.10.6 Abort

When abort interrupt is enabled in the ENHANCED_TIPB_CNTL register, an
interrupt is sent to the MPU interrupt handler when a TI peripheral read or write
access is aborted or when any TI peripheral access has a size mismatch.
In case of abort or size mismatch, the address and data of the corresponding
access are saved in the following registers: ADDRESS_DBG,
DATA_DEBUG_LOW, DATA_DEBUG_HIGH, DEBUG_CNTR_SIG.

2.10.7 TIPB Bridge Registers

Table 2–59 and Table 2–60 list the TIPB bridge registers. Table 2–61 through
Table 2–68 describe the register bits.

Table 2–59. TIPB (Private) Bridge Registers

Register Name Descriptions R/W Size Address
Reset
Value

TIPB_CNTL TIPB control R/W 16 bits FFFE:CA00 0xFF11

TIPB_BUS_ALLOC TIPB bus allocation R/W 16 bits FFFE:CA04 0x0009

MPU_TIPB_CNTL MPU TIPB control R/W 16 bits FFFE:CA08 0x0000

ENHANCED_TIPB_CNTL Enhanced TIPB control R/W 16 bits FFFE:CA0C 0xFFFF

ADDRESS_DBG Debug address R 16 bits FFFE:CA10 0xFFFF

DATA_DEBUG_LOW Debug data LSB R 16 bits FFFE:CA14 0xFFFF

DATA_DEBUG_HIGH Debug data MSB R 16 bits FFFE:CA18 0xFFFF

DEBUG_CNTR_SIG Debug control signals R 16 bits FFFE:CA1C 0x00F8

MPU TI Peripheral Bus Bridges

 2-68

Table 2–60. TIPB (Public) Bridge Registers

Register Name Descriptions R/W Size Address
Reset
Value

TIPB_CNTL TIPB control R/W 16 bits FFFE:D300 0xFF11

TIPB _BUS_ALLOC TIPB bus allocation R/W 16 bits FFFE:D304 0x0009

MPU_TIPB_CNTL MPU TIPB control R/W 16 bits FFFE:D308 0x0000

ENHANCED_TIPB_CNTL Enhanced TIPB control R/W 16 bits FFFE:D30C 0xFFFF

ADDRESS_DBG Debug address R 16 bits FFFE:D310 0xFFFF

DATA_DEBUG_LOW Debug data LSB R 16 bits FFFE:D314 0xFFFF

DATA_DEBUG_HIGH Debug data MSB R 16 bits FFFE:D318 0xFFFF

DEBUG_CNTR_SIG Debug control signals R 8 bits FFFE:D31C 0xF8

Table 2–61. TIPB Control Register (TIPB_CNTL) – Offset: x00

Bit Description Size Access
Reset
Value

15–8 TIPB bus access time out 8 R/W 0xFF

7–4 Division factor of nASTROBE[1] 4 R/W 0x1

3–0 Division factor of nASTROBE[0] 4 R/W 0x1

Table 2–62. TIPB Bus Allocation Register (TIPB_BUS_ALLOC) – Offset: x04

Bit Value Description Size Access
Reset
Value

5–4 Reserved.

The reset value of these bits does not have to be
changed for this register to operate correctly.

2 R/W 00

3 MPU has higher priority than DMA transfers regarding
TIPB allocation when it is in exception mode.

1 R/W 1

2–0 Defines TIPB priority between MPU and DMA 3 R/W 0x1

0 MPU has priority over DMA.

1 DMA has priority over MPU.

MPU TI Peripheral Bus Bridges

2-69MPU Subsystem

Table 2–63. MPU TIPB Control Register (MPU_TIPB_CNTL_REG) – Offset: x08

Bit Value Description Size Access
Reset
Value

1 1 Write buffer is enabled for strobe domain 1. 1 R/W 0

0 Write buffer is bypassed.

0 1 Write buffer is enabled for strobe domain 0. 1 R/W 0

0 Write buffer is bypassed.

Table 2–64. Enhanced TIPB Control Register (ENHANCED_TIPB_CNTL) – Offset: x0C

Bit Description Size Access
Reset
Value

3 When low, a tc_abort interrupt is sent back to the MPU, when
MPU TIPB access is timed out.

1 R/W 1

2 When high, incoming signals from MPU and DMA are clocked.
Used when running at high frequency.

1 R/W 1

1 When low, an interrupt is sent to the MPU when a TIPB write
access is aborted or when any TIPB access has a size mismatch.
When high, the interrupt is masked.

1 R/W 1

0 A value of 1 enables the time-out feature. 1 R/W 1

Table 2–65. Address Debug Register (ADDRESS_DBG) – Offset: x10

Bit Description Size Access
Reset
Value

15–0 Address from MPU memory interface saved on abort or ac-
cess size mismatch

16 R 0xFFFF

Table 2–66. Data Debug Register LSB (DATA_DEBUG_LOW) – Offset: x14

Bit Description Size Access
Reset
Value

15–0 Bytes 15–0 of data bus from MPU 16 R 0xFFF

MPU TI Peripheral Bus Bridges

 2-70

Table 2–67. Data Debug Register MSB (DATA_DEBUG_HIGH) – Offset: x18

Bit Description Size Access
Reset
Value

15–0 Bytes 31–16 of data bus from MPU 16 R 0xFFFF

Table 2–68. Debug Control Signals Register (DEBUG_CNTR_SIG) – Offset: x1C

Bit Description Size Access
Reset
Value

8 Burst access 1 R 0

7–6 Peripheral memory access size on TIPB 1 R 3

5–4 Memory access size on TIPB 1 R 3

3 Not supervisor mode on TIPB 1 R 1

2 Read not write on TIPB 1 R 0

1 Flag set to 1 when there is a mismatch between memory
access size and peripheral memory access size.

1 R 0

0 Flag set to 1 when TIPB access is aborted. 1 R 0

Endianism Conversion

2-71MPU Subsystem

2.11 Endianism Conversion

Because the TI925T is operated in little endian mode and the DSP is operated
in big endian mode, shared data must be converted to their respective formats
before any processing is done. Table 2–69 and Table 2–70 illustrate the little
and big data formats, respectively. In each case, the data is a reference to the
little endian format.

There are two ways to share the data between the TI925T and the DSP:

� Through the DSP MMU
� Through the MPUI

Endianism conversion is implemented between these two modules and the
DSP. The hardware converts both program code and data from big endian to
little endian mode when writing to the system memory and from little endian
to big endian mode when reading back from the system memory for all the data
access sizes when the logic is enabled.

Endianism conversion is performed in hardware, so that the data swapping is
transparent to software (reduce software overhead to format the data).

A bypass path is also implemented. If this case is not covered, the swapping
logic can be disabled and the conversion handled by software.

Table 2–69. Little Endian Data Format

Little Endian Format (32-Bit Word Access)

31 24 23 16 1 8 7 0

Word 1 Word 0

Byte 3 Byte 2 Byte 1 Byte 0

AA BB CC DD

Table 2–70. Big Endian Format

Big Endian Format (32-Bit Word Access)

31 24 23 16 15 8 7 0

Word 0 Word 1

Byte 0 Byte 1 Byte 2 Byte 3

DD CC BB AA

Endianism Conversion

 2-72

2.11.1 Conversion Through the DSP MMU

Swapping buffers are implemented at the boundary between the DSP and the
DSP MMU (see Figure 2–24). Assuming that the OMAP5910 system memory
is organized in little endian mode, data from and to the DSP is converted as
follows:

� Data is written from the DSP to the system memory.

In the DSP, data is organized in big endian mode (see Table 2–70), but the
bytes are swapped in order to recognize the data in little endian mode (see
Table 2–69).

� Data is read from the system memory to the DSP.

In system memory, data is organized in little endian mode, but the bytes
are swapped in order to reorganize the data in big endian mode.

� 32-bit word is written from the DSP to the system memory, but beginning
at an odd address (for example, 0x000002) or with the bit byte_nword set
to 0.

In the DSP, the data is organized in DSP data format (see Table 2–71), but
the 16-bit words are swapped in order to reorganize the 32-bit data in little
endian mode.

� 32-bit word is read from the system memory to the DSP, but beginning at
an odd address (for example, 0x000002) or with the bit byte_nword set to
0.

In system memory, the data is organized in little endian mode, but the
16-bit words are swapped in order to reorganize the 32-bit data in the DSP
data format.

Note:

16-bit word and single byte accesses are always right justified. The swap-
ping logic is power-up disabled.

Table 2–71. DSP Data Format

DSP Data Format (32-Bit Word Access—
Odd Address or Enabled byte_nword Option)

31 24 23 16 15 8 7 0

Word Word 1

Byte 1 Byte 0 Byte 3 Byte 2

CC DD AA BB

Endianism Conversion

2-73MPU Subsystem

Figure 2–24 shows the endian conversion at the DSP MMU interface bounda-
ry. The byte and word swapping is done by decoding the data width and data
size, then repacking the data into the appropriate formats.

The byte-steering logic provides a mechanism to convert from big to little, little
to big, or upper and lower word swap for program code and data accesses.

Figure 2–24. DSP Endian Conversion, 32-Bit Aligned Data

DSP
(big endian)

Byte 3

Byte 2

Byte 1

Byte 0

Byte 0

Byte 1

Byte 2

Byte 3

Traffic

controller

(little

endian)

Flash
(little

endian)

SDRAM
(little

Internal
SRAM
(little

endian)

EMIF

EMIF

Packing and
unpacking
controls

EMIF

Controls

DSP write swapping buffers

DSP read swapping buffers

DSP endian conversion for 32-bit aligned data

Controls

Controls

Bytes
steering

logic
(write)

Bytes
Steering

Logic
(Read)

D_in

D_out

DSP
MMU

(Little
endian

Async
FIFO

(Little
endian

(Little endian)

(Big endian)
address

endian)

data in

data out

Note: The steering logic puts the byte/word/double-word in appropriate formats.

Endianism Conversion

 2-74

2.11.2 Conversion Through the MPUI

Swapping buffers are implemented at the boundary between the DSP and the
MPUI (See Figure 2–25).

The word and byte swapping can be programmed so swapping is individually
controlled for MPU memory access and non-MPU memory (peripheral and
MPU register).

Figure 2–25. DSP Endian Conversion, MPUI Port Boundary

MPU
system bus

(little
endian)

MPUI
Port

interface

DSP

DSP TIMPU bus

Control

DSP endian conversion, MPUI boundary

Controls

MPUI port

Byte 0

Byte 1

Byte 1

Byte 0

API write swapping buffers

API read swapping buffers

Bytes
steering

logic
(write)

Bytes
steering

logic
(read)

16

System DMA
controller

(little
endian)

System
DMA
bus

(Big endian)

(Little endian)

peripheral
bus

Note: The steering logic puts the byte/word/double-word in appropriate formats.

The MPUI port has a 16-bit data bus, thus all 32-bit accesses are divided into
two 16-bit accesses. 16-bit word swapping and byte swapping are program-
mable.

By default:

� Byte swapping is disabled for all accesses.
� 16-bit word swapping is enabled for all accesses.

ETM Environment

2-75MPU Subsystem

2.12 ETM Environment

The OMAP5910 device has an embedded trace macrocell (ETM) to provide
instruction and data trace capabilities of the TI925T processor. ETM9 in large
configuration uses an 8-bit data output. The instruction trace shows the
instruction flow of the MPU. The data trace shows the data access results after
the MPU executes load and store operations.

2.12.1 ETM Features

The ETM has the following features:

� Instruction/data trace
� 8-bit trace packet width
� 45-byte trace packet capture FIFO
� Eight pairs of address comparators for trace trigger
� Height comparators for trace trigger
� Four 16-bit counters
� 3-state sequencer (state machine)

2.12.2 ETM Interface

The ETM logical signal interface contains 13 trace interface pins and nine
JTAG interface pins. The ETM trace interface has the following signals:

� TRACEPKT[0..7]

The TRACEPKT signals comprise the 8-bit data trace packets (packaged
address and data information).

� PIPESTAT[0..2]

The PIPESTAT signals are used to output the MPU pipeline at the
MPU execute stage on every TRACECLK and are used by software to
reconstruct the compressed trace output.

� TRACESYNC

The TRACESYNC signal is used to indicate when the first of multiple
packets are to be output on the TRACEPKT bus.

� TRACECLK

The TRACECLK operates at one of two frequencies:

� The same frequency as the MPU
� The MPU frequency divided by two (half-rate clocking)

When this rate is selected, the trace port analyzer (TPA) samples
the trace data signals on both the rising and the falling edges of the
TRACECLK. Bit 13 of the ETM control register enables you to select
this rate.

ETM Environment

 2-76

The ETM trace signals are multiplexed with the camera interface pins on the
OMAP5910 device. The default value upon reset is the camera interface.
Refer to Section 6.8, Configuration Module, and Section A.2, I/O Functional
Multiplexing, for details on pin multiplexing.

Figure 2–26. Trace Signals Multiplexing

Camera
interface

 ETM 9 MPU

Agilent E5903A 301 TPA
or

16700A series logic analyzer

With E959A 002 TPAtrace_pipestat_[2:0]

trace_pkt_[7:0]

trace_sync

trace_clk

OMAP5910

 Pin multiplexing logic

ETM Environment

2-77MPU Subsystem

2.12.3 Operation

Figure 2–27 shows how the OMAP5910 ETM is used in a system setup for
capture of trace data.

Figure 2–27. Required System for ETM Usage

13 Pins:
trace_sync

trace_clk
trace_pkt_[7–0]

trace_pipestat_[2–0]

Ethernet

Agilent (HP)
Trace port analyzer

E5903A 301

PC
with

TI CCS Ver 2.0 or higher

XDS510
Or equivalent JTAG controller
(Provides emulation and ETM

configuration support)

OMAP5910

MPU

ETM

TDI

TDO

The TI Code Composer Studio� Integrated Development environment (IDE)
software, trace port analyzer (TPA), and the emulation probe hardware are
used for tracing and displaying the MPU operation.

Agilent provides two types of trace port equipment:

� Dedicated trace port analyzer (TPA) (E5903A #301)

� A 16700A series logic analyzer used with an analysis probe
(E9595A#002)

The Code Composer Studio IDE provides support only for the TPA setup.

The Code Composer Studio IDE provides a complete interface to the ETM,
including the setup of the trace registers, trigger points, and sequencing of
trace operations. When a trace trigger occurs, Code Composer Studio IDE
decompresses and formats the trace information for display. In addition, when
the TI software development tools are used, Code Composer Studio IDE can
also correlate trace data back to the source code, thus providing complete
symbolic trace capabilities. All of the ETM functions operate in parallel with the
standard debug features provided by Code Composer Studio IDE, such as
breakpoints, single-stepping, etc.

ETM Environment

 2-78

2.12.4 Additional Reference Materials

Additional MPU (ARM) ETM related publications of interest include:

� ETM9 (Rev 0/0a) Technical Reference Manual (ARM DDI 0157B)

� Trace Port Analysis for ARM ETM Users Guide (Agilent Publications,
publication number E5903-97000)

� Embedded Trace Macrocell (Rev 1) Specification (ARM IHI 0014E)

Documentation is also available from Advanced RISC Machines directly via
http:\\www.arm.com.

3-1

DSP Subsystem

This chapter describes the OMAP5910 multimedia processor DSP subsystem.

Topic Page

3.1 Architecture Overview 3-2.

3.2 TMS320C55x DSP CPU Overview 3-6.

3.3 DSP Memory 3-9.

3.4 DMA Controller 3-16.

3.5 TIPB Bridge 3-27.

3.6 MPU Interface 3-33.

3.7 EMIF 3-36.

3.8 DSP Memory Management Unit 3-37.

3.9 DSP Subsystem Clocking and Reset Control 3-38.

3.10 System Operating Details 3-39.

Chapter 3

Architecture Overview

 3-2

3.1 Architecture Overview

The digital signal processor (DSP) subsystem is built around a core processor
and peripherals that interface with:

� The TI925T via the microprocessor unit interface (MPUI)

� Various standard memories via the external memory interface (EMIF)

� Various system peripherals via the TI peripheral bus (TIPB) bridge

Figure 3–1 shows the OMAP5910 device with the DSP subsystem high-
lighted. Figure 3–2 shows the subsystem and the modules with which it inter-
faces.

Figure 3–1. Highlight of DSP Subsystem

MPU Core
(TI925T)

(Instruction
Cache, Data

Cache, MMU)

System
DMA

Controller

TMS320C55x DSP
(Instruction Cache, SARAM,

 DARAM, DMA,
 H/W Accelerators)

MPU
Peripheral

Bridge

LCD
I/F

MPU
Interface

SRAM

SDRAM
Memories

Flash and
SRAM

Memories

DSP
MMU

16

16

32

16

32

32

32

32

32

32

16

MPU Private Peripheral Bus

DSP Public (Shared) Peripheral Bus

32
MPU Public

16

DSP

DSP Public Peripherals

McBSP1

McBSP3

MPU Public Peripherals

USB Host I/F

JTAG/
Emulation

I/F
OSC

12 MHz Clock

OSC

OMAP5910

ETM9

Timers (3)

MPU/DSP Shared Peripherals

Mailbox

MPU Private Peripherals

Timers (3)

16

Memory Interface

Reset External Clock

MPU Bus

32 kHz

1.5M Bits

Traffic Controller (TC)

Watchdog Timer

Level 1/2 Interrupt Handlers

Configuration Registers

Clock and Reset Management

Watchdog Timer
Level 1/2

Private Peripherals

GPIO I/F

USB Function I/F

Camera I/F
MPUIO

32-kHz Timer
PWT
PWL

M
I
F
S

M
I
F
F

I
M
I
F

MCSI1
MCSI2

Keyboard I/F

Requests

E

E

TIPB
Switch

UART1
UART2

UART3 IrDA

32

MMC/SD
LPG x2

HDQ / 1-WIRE

DSP Private
Peripheral Bus

Perripheral Bus

McBSP2

Device Identification

RTC

Interrupt Handlers

I2C
µWire

Frame Adjustment
Counter

32

32

32

32

Architecture Overview

3-3DSP Subsystem

Figure 3–2. DSP Subsystem and Modules

Configuration

Memory
I/F

TMS320C55x
DSP core

HWA

Shared
TIPB
bridge

Private
TIPB
bridge

EMIF

PDROM

SARAM

DARAM

MPUI port

Internal
memory
buses

DSP

Pseudo-
dynamic
sharing

DMA

DSP subsystem and interfaces

Endianism
conversion

Traffic
controller

DSP
MMU

On-chip
SARAM

ROM,
SRAM,
Flash,

SBFlash

DSP private
peripherals

SDRAM

Timer
DSPTM_CK

(1 INT)

WD Timer
DSPWD_CK

(1 INT)

Interrupt
handler

DSP_INTH_CK

Interrupt I/F
DSP_INTH_CK

GPIO I/F
1 INT to MPU
and/or DSP

MPU_GPIO_CK

Mailbox

UART1,2,3

MPU/DSP
shared

peripherals

MPUI
MPU public
TIPB bridge

MPU

MPU subsystem

DSP private peripheral bus

DSP public peripheral bus

MPU public
peripheral
bus

16

16

McBSP1 (Audio PCM)
I2S via McBSP
DSPXOR_CK
2 INT, 2DMA

DSP public
peripherals

McBSP3 (optical)
(McBSP)

DSPXOR_CK
2 INT, 2DMA

MCSI1(bluetooth voice)
(MCSI)

DSPXOR_CK
2 INT

I-Cache

System
DMA

(EMIF)
(DARAM)
(SARAM)
(MPUI)
(TIPB)

Static UART
sharing switch

MCSI2
(MCSI)

DSPXOR_CK
2 INT

Endianism conversion

Architecture Overview

 3-4

The DSP subsystem has the following components:

� DSP module:

� TMS320C55x (C55x) DSP CPU core

� Tightly coupled hardware accelerators—discrete cosine transform/in-
verse discrete cosine transform (DCT/IDCT), motion estimation, and
half-pixel interpolation

� Tightly coupled memories and their interfaces—dual-access RAM
(DARAM), single-access RAM (SARAM), programmable dynamic
ROM (PDROM), instruction cache

� External memory interface (EMIF) that connects the CPU to external
and loosely coupled memories

� A 6-channel DMA controller that can copy memory contents from one
address to another without CPU intervention

� MPUI that permits high-bandwidth parallel access to DSP resources
by the MPU and system DMA

� TIPB bridge that provides two external bus interfaces for private and
public peripherals

� DSP subsystem peripherals:

� Three general-purpose 32-bit timers

� One general-purpose UART

� A 16-signal general-purpose input/output (GPIO) module for bit input
or output

� A mailbox module to permit interrupt-based signaling between the
DSP and MPU

� Watchdog timer

� Level 2 interrupt handler

Architecture Overview

3-5DSP Subsystem

3.1.1 DSP Core

Figure 3–3 shows the DSP core.

Figure 3–3. DSP Core and Internal Bus Designations

Private
TIPB
bridge

EMIF

DSP CPU core
plus hardware accelerator

(DCT/IDCT motion estimation
half-pixel interpolation

DMA controller
6 channels, 5 ports

Feedback/ test logic

Trace FIFO

Shared

T
I
P
B

bridge

M
P
U
I

M
I
F

C,D,E,F

DMA

I-Cache

SARAM
96K bytes

DARAM
64K bytes

Instruction
cache

3x8K bytes

PDROM
32K bytes

P,B,C,D,E,F

DMA

P,B,C,D,E,F

DMA

P

P,B,C,D

TMS320C55x DSP CPU Overview

 3-6

3.2 TMS320C55x DSP CPU Overview

Features for the high-performance, low-power C55x DSP CPU include:

� Advanced multiple-bus architecture with one internal program memory
bus and five internal data buses (three dedicated to reads and two
dedicated to writes)

� Unified program/data memory architecture

� Dual 17-bit x17-bit multipliers coupled to 40-bit dedicated adders for non-
pipelined single-cycle multiply accumulate (MAC) operations

� Add/compare/select (CSSU) unit for the add/compare section of the
Viterbi operator

� Exponent encoder to compute an exponent value of a 40-bit accumulator
value in a single cycle

� Two address generators with eight auxiliary registers and two auxiliary
register arithmetic units

� 8M x 16-bit (16M-bytes) total addressable memory space

� Single-instruction repeat or block repeat operations for program code

� Conditional execution

� Seven-stage pipeline for high instruction throughput

� Instruction buffer unit that loads, parses, queues, and decodes instruc-
tions to decouple the program fetch function from the pipeline

� Program flow unit that coordinates program actions among multiple
parallel CPU functional units

� Address data flow unit that provides data address generation and includes
a 16-bit arithmetic unit capable of performing arithmetic, logical, shift, and
saturation operations

� Data computation unit containing the primary computation units of the
CPU, including a 40-bit arithmetic logic unit, two MAC units, and a shifter

3.2.1 On-Chip Memory

Features include:

� DARAM that supports two memory accesses per cycle per block

� SARAM that supports one memory access per cycle per block

� PDROM that provides nonvolatile storage for program or data

TMS320C55x DSP CPU Overview

3-7DSP Subsystem

3.2.1.1 Power Conservation

Features include:

� Software-programmable idle domains that provide configurable
low-power modes

� Automatic power management

� Advanced low-power complimentary metal-oxide semiconductor (CMOS)
process

3.2.2 Hardware Acceleration Modules

The OMAP5910 device contains several hardware acceleration modules to
improve performance and reduce power consumption for certain computa-
tions relating to image and video processing. These coprocessors include:

� DCT/IDCT accelerator

� Motion estimation calculation accelerator

� Half-pixel interpolation accelerator

3.2.3 CPU Overview

The DSP core has four functional units:

� The instruction unit (IU) loads, parses, queues, and decodes instructions
and includes an instruction buffer unit (IBQ) to decouple the program fetch
function from the pipeline.

� The program flow unit (PU) coordinates program actions among multiple
parallel CPU functional units.

� The address data flow unit (AU) provides data address generation and in-
cludes a 16-bit arithmetic unit capable of performing arithmetic, logical,
shift, and saturation operations.

� The data computation unit (DU) contains the primary computation units of
the CPU including a 40-bit arithmetic logic unit, two multiply-accumulate
units (MACs), and a shifter.

To permit high computational throughput and a fast instruction cycle rate, the
CPU employs several sets of parallel buses to access code and data struc-
tures. The program address and data buses (P-bus) perform 32-bit instruction
fetches to feed the instruction unit. The B, C, and D addresses and data buses
enable the CPU to access up to three 16-bit data operands per cycle. E and
F addresses and data buses allow the CPU to write up to two 16-bit quantities
per cycle.

Figure 3–4 shows the C55x DSP architecture.

TMS320C55x DSP CPU Overview

 3-8

Figure 3–4. C55x DSP Architecture

Instruction buffer
queue

(64 x 8 bit)

TMS320C55x DSP

Instruction decoder
controller

1st
instruction

2nd
instruction

48 bits
Program

read
bus PB

32

Program
counter

Program
address

generation

Status
registers

Program
flow

Pipeline
protection

unit

Interrupts

Ret
A

Auxiliary
registers

[0:7]

Data
registers

[0:3]

Coefficient
data

pointer

AC0 AC1 AC2 AC3

MAC MAC

40-bit ALU

Shifter

Transition
registers

Bit
operations

Smemory/
Xmemory

Ymemory

Cmemory

ALU 16-bit

Program address bus PAB (24)

Data read address buses
BAB, CAB, DAB (3 x 24)

Data read address buses bb, cb, db (3 x 16)

Data write buses EB, FB (2 x 16)

For details on CPU architecture and instruction set, see the following documents:

� TMS320C55x Technical Overview (SPRU393)

� TMS320C55x DSP CPU Reference Guide (SPRU371)

� TMS320C5510 DSP Functional Overview (SPRU312) (only CPU sections
apply to the OMAP5910 device)

DSP Memory

3-9DSP Subsystem

3.3 DSP Memory

The DSP subsystem contains four types of tightly coupled memory to enable
maximum efficiency of the DSP CPU.

� Dual-access RAM (DARAM)
� Single-access RAM (SARAM)
� Programmable dynamic ROM (PDROM)
� Configurable instruction cache structure

The CPU uses six sets of buses to simultaneously fetch up to 32 bits of pro-
gram and read up to 48 bits of data operands from memory (or write up to
32 bits to memory). To achieve maximum performance from the architecture,
the programmer must pay close attention to placement of code and data struc-
tures within the on-chip memory resources. For more details, see
TMS320C55x DSP Programmers Guide (SPRU376) Chapters 3 and 4.

Loosely coupled memory devices can be accessed via the traffic controller
module. This flexible memory interface permits DSP access to another block
of SRAM (shared with the MPU) as well as external memory devices such as
flash memory and SDRAM.

Figure 3–5 shows DSP memory connections.

DSP Memory

 3-10

Figure 3–5. DSP Memory Connections

D bus

C bus

B bus

P bus

A

D

E bus

F bus

To

external

 memory

I/F

PDROM

1 block of 32K bytes

8 blocks of 8K bytes
12 blocks of 8K bytes

SARAM DARAM

3.3.1 Internal Memory

� The DARAM (64K bytes) can support up to two memory accesses in one
CPU clock cycle into each RAM block. Accesses can be made from any
internal data, program, or DMA bus. The DARAM memory consists of
8 blocks of 8K bytes each.

� The SARAM (96K bytes) can support one memory access in one CPU
clock cycle into each RAM block. This access can be a 32-bit value. Ac-
cesses can be made from any internal data, program, or DMA bus. The
SARAM memory consists of 32 blocks of 8K bytes each.

� The PDROM (32K bytes) can support one memory read in one CPU clock
cycle. This access can be a 32-bit value. Accesses can be made from any
internal data read or program bus. The PDROM memory consists of one
block of 32K bytes.

DSP Memory

3-11DSP Subsystem

3.3.2 Instruction Cache

The DSP instruction cache (I-cache) module is a special-purpose, tightly
coupled, RAM-based program memory. The module is designed to
significantly improve the CPU performance by buffering the instructions most
recently fetched from external memory. The entire external program memory
space is cacheable.

The I-cache consists of the following:

1) One 2-way cache. The cache uses two-way set associative mapping and
holds up to 16K bytes: 512 sets, two lines per set, four 32-bit words per
line.

2) Two RAM sets (1 and 2). These two banks of RAM can be used to store
blocks of code. Each RAM set holds up to 4K bytes: 256 lines, four 32-bit
words per line. Before enabling the I-cache, you configure the I-cache to
use zero, one, or both RAM sets

The I-cache can be enabled, disabled, or modified at any time by the program-
mer using software control. The TIPB bridge allows access to the cache con-
figuration registers in the DSP I/O space. At reset the I-cache is disabled. The
user must configure the I-cache to be able to use the ramset.

The initial normal cache hit is a one-wait-state operation. Thereafter, the
I-cache performs a simple branch prediction for cache access (i.e., a branch
not taken is always assumed). With this feature, no-branch continuous fetches
are no-wait-state operations. The instruction cache returns one 32-bit word for
each fetch. Fetches are always aligned on a 32-bit boundary.

When a cache miss occurs, wait states are inserted that are dependent upon
the external memory access time. The I-cache retrieves instructions from ex-
ternal memory in a burst of four 32-bit words (to fill cache line). To reduce the
penalty of misses, a streaming feature is implemented where the instruction
word requested by the DSP is sent back as soon as it is retrieved from external
memory, so all four 32 bit words do not have to be loaded into the cache line
first. Additionally, program fetch requests that fall in a cache line already being
retrieved due to a previous miss are serviced as soon as the word becomes
available. This streaming feature can increase the performance of even non-
looping code executing from external memory.

The instruction cache supports emulation debug read and breakpoint/watch-
point insertion by invalidating cache lines with the corresponding data
changed in the external memory space.

The DSP I-cache on OMAP5910 functions as described in the TMS320C55x
DSP Instruction Cache Reference Guide (literature number SPRU576). See
this document (I-Cache Type A section) for additional details on the DSP
I-cache operation.

DSP Memory

 3-12

Table 3–1 lists the DSP I-Cache I/O-mapped registers.

Table 3–1.DSP I-Cache Input/Output Memory-Mapped Control Registers

Register Description Access Word Address Reset Value

ICGR I-cache global control R/W 0x1400 C006h

Reserved Reserved R/W 0x1401 0000h

Reserved Reserved R/W 0x1402 0000h

ICWC I-cache way control R/W 0x1403 000Dh

ISR I-cache status R 0x1404 0000h

ICRC1 I-cache � ramset 1 control R/W 0x1405 000Dh

ICRTAG1 I-cache � ramset 1 TAG R/W 0x1406 0000h

ICRC2 I-cache � ramset 2 control R/W 0x1407 000Dh

ICRTAG2 I-cache � ramset 2 TAG R/W 0x1408 0000h

3.3.3 System Memory

The DSP has access to all system memory managed by the traffic controller.
External memory space ranges from 0x50000 to 0xFF8000 if the internal
PDROM is enabled, or to 0xFFFFFF if the PDROM is not enabled.

To access memory external to the DSP subsystem, the EMIF issues a memory
access request. The access request is passed through the DSP memory man-
agement unit (MMU), which (if enabled and configured by the MPU) translates
the DSP virtual address into a physical address that is passed to the traffic
controller. The traffic controller completes the access through one of the three
system memory interfaces: internal memory (IMIF), slow external memory
(EMIFS), or fast external memory (EMIFF). If the MMU is not enabled, then the
access request is passed directly to the system traffic controller. In this case,
the DSP virtual addresses are mapped to the first 16M bytes of CS0 of the
system memory.

3.3.4 Memory Map

Figure 3–6 shows the DSP memory space.

DSP Memory

3-13DSP Subsystem

Figure 3–6. DSP Memory Space

00_0000

01_0000

02_8000

FF_FFFE

PDROM

32K-byte

masked ROM

Reset vectors

FF_8000

01_4000

00_8000

00_0000

DARAM

64K bytes–0X100 bytes

8 blocks

(Table A)

SARAM

96K bytes

12 blocks

External to

NMI vectors
Emu/test vectors
L2 peripherals

TC abort

Bus error

FF_FF00

7F_C000

7F_FF80

7F_FFFF

Byte address Word address

daram0 00 _0000
00_1000

Byte address

WORD Addr

32 interrupt
vectors

The TMS320C55x DSP has 24-bit unified address space for both data and

* Program accesses are specified and displayed as byte addresses.

* Data objects are word addressable and are specified by 16-bit

* The DMA controller references byte addresses.

To access control and data registers associated with various OMAP5910

daram1 00 _2000
00_2000daram2 00 _4000
00_3000daram3 00 _6000
00_4000daram4 00 _8000
00_5000daram5 00 _A000
00_6000daram6 00 _C000
00_7000daram7 00 _E000

00 _0000 saram0 01 _0000
00_9000

Byte address

WORD Addr

saram1 01 _2000
00_A000saram2 01 _4000
00_B000saram3 01 _6000
00_C000saram4 01 _8000
00_D000saram5 01 _A000
00_E000saram6 01 _C000
00_F000saram7 01 _E000

00_8000

saram8 02 _0000
01_1000saram9 02 _2000
01_2000saram10 02 _4000
01_3000saram11 02 _6000

01_0000

Word address Word address

EMIF
DMA

I-Cache

Timer1
Timer2
Timer3

WD_Timer

CLKM2

L2 Int handler

00000
00800
01000
01800
02000
02800
03000
03800
04000
04800
05000
05800
06000
06800
07000
07800
08000
08800
09000
09800
0A000
0A800
0B000
0B800
0C000
0C800
0D000
0D800
0E000
0E800
0F000
0F800

10000
10800
11000
11800
12000

I/O Space

00800
00400
00000

00C00
01000
01400
01800
00C00
02000

02800
02400

02C00
03000
03400
03800
03C00
04000

04800
04400

04C00
05000
05400
05800
05C00
06000

06800
06400

06C00
07000
07400
07800
07C00

08000
08400
08800
08C00
09000

Table A DARAM block boundaries Table B SARAM block boundaries

UART3

Mailbox
DSP MPUI register

12800
13000
13800
14000
14800
15000
15800
16000
16800
17000
17800
18000
18800
19000
19800
1A000
1A800
1B000
1B800
1C000
1C800
1D000
1D800
1E000
1E800
1F000
1F800

09400
09800
09C00
0A000

0A800
0A400

0AC00
0B000
0B400
0B800
0BC00
0C000

0C800
0C400

0CC00
0D000
0D400
0D800
0DC00
0E000

0E800
0E400

0EC00
0F000
0F400
0F800
0FC00

GPIO

program references.

word addresses.

peripherals, the DSP uses 16-bit I/O space. This space is referenced

UART1,2,3 shading SW

TIPB bridge

McBSP1
MCSI2
MCSI1

McBSP3

by using appropriate I/O access qualifiers with load or store instructions.

MMRs

00_008000_0100

UART1
UART2

DSP subsystem
16 MB

mapped by
DSP MMU

into MPU 32-bit
address space

Restrictions apply for data objects spanning 64K-word (128K-byte) boundaries.
See TMS320C55x DSP CPU Reference Guide (SPRU371).

I-Cache

Byte Word Byte Word

Note: Byte addresses 0xFF8000-0xFFFFFF map to PDROM for mpnmc = 0; otherwise, this range is mapped externally.

DSP Memory

 3-14

3.3.5 Peripheral Register Addresses

The DSP CPU and the DMA controller can access several classes of
peripheral devices:

� DSP private peripherals (see Chapter 8)

� Three general-purpose timers

� A watchdog timer

� An interrupt handler

� MPU/DSP shared peripherals (see Chapter 10)

� Communications mailbox

� GPIO control

� General-purpose UART

� DSP public peripherals (see Chapter 9)

� Two multichannel buffered serial ports (McBSPs) for synchronous
serial communications

� Two multichannel serial interfaces (MCSIs)

Configuration and data registers for all peripherals reside in the DSP subsys-
tem I/O space, which consists of 64K-word addresses, with each peripheral
mapping into a 1K-word section of I/O memory. To read or write these regis-
ters, you must access the DSP I/O space either through C language constructs
or by using the assembly language peripheral port register access qualifier.
See TMS320C55x DSP Mnemonic Instruction Set Reference Guide
(SPRU374D) for more details.

Table 3–2 shows the DSP peripheral mapping.

DSP Memory

3-15DSP Subsystem

Table 3–2. DSP Peripheral Mapping

Start Byte Address (hex)† Name Word Address Strobe‡

x000000 TIPB bridge 00000 Strobe 1

x001000 EMIF 00800 Fixed strobe period

x001800 DMA 00C00 Fixed strobe period

x002800 I-cache 01400 Fixed strobe period

x005000 TIMER 1 02800 Fixed strobe period

x005800 TIMER 2 02C00 Fixed strobe period

x006000 TIMER 3 03000 Fixed strobe period

x006800 WD_TIMER 03400 Fixed strobe period

x008000 CLKM 2 04000 Strobe 1

x009000 Level 2 interrupt handler 04800 Fixed strobe period

x0010000 UART1 08000 Strobe2

x0010800 UART2 08400 Strobe2

x0011800 McBSP1 08c00 Strobe2

x0012000 MCSI2 09000 Strobe2

x0012800 MCSI1 09400 Strobe2

x0017000 McBSP3 0B800 Strobe2

x019800 UART3 0CC00 Strobe2

x01C800 UART1, 2, 3 sharing switch 0E400 Strobe2

x001E000 GPIO 0F000 Strobe2

x001F000 Mailbox 0F800 Strobe2

x001F800 DSP MPUI register 0FC00 Strobe2

† All other I/O memory addresses are reserved.
‡ Internal wait states for accessing peripherals are set by strobe1 and strobe2 fields in TIPB CM register (see Section 3.5.1,

Control Mode Register).

DMA Controller

 3-16

3.4 DMA Controller

Acting in the background of MPU operation, the DSP DMA controller can:

� Transfer data among internal memory, external memory, and peripherals
residing on the DSP public peripheral bus

� Transfer data between the MPUI and internal memory

Figure 3–7 shows the ports serviced by the DMA controller within the context
of the DSP subsystem.

3.4.1 Key Features of the DMA Controller

The DMA controller has the following important features:

� Operation independent of the MPU

� Four standard ports, one for each data resource: DARAM, SARAM, exter-
nal or shared system memory via DSP EMIF, and peripherals via the
shared TIPB bridge

� An auxiliary port to enable certain transfers between the MPUI and
memory

� Six logical channels, which allow the DMA controller to keep track of the
context of six independent block transfers plus a seventh logical channel
for MPUI transfers

� Bits for assigning each channel a low priority or a high priority.

� Event synchronization. DMA transfers in each channel can be made
dependent on the occurrence of selected events.

� An interrupt for each channel. Each channel can send an interrupt to the
DSP CPU on completion of certain operational events.

� Software-selectable options for updating addresses for the sources and
destinations of data transfers.

The DMA controller performs data transfers between the following source and
destination ports:

� Single-access RAM and SARAM port
� Dual-access RAM and DARAM port
� External memory and EMIF port
� TI peripheral bus and PERIPH port
� MPUI interface and MPUI port

DMA Controller

3-17DSP Subsystem

Figure 3–7. DMA and Ports

Configuration

(EMIF)
(DARAM)
(SARAM)
(MPUI)
(TIPB)

Memory
I/F

TMS320C55x
DSP core

HWA

Shared
TIPB

Bridge

Shared
TIPB
bridge

Private
TIPB
bridge

EMIF

PDROM

SARAM

DARAM

I-Cache

MPUI port

Internal
memory
buses

TMS320C55x DSP

Pseudo-
dynamic
sharing

DMA

DSP 5-Port DMA

Endianism
conversion

Traffic
controller

DSP
MMU

On-chip
SARAM

ROM,
SRAM,
Flash,

SBFlash

SDRAM
DSP private peripheral bus

DSP public peripheral bus

MPU public peripheral
bus

16

16

MPUI

MPU

MPU subsystem

MPU
System
DMA

MPU public
TIPB bridge

GPIO I/F
1 INT to MPU
and/or DSP

MPU_GPIO_CK

Mailbox

UART1,2,3

MPU/DSP
shared

peripherals

McBSP1 (audio PCM)
I2S via McBSP
DSPXOR_CK
2 INT, 2DMA

DSP public
peripherals

McBSP3 (optical)
(McBSP)

DSPXOR_CK
2 INT, 2DMA

MCSI1(bluetooth voice)
(MCSI)

DSPXOR_CK
2 INT

MCSI2
(MCSI)

DSPXOR_CK
2 INT

Endianism conversion

Static UART
sharing switch

DMA Controller

 3-18

Data transfers among the SARAM, DARAM, EMIF, and PERIPH ports can
occur in six independent DMA channels. Transfers between the MPUI port and
memory ports (SARAM, DARAM, and EMIF) occur on a unique seventh chan-
nel dedicated to MPU operations. Transfers between the MPU and DSP
peripherals are supported by a direct connection that does not involve the DSP
DMA controller (see Section 3.6, MPU Interface). Each channel is controlled
by a set of configuration registers, where software sets up the transfer
parameters, such as length, source address, and destination address. These
registers are accessed in I/O space by the DSP via the TIPB bridge.

It is possible for multiple channels (or for one or more channels and the MPUI)
to request access to the same standard port at the same time (see Table 3–3
and Figure 3–8). To arbitrate simultaneous requests, the DMA controller has
one programmable service chain that is used by each of the standard ports.

The complete operation of the OMAP5910 DSP DMA controller is described
in detail in the Direct Memory Access (DMA) Controller section of the
TMS320C55x Peripherals Reference Guide (literature number SPRU317).
The OMAP5910 DSP DMA controller is consistent with SPRU317 with the
following exceptions and clarifications:

� All references to EHPI (enhanced host port interface) are equivalent to
MPUI (MPU interface) on OMAP5910.

� References to the EHPI_PRIO and EHPI_EXCL bits in the DMA_GCR
register are equivalent to the MPUI_PRIO and MPUI_EXCL bits on
OMAP5910

� Clarification of DMA channel syncronization is described in Section 3.4.2.

Table 3–3. Possible DMA Transfers

SRC\DST SARAM DARAM EMIF Peripheral MPUI

SARAM Chan 0-5 Chan 0-5 Chan 0-5 Chan 0-5 MPU Chan

DARAM Chan 0-5 Chan 0-5 Chan 0-5 Chan 0-5 MPU Chan

EMIF Chan 0-5 Chan 0-5 Chan 0-5 Chan 0-5 MPU Chan

Peripheral Chan 0-5 Chan 0-5 Chan 0-5 Chan 0-5 Direct

MPUI MPU Chan MPU Chan MPU Chan Direct NA

Note: MPU transfers data to and from DSP peripherals via direct connection.

DMA Controller

3-19DSP Subsystem

Figure 3–8. Example of DMA Configuration

MPUI port
controller

Peripheral
port controller1 M

6
543

2

EMIF port
controller

DARAM port
controller

SARAM port
controller

EMIF Peripheral bus bridge MPUIDARAMSARAM

MPUI
DMA

channel

D
M
A

R P B C D E F

D
M
A

R P B C D E F

D
M
A

R P B C D E F

D
M
A

R IOD IOE

D
M
A

R

D
M
A

W

D
M
A

W

D
M
A

W

D
M
A

W

D
M
A

W

M1 M
6

543
2

1 M
6

543
2

1 M
6

543
2

Channel 1
FIFO

Channel 2
FIFO

Channel 3
FIFO

Channel 4
FIFO

Channel 5
FIFO

Channel 6
FIFO

Example DMA configuration
Ch1 - Not active
Ch2 - Peripheral -> SARAM
Ch3 - Not active
Ch4 - SARAM -> Peripheral
Ch5 - Not active
Ch6 - SARAM -> DARAM
MPUI Ch - MPUI -> EMIF

MPUI DMA channel can read
or write to SARAM, DARAM,
or EMIF ports

DMA Controller

 3-20

3.4.1.1 DMA Channel Read Synchronization vs. Write Synchronization

When a DMA channel is configured for synchronization, the synchronization
event is tied to the element read operation or the element write operation
depending on the source and destination ports. There are three general cases
(see Table 3–4):

� Case 1: Source port is peripheral; destination port is SARAM, DARAM,
EMIF, or MPUI.

The channel waits for the synchronization event before reading from the
peripheral port into the channel FIFO. Once the FIFO has filled, the DMA
channel begins writing to the destination port to empty the FIFO (source
synchronization).

� Case 2: Source port is SARAM, DARAM, EMIF, or MPUI; destination is
peripheral.

As soon as the channel is enabled (en bit set) a read from SARAM port is
performed to feed the channel FIFO. The FIFO writes to the peripheral port
do not begin until the synchronization event is detected. When the channel
is operating in frame-synchronization mode (DMA_CCR_FS = 1), several
prereads may occur to the point of filling the FIFO while the channel is
awaiting the synchronization event (destination synchronization).

� Case 3: Source port is SARAM, DARAM, EMIF, or MPUI; destination port
is SARAM, DARAM, EMIF, or MPUI.

The channel waits for the synchronization event before reading from the
source port into the channel FIFO. Once the FIFO has filled, the DMA
channel begins writing to the destination port to empty the FIFO (source
synchronization).

Table 3–4. Read/Write Synchronization

Channel
Synchronization Set by

DMA_CCR sync[4:0]
Not Equal to 00000 Source Port Destination Port

Synchronization
Event Triggers

No X X No synchronization

Yes Peripheral port SARAM,DARAM, EMIF,
or MPUI port

Source read

Yes SARAM, DARAM, EMIF,
or MPUI port

Peripheral port Destination write

Yes SARAM,DARAM, EMIF,
or MPUI port

SARAM,DARAM, EMIF,
or MPUI port

Source read

DMA Controller

3-21DSP Subsystem

3.4.2 DMA Controller Configuration Registers

Table 3–5 lists the DMA controller configuration registers.

Table 3–5. DMA Controller Configuration Registers

Register Description Word Address

DMA_GCR Global control 0E00h

DMA_GTCR Global time-out control 0E01h

DMA_GSCR Global software incompatible control 0E02h

Channel 0

DMA_CSDP0 Channel 0 source destination parameters 0C00h

DMA_CCR0 Channel 0 control 0C01h

DMA_CICR0 Channel 0 interrupt control 0C02h

DMA_CSR0 Channel 0 status 0C03h

DMA_CSSA_L0 Channel 0 source start address, lower bits 0C04h

DMA_CSSA_U0 Channel 0 source start address, upper bits 0C05h

DMA_CDSA_L0 Channel 0 destination start address, lower bits 0C06h

DMA_CDSA_U0 Channel 0 destination start address, upper bits 0C07h

DMA_CEN0 Channel 0 element number 0C08h

DMA_CFN0 Channel 0 frame number 0C09h

DMA_CSFI0 Channel 0 source frame index 0C0Ah

DMA_CSEI0 Channel 0 source element index 0C0Bh

DMA_CSAC0 Channel 0 source address counter 0C0Ch

DMA_CDAC0 Channel 0 destination address counter 0C0Dh

DMA_CDEI0 Channel 0 destination element index 0C0Eh

DMA_CDFI0 Channel 0 destination frame index 0C0Fh

Channel 1

DMA_CSDP1 Channel 1 source destination parameters 0C20h

DMA_CCR1 Channel 1 control 0C21h

DMA_CICR1 Channel 1 interrupt control 0C22h

DMA Controller

 3-22

Table 3–5. DMA Controller Configuration Registers (Continued)

Register Word AddressDescription

Channel 1 (continued)

DMA_CSR1 Channel 1 status 0C23h

DMA_CSSA_L1 Channel 1 source start address, lower bits 0C24h

DMA_CSSA_U1 Channel 1 source start address, upper bits 0C25h

DMA_CDSA_L1 Channel 1 destination start address, lower bits 0C26h

DMA_CDSA_U1 Channel 1 destination start address, upper bits 0C27h

DMA_CEN1 Channel 1 element number 0C28h

DMA_CFN1 Channel 1 frame number 0C29h

DMA_CSFI1 Channel 1 source frame index 0C2Ah

DMA_CSEI1 Channel 1 source element index 0C2Bh

DMA_CSAC1 Channel 1 source address counter 0C2Ch

DMA_CDAC1 Channel 1 destination address counter 0C2Dh

DMA_CDEI1 Channel 1 destination element index 0C2Eh

DMA_CDFI1 Channel 1 destination frame index 0C2Fh

Channel 2

DMA_CSDP2 Channel 2 source destination parameters 0C40h

DMA_CCR2 Channel 2 control 0C41h

DMA_CICR2 Channel 2 interrupt control 0C42h

DMA_CSR2 Channel 2 status 0C43h

DMA_CSSA_L2 Channel 2 source start address, lower bits 0C44h

DMA_CSSA_U2 Channel 2 source start address, upper bits 0C45h

DMA_CDSA_L2 Channel 2 destination start address, lower bits 0C46h

DMA_CDSA_U2 Channel 2 destination start address, upper bits 0C47h

DMA_CEN2 Channel 2 element number 0C48h

DMA_CFN2 Channel 2 frame number 0C49h

DMA_CSFI2 Channel 2 frame index 0C4Ah

DMA Controller

3-23DSP Subsystem

Table 3–5. DMA Controller Configuration Registers (Continued)

Register Word AddressDescription

Channel 2 (continued)

DMA_CSEI2 Channel 2 element index 0C4Bh

DMA_CSAC2 Channel 2 source address counter 0C4Ch

DMA_CDAC2 Channel 2 destination address counter 0C4Dh

DMA_CDEI2 Channel 2 destination element index 0C4Eh

DMA_CDFI2 Channel 2 destination frame index 0C4Fh

Channel 3

DMA_CSDP3 Channel 3 source destination parameters 0C60h

DMA_CCR3 Channel 3 control 0C61h

DMA_CICR3 Channel 3 interrupt control 0C62h

DMA_CSR3 Channel 3 status 0C63h

DMA_CSSA_L3 Channel 3 source start address, lower bits 0C64h

DMA_CSSA_U3 Channel 3 source start address, upper bits 0C65h

DMA_CDSA_L3 Channel 3 destination start address, lower bits 0C66h

DMA_CDSA_U3 Channel 3 destination start address, upper bits 0C67h

DMA_CEN3 Channel 3 element number 0C68h

DMA_CFN3 Channel 3 frame number 0C69h

DMA_CSFI3 Channel 3 source frame index 0C6Ah

DMA_CSEI3 Channel 3 source element index 0C6Bh

DMA_CSAC3 Channel 3 source address counter 0C6Ch

DMA_CDAC3 Channel 3 destination address counter 0C6Dh

DMA_CDEI3 Channel 3 destination element index 0C6Eh

DMA_CDFI3 Channel 3 destination frame index 0C6Fh

DMA Controller

 3-24

Table 3–5. DMA Controller Configuration Registers (Continued)

Register Word AddressDescription

Channel 4

DMA_CSDP4 Channel 4 source destination parameters 0C80h

DMA_CCR4 Channel 4 control 0C81h

DMA_CICR4 Channel 4 interrupt control 0C82h

DMA_CSR4 Channel 4 status 0C83h

DMA_CSSA_L4 Channel 4 source start address, lower bits 0C84h

DMA_CSSA_U4 Channel 4 source start address, upper bits 0C85h

DMA_CDSA_L4 Channel 4 destination start address, lower bits 0C86h

DMA_CDSA_U4 Channel 4 destination start address, upper bits 0C87h

DMA_CEN4 Channel 4 element number 0C88h

DMA_CFN4 Channel 4 frame number 0C89h

DMA_CSFI4 Channel 4 source frame index 0C8Ah

DMA_CSEI4 Channel 4 source element index 0C8Bh

DMA_CSAC4 Channel 4 source address counter 0C8Ch

DMA_CDAC4 Channel 4 destination address counter 0C8Dh

DMA_CDEI4 Channel 4 destination element index 0C8Eh

DMA_CDFI4 Channel 4 destination frame index 0C8Fh

Channel 5

DMA_CSDP5 Channel 5 source destination parameters 0CA0h

DMA_CCR5 Channel 5 control 0CA1h

DMA_CICR5 Channel 5 interrupt control 0CA2h

DMA_CSR5 Channel 5 status 0CA3h

DMA_CSSA_L5 Channel 5 source start address, lower bits 0CA4h

DMA_CSSA_U5 Channel 5 source start address, upper bits 0CA5h

DMA_CDSA_L5 Channel 5 destination start address, lower bits 0CA6h

DMA_CDSA_U5 Channel 5 destination start address, upper bits 0CA7h

DMA Controller

3-25DSP Subsystem

Table 3–5. DMA Controller Configuration Registers (Continued)

Register Word AddressDescription

Channel 5 (continued)

DMA_CEN5 Channel 5 element number 0CA8h

DMA_CFN5 Channel 5 frame number 0CA9h

DMA_CSFI5 Channel 5 frame index 0CAAh

DMA_CSEI5 Channel 5 element index 0CABh

DMA_CSAC5 Channel 5 source address counter 0CACh

DMA_CDAC5 Channel 5 destination address counter 0CADh

DMA_CDEI5 Channel 5 destination element index 0CAEh

DMA_CDFI5 Channel 5 destination frame index 0CAFh

DMA Controller

 3-26

3.4.3 DSP DMA Event Mapping

Table 3–6 defines the mappings of the DMA channel synchronization settings
to the different request sources that can be used to create DSP DMA events
on OMAP5910.

Table 3–6. DSP DMA Mapping

DSP Request Source
DSP DMA

Request Line
Synchronization [4:0]

Settings

MCSI1 TX DMA_REQ_01 00001

MCSI1 RX DMA_REQ_02 00010

MCSI2 TX DMA_REQ_03 00011

MCSI2 RX DMA_REQ_04 00100

Ext_nDMA_req_0 (MPUIO2) DMA_REQ_05 00101

Ext_nDMA_req_1 (MPUIO4) DMA_REQ_06 00110

Reserved DMA_REQ_07 00111

McBSP1 TX DMA_REQ_08 01000

McBSP1 RX DMA_REQ_09 01001

McBSP3 TX DMA_REQ_10 01010

McBSP3 RX DMA_REQ_011 01011

UART1 TX DMA_REQ_012 01100

UART1 RX DMA_REQ_013 01101

UART2 TX DMA_REQ_014 01110

UART2 RX DMA_REQ_015 01111

Reserved DMA_REQ_016 10000

Reserved DMA_REQ_017 10001

UART3 TX DMA_REQ_018 10010

UART3 RX DMA_REQ_019 10011

TIPB Bridge

3-27DSP Subsystem

3.5 TIPB Bridge

The TIPB bridge module manages access to peripheral control and data regis-
ters by the DSP CPU, DSP DMA controller, and MPUI via two peripheral buses
(see Figure 3–9):

� Private TIPB: peripherals connected here (timers, interrupt handler)
cannot be accessed by the MPU via the MPUI.

� Public TIPB: peripherals connected here (McBSP1, McBSP2, MCSI1,
MCSI2, Mailbox, GPIO UART1-3) can be accessed by the MPU via the
MPUI port.

See Chapters 8 and 9 for details on DSP private and public peripherals.

The TIPB bridge consists of two components:

� The private TIPB bridge provides a preconfigured bus interface to periph-
erals residing on the the DSP private TIPB.

� The public TIPB bridge provides a user-configurable interface to peripher-
als on the DSP public TIPB. It includes functions to tailor the interface
timing to the complement of peripherals operating at a given time.

The TIPB bridge also contains registers to control and monitor the DSP sub-
system idle state. The DSP TIPB bridge may be configured using the following
registers in DSP I/O space:

� Control mode register (CMR): DSP I/O word address is 0x0000.
� Idle control register (ICR): DSP I/O word address is 0x0001.
� Idle status register (ISTR): DSP I/O word address is 0x0002.

TIPB Bridge

 3-28

Figure 3–9. DSP Subsystem Modules

Configuration

Memory
I/F

TMS320C55x
DSP core

HWA

Shared
TIPB
bridge

Private
TIPB
bridge

EMIF

PDROM

SARAM

DARAM

MPUI Port

Internal
memory
buses

DSP

Pseudo-
dynamic
Sharing

DMA

DSP subsystem and interfaces

Endianism
conversion

Traffic
controller

DSP
MMU

On-chip
SARAM

ROM,
SRAM,
Flash,

SBFlash

DSP private
peripherals

SDRAM

Timer
DSPTM_CK

(1 INT)

WD Timer
DSPWD_CK

(1 INT)

Interrupt
handler

DSP_INTH_CK

Interrupt I/F
DSP_INTH_CK

GPIO I/F
1 INT to MPU
and/or DSP

MPU_GPIO_CK

Mailbox

UART1,2,3

MPU/DSP
shared

peripherals

MPUI
MPU public
TIPB bridge

MPU

MPU subsystem

DSP private peripheral bus

DSP public peripheral bus

MPU public
peripheral
bus

16

16

McBSP1 (audio PCM)
I2S via McBSP
DSPXOR_CK
2 INT, 2DMA

DSP public
peripherals

McBSP3 (optical)
(McBSP)

DSPXOR_CK
2 INT, 2DMA

MCSI1(bluetooth voice)
(MCSI)

DSPXOR_CK
2 INT

I-Cache

System
DMA

(EMIF)
(DARAM)
(SARAM)
(MPUI)
(TIPB)

Static UART
sharing switch

MCSI2
(MCSI)

DSPXOR_CK
2 INT

Endianism conversion

TIPB Bridge

3-29DSP Subsystem

3.5.1 Control Mode Register (CMR)

The CMR indicates shared access mode/host-only mode (SAM/HOM) status
of the MPUI and bus error condition status for accesses to the TIPB bridge.
It also controls CPU priority versus the MPUI and DMA for accesses to
peripherals on the TIPB bridge.

Table 3–7. Control Mode Register (CMR) – Value at Reset is 0xFE4D

CMR
[15–0] Designation Description

Reset
Value CPU Access MPU Access

15–9 Time-out (6:0) Strobe cycles
(0-127)

0x7F Read/Write Read

8–6 Wait state
(strobe2)

Strobe1 length
(low, medium, high
bits)

0 Read/Write Read

5–3 Wait state
(strobe1)

Strobe1 length
(low, medium, high
bits)

1 Read/Write Read

2 CPU priority Priority modes 1 Read/Write Read

1 Bus error Application flag
error

0 Read/Clear Read (0 in HOM)

0 Mode SAM or HOM 1 (HOM) Read Read

� Mode bit

This bit is a read-only indication of whether the MPUI is in host-only mode
(HOM) or in single-access mode (SAM). HOM and SAM are described in
Section 3.6, MPU Interface.

� Bus error

This bit is set to 1 if the TIPB bridge generates a bus error (due to a time-out
condition or SAM/HOM change error), indicating that an error signal has
been sent to the DSP CPU, which can read this bit to identify the source of
the error condition. The bit is cleared upon read by the DSP CPU. This bit
cannot be read during HOM (always registers as zero during HOM).

� CPU priority bit

When CPU_Priority = 1, the DSP subsystem CPU, MPUI, and DMA have
the following priority in arbitration of TIPB bridge accesses:

1) CPU

2) MPUI

TIPB Bridge

 3-30

3) DMA

If CPU_Priority = 0, the CPU, MPUI, and DMA accesses to the TIPB bridge
are arbitrated in rotating priority fashion.

� Wait state bits for strb1 and strb2

Strb1 field sets the access rate for the following peripherals:

� TIPB registers

� CLKM2 registers

Strb2 field sets the access rate for the following peripherals:

� UART3 (test)

� McBSP1 (audio PCM)

� McBSP3 (optical)

� MCSI-1

� MCSI-2

� GPIO

� Mailbox

� DSP MPUI register

The control mode register bits [5–3] and [8–6] contain the number of wait
states required to generate the appropriate strobe frequency (see Table 3–8).

Table 3–8. Wait States

Number of
Wait States Strobe Period

0 DSP clk/2

1 DSP clk/3

2 DSP clk/4

3 DSP clk/5

4 DSP clk/6

5 DSP clk/7

6 DSP clk/8

7 DSP clk/9

TIPB Bridge

3-31DSP Subsystem

� Time-out[6:0]

This field specifies the number of cycles that can elapse before the TIPB
returns a bus error condition. The seven-bit field specifies the number of wait
states. The time-out period is determined as

Time-out = value of time out[6:0] + 2 measured in DSP subsystem master
clock cycles

The default value is 0x7f (127).

3.5.2 Idle Control and Idle Status Registers (ICR and ISTR)

To conserve power, the DSP subsystem is capable of idling certain circuits.
The DSP CPU and peripherals comprise several clock domains that can be
turned off individually to conserve power. The active/idle status of the various
domains is controlled by the idle control register. When the DSP software
executes the IDLE instruction, the clock domains are configured according to
the settings of the ICR (see Table 3–9). The current idle domain status is
reflected by the state of the ISTR (see Table 3–10).

The idle domains are:

0 CPU

1 DMA

2 Cache

3 Peripherals

4 DPLL

5 EMIF

The DSP DPLL is controlled by the MPU subsystem. When entering low-pow-
er mode requiring DSP DPLL off, the DSP sets DPLL idle domain on followed
by the MPU actually idling the DPLL source by writing the appropriate control
registers (see Chapter 15, Clock Generation and System Reset Management).

The DSP must not attempt to read the ISTR while DPLL domain is
idled, because this causes a time-out error.

TIPB Bridge

 3-32

Table 3–9. Idle Configuration Register (ICR)

ICR [15–0] Description DSP Access MPU Access Reset Value

15–8 Reserved (not connected) Read Read 0x0

7 Reserved idle domain Read/Write Read 0

6 Reserved idle domain Read/Write Read 0

5 EMIF idle domain Read/Write Read 0

4 DPLL idle domain Read/Write Read 0

3 Peripherals idle domain Read/Write Read 0

2 Cache idle domain Read/Write Read 0

1 DMA idle domain Read/Write Read 0

0 CPU idle domain Read/Write Read 0

Note: When the DSP subsystem comes out of IDLE, the ICR configuration is retained until modified by the CPU. The next
time an IDLE instruction is executed, the same domains enter the idle state.

Table 3–10. Idle Status Register (ISTR)

ISTR[15–0] Description DSP Access MPU Access Reset Value

15–8 Not connected Read Read 0x0

7 Reserved idle status Read Read 0

6 Reserved idle status Read Read 0

5 EMIF idle status Read Read 0

4 DPLL idle status Read Read 0

3 Peripherals idle status Read Read 0

2 Cache idle status Read Read 0

1 DMA idle status Read Read 0

0 CPU idle status Read Read 0

MPU Interface

3-33DSP Subsystem

3.6 MPU Interface

The MPU interface (MPUI) is a 16-bit parallel port that allows the MPU and the
system DMA controller to communicate with the DSP and its peripherals, facili-
tating software downloads and data transfers. The MPUI provides the MPU
with access to the full memory space of the DSP (16M bytes). In addition, the
MPUI allows the MPU to access devices on the DSP public peripheral bus
through duplicate memory-mapped peripheral registers in the MPU address
space. The MPU domain may also access the control registers of the TIPB
bridge module and the CLKM2 configuration registers. The DSP private
peripherals are not accessible via the MPUI.

MPUI transfers are facilitated by an auxiliary channel of the DSP subsystem
DMA controller; however, this dedicated DMA channel is preconfigured and
need not need to be user-configured for MPUI support.

The MPU domain (including TI925T and system DMA) always masters the
transfer operation. It initiates the read or write of DSP memory or peripherals.
The MPU also controls the parameters of the MPUI by configuring the
MPUI_CTRL_REG and the MPUI_DSP_MPUI_CONFIG register. There are
5 additional registers the MPU can read to observe the state of the MPUI:

� MPUI_DEBUG_ADDR
� MPUI_DEBUG_DATA
� MPUI_DEBUG_FLAG
� MPUI_STATUS_REG
� MPUI_DSP_STATUS_REG

The MPUI port supports four access modes:

� Single-access mode, memory (SAM_M): SARAM, DARAM and, external
memory interface are shared between the DSP domain and the MPU
domain.

� Single-access mode, peripheral (SAM_P): DSP public peripheral bus is
shared between the DSP domain and the MPU domain.

� Host-only mode, memory (HOM_M): MPU has exclusive access to DSP
SARAM, but it cannot access other DSP memory resources.

� Host-only mode, peripheral (HOM_P): MPU has exclusive access to the
DSP public peripheral bus.

SAM is the normal operating mode in which all the DSP internal memory and
the public peripherals are accessible by the MPUI interface as well as the DSP.
If both the DSP and the MPU controllers (TI925T and/or system DMA) access

MPU Interface

 3-34

the same memory at the same time, priority is given to the DSP controllers. The
MPU domain access in SAM is synchronized to the internal DSP CPU clock,
which can add access latency for the MPU transfers.

HOM provides the MPU with exclusive access to the DSP SARAM or public
peripherals, primarily to support high-speed transfers from to DSP during DSP
reset or IDLE conditions. During DSP reset condition, HOM_M and HOM_P
are invoked. In HOM_M the MPUI interface does not have access to the
DARAM (0x000000–0x00FFFF), but it has access to all the SARAM
(0x010000–0x050000). The MPU must configure the MPUI_DSP_MPUI
CONFIG register to specify which blocks of SARAM are accessible in HOM
prior to access, because the reset default is for no SARAM access during
HOM_M.

An additional condition is that in HOM_P only the MPU can access the DSP
peripheral bus.

3.6.1 HOM/SAM Change Outside of Reset

Only the DSP can invoke a HOM/SAM change outside of reset. The mode
change is initiated by a DSP write to HOM_P bit (bit 8) and HOM_R bit (bit 9)
of the ST3 register. The appropriate bit is written to request the SAM_M/
HOM_M or SAM_P/HOM_P change. The mode change is not reflected on bits
8 and 9 in ST3 until the internal controller has actually completed the mode
switch. Therefore, the DSP polls bits 8 and 9 after requesting a mode change
to ensure the mode change is complete.

The HOM_M/SAM_M and HOM_R/SAM_R status can be observed by the
MPU by reading the MPU_DSP_Status_Register (see Section 2.9, MPU
Interface, for details).

3.6.2 ST3—HOM_P Bit (Bit 8)

The host-only mode for peripherals (HOM_P) bit determines whether the
peripherals are owned only by the MPU or shared by the MPU and the DSP:

� 0: Off

Peripherals are shared by the MPU and the DSP. If you clear the HOM_P
bit, a request for sharing is sent to the peripheral domain controller. If the
peripheral domain controller clears the HOM_P bit, the clearing indicates
that the MPU no longer has exclusive ownership of the peripherals.

� 1: On

Peripherals are owned only by the MPU. If you set the HOM_P bit, a
request for HOM is sent to the peripheral domain controller. If the peripher-
al domain controller sets the HOM_P bit, the setting indicates that the
MPU has exclusive ownership of the peripherals.

MPU Interface

3-35DSP Subsystem

3.6.3 ST3—HOM_R Bit (Bit 9)

The MPUI RAM is the portion of the DSP RAM that is accessible by the MPUI.
The HOM_R bit determines/shows whether the MPUI RAM is owned only by
the MPUI or shared by the host processor and the C55x DSP:

� 0: Off

The MPUI RAM is shared by the host processor and the DSP. If you clear
the HOM_R bit, a request for sharing is sent to the MPUI. If the MPUI
clears the HOM_R bit, the clearing indicates that the MPU no longer has
exclusive ownership of the MPU RAM.

� 1: On

The MPUI RAM is owned only by the host processor. If you set the HOM_R
bit, a request for host-only mode is sent to the MPUI. If the MPUI sets the
HOM_R bit, the setting indicates that the host processor has exclusive
ownership of the MPU RAM.

See Section 2.9, MPU Interface, for complete details on usage, control, and
configuration of the MPUI and associated control registers.

EMIF

 3-36

3.7 EMIF

The external memory interface (EMIF) is a DSP subsystem module that gives
the DSP access to the shared system memory managed by the traffic control-
ler. The EMIF interfaces directly to a 32-bit wide system bus. This bus can
operate at the CPU clock rate with sustained throughput during burst
accesses. The EMIF has two control registers for user configuration:

� EMIF global control register (GCR)

� EMIF global reset register (GRR)

3.7.1 EMIF Global Control Register (EMIF_GCR)

The EMIF global control register (GCR) configures general operation of the
EMIF module. The EMIF GCR appears at word address 0x0800 in the DSP
I/O space.

Table 3–11. EMIF Global Control Register (EMIF GCR)

Bit Name Function Type
Reset
Value

15–12 Reserved R 0

11–8 Reserved RW 0

7 WPE Write posting enable

WPE=0, write posting is disabled (for debug).
WPE=1, write posting is enabled.

RW 0

6 Reserved RW 0

5 Reserved RW 1

4 Reserved R 0

3 Reserved R x

2 Reserved R x

1 Reserved R 0

0 Reserved RW 0

DSP Memory Management Unit

3-37DSP Subsystem

3.7.2 EMIF Global Reset Register (EMIF GRR)

Any write in the EMIF global reset register (GRR) register brings about a soft-
ware reset of the EMIF state machines. This register cannot be read. A soft-
ware reset does not change the current configuration register values
(EMIF_GCR , etc.); only the EMIF state machines are reset. The EMIF GRR
appears at word address 0x0801 in the DSP I/O space.

3.8 DSP Memory Management Unit

The DSP MMU maps the 16M bytes of the DSP virtual external addresses to
anyplace in the 4G-byte address space of the OMAP5910 device. At reset the
MMU is disabled and the DSP external memory space is mapped to the first
16M bytes of CS0 system memory.

The DSP MMU performs translation of 24-bit DSP external addresses
(028000 to FF8000 or FFFF00) to physical addresses in the 32-bit MPU
address space. Address translation is performed by a translation table struc-
ture (TTB) that maps the most significant bits of the DSP byte address onto
another set of most significant bits of a 32-bit MCU byte address. The least sig-
nificant bits of the DSP-generated byte address are not altered when forming
the new address. The TTB translations are expedited by a cache-like transla-
tion look-aside buffer mechanism (TLB). The address mapping may be
programmed at the TTB level or by writing the TLB entries directly. The DSP
MMU contains 32 TLB entries that can be configured to remap 1M-byte, 64K-
byte, 4K-byte, or 1K-byte segments of memory.

The DSP MMU is programmed by the TI925T. In general, the MMU is initialized
at boot time, but it also can be reprogrammed dynamically. The MMU is
programmed through the TIPB registers. DSP MMU registers have an MPU
base address of 0xFFFE:D200.

The MPU is responsible for configuration of the MMU. See Section 2.8, DSP
Memory Management Unit, for complete details on MMU configuration and
control.

EMIF / DSP Memory Management Unit

DSP Subsystem Clocking and Reset Control

 3-38

3.9 DSP Subsystem Clocking and Reset Control

The clock generator and system reset module (CLK and RST) manages
operations such as the reset sequences, the clock generation function, the
power-saving modes, idle controls, and setup for the OMAP5910. The clock
domains in the OMAP5910 platform are synthesized by the DPLL1. The DPLL
input clock source is externally supplied from the CLKIN pin.

The MPU manages the master clock configuration for the OMAP5910 device.
The DSP subsystem master clock DSP_CK is enabled at reset until the DSP
is enabled. The EN_DSPCK bit in the clock control register ARM_CKCTL
allows turning off the DSP_CK while the DSP is still in a reset state.

The CLKM2 module generates the individual clock domains for the DSP
subsystem. These clock signals have programmable frequencies based on
divisors of several possible input clock sources. See Chapter 15, Clock Gener-
ation and System Reset Management, for details on the clock generator
peripheral. CLKM2 is considered an MPU private peripheral, except for config-
uration of subdomain clocks for the DSP subsystem discussed in Section
15.2.5.

System Operating Details

3-39DSP Subsystem

3.10 System Operating Details

3.10.1 DSP Private Peripherals

The DSP private peripherals are connected to the DSP CPU by a private TIPB
bridge. This provides reduced latency for DSP access to these particular
peripherals. The private peripherals consist of the following modules, which
are described in detail in Chapter 8, DSP Private Peripherals.

� Three general-purpose timers
� A watchdog timer
� An interrupt handler

These modules are clocked by dedicated signals controlled by the CLKM2
DSP_CKCTL register.

The access rate to these peripherals is fixed by the TIPB bridge module and
does not have to be user-configured.

3.10.2 DSP Public Peripherals

The public TIPB connects the DSP public peripherals to the DSP CPU to pro-
vide a flexible communications scheme where the DSP or MPU domains can
access these devices. Because the peripheral registers are also mapped in
the MPU memory space, the MPU domain can access these peripherals indi-
rectly via the MPUI and public TIPB bridge. This results in a pseudodynamic
sharing scheme. The DSP public peripherals consist of the following modules,
which are described in detail in Chapter 9, DSP Public Peripherals:

� Two McBSPs—McBSP1 and McBSP3
� Two MCSIs—MCSI1 and MCSI2

These peripherals are clocked by the DSPXOR_CK signal, which is a buffered
version of the OMAP5910 CLKIN signal.

The access rate to these peripherals is configured by strobe 2 control bits in
the DSP TIPB CMR register. See Section 3.5.1, Control Mode Register.

System Operating Details

 3-40

3.10.3 DSP/MPU Shared Peripherals

The DSP/MPU shared peripherals are designed with two TIPB connections,
one for the DSP public TIPB and another for the MPU public TIPB. This dual
connection provides a flexible communications scheme where either the DSP
domain or the MPU domain can access a peripheral without monopolizing the
alternate processor public peripheral bus. The DSP/MPU shared peripherals
consist of the following modules, which are described in detail in Chapter 10,
MPU/DSP Shared Peripherals.

� Mailbox registers for interprocessor communication
� General-purpose I/O (GPIO)
� Three UARTs: UART1, UART2, UART3

These peripherals can be clocked by signals from the DSP subsystem CLKM2
module or the MPU subsystem CLKM1 module.

The access rate to these peripherals via the DSP is configured by the strobe2
control bits in the TIPB CMR register. See Section 3.5.1, Control Mode
Register.

3.10.4 Boot Mode for DSP Subsystem

The OMAP5910 device contains a bootloader that is a ROM-based utility
residing in the DSP subsystem ROM. It consists of a program (code) that facili-
tates downloading (bootloading) of DSP code into the DSP subsystem internal
memory from either the DSP EMIF interface to the traffic controller or the MPUI
interface when it is held in reset by the MPU. The boot mode used by the DSP
subsystem bootloader is specified by the MPU using the DSP_BOOT_CON-
FIG register when it is released from reset by the MPU. This register is read-
only for the DSP and is mapped to address 0x000F in the DSP I/O space (with-
in the DSP TIPB address space). The register is read/write for the MPU and
appears at address 0xFFFE:C900 in the MPUI address space. The MPU
controls the boot process by programming bits BOOT_MOD[3:0] while the
DSP subsystem is held in reset state. Table 3–12 shows the DSP boot
configuration.

Table 3–12. DSP Boot Configuration

Relative Word
Address Register Name Bits Reset Value

0x00000F DSP_BOOT_CONFIG BOOT_MODE [3:0] Depends on external
implementation

System Operating Details

3-41DSP Subsystem

3.10.4.1 Boot Modes

The DSP is reset by two signals:

� nRESET is a global reset (active low) that resets the DSP subsystem ex-
cept for the TIPB interrupt priority encoder, the DSP EMIF configuration
registers, and the MPUI port control logic.

� nMCURESET is a reset signal driven by the MPU (active low). It sets
the TIPB interrupt priority encoder registers, configures the DSP-EMIF
registers, and resets the MPUI control logic

The MPU controls these reset signals by writing into the RSTCT1 clock and
reset module register (see Chapter 15, Clock Generation and System Reset
Management).

There are five boot modes for the DSP subsystem. The MPU can select any
of these boot modes by the MPU by writing to the DSP_BOOT_CONFIG regis-
ter. When the DSP subsystem is released from reset (boot), the CPU always
fetches instruction at address 0xFFFF00. The physical location of this address
depends on the value of BOOT_MOD[3:0] bits.

If BOOT_MOD[3:0] is equal to 0000, the on-chip ROM is not available and the
boot address is located off-chip. If BOOT_MOD[3:0] is not equal to 0000, the
on-chip ROM is enabled and the boot address is located at the on-chip ROM.
The boot modes supported are listed in Table 3–13.

Table 3–13. Boot Modes

BOOT_MOD[3–0] Boot Process Starting Address of DSP MPU

0000 No boot download 0xFFFF00 (direct boot from a 32-bit asynchronous
interface)

0001 No boot download Pseudodirect boot from a 32-bit asynchronous
interface (bootloader configures the EMIF, then
branches to address 0x080000)

0010 Put DSP into IDLE state DSP is put into idle mode.

0011 16-bit boot download Download code from 0x80000 to user specified
address (residing at address 0x080004 as 16-bit
data).

0100 32-bit boot download Download code from 0x80000 to user specified
address (residing at address 0x080004 as 32-bit
data).

0101 MPUI boot download Branch to address 0x10000

Other Internal boot Branch to address 0x24000

Note: The DSP bootloader checks the BOOT_MOD[3:0] bits only once upon DPS subsystem release from reset.

System Operating Details

 3-42

3.10.4.2 Boot Table Formats

For 16-bit boot download, the boot table in external memory must be in the
format shown in Table 3–14.

Table 3–14. External Memory Boot Table for 16-Bit Boot Download

Word Address
(16-Bit Word) Contents

Start of External
Memory

Address

Emifaddr

Number of elements of the first section to transfer = N1.

After the number of words to transfer from this section, the next word should be
zero to indicate end of the source program. Otherwise, another section is
assumed to follow.

Emifaddr+1h Most significant word of destination address for the 1st section. Can be 0, 1, or 2.

Emifaddr+2h Least significant word of destination address for the 1st section. Can be from
0000h to FFFFh.

Emifaddr+3h 1st word of 1st section to transfer

Emifaddr+4h 2nd word of 1st section to transfer

...

N1th word of 1st section to transfer

Number of elements of the 2nd section to transfer = N2.

Most significant word of destination address for the 2nd section. Can be 0, 1, or 2.

Least significant word of destination address for the 2nd section. Can be from
0000h to FFFFh.

1st word of 2nd section to transfer

2nd word of 2nd section to transfer

.....

N2th word of 2nd section to transfer

.....

Number of elements of the last section to transfer = NL

Most significant word of destination address for the last section. Can be 0, 1, or 2.

Least significant word of destination address for the last section. Can be from
0000h to FFFFh.

1st word of last section to transfer

System Operating Details

3-43DSP Subsystem

Table 3–14. External Memory Boot Table for 16-Bit Boot Download (Continued)

Word Address
(16-Bit Word) Contents

2nd word of last section to transfer

.....

NLth word of last section to transfer

0000h to indicate the end of source program

For 32-bit boot download, the the boot table in external memory must be in the
format shown in Table 3–15.

Table 3–15. External Memory Boot Table for 32-Bit Boot Download

Word Address
(16-bit word) Contents

Start of External
Memory

Address

Emifaddr

LSB of number of elements of the first section to transfer = N1.

After the number of words to transfer from this section, the next word should be
zero to indicate end of the source program. Otherwise, another section is
assumed to follow.

Emifaddr+1h MSB of number of elements of the first section to transfer = N1

Emifaddr+ 2h Least significant word of destination address for the 1st section. Can be from
0000h to FFFFh.

Emifaddr+3h Most significant word of destination address for the 1st section. Can be 0, 1, or 2.

Emifaddr+4h 1st word of 1st section to transfer

Emifaddr+5h 2nd word of 1st section to transfer

...

N1th word of 1st section to transfer

Number of elements of the 2nd section to transfer = N2.

Most significant word of destination address for the 2nd section. Can be 0, 1, or 2.

Least significant word of destination address for the 2nd section. Can be from
0000h to FFFFh.

1st word of 2nd section to transfer

System Operating Details

 3-44

Table 3-15. External Memory Boot Table for 32-Bit Boot Download (Continued)

Word Address
(16-bit word) Contents

2nd word of 2nd section to transfer

.....

N2th word of 2nd section to transfer

.....

Number of elements of the last section to transfer = NL

Most significant word of destination address for the last section. Can be 0, 1, or 2.

Least significant word of destination address for the last section. Can be from
0000h to FFFFh.WA

1st word of last section to transfer

2nd word of last section to transfer

.....

NLth word of last section to transfer

0000h to indicate the end of source program

3.10.4.3 Bootloader Description

When the MPU releases the DSP subsystem from reset, if pins
BOOT_MOD[3:0] = 0000, then the address 0xFFFF00 is mapped into external
memory space. If pins BOOT_MOD[3:0] ≠ 0000, then the address 0xFFFF00
maps to internal ROM that has vector to the bootloader at 0xFF800. At this
point the bootloader starts to execute. It checks to see if the DSP subsystem
in is SAM. If not, it keeps checking indefinitely. As soon as it is in SAM, it does
the following initialization:

� Setup stack pointer (stack size is set to 0x20, default stack mode is fast
dual stack)

� Disable interrupts globally

� Mask off interrupts

� Setup EMIF

After this is done, the bootloader starts to check the BOOT_MOD[3:0] bits of
the DSP_BOOT_CONFIG register. Depending on the bit combination, it then
boots the DSP subsystem.

4-1

Memory Interface Traffic Controller

This chapter describes the OMAP5910 multimedia processor memory
interface traffic controller (TC).

Topic Page

4.1 Introduction 4-2.

4.2 Memory Map 4-6.

4.3 Memory Interfaces 4-12.

4.4 Traffic Controller Memory Interface Registers 4-42.

4.5 Interfacing Memories With the OMAP5910 Device 4-57.

Chapter 4

Introduction

 4-2

4.1 Introduction

The memory interface traffic controller (TC) manages all accesses by the
MPU, the TMS320C55x DSP, the system DMA, and the local bus to the
OMAP5910 system memory resources (SRAM, SDRAM, flash, ROM, etc.).
The TC also manages accesses by the MPU or the USB host. The USB host
is an internal OMAP5910 peripheral connected on the local bus, so the TC
contributes in managing USB host accesses.

Figure 4–1 shows the OMAP5910 device with the traffic controller highlighted.
Figure 4–2 shows the traffic controller in more detail. Table 4–1 lists the
access modes and data access width of the controllers (MPU, C55x DSP,
system DMA, and local bus).

Figure 4–1. TC Block Diagram

MPU Core
(TI925T)

(Instruction
Cache, Data

Cache, MMU)

System
DMA

controller

TMS320C55x DSP
(Instruction Cache, SARAM,

 DARAM, DMA,
 H/W accelerators)

MPU
peripheral

bridge

LCD
I/F

MPU
interface

SRAM

SDRAM
memories

Flash and
SRAM

memories

DSP
MMU

16

16

32

16

32

32

32

32

32

32

16

MPU Private Peripheral Bus

DSP public (shared) peripheral bus

32
MPU public

16

DSP

DSP public peripherals

McBSP1

McBSP3

MPU public peripherals

USB host I/F

JTAG/
Emulation

I/F
OSC

12 MHz Clock

OSC

OMAP5910

ETM9

Timers (3)

MPU/DSP shared peripherals

Mailbox

MPU private peripherals

Timers (3)

16

Memory interface

Reset External clock

MPU Bus

32 kHz

1.5M Bits

traffic controller (TC)

Watchdog timer

Level 1/2 interrupt handlers

Configuration registers

Clock and reset management

Watchdog timer
Level 1/2

Private peripherals

GPIO I/F

USB function I/F

Camera I/F
MPUIO

32-kHz timer
PWT
PWL

M
I
F
S

M
I
F
F

I
M
I
F

MCSI1
MCSI2

Keyboard I/F

requests

E

E

TIPB
switch

UART1
UART2

UART3 IrDA

32

MMC/SD
LPG x2

HDQ / 1-WIRE

DSP private
peripheral bus

peripheral bus

McBSP2

Device identification

RTC

Interrupt handlers

I2C
µωιρε

Frame adjustment
counter

32

32

32

32

Introduction

4-3Memory Interface Traffic Controller

Figure 4–2. Traffic Controller

T

I

P

B

B

R

I

D

G

E

(2)

MPU

Internal
SRAM bus

ROM
SRAM
Flash

SBFlash Slow bus

16

Fast bus

16
SDRAM

32

MPU bus

32

S

R

A

M
(192

32

Slow I/F DMA

Fast I/F DMA

SRAM DMA

Local bus DMA

System

MPUI

MPULocal bus

32

32

32

32

32

32 32

32Local bus

32

32

32

Slow

Fast

SRAM

Local

TIPB

MPUI-DMA

Traffic controller

MPU bus

MMU

32
MPU
TI peripheral
bus
(public)

interface

TI peripheral
bus
(private)

E

I

F

S

M

KB)

port

port

port

port

portDMA
controller

I

M

I

F

E

M

I

F

F
MPU bus

To/from
DSP
MMU

MPU TI peripheral bus (private)

16

port

To/from
MPUI port

Introduction

 4-4

Table 4–1. Controller Access Mode and Data Access Width

Controllers

Single Access Mode
Data Access Width

(Bits)

Burst Access Mode
Data Access Width

(Bits) Remarks

MPU 8, 16, 32 32 Single and burst access

C55x DSP 8, 16, 32 32 Single and burst access

System DMA controller 8, 16, 32 16, 32 Single and burst access; the
16-bit burst access is reserved for
the LCD controller channel

Local bus 8, 16, 32 32 Single and burst access

The memories accessed by the TC are separated into two groups:

� External memory is memory that is not part of the OMAP5910 device. It
can be SDRAM, flash, ROM, RAM, etc. External memory is accessed
using the external memory interface (EMIF). The TC has two separate
memory interfaces to access the external memories.

� External memory interface fast (EMIFF): A fast synchronous interface
for SDRAM

� External memory interface slow (EMIFS): An asynchronous/synchro-
nous interface to handle flash, ROM, RAM, etc.

� Internal memory is memory that is part of the OMAP5910 device and
consists of 192K bytes of SRAM. The TC accesses the internal memory
using an internal memory interface (IMIF) that is part of the TC.

Four hosts access the system resources using the TC.

� MPU: The MPU is connected to the TC via the MPU bus. The MPU can
access memories that are connected to the IMIF, EMIFF, and EMIFS.

� C55x DSP: The C55x DSP is connected to the TC via the DSP MMU bus.
The C55x DSP can access memories connected to IMIF, EMIFF, and
EMIFS.

� System DMA: The system DMA is connected to the TC using four sepa-
rate 32-bit buses, providing the system DMA controller with concurrent
access to memories connected to the IMIF, EMIFF, and EMIFS.

� Internal local bus interface: An internal local bus interface is connected to
the TC to allow access to memories connected to IMIF, EMIFF, and
EMIFS. In OMAP5910, the USB host controller interfaces (and is master)
to the local bus.

Introduction

4-5Memory Interface Traffic Controller

The TC provides each of the four hosts with:

� 32-bit single or burst access to memory (must be aligned with a[1-0] = 00)

� Size adaptation for 8-, 16-, or 32-bit words, with the requirement that
address must be aligned on the correct bit boundary. For example, 32-bit
access must be aligned on 32-bit boundary, 16-bit access must be aligned
on 16-bit boundary, and so forth.

� Access duration management (wait state insertion) to enable the
connection of slow memory devices

� Memory control signal generation (chip-select, memory-specific protocol
generation)

� Single accesses for 8-bit or 16-bit words, except the TC supports 16-bit
word bursts from the EMIFF or IMIF to the LCD controller

Memory Map

 4-6

4.2 Memory Map

Four external chip-selects and a series of internal address decodes are
provided for external and internal memories and for peripherals attached to the
TI peripheral bus (see Table 4–2). CS0, CS1, CS2, and CS3 each has an
address range of 32M bytes; the external SDRAM space has an address range
of 64M bytes; the internal SRAM space has an address range of 512K bytes.

In the boot overlay mode, CS0 and CS3 are swapped so that the MPU can boot
from a boot flash. Boot overlay mode is entered if pin MPU_BOOT is high dur-
ing reset (the state on the MPU_BOOT signal can change after reset). The
state of this pin is reflected in the BM bit field of the EMIF slow interface
configuration register. For details, see Table 4–12, EMIF Slow Interface
Configuration Register (EMIFS_CONFIG_REG).

Table 4–2. Device Types Associated With Chip-Select

CS Device

CS0 External asynchronous RAM
External asynchronous ROM or flash
External synchronous burst flash

CS1 External asynchronous RAM
External asynchronous ROM or flash
External synchronous burst flash

CS2 External asynchronous RAM
External asynchronous ROM or flash
External synchronous burst flash

CS3 External asynchronous RAM
External asynchronous ROM or flash
External synchronous burst flash

None† External synchronous dynamic RAM

None† Internal SRAM

† The interface to these memory devices is activated via internal address decoding. There is no
external chip select.

The OMAP5910 peripherals are mapped on the MPU memory space in two
different segments: through STROBE0 (public peripherals) and STROBE1
(private peripherals). Each peripheral has a range of 2K bytes.

Table 4–3 shows the MPU memory map.

Memory Map

4-7Memory Interface Traffic Controller

Table 4–3. MPU Memory Map

Device Name Start Address End Address Size in Bytes Data Access†

System Memory Address Space

External Slow Memory Interface (Flash)

FLASH CS0 0000:0000 01FF:FFFF 32M bytes 8/16/32 R/W

Reserved 0200:0000 03FF:FFFF

FLASH CS1 0400:0000 05FF:FFFF 32M bytes 8/16/32 R/W

Reserved 0600:0000 07FF:FFFF

FLASH CS2 0800:0000 09FF:FFFF 32M bytes 8/16/32 R/W

Reserved 0A00:0000 0BFF:FFFF

FLASH CS3 0C00:0000 0DFF:FFFF 32M bytes 8/16/32 R/W

Reserved 0E00:0000 0FFF:FFFF

External Fast Memory Interface (SDRAM)

SDRAM 1000:0000 13FF:FFFF 64M bytes 8/16 R/W

Reserved 1400:0000 1FFF:FFFF

Internal Memory Interface (SRAM)

Internal RAM 2000:0000 2002:FFFF 192K bytes 8/16/32 R/W

Reserved 2003:0000 2FFF:FFFF

DSP Processor Address Space

DSP MPUI Interface

MPUI Port RAM E000:0000 E0FF:FFFF 16M bytes 16/32 R/W

MPUI DSP Peripherals I/O Space E100:0000 E101:FFFF 128K bytes 16 R/W

DSP Private TIPB Peripherals (Strobe0)

DSP TI peripheral bus E100:0000 E100:07FF 2K bytes 16 R/W

Reserved E100:0800 E100:7FFF 30K bytes

DSP CLKM (clock control) E100:8000 E100:87FF 2K bytes 16 R/W

Reserved E100:8800 E100:8FFF 2K bytes

† Each register must always be accessed using the appropriate data access width as indicated in this table. Failure to do so
may result in unexpected behavior including a TIPB bus error condition with an associated interrupt. Reserved address loca-
tions should never be accessed.

Memory Map

 4-8

Table 4–3. MPU Memory Map (Continued)

Device Name Data Access†Size in BytesEnd AddressStart Address

DSP Shared TIPB Peripherals (Strobe1)

UART1 E101:0000 E101:07FF 2K bytes 8 R/W

UART2 E101:0800 E101:0FFF 2K bytes 8 R/W

Reserved E101:1000 E101:17FF 2K bytes

McBSP1 E101:1800 E101:1FFF 2K bytes 16 R/W

MCSI2 E101:2000 E101:27FF 2K bytes 16 R/W

MCSI1 E101:2800 E101:2FFF 2K bytes 16 R/W

Reserved E101:3000 E101:6FFF 16K bytes

McBSP3 E101:7000 E101:77FF 2K bytes 16 R/W

Reserved E101:7800 E101:97FF 8K bytes

UART3 E101:9800 E101:9FFF 2K bytes 8 R/W

Reserved E101:A000 E101:DFFF 16K bytes

GPIOs E101:E000 E101:E7FF 2K bytes 16 R/W

Reserved E101:E800 E101:EFFF 6K bytes

MPU Address Space

MPUI port interrupt, control and
status registers

E102:0000 E102:0003 4 bytes 16 R/W

Reserved E102:0004 EFFF:FFFF

Reserved F000:0000 FFFD:0000

MPU Public TIPB Peripherals (Strobe 0)

UART1 FFFB:0000 FFFB:07FF 2K bytes 8 R/W

UART2 FFFB:0800 FFFB:0FFF 2K bytes 8 R/W

McBSP2 FFFB:1000 FFFB:17FF 2K bytes 16 R/W

Reserved FFFB:1800 FFFB:2FFF 6K bytes

µWire FFFB:3000 FFFB:37FF 2K bytes 16 R/W

I2C FFFB:3800 FFFB:3FFF 2K bytes 16 R/W

† Each register must always be accessed using the appropriate data access width as indicated in this table. Failure to do so
may result in unexpected behavior including a TIPB bus error condition with an associated interrupt. Reserved address loca-
tions should never be accessed.

Memory Map

4-9Memory Interface Traffic Controller

Table 4–3. MPU Memory Map (Continued)

Device Name Data Access†Size in BytesEnd AddressStart Address

MPU Public TIPB Peripherals (Strobe 0) (continued)

USB function FFFB:4000 FFFB:47FF 2K bytes 16 R/W

RTC FFFB:4800 FFFB:4FFF 2K bytes 8 R/W

MPUIO FFFB:5000 FFFB:57FF 2K bytes 16 R/W

PWL FFFB:5800 FFFB:5FFF 2K bytes 8 R/W

PWT FFFB:6000 FFFB:67FF 2K bytes 8 R/W

Camera IF FFFB:6800 FFFB:6FFF 2K bytes 32 R/W

Reserved FFFB:7000 FFFB:77FF 2K bytes

MMC FFFB:7800 FFFB:7FFF 2K bytes 16 R/W

Reserved FFFB:8000 FFFB:8FFF 4K bytes

32-kHz timer FFFB:9000 FFFB:97FF 2K bytes 32 R/W

UART3 FFFB:9800 FFFB:9FFF 2K bytes 8 R/W

USB host FFFB:A000 FFFB:A7FF 2K bytes 32 R/W

FAC FFFB:A800 FFFB:AFFF 2K bytes 16 R/W

Reserved FFFB:B000 FFFB:BFFF 4K bytes

HDQ/1-Wire FFFB:C000 FFFB:C7FF 2K bytes 8 R/W

TIPB switches FFFB:C800 FFFB:CFFF 2K bytes 16 R/W

LED1 FFFB:D000 FFFB:D7FF 2K bytes 8 R/W

LED2 FFFB:D800 FFFB:DFFF 2K bytes 8 R/W

Reserved FFFB:E000 FFFB:FFFF 8K bytes

MPU Public TIPB Peripherals (Strobe 1)

Reserved FFFC:0000 FFFC:DFFF 56K bytes

GPIOs FFFC:E000 FFFC:E7FF 2K bytes 32 R/W

Reserved FFFC:E800 FFFC:EFFF 2K bytes

Mailbox FFFC:F000 FFFC:F7FF 2K bytes 16 R/W

† Each register must always be accessed using the appropriate data access width as indicated in this table. Failure to do so
may result in unexpected behavior including a TIPB bus error condition with an associated interrupt. Reserved address loca-
tions should never be accessed.

Memory Map

 4-10

Table 4–3. MPU Memory Map (Continued)

Device Name Data Access†Size in BytesEnd AddressStart Address

Reserved FFFC:F800 FFFC:FFFF 2K bytes

MPU Private TIPB Peripherals (Strobe 0)

Reserved FFFD:0000 FFFD:FFFF 2K bytes

MPU Private TIPB Peripherals (Strobe 1)

MPU level 2 interrupt handler FFFE:0000 FFFE:07FF 2K bytes 32 R/W

ULPD power management FFFE:0800 FFFE:0FFF 2K bytes 16 R/W

OMAP5910 configuration FFFE:1000 FFFE:17FF 2K bytes 32 R/W

Die ID FFFE:1800 FFFE:1FFF 2K bytes 32 R/W

Reserved FFFE:2000 FFFE:BFFF 40K bytes

LCD controller FFFE:C000 FFFE:C0FF 256 bytes 32 R/W

Local bus interface FFFE:C100 FFFE:C1FF 256 bytes 32 R/W

Local bus MMU FFFE:C200 FFFE:C2FF 256 bytes 32 R/W

Reserved FFFE:C300 FFFE:C4FF 512 bytes

MPU Timer 1 FFFE:C500 FFFE:C5FF 256 bytes 32 R/W

MPU Timer 2 FFFE:C600 FFFE:C6FF 256 bytes 32 R/W

MPU Timer 3 FFFE:C700 FFFE:C7FF 256 bytes 32 R/W

MPU watchdog timer FFFE:C800 FFFE:C8FF 256 bytes 32 R/W

MPUI FFFE:C900 FFFE:C9FF 256 bytes 32 R/W

MPU private TIPB bridge FFFE:CA00 FFFE:CAFF 256 bytes 32 R/W

MPU level 1 interrupt handler FFFE:CB00 FFFE:CBFF 256 bytes 32 R/W

Traffic controller FFFE:CC00 FFFE:CCFF 256 bytes 32 R/W

Reserved FFFE:CD00 FFFE:CDFF 256 bytes

MPU CLKM (clock control) FFFE:CE00 FFFE:CEFF 256 bytes 32 R/W

DPLL1 FFFE:CF00 FFFE:CFFF 256 bytes 32 R/W

Reserved FFFE:D000 FFFE:D0FF 256 bytes

† Each register must always be accessed using the appropriate data access width as indicated in this table. Failure to do so
may result in unexpected behavior including a TIPB bus error condition with an associated interrupt. Reserved address loca-
tions should never be accessed.

Memory Map

4-11Memory Interface Traffic Controller

Table 4–3. MPU Memory Map (Continued)

Device Name Data Access†Size in BytesEnd AddressStart Address

MPU Private TIPB Peripherals (Strobe 1) (Continued)

Reserved FFFE:D100 FFFE:D1FF 256 bytes

DSP MMU FFFE:D200 FFFE:D2FF 256 bytes 32 R/W

MPU public TIPB bridge FFFE:D300 FFFE:D3FF 256 bytes 16 R/W

JTAG ID code FFFE:D400 FFFE:D4FF 256 bytes 32 R/W

Reserved FFFE:D500 FFFE:D7FF

System DMA controller FFFE:D800 FFFE:DFFF 2K bytes 16 R/W

Reserved FFFE:E000 FFFE:FFFF 2K bytes each

† Each register must always be accessed using the appropriate data access width as indicated in this table. Failure to do so
may result in unexpected behavior including a TIPB bus error condition with an associated interrupt. Reserved address loca-
tions should never be accessed.

Memory Interfaces

 4-12

4.3 Memory Interfaces

The TC has three memory interfaces:

� Internal memory interface (IMIF)
� External memory interface slow (EMIFS)
� External memory interface fast (EMIFF)

4.3.1 Internal Memory Interface

The IMIF interfaces to an internal 192K-byte block of SRAM. The interface
handles all single and burst requests from the MPU, the C55x DSP, the system
DMA engine, and the local bus.

4.3.1.1 IMIF Priority Handler

This memory interface has two software-selectable priority algorithms for
resolving simultaneous access requests: least recently used and dynamic
priority. The priority scheme is shared with the EMIFS and EMIFF and is set
in the OMAP5910 configuration registers (bit 20, LRU_SEL in
FUNC_MUX_CTRL_0). See Chapter 6, MPU Private Peripherals, for details
on configuration registers.

� Least recently used

� A round-robin arbitration scheme. The highest priority requestor is the
one that least recently accessed the memory.

� Dynamic priority

� Dynamic priority uses high- and low-priority queues.

� Each requestor, except the MPU, has a time-out register allocated to it
(see Time-Out Registers in Section 4.4). These registers hold the
number of clock cycles that a low-priority queue request must wait
before it is moved from the low-priority queue to the high-priority
queue.

� At reset, all requestors are initially in the low-priority queue and the
time-out registers are set to minimum value for each requestor. You
must program these registers before using dynamic priority.

� The low-priority queue order is:

� MPU
� DSP
� Local bus
� DMA (all channels including LCD)

Memory Interfaces

4-13Memory Interface Traffic Controller

� The high-priority queue order is:

� DMA transfer involving LCD channel
� DSP
� Local bus
� DMA transfer involving channels other than LCD channel

� Fixed priority is a special case of dynamic priority. To create a fixed priority,
all time-out registers must have a value of 0. This way any request made
goes into the high-priority queue after one clock cycle. Then the high-
priority queue provides a fixed priority.

4.3.1.2 IMIF Operation

The 192K bytes of internal SRAM are selected by an internal chip select based
on the appropriate address decode. The interface to the SRAM is 32 bits wide
and provides support for single and burst accesses. The SRAM operates at
the frequency of the traffic controller.

4.3.2 External Memory Interface Slow

The EMIFS interfaces with and handles all transactions to flash memory,
ROM, asynchronous memories, and synchronous burst flash. The interface
can drive up to four devices by assignment to one of four chip-selects. Each
chip-select has a corresponding register to specify the protocol used for the
associated external device.

Table 4–4 shows the EMIFS signal list.

Table 4–4. External Memory Interface Slow Signal List

Signal Name I/O Bus Description

FLASH.RDY I – Ready/busy signal from device

FLASH.WP O – Write protection

FLASH.CLK I/O – Clock signal for flash device

FLASH.RP O – Flash power-down/reset

FLASH.CS0 O – Active-low chip-select for device

FLASH.CS1 O – Active-low chip-select for device

FLASH.CS2† O – Active-low chip-select for device

FLASH.CS3 O – Active-low chip-select for device

† FLASH.CS2 and FLASH.BAA are multiplexed on the same device pin. Pin function is selected using the OMAP5910 configu-
ration register, FUNC_MUX_CRTL_0. The FLASH.CS2 functionality is default.

Memory Interfaces

 4-14

Table 4–4. External Memory Interface Slow Signal List (Continued)

Signal Name DescriptionBusI/O

FLASH.BAA† O – Active-low burst advance acknowledge for Advanced Micro Devices
(AMD) burst flash

FLASH.OE O – Active-low output enable

FLASH.WE O – Active-low write enable

FLASH.ADV O – Active-low address valid

FLASH.D[15:0] I/O 15–0 Flash data bus from external device

FLASH.A[24:1] O 24–1 Flash data bus to external device

FLASH.BE O 3–0 External byte enable

† FLASH.CS2 and FLASH.BAA are multiplexed on the same device pin. Pin function is selected using the OMAP5910 configu-
ration register, FUNC_MUX_CRTL_0. The FLASH.CS2 functionality is default.

Note:

OMAP5910 multiplexes the FLASH.CS2 and FLASH.BAA pin functionality
to the same device pin. Selecting the FLASH.BAA function to enable burst
flash advance acknowledge disables FLASH.CS2 functionality. In this case,
capability of the EMIFS interface is reduced from a maximum of four external
devices to a maximum of three external devices.

4.3.2.1 EMIFS Priority Handler

This memory interface has two software-selectable priority algorithms for
resolving simultaneous access requests: least recently used and dynamic
priority. The priority scheme is shared with the IMIF and EMIFF and is set in
the OMAP5910 configuration registers (bit 20, LRU_SEL in
FUNC_MUX_CTRL_0). See Chapter 6, MPU Private Peripherals, for details
on configuration registers.

� Least recently used

� A round-robin arbitration scheme. The highest priority requestor is the
one that least recently accessed the memory.

� Dynamic priority

� Dynamic priority uses high- and low-priority queues

� Each requestor, except the MPU, has a time-out register allocated to it
(see Time-Out Registers in Section 4.4). These registers hold the
number of clock cycles that a low-priority queue request must wait be-
fore it is moved from the low priority queue to the high-priority queue.

Memory Interfaces

4-15Memory Interface Traffic Controller

� At reset, all requestors are initially in the low-priority queue and the
time-out registers are set to minimum value for each requestor. You
must program these registers before using dynamic priority.

� The low-priority queue order is:

� MPU
� DSP
� Local bus
� DMA (all channels including LCD)

� The high-priority queue order is:

� DMA transfer involving LCD channel
� DSP
� Local bus
� DMA transfer involving channels other than LCD channel

� Fixed priority is a special case of dynamic priority. To create a fixed priority,
all time-out registers must have a value of 0. This way any request made
goes into the high-priority queue after one clock cycle. Then the high-
priority queue provides a fixed priority.

4.3.2.2 EMIFS Operation

This interface generates the appropriate signal timings to drive the following
types of devices or compatible devices:

� Intel fast boot block flash (23FxxxF3)
� AMD simultaneous read/write boot sector flash (AM29DLxxxG)
� AMD burst mode flash (AM29BLxxxC)
� Intel StrataFlash memory (28FxxxJ3A)
� Intel synchronous StrataFlash memory (28FxxxK3/K18)
� Intel wireless flash memory (28FxxxW18)
� Asynchronous SRAM

Every macroscopic flash command (read array, program, clear status register)
is sent to the flash memory controller by the MPU. The MPU writes in the flash,
followed by a read or a write, to set up the flash in the correct mode.

File/boot block flash basic operations supported are:

� Asynchronous read, including specific reads like manufacturer ID
� Burst read emulation (by multiple asynchronous reads) in 32-bit width
� Reset or power down
� Asynchronous write with WE in 16-bit width

Memory Interfaces

 4-16

The following operations are also supported for burst flash devices:

� Synchronous burst read mode (for Intel and AMD flashes)

An additional read mode is provided that supports burst read on page mode
ROM devices.

Figure 4–3 through Figure 4–7 show the external timing of the protocols used
by the EMIF slow interface.

4.3.2.3 Device Initialization

Depending on the flash memory or RAM device associated with each chip-
select, the EMIFS interface must be initialized. If the device used is a flash, the
flash may have to be initialized in the correct protocol to achieve maximum
performance.

To use the external flash device with the synchronous flash burst protocol, the
following configuration must be set in the flash device and in the EMIFS chip-
select configuration registers (see Table 4–13, EMIF Slow Chip-Select
Configuration Registers):

� Read mode

� Frequency configuration

� Data output configuration

� Burst order. The EMIF only supports linear burst order.

� Burst length

� CLK configuration

� Flash mode operation. Some flash modules use multiple signals for
burst operations (see Section 4.3.2.7, Burst Read Operation, for more
information).

After reset, each of the EMIF slow chip-select configuration registers is config-
ured in asynchronous mode, with 15 wait cycles and a clock divider of 6 (rela-
tive to the traffic controller clock). This configuration ensures maximum
compatibility with many existing devices.

Memory Interfaces

4-17Memory Interface Traffic Controller

4.3.2.4 EMIFS Memory Timing Control

In both asynchronous and synchronous modes all EMIFS-to-memory control
signals are referenced to an internal EMIFS reference clock. The internal
EMIFS reference clock is divided from the TC clock by a programmable value
in the FCLKDIV bit field of the EMIFS chip select configuration register
(EMIFS_CSx_CONFIG). This allows the EMIFS to accommodate timing
constraints of slow devices, even with high system clock rate. Table 4–5 shows
valid FCLKDIV settings and resulting EMIFS reference clock values.

Table 4–5. FCLKDIV Settings and Resulting EMIFS Reference Clock

FCLKDIV EMIFS Reference

00 TC clock/1

01 TC clock/2

10 TC clock/4

11 TC clock/6

Depending on the chip-select mode configuration, the EMIFS reference clock
can be output at the FLASH.CLK output pin. In asynchronous read and write
modes, EMIFS reference clock is not output and the FLASH.CLK pin remains
low. In synchronous modes, EMIFS reference clock is present at the
FLASH.CLK device pin.

In synchronous modes a selectable retiming feature enables read data to be
latched by a delayed EMIFS reference clock. The retiming feature accounts
for delays through the OMAP5910 input/output pins by feeding back
FLASH.CLK to offer optimum data and clock alignment. You can select the re-
timing mode using the RT bit in the EMIFS chip-select configuration registers.

Memory Interfaces

 4-18

4.3.2.5 Asynchronous Read Operation

Asynchronous read mode is selected by programming the RDMODE bit field
to 000 in the corresponding EMIF slow chip-select configuration register. This
is the default mode at reset.

The following characteristics describe asynchronous read mode operation.

� The chip-select pulse width depends on the RDWST bit field of the EMIFS
chip-select configuration register. Pulse width equals:

(RDWST + 2) x EMIFS_Ref (shown as N cycles in Figure 4–3)

Chip-select minimum pulse width is (2 x EMIFS_Ref).

� Address drive time follows FLASH.CS_[X] activation (no setup time guar-
anty). The FLASH.ADV output is asserted with the address for use with
Intel and AMD burst flash protocols.

� Read data is latched on the same TC clock rising edge that deactivates
the FLASH.OE signal.

� In asynchronous mode, the internal EMIFS reference clock is not provided
outside the EMIFS. The FLASH.CLK signal remains low.

� Figure 4–3 shows typical timing for an asynchronous 16-bit read operation
on a 16-bit width device with RDWST = 4, FCLKDIV = 01.

Figure 4–3. Asynchronous 16-Bit Read Operation on a 16-Bit Width Device

N cycles

Address valid

Valid data D0

Low
FLASH.CLK

FLASH.CS_[X]

FLASH.ADV

FLASH.A(24:1)

FLASH.D(15:0)

FLASH.OE

FLASH.RDY

FLASH.BE(1:0)

High

TC Clock
(internal)

EMIFS Ref
(internal)

Memory Interfaces

4-19Memory Interface Traffic Controller

4.3.2.6 Asynchronous Page Mode Read Operation

The asynchronous read operation (page mode) is similar to the asynchronous
read, except that the number of wait states is different between the first access
and the subsequent accesses within the page.

This mode of operation is selected by programming the following fields of the
EMIF slow chip-select configuration registers (see Table 4–13, EMIF Slow
Chip-Select Configuration Registers).

� RDMODE selects the memory type and number of words per page for
page mode devices; supported values for words per page are 4, 8, or 16.

� RDWST sets the delay to insert prior to latching the first data word read
from a page (range 0-15). The resulting delay is equal to (RDWST+2) x
EMIFS_ref. This is represented by N cycles in Figure 4–4 and Figure 4–5.
When crossing a page boundary, as in Figure 4–5, the RDWST parameter
is used again for the first access on the new page.

� PGWST sets the delay between subsequent words in the page (range
0-15). The resulting delay is equal to (PGWST+1) x EMIFS_ref. This is
represented by P cycles in Figure 4–4 and Figure 4–5.

� BW defines the word length of the access, which is equal to the memory
data bus width.

As in asynchronous mode, device interface signals are referenced to the inter-
nal EMIFS reference clock, which is divided from the TC clock using FCLKDIV
in the EMIF slow interface configuration register. The FLASH.CLK signal is not
externally driven in asynchronous page operating mode.

Figure 4–4 shows typical timing for an asynchronous page mode 8x16-bit read
operation on a 16-bit width device with RDWST = 2, PGWST = 0,
FCLKDIV = 01, and RDMODE = 2.

Figure 4–5 shows typical timing for an asynchronous page mode 8x16-bit read
with page crossing on a 16-bit width device with RDWST = 2, PGWST = 0,
FCLKDIV = 01, and RDMODE = 2.

Memory Interfaces

 4-20

Figure 4–4. Asynchronous Page Mode 8x16-Bit Read Operation on a 16-Bit Width Device
(8 Words per Page)

LowFLASH.CLK

FLASH.CS_[X]

FLASH.ADV

FLASH.A(24:1)

FLASH.D(15:0)

FLASH.OE

FLASH.RDY

FLASH.BE(1:0)

Add0 Add1 Add2 Add3 Addr4 Add5 Add6 Add7

D0 D1 D2 D3 D7

N cycles

P cycles

High

D4 D6D5

TC Clock
(internal)

EMIFS Ref
(internal)

Figure 4–5. Asynchronous Page Mode 8x16-Bit Read With Page Crossing on 16-Bit Width
Device (4 Words per Page)

LowFLASH.CLK

FLASH.CS_[X]

FLASH.ADV

FLASH.A(24:1)

FLASH.D(15:0)

FLASH.OE

FLASH.RDY

FLASH.BE(1:0)

Add0 Add1 Add2 Add3 Addr4 Add5 Add6 Add7

D0 D1 D2 D3 D7

N cycles N cycles

P cycles P cycles

High

D4 D6D5

TC Clock
(internal)

EMIFS Ref
(internal)

Memory Interfaces

4-21Memory Interface Traffic Controller

4.3.2.7 Burst Read Operation

The synchronous read mode is selected for each device by setting the
RDMODE configuration bit field to 100.

In this mode of operation, FLASH.CLK is driven on the OMAP5910 device pin.

Both AMD burst flash and Inter burst flash have three modes of operation:

� Asynchronous single read mode (device startup mode)
� Synchronous single read or burst read mode
� Asynchronous write

Asynchronous single read mode and asynchronous write modes are compat-
ible with operation described in Section 4.3.2.5, Asynchronous Read
Operation, and Section 4.3.2.8, Asynchronous Write With WE Operation.

Figure 4–6 shows the timing view of synchronous burst read mode operation.

On the AMD device, LBA is directly connected to the FLASH.ADV OMAP5910
pin.

The address is latched on the rising edge of FLASH.ADV with a specified hold
time of 3 ns. This is easily met by maintaining the address during two cycles.

Data output of the device is stable on the rising edge of FLASH.CLK (specified
with a setup and hold time referenced to this edge).

Two configuration registers are used in this operating mode:

� FCLKDIV. Specifies the frequency ratio between the TC clock and
FLASH.CLK (see Table 4–13, EMIF Slow Chip-Select Configuration
Registers).

� RDWST. Specifies the number of FLASH.CLK cycles between the falling
edge of FLASH.ADV and the edge at which first data is valid (see
Table 4–13, EMIF Slow Chip-Select Configuration Registers).

The FLASH.RDY signal is not used in this mode: however, it is used during
flash program and erase operations.

Note: Intel Burst Flash Operation

For proper operation in applications that combine OMAP5910 with Intel burst
flash (examples include Intel 28FxxxK3, 28FxxxK18, and 28FxxxW18), the
flash WAIT signal must not be connected to the OMAP5910 FLASH.RDY in-
put. Instead, the FLASH.RDY input pin in the OMAP5910 must be tied active
high through a pullup resistor. The OMAP5910 traffic controller properly han-
dles all accesses across Intel burst flash boundaries (where WAIT could be
asserted) without any input from WAIT, and without performance penalty.

Memory Interfaces

 4-22

Figure 4–6. Synchronous Burst Read With Page Alignment

FLASH.CLK
(FDIV=6)

FLASH.CLK
(FDIV=4)

FLASH.CLK
(FDIV=2)

FLASH.CLK
(FDIV=1)

TC clock

FLASH.D

FLASH.CS_[X]

FLASH.ADV

FLASH.CS_[X]

FLASH.A

FLASH.CLK

FLASH.D

FLASH.OE

2 TC clock cycles

(RDWST+1)xFDIV TC clock cycles

(RDWST+1)xFDIV TC clock cycles

(RDWST+1)xFDIV TC
clock cycles6 TC clock cycles

(RDWST+1)xFDIV TC clock cycles

Synchronous Burst Read Operation (1/2)

Synchronous Burst Read Operation (2/2)

First data
valid on this edge

Defined by first access
latency in Flash

configuration register

Data strobing edges

FLASH.BAA

4 TC clock cycles

1 TC clock cycles

FLASH.RDY

Address valid

Memory Interfaces

4-23Memory Interface Traffic Controller

4.3.2.8 Asynchronous Write With WE Operation

The asynchronous write is used for both file flash and burst flash devices.
Figure 4–7 shows the timing diagram. Burst write operation is not supported.

Figure 4–7. Asynchronous Write With WE Operation

ÎÎÎ
ÎÎÎ

ÎÎÎÎ
ÎÎÎÎ

ÎÎÎÎÎ
ÎÎÎÎÎ

ÎÎÎÎ
ÎÎÎÎ

FLASH.WE

Data to Flash

WRWST = 1FLASH.CS_[X]

FLASH.ADV

FLASH.A

FLASH.CLK

FLASH.D

Address valid

WELEN = 2

The flash device latches the data on the rising edge of FLASH.WE; data hold
time specified is 0 ns minimum, which can be ensured by one TC clock cycle.
The FLASH.WE low pulse duration is programmable for each device through
the WELEN field in the flash configuration register. The number of wait states
between write operations is programmable for each device through the
WRWST field in the configuration register.

The duration from falling FLASH.CS to falling FLASH.WE (shown in
Figure 4–7) is equal to the programmed value of WRWST + 1, and the duration
for which FLASH.WE is asserted active low is equal to the programmed value
of WELEN + 1.

The FLASH.CLK signal is not driven externally (maintained low) in the asyn-
chronous write mode.

Memory Interfaces

 4-24

4.3.2.9 EMIFS Not-Ready Functionality

The EMIFS interface includes a feature that allows an external device to assert
a not-ready signal via the OMAP5910 FLASH.RDY pin. Two modes of not-
ready are available: classic and dynamic. In either mode, if FLASH.RDY is low,
the external device is not ready.

Classic not-ready is supported for all EMIFS read modes and all access types
(read or write, single or burst). In classic not-ready mode, FLASH.RDY is
sampled synchronously at every rising TC clock edge. If FLASH.RDY is active
low, then the EMIFS interface is frozen in its current state. If there is an access
in progress, then the current state of that access is extended until the
FLASH.RDY signal goes inactive high. All information regarding the current
access is maintained (wait states, burst count, etc).

Dynamic not-ready is also supported for all accesses through EMIFS. In this
mode, FLASH.RDY is sampled synchronously to TC clock, but only after any
ongoing access (single or burst) is completed. If FLASH.RDY is sampled ac-
tive low, the EMIFS interface is placed in a hold state and remains in this state
until FLASH.RDY is asserted high by the external device. In dynamic not-
ready mode, FLASH.RDY is used by the external device to indicate to
OMAP5910 that it will be going inactive after the current access completes.

The programming of FLASH.RDY modes is described in Table 4–27, EMIF
Slow Wait State Configuration.

4.3.2.10 EMIFS Dual-Port RAM Interface Mode

The OMAP5910 EMIFS includes a programmable mode associated with the
FLASH.CS2 chip select pin to support external devices that require a valid
flash address before chip select is active. An example of such a device is a dual
port RAM (DPRAM). When DPRAM mode is enabled, the low transition of
FLASH.CS2 is delayed to ensure that address is valid. The low to high
transition of FLASH.CS2 is not changed regardless of the mode setting.
EMIFS DPRAM mode is programmed in the OMAP5910 configuration
registers using bit 22, CONF_MOD_DPRAM_ENABLE_R, in register
MOD_CONF_CTRL_0. See Chapter 6, MPU Private Peripherals, for details
on configuration registers.

DPRAM interface mode is only applicable to EMIFS chip-select FLASH.CS2.
Also note that the FLASH.CS2 pin multiplexes the FLASH.BAA function (see
Table 4–4), and this FLASH.CS2/FLASH.BAA multiplexing has highest prior-
ity. To activate the DPRAM interface mode, you must first ensure that
OMAP5910 pin multiplexing has FLASH.CS2 selected, then program for
DPRAM interface configuration as described above. The DPRAM interface

Memory Interfaces

4-25Memory Interface Traffic Controller

mode is recommended only for 16-bit accesses since the OMAP5910 EMIFS
keeps chip-select and write enable active between the two accesses gener-
ated by one 32-bit access to EMIFS. While nothing prevents the use of 32-bit
accesses in DPRAM interface mode, avoid it if address must be known valid
while write enable is active.

4.3.3 External Memory Interface Fast

The EMIFF can interface with synchronous DRAM (SDRAM). The interface
directs all the transactions to the SDRAM device. The bus width is 16 bits.

Table 4–6 shows the EMIFF signal list.

Table 4–6. External Memory Interface Fast Signal List

Signal Name I/O Bus Description

SDRAM.A[12:0] O 12-0 SDRAM address bus

SDRAM.D[15:0] I/O 15-0 Data from SDRAM

SDRAM.CLK I/O – Clock to SDRAM

SDRAM.BA[1:0] O 1-0 SDRAM bank select

SDRAM.CKE O – SDRAM clock enable

SDRAM.RAS O – SDRAM RAS

SDRAM.CAS O – SDRAM CAS

SDRAM.WE O – SDRAM write enable

SDRAM.DQML O – Lower byte 3-state

SDRAM.DQMU O – Upper byte 3-state

4.3.3.1 EMIFF Priority Handler

This memory interface has two software-selectable priority algorithms for
resolving simultaneous access requests: least recently used and dynamic
priority. The priority scheme is shared with the EMIFS and IMIF and is set in
the OMAP5910 configuration registers (bit 20, LRU_SEL in
FUNC_MUX_CTRL_0). See Chapter 6, MPU Private Peripherals, for details
on configuration registers.

� Least recently used

� A round-robin arbitration scheme. The highest priority requestor is the
one that least recently accessed the memory.

Memory Interfaces

 4-26

� Dynamic priority

� Dynamic priority uses high- and low-priority queues.

� Each requestor, except the MPU, has a time-out register allocated to it
(see Time-Out Registers in Section 4.4). These registers hold the
number of clock cycles that a low-priority queue request has to wait
before it is moved from the low-priority queue to the high-priority
queue.

� At reset, all requestors are initially in the low-priority queue and the
time-out registers are set to minimum value for each requestor. You
must program these registers before using dynamic priority.

� The low-priority queue order is:

� MPU
� DSP
� Local bus
� DMA (all channels including LCD)

� The high-priority queue order is:

� DMA transfer involving LCD channel
� DSP
� Local bus
� DMA transfer involving channels other than LCD channel

� Fixed priority is a special case of dynamic priority. To create a fixed priority,
all time-out registers must have a value of 0. This way any request made
goes into the high-priority queue after one clock cycle. Then the high-
priority queue provides a fixed priority.

4.3.3.2 EMIFF Operation

The EMIFF controller can support up to two devices for up to 64M bytes of
memory. The following devices are supported:

� 256M-bit, 128M-bit, 64M-bit
� 2 or 4 banks for 64M-byte device
� x8 or x16 data bus configurations

Table 4–7 shows the possible SDRAM configurations.

Memory Interfaces

4-27Memory Interface Traffic Controller

Table 4–7. Possible SDRAM Configurations

Memory Size
(Bytes)

Bus
Size

Number of
Devices Type of Device

64M 2 x 8 2 256M bytes organized in 32M x 8

32M 1 x 16 1 256M bytes organized in 16M x 16

2 x 8 2 128M bytes organized in 16M x 8

16M 1 x 16 1 128M bytes organized in 8M x 16

2 x 8 2 64M bytes organized in 8M x 8

8M 1 x 16 1 64M bytes organized in 4M x 16

4M 2 x 8 2 16M bytes organized in 2M x 8

2M 1 x 16 1 16M bytes organized in 1M x 16

The burst length on the SDRAM is variable from 1-8 words and can be 32
words in the case of the LCD controller. The burst length is controlled by the
SDRAM controller depending on how quickly EMIFF requests are received
from the various initiators within the OMAP system (MPU, DSP subsystem,
system DMA, local bus). The actual burst length is not controlled with the burst
size of the SDRAM MRS configuration register, which must always be set with
continuous burst. Depending on the system loading within the device and the
specific configurations and interactions between the different initiators, burst
transfers may or may not be achieved on the EMIFF by any specific initiator.
However, the SDRAM request management logic within the SDRAM controller
allows only bursts of 8 words, except for the LCD refresh channel which can
achieve a burst of 32 words.

The SDRAM controller supports:

� The self-refresh mode (idle) and autorefresh (normal operation)

� Automatic generation of MRS and EMRS commands to the SDRAM by
writing to a mirror configuration register within the OMAP5910 device

� Burst sizes of 1x8, 1x16, 1x32, and 4x32 for all accesses and 8x16 burst
access for LCD.

� Burst across page boundary (local address increment coupled with
current address register)

� Two pipelined levels of request from the SDRAM request manager to
enable page interleave timing and reduce overhead cycles by the burst
interruption mechanism

Memory Interfaces

 4-28

4.3.3.3 SDRAM Mode and Extended Mode Register Initialization

To make SDRAM memory accessible, its internal mode register must first be
configured. The MRS register contains the protocol information used to com-
municate with the OMAP5910 device (burst size, latency, write burst, etc.).
The EMRS register enables certain low-power characteristics for the SDRAM.

� Writing to the EMIF fast interface SDRAM MRS register (EMIFF_MRS)
automatically forces the generation of an MRS command on the pins of
the SDRAM interface. When the command is issued, the content of the
OMAP5910 MRS register is placed on the SDRAM address bus and
latched by the SDRAM into its internal MRS register.

� OMAP5910 uses the same EMIF fast interface SDRAM MRS register,
combined with a control bit setting, to write EMRS commands to the
SDRAM. When the CONF_MOD_EMRS_CTRL bit field in the
MOD_CONF_CTRL_0 register is set, the OMAP configures SDRAM
banks to write out the EMIFF_MRS register as EMRS commands instead
of MRS commands.

� Reading from the EMIF fast interface SDRAM MRS register does not
generate any external transactions.

Note:

The SDRAM requires 100 µs to stabilize after power up. Software is respon-
sible for performing the initial setup of SDRAM. For more information see
Table 4–20, EMIF Fast Interface SDRAM MRS Register.

4.3.3.4 SDRAM Autorefresh Initialization

To increase SDRAM bus availability, it is preferable to subdivide the SDRAM
into smaller sections and then evenly distribute the refresh of each of these
subsections instead of performing a single autorefresh for the entire SDRAM.
The OMAP5910 device can support subdividing the autorefresh of the
SDRAM into bursts of 1, 4, or 8 rows. It is recommended to set this parameter
to 8 rows.

A 16-bit timer is used to track the interval between autorefresh burst requests
to the SDRAM. An autorefresh request is issued when the timer reaches a
user-defined value based on the following parameters:

� SDRAM frequency
� Refresh rate
� Number of SDRAM rows

Memory Interfaces

4-29Memory Interface Traffic Controller

The following formula is used to determine the refresh counter value that
must be programmed in the EMIF fast interface configuration register 1
(EMIFF_SDRAM_CONFIG):

Counter Value �

�SDRAM refresh rate
Tf

�–400

Number of SDRAM Rows
where Tf = (1 / traffic controller frequency) and the 400 cycles take into
account the worst-case priority scenario where the SDRAM refresh is at
the bottom of the priority queue.

Example: 64-ms refresh rate, 100-MHz traffic controller frequency,
4096 rows to be refreshed:

Tf = 10 ns

Counter Value �
�64000000 ns

10 ns
�–400

4096
� 1562 cycles

This ensures a 64-millisecond refresh period for the full SDRAM. In the event
that the downcounter does not equal zero by the time a new autorefresh burst
request occurs, the new request is memorized and is done during the current
refresh burst.

4.3.3.5 SDRAM Self-Refresh Protection

The traffic controller idle mode is entered after an internal request and
acknowledge protocol with the OMAP5910 clock generator and system reset
module. In idle mode, the traffic controller clock is stopped. If the clock remains
idle for more than 64 milliseconds and the SDRAM was not entered into self
refresh mode, SDRAM data corruption results. Setting the RFRSH_STBY
bit in the EMIF fast interface SDRAM configuration register 2
(EMIFF_SDRAM_CONFIG_2) avoids SDRAM data corruption by automati-
cally placing the SDRAM in self-refresh mode prior to the traffic controller
entering idle mode.

A similar SDRAM data corruption can occur in the event of a warm global sys-
tem reset from external device pin. Since the reset event is likely to extend be-
yond 64 milliseconds, and the SDRAM controller does not autorefresh during
reset, data is corrupted. Setting the RFRSH_RST bit in the EMIF fast interface
SDRAM configuration register 2 (EMIFF_SDRAM_CONFIG_2) avoids
SDRAM data corruption for this case by automatically placing the SDRAM in
self-refresh mode prior to warm reset being applied to the traffic controller. The
SDRAM controller continues in self-refresh mode until the reset is unasserted.
Note that RFRSH_RST applies only in the case of warm reset. For cold reset,
SDRAM is not set to self-refresh regardless of the state of RFRSH_RST.

Memory Interfaces

 4-30

Caution: Self-Refresh Mode

When the EMIFF SDRAM is in self-refresh mode, the EMIFF does
not respond to TIPB requests including MRS writes. To respond,
the SLFR bit must be cleared by firmware. Writes to TC registers
which would normally cause EMIFF to perform an action have no
effect while EMIFF is in self-refresh mode. If an MRS write is
attempted while EMIFF is in self-refresh mode, there is a pending
MRS request. This prevents the traffic controller from idling and
therefore prevents the device from entering deep sleep mode. The
MRS request is not serviced until the SLFR bit is cleared.

4.3.3.6 SDRAM Clock Disable

The EMIF fast SDRAM clock signal (SDRAM.CLK) is disabled using these
steps:

1) Set the PDE bit field of the EMIF slow interface configuration register.

2) Set one (or both) of the following bit fields in the EMIF fast SDRAM
configuration register 1

a) Set the SLRF to place the SDRAM into self-refresh mode
b) Set the PWD to place the SDRAM into power-down mode

3) Set the CLK bit field of the EMIF fast interface SDRAM configuration
register 1 to stop the clock

4.3.3.7 Endianism Conversion Control

The traffic controller registers include a register to control endianism
conversion in the DSP memory management unit. For details, see Table 4–25,
Endianism Register (ENDIANISM).

4.3.3.8 SDRAM Access Timing Diagrams

Figure 4–8 through Figure 4–18 show the SDRAM timing diagrams. Burst
accesses shown here might not be achievable by all initiators of EMIFF trans-
actions. See Section 4.3.3.2 for more detail on bursting behavior.

Memory Interfaces

4-31Memory Interface Traffic Controller

Figure 4–8. SDRAM Write Single 32-Bit Word With Burst Stop
ACTV0

ACCESS_GRANT

COMMAND

ADDRESS

DQ

CURRENT_COL

CURRENT_SIZE

DVALID

SAVE_ADD

LAST_DATE

ACCESS_REG 2

ANA

STOPWRITE

B0/R0

01

C0

D

B0/C0

C0+1

C0+1 C0+2

Ignored

D

NA

Note: WRITE (burst reduced to 2) is interrupted by a STOP command because no new request is pending.

Memory Interfaces

 4-32

Figure 4–9. SDRAM Write Single 16-Bit Half-Word With Burst Stop
ACTV0

ACCESS_GRANT

COMMAND

ADDRESS

DQ

CURRENT_COL

CURRENT_SIZE

DVALID

SAVE_ADD

LAST_DATE

ACCESS_REG

ANA

STOPWRITE

B0/R0

D

Ignored

NA

0

C0

2

C0+1

B0/C0

Note: WRITE (burst reduced to 1) is interrupted by a STOP command because no new request is pending.

Memory Interfaces

4-33Memory Interface Traffic Controller

Figure 4–10. SDRAM Write Single 16-Bit Half-Word Followed by Write Burst 8
ACTV0

ACCESS_GRANT

COMMAND

ADDRESS

DQ

CURRENT_COL

CURRENT_SIZE

DVALID

SAVE_ADD

LAST_DATE

ACCESS_REG 2

STOPWRITE

B0/R0

0

C0

D

B1/C1

C1

C0+1 C1+1

D

WRITE

2

B0/C0

D D D D D D D

C1+1

C1+2 C1+3 C1+4 C1+5 C1+6 C1+7 C1+8

C1+2C1+3 C1+4C1+5 C1+6C1+7

7 6 5 4 3 2 1 0

Output column counter

Note: WRITE (burst reduced to 1) is followed by a WRITE (8) in a different bank and in a page already active.

Memory Interfaces

 4-34

Figure 4–11.SDRAM Read Single 16-Bit Half-Word With Burst Stop
ACTV0

ACCESS_GRANT

COMMAND

ADDRESS

DQ

CURRENT_COL

CURRENT_SIZE

DVALID

SAVE_ADD

LAST_DATE

ACCESS_REG 2

STOPREAD

B0/R0

0

C0

Q

B0/C0

C0+1

L = 3

Note: READ (burst reduced to 1) is interrupted by a STOP command because no new request is pending.

Memory Interfaces

4-35Memory Interface Traffic Controller

Figure 4–12. SDRAM Read Single 16-Bit Half-Word Followed by Read Burst 8 Half-Word
ACTV0

ACCESS_GRANT

COMMAND

ADDRESS

DQ

CURRENT_COL

CURRENT_SIZE

DVALID

SAVE_ADD

LAST_DATE

ACCESS_REG 2

STOPREAD

B0/R0

0

C0

Q

B1/C1

C1

C0+1 C1+1

Q

READ

2

B0/C0

Q Q Q Q Q Q Q

C1+1

C1+2 C1+3 C1+4 C1+5 C1+6 C1+7 C1+8

C1+2C1+3 C1+4C1+5 C1+6C1+7

7 6 5 4 3 2 1 0

Output column counter

L = 3

Note: READ (burst reduced to 1) is followed by a READ burst (8) in a different bank and in a page already active.

Memory Interfaces

 4-36

Figure 4–13. SDRAM Write Burst 32-Bit Word Followed by Read Burst 8 Half-Word
ACTV0

ACCESS_GRANT

COMMAND

ADDRESS

DQ

CURRENT_COL

CURRENT_SIZE

DVALID

SAVE_ADD

LAST_DATE

ACCESS_REG 2

STOPWRITE

B0/R0

1

C0

B1/C1

C0+1

C0+1 C1+2

Q

READ

2

B0/C0

Q Q Q Q Q Q Q

C1

C1+1 C1+2 C1+3 C1+4 C1+5 C1+6 C1+7

C1+1 C1+2 C1+3 C1+4 C1+5 C1+6

L = 3

C1+8

C1+7

7 6 5 4 3 2 1 00

D

Ignored

D

Note: WRITE (burst reduced to 2) is interrupted by a READ request pending on a bank and row already active.

Memory Interfaces

4-37Memory Interface Traffic Controller

Figure 4–14. SDRAM Single Half-Word Followed by a Read Burst 6 Half-Words
ACTV0

ACCESS_GRANT

COMMAND

ADDRESS

DQ

CURRENT_COL

CURRENT_SIZE

DVALID

SAVE_ADD

LAST_DATE

ACCESS_REG 2

STOPWRITE

B0/R0

0

C0

C0+1

STOP

2

B0/C0

D D D D D D

C5+1 C5+2 C5+3 C5+4 C5+5

C5+1 C5+2 C5+3 C5+4

C5+6

C5+5

4 3 2 1 0

D

DEA
C

ACTV0 WRIT
E

trc = 9

tras = 5

B0/R0 B0/R5

C5

5

Note: WRITE (burst reduced to 1) is followed by a WRITE (6) in the same bank but on a different page..

Memory Interfaces

 4-38

Figure 4–15. SDRAM Read Burst 4 Half-Words Followed by a Write Burst 3 Half-Words

ACTV0

ACCESS_GRANT

COMMAND

ADDRESS

DQ

CURRENT_COL

CURRENT_SIZE

DVALID

SAVE_ADD

LAST_DATE

ACCESS_REG 2

STOPREAD

B0/R0

3

C0

B1/C1

C0+1

C0+1 C0+2

Q

2

B0/C0

Q Q Q D D D

C0+3 C0+4 C1+1 C1+2

C0+3 C1+5 C1+6

L = 3

C1+3

C1+7

1 0 2 1 02

STOP WRITE

C0+2

Note: READ (burst reduced to 4) is interrupted by a WRITE request (reduced to 3) pending on a bank and row already active.

Memory Interfaces

4-39Memory Interface Traffic Controller

Figure 4–16. SDRAM Read Single Half-Word Followed by a Write Byte
ACTV0

ACCESS_GRANT

COMMAND

ADDRESS

DQ

CURRENT_COL

CURRENT_SIZE

DVALID

SAVE_ADD

LAST_DATE

ACCESS_REG 2

STOPREAD

B0/R0

0

C0

C0+1

2

B0/C0

D

C5+1

Q

DEA
C

ACTV0 WRIT
E

trc = 9

tras = 4

B0/R0 B0/R5

C5

0

B0/C5
L = 3

DQMU
DQMLDQMx

Note: READ (burst reduced to 1) is followed by a single-byte WRITE in the same bank but on a different page.

Memory Interfaces

 4-40

Figure 4–17. SDRAM Write Single Followed by Write Burst 6 on the Same Bank and
Different Page

ACTV0

ACCESS_GRANT

COMMAND

ADDRESS

DQ

CURRENT_COL

CURRENT_SIZE

DVALID

SAVE_ADD

LAST_DATE

ACCESS_REG 2

STOPWRIT
E

B0/R0

0

C0

C0+1

STOP

2

B0/C0

D D D D D D

C5+1 C5+2 C5+3 C5+4 C5+5

C5+1 C5+2 C5+3 C5+4

C5+6

C5+5

4 3 2 1 0

D

DEA
C

ACTV0 WRIT
E

trc = 9

tras = 5

B0/R0 B0/R5

C5

5

Note: WRITE (burst reduced to 1) is followed by a WRITE (6) in the same bank but on a different page.

M
em

ory Interfaces

4-41
M

em
ory Interface Traffic C

ontroller

F
igure 4–18.

S
D

R
A

M
 R

ead S
ingle H

alf-W
ord F

ollow
ed by a R

ead B
urst 8 W

ith P
age

C
rossing

ACCESS_REQ

CURRENT_COL

DQMx

DQ

ADDRESS

ACCESS_GRANT

COMMAND

CURRENT_SIZE

LAST_DATA

SAVE_ADDR

DATA_READY_STROBE

ACTV0 DEACSTOPREADREAD ACTV0 READ STOP

70

C1C0

C1+8C1+7C1+6C1+5C1+4C1+3C1+2 = 00

C1+1

C0+1

Q

B1/R1B1/R1B1/C1B0/C0B0/R0

123456 0

C1+1

C1+7C1+6C1+5C1+4C1+3C1+2 = 00

Detection of new row

QQQQQQQQ

B1/00

READ (burst reduced to 1) followed by a READ burst (8) in a different bank and in a page already active with a page crossing.

1 1

L = 3 +1

Traffic Controller Memory Interface Registers

 4-42

4.4 Traffic Controller Memory Interface Registers

OMAP5910 traffic controller base address is 0xFFFE:CC00.

Table 4–8 lists the traffic controller registers. Table 4–9 through Table 4–27
describe the register bits.

The EMIF slow interface configuration register provides access to EMIFS
boot, operation, and power-down options (see Table 4–12).

Table 4–8. Traffic Controller Registers

Name Description R/W Size Address Reset Value

IMIF_PRIO IMIF priority register R/W 32 bits 0xFFFE:CC00 0x0000 0000

EMIFS_PRIO EMIF slow priority register R/W 32 bits 0xFFFE:CC04 0x0000 0000

EMIFF_PRIO EMIF fast priority register R/W 32 bits 0xFFFE:CC08 0x0000 0000

EMIFS_CONFIG_REG EMIF slow interface
configuration register

R/W 32 bits 0xFFFE:CC0C 0x0000 00yy
(See

Table 4–12
for details on
the y values.)

EMIFS_CS0_CONFIG EMIF slow interface
chip-select configuration
register nCS0

R/W 32 bits 0xFFFE:CC10 0x0000 FFFB

EMIFS_CS1_CONFIG EMIF slow interface
chip-select configuration
register nCS1

R/W 32 bits 0xFFFE:CC14 0x0010 FFFB

EMIFS_CS2_CONFIG EMIF slow interface
chip-select configuration
register nCS2

R/W 32 bits 0xFFFE:CC18 0x0010 FFFB

EMIFS_CS3_CONFIG EMIF slow interface
chip-select configuration
register nCS3

R/W 32 bits 0xFFFE:CC1C 0x0000 FFFB

EMIFF_SDRAM_CONFIG EMIF fast interface SDRAM
configuration register 1

R/W 32 bits 0xFFFE:CC20 0x0061 8800

EMIFF_MRS EMIF fast interface SDRAM
MRS register

R/W 32 bits 0xFFFE:CC24 0x0000 0037

TIMEOUT1 Timeout1 R/W 32 bits 0xFFFE:CC28 0x0000 0000

TIMEOUT2 Timeout2 R/W 32 bits 0xFFFE:CC2C 0x0000 0000

TIMEOUT3 Timeout3 R/W 32 bits 0xFFFE:CC30 0x0000 0000

Traffic Controller Memory Interface Registers

4-43Memory Interface Traffic Controller

Table 4–8. Traffic Controller Registers (Continued)

Name Reset ValueAddressSizeR/WDescription

ENDIANISM Endianism R/W 32 bits 0xFFFE:CC34 0x0000 0000

Location not used 0xFFFE:CC38

EMIFF_SDRAM_CONFIG_2 EMIF fast interface SDRAM
configuration register 2

R/W 32 bits 0xFFFE:CC3C 0x0000 0003

EMIFS_CFG_DYN_WAIT EMIF slow wait-state
configuration register

R/W 32 bits 0xFFFE:CC40 0x0000 0000

Table 4–9. IMIF Priority Register (IMIF_PRIO)

Bit Field Description Access
Reset
Value

31–0 Reserved Reserved for future expansion. These pins must always
be written as 0.

R All 0s

Table 4–10. EMIF Slow Priority Register (EMIFS_PRIO)

Bit Field Description Access
Reset
Value

31–0 Reserved Reserved for future expansion. These pins must always be
written as 0.

R All 0s

Table 4–11. EMIF Fast Priority Register (EMIFF_PRIO)

Bit Field Description Access
Reset
Value

31–0 Reserved Reserved for future expansion. These pins must always be writ-
ten as 0.

R All 0s

Traffic Controller Memory Interface Registers

 4-44

Table 4–12. EMIF Slow Interface Configuration Register (EMIFS_CONFIG_REG)

Bit Field Value Description Access
Reset
Value

31–5 Reserved Read is undefined. Writes must be zero. R All 0

4 FR Ready signal. This bit is a copy of the FLASH.RDY
input pin as sampled by TC clock.

R x

0 FLASH.RDY pin is low.

1 FLASH.RDY pin is high.

3 PDE Global power-down enable. This bit is used by EMIFS,
EMIFF, and IMIF as an enable for dynamic power down,
clock auto-gating. Note, however, that PDE must be set
in conjunction with individual power down bits for IMIF
and SDRAM before clocks will be cut.

R/W 0

0 Power down not enabled

1 Power down enabled

2 PWD_EN IMIF power-down enable. Controls IMIF internal clock
enable:

R/W 0

0 IMIF power down not enabled

1 IMIF power down enabled

Also note that PWD_EN is one of the prerequisites to
meet TC idle. PWD_EN must be set before the memory
interface can acknowledge a TC idle request.

1 BM MPU boot mode. This bit is sampled at reset from the
MPU_BOOT device pin. BM enables CS0 and CS3
address decode swapping.

R/W x

0 CS0 [0000:0000 – 01FF:FFFF] CS3 [0C00:0000 –
0DFF:FFFF]

1 CS0 [0C00:0000 – 0DFF:FFFF] CS3 [0000:0000 –
01FF:FFFF]

Since BM is read/write, care must be exercised not to
write the bit since there is potential to inadvertently
modify EMIFS memory mapping.

0 WP Write protect bit. Enables write protection for all flash
devices.

R/W 0

0 FLASH.WP output pin is set low.

1 FLASH.WP output pin is set high.

Traffic Controller Memory Interface Registers

4-45Memory Interface Traffic Controller

The four EMIF slow chip-select configuration registers (see Table 4–13) are
used to select the protocols and timings to be used for handshake with devices
connected to CS0-CS3 (corresponding to device pins FLASH.CS0 -
FLASH.CS3). Table 4–14 describes the memory types, and Table 4–15
describes the wait cycles insertion.

Table 4–13. EMIF Slow Chip-Select Configuration Registers
(EMIFS_CS0_CONFIG...EMIFS_CS3_CONFIG)

Bit Field Value Description Access
Reset
Value

31–22 Reserved Read is undefined. Writes must be zero. R All 0

21 FL Specifies how EMIFS handles addressing when
performing 32-bit writes to the OMAP5910 16-bit
data bus.

R/W 0

0 The address is incremented for the second 16-bit
access (default).

1 The address is not incremented for the second
16-bit access.

This bit is valid only when EMIFS is configured for
16-bit data bus width (BW = 0). This bit has no
effect for read operations.

20 BW Specifies EMIFS data bus width. R/W

0 16-bit bus. This is the appropriate setting for
OMAP5910.

1 Reserved. Do not use this setting on OMAP5910.

(BW bit reset value depends on the chip-select: For
CS0 and CS3, BW = 0; For CS1 and CS2, BW = 1.
If CS1 or CS2 is to be used, BW must first be
written to 0 since OMAP5910 only supports 16-bit
bus.)

19 Reserved Read is undefined. Writes must be zero. R 0

18:16 RDMODE Read mode select (see Table 4–14) R/W 000

15:12 PGWST/WELEN For read accesses, number of wait states for page
mode ROM reads within a page. For write
accesses, the length of WE pulse duration.

R/W 1111

11:8 WRWST Numbers of wait states for write operation R/W 1111

Traffic Controller Memory Interface Registers

 4-46

Table 4–13. EMIF Slow Chip-Select Configuration Registers
(EMIFS_CS0_CONFIG...EMIFS_CS3_CONFIG) (Continued)

Bit
Reset
ValueAccessDescriptionValueField

7:4 RDWST Number of wait states for asynchronous read
operation (see Table 4–15). Number of inserted
clock cycles in protocol (value matches the value
programmed in Intel flash devices).

R/W 1111

3 Reserved Read is undefined. Writes must be zero. R/W U

2 RT Retiming control register: R/W 0

0 The data is not retimed.

1 The data coming from the external bus is retimed
with the CLK.

1:0 FCLKDIV EMIFS internal reference clock divider: R/W 11

00 Reference clock = TC clock divided by 1

01 Reference clock = TC clock divided by 2

10 Reference clock = TC clock divided by 4

11 Reference clock = TC clock divided by 6

Table 4–14. Memory Type

RDMODE Memory

000 Asynchronous read

001 Page mode ROM read—4 words per page

010 Page mode ROM read—8 words per page

011 Page mode ROM read—16 words per page

100 Synchronous burst read

Others Reserved. Do not use.

Traffic Controller Memory Interface Registers

4-47Memory Interface Traffic Controller

Table 4–15. Wait Cycles Insertion

RDWST Number of Cycles Inserted

0 2

1 3

2 4

3 5

4 6

5 7

There is no automatic hardware adjustment of the programmed latencies
when the system clock frequency changes.

The following restrictions apply when synchronous burst read Intel protocol is
selected:

� Only continuous burst mode is supported

� Only sequential data access order is supported

� Only 1 clock cycle data duration mode is supported (there is no gain to
support 2 clock cycle duration since FLASH.CLK may be divided).

Page crossing is supported in page mode ROM burst read.

In asynchronous read mode, FLASH.ADV is activated during one FLASH.CLK
cycle in order to ensure compatibility with burst flash.

Table 4–16. EMIF Fast Interface SDRAM Configuration Register 1
(EMIFF_SDRAM_CONFIG)

Bit Field Value Description Access
Reset
Value

31–28 Reserved Read is undefined. Writes must be zero. R All 0

27 CLK SDRAM clock disable. See section 4.3.3.6,
SDRAM Clock Disable, for details related to
disabling the SDRAM clock.

R/W 0

0 Clock is not disabled.

1 Clock is disabled.

CLK is one of the prerequisites to meet TC idle.
CLK must be set before the memory interface can
acknowledge a TC idle request.

Traffic Controller Memory Interface Registers

 4-48

Table 4–16. EMIF Fast Interface SDRAM Configuration Register 1
(EMIFF_SDRAM_CONFIG) (Continued)

Bit
Reset
ValueAccessDescriptionValueField

26 PWD SDRAM power-down enable. Controls
power-down state of SDRAM interface:

R/W 0

0 SDRAM interface is not powered down.

1 SDRAM interface is powered down.

PWD is one of the prerequisites to meet TC idle.
PWD must be set before the memory interface
can acknowledge a TC idle request.

25–24 SDRAM_
FREQUENCY

SDRAM frequency range. Selects one of four
SDRAM timing configurations based on clock
latencies. See Table 4–18.

R/W 00

00 SDF0 (reset value)

01 SDF1

10 SDF2

11 SDF3

23–8 ARCV Autorefresh counter register value. Sets the
interval between partial refresh requests to the
SDRAM. See Section 4.3.3.4, SDRAM
Autorefresh Initialization, for formula and example.

R/W 0x6188

7–4 SDRAM_TYPE Set the SDRAM internal organization (see
Table 4–17)

R/W 0000

3–2 ARE Autorefresh enable. When autorefresh enable is
set, the EMIF generates a REFR request,
depending on the autorefresh counter and the
burst refresh counter. If refresh enable is not set,
the refresh must be done as a RAS only refresh
under CPU control.

R/W 00

00 Autorefresh disable

01 Autorefresh enable

10 Autorefresh by burst of 4 commands

11 Autorefresh by burst of 8 commands

Traffic Controller Memory Interface Registers

4-49Memory Interface Traffic Controller

Table 4–16. EMIF Fast Interface SDRAM Configuration Register 1
(EMIFF_SDRAM_CONFIG) (Continued)

Bit
Reset
ValueAccessDescriptionValueField

1 SD_RET SDRAM retiming: R/W 0

0 Data is single buffered with the return clock from
SDRAM.

1 Data from SDRAM is double buffered. Data is first
clocked on return clock from SDRAM, then with
the OMAP5910 internal SDRAM clock.

0 SLRF When set, places the SDRAM in self-refresh
mode. Mode is automatically exited upon the
generation of any SDRAM access.

R/W 0

This register is used to configure the SDRAM, interface timing, autorefresh
setup, and powerdown modes of the EMIFF interface. Table 4–17 describes
the internal organization. Table 4–18 describes the frequency range.

Table 4–17. SDRAM Internal Organization

Register Value
Memory Size

(M Bits) Size Of Data Bus
Number Of

Banks

0000 16 8 2

0001 8 4†

0010 16 2

0011 16 4†

0100 64 8 2

0101 8 4

0110 16 2

0111 16 4

1000 128 8 2†

1001 8 4

† Unavailable bank number (not supported). Do not use this setting.

Note: Reset value = 0x2h.

Traffic Controller Memory Interface Registers

 4-50

Table 4–17. SDRAM Internal Organization (Continued)

Register Value
Memory Size

(M Bits) Size Of Data Bus
Number Of

Banks

1010 16 2†

1011 16 4

1100 256 8 2†

1101 8 4

1110 16 2†

1111 16 4

† Unavailable bank number (not supported). Do not use this setting.

Note: Reset value = 0x0h.

Table 4–18. Frequency Range

ac Parameters
SDF0

(Cycles)
SDF1

(Cycles)
SDF2

(Cycles)
SDF3

(Cycles)

trc 9 5 3 2

tras 5 3 2 2

trp 3 2 2 2

trcd 3 2 2 2

trrd† 2 2 2 2

tdpl(trwl)‡ – – – –

tdal – – – –

trsc 2 2 2 –

† Write is never interrupted by precharge command directly.
‡ Neither read or write with auto-precharge is supported.

Traffic Controller Memory Interface Registers

4-51Memory Interface Traffic Controller

Table 4–19. SDRAM Timing Requirements

ac Parameters
SDRAM Timing

Requirements (ns)

Meeting this Timing
With SDRAM.CLK =

60 MHz (16.7 ns
Period)

trc 80 5

tras 48 3

trp 24 2

trcd 24 2

trrd� 16 1

tdpl(trwl)� 8 –

tdal 27 –

trsc 2 1

† Write is never interrupted by precharge command directly.
‡ Neither read or write with autoprecharge is supported.

For 60 MHz, timing can be met by using the SDF1 timing configuration.

This register, when written, programs the SDRAM MRS (default) and EMRS
configuration registers. In default mode, a write to the register initiates an MRS
request to the SDRAM. In EMRS mode, a write to this same register initiates
an EMRS request. Reading this register does not issue an external transac-
tion. Table 4–20 describes the bits for the MRS mode. Table 4–21 describes
the bits for the EMRS mode.

Traffic Controller Memory Interface Registers

 4-52

Table 4–20. EMIF Fast Interface SDRAM MRS Register—Default (EMIFF_MRS)

Bit Field Value Description Access
Reset
Value

31–10 Reserved Read is undefined. Writes must be zero. R All 0

9 WBST Write burst must be 0 (burst write same as burst
read).

R/W 0

8–7 Reserved Read is undefined. Writes must be zero. R/W 00

6–4 CASL CAS latency: R/W 011

001 CAS latency = 1

010 CAS latency = 2

011 CAS latency = 3 (default at reset)

3 S/I Serial = 0. This bit must be 0.
Interleave = 1. Reserved. Do not use this setting.

R/W 0

2–0 PGBL Specifies page burst length to be programmed into
SDRAM MRS configuration register. The length must
always be programmed as full-page burst length
(111). (This length is not necessarily the burst length
at which the EMIFF operates, but rather a setting for
the SDRAM MRS register.)

R/W 111

Note: When the CONF_MOD_EMRS_CTRL bit field (bit 13) of the OMAP5910 control register (MOD_CONF_CTRL_0) is
set, the device reconfigures bank settings to write out the EMIFF_MRS register as EMRS commands (see
Table 4–21).

Traffic Controller Memory Interface Registers

4-53Memory Interface Traffic Controller

Table 4–21. EMIF Fast Interface SDRAM MRS Register—EMRS Mode (EMIFF_MRS)

Bit Field Value Description Access
Reset
Value

31–5 Reserved Read is undefined. Writes must be zero. R See
Note 1

4–3 TCSR SDRAM EMRS register temperature compensated
self-refresh setting:

R/W See
Note 1

00 70 degrees Celsius maximum case temperature

01 45 degrees Celsius maximum case temperature

10 15 degrees Celsius maximum case temperature

11 85 degrees Celsius maximum case temperature

Bit descriptions are given with respect to standard
SDRAM devices and must be verified with the actual
SDRAM chosen for the application.

2–0 PASR SDRAM EMRS register partial array self-refresh
coverage setting:

R/W See
Note 1

000 All banks

001 Half array

010 Quarter array

011 Reserved

100 Reserved

101 Reserved

110 Reserved

111 Reserved

Bit descriptions are given with respect to standard
SDRAM devices and must be verified with the actual
SDRAM chosen for the application.

Notes: 1) Reset value is defined by the default mode of the register (see Table 4–20).

Traffic Controller Memory Interface Registers

 4-54

The three time-out registers store the number of clock cycles before DSP,
DMA, LCD, LB requests are made high-priority in dynamic priority scheme for
the TC (see Table 4–22 through Table 4–24).

Table 4–22. Time-Out 1 Register (TIMEOUT1)

Bit Field Description Access
Reset
Value

31–24 Reserved Read is undefined. Writes must be zero. R All 0

23–16 Local bus R/W 0x00

15:8 Reserved Read is undefined. Writes must be zero. R/W All 0

7:0 DMA R/W 0x00

Table 4–23. Time-Out 2 Register (TIMEOUT2)

Bit Field Description Access
Reset
Value

31–24 Reserved Read is undefined. Writes must be zero. R All 0

23–16 DSP R/W 0x00

15–8 Reserved Read is undefined. Writes must be zero. R/W All 0

7–0 LCD R/W 0x00

Table 4–24. Time-Out 3 Register (TIMEOUT3)

Bit Field Description Access
Reset
Value

31–0 Reserved Read is undefined. Writes must be zero. R All 0

Traffic Controller Memory Interface Registers

4-55Memory Interface Traffic Controller

The endianism register (ENDIANISM) is used to control endianism conversion
in the DSP memory management unit endianism block.

Table 4–25. Endianism Register (ENDIANISM)

Bit Field Value Description Access
Reset
Value

31–2 Reserved Read is undefined. Writes must be zero. R All 0

1 SWAP 0 Byte swap (8 bits) R/W 0

1 Word swap (16 bits)

0 EN 0 Endianism conversion is disabled (default). R/W 0

1 Endianism is enabled.

Table 4–26. EMIF Fast Interface SDRAM Configuration Register 2
(EMIFF_SDRAM_CONFIG_2)

Bit Field Value Description Access
Reset
Value

31–2 Reserved Read is undefined. Writes must be zero. R All 0

1 RFRSH_
RST

SDRAM self-refresh on warm reset. RFRSH_RST
determines what action the TC SDRAM controller
takes toward setting SDRAM to self-refresh mode
in the event of a warm system reset.

R/W 1

0 SDRAM is not entered to self-refresh mode.

1 SDRAM is entered to self-refresh mode upon warm
system reset.

0 RFRSH_
STBY

SDRAM self-refresh on standby. After the TC
receives an idle request from the clock generation
module, RFRSH_STBY determines what action the
TC SDRAM controller takes toward setting SDRAM
to self-refresh mode prior to acknowledging the idle
request.

R/W 1

0 SDRAM enters self-refresh mode.

1 SDRAM enters self-refresh mode prior to the TC
acknowledging an idle request.

Traffic Controller Memory Interface Registers

 4-56

Table 4–27. EMIF Slow Wait State Configuration (EMIFS_CFG_DYN_WAIT)

Bit Field Value Description Access
Reset
Value

31–4 Reserved Read is undefined. Writes must be zero. R All 0

3 DYNW_CS3 Specifies function of FLASH.RDY for CS3. R/W 0

0 Enable classic not-ready for EMIFS CS3.

1 Enable dynamic not-ready for EMIFS CS3.

2 DYNW_CS2 Specifies function of FLASH.RDY for CS2. R/W 0

0 Enable classic not-ready for EMIFS CS2.

1 Enable dynamic not-ready for EMIFS CS2.

1 DYNW_CS1 Specifies function of FLASH.RDY for CS1. R/W 0

0 Enable classic not-ready for EMIFS CS1.

1 Enable dynamic not-ready for EMIFS CS1.

0 DYNW_CS0 Specifies function of FLASH.RDY for CS0. R/W 0

0 Enable classic not-ready for EMIFS CS0.

1 Enable dynamic not-ready for EMIFS CS0.

Interfacing Memories With the OMAP5910 Device

4-57Memory Interface Traffic Controller

4.5 Interfacing Memories With the OMAP5910 Device

This section provides two examples of how to connect memories to the
OMAP5910 device. Many scenarios can be considered using different kinds
of memories. For flash memories, Intel and Hitachi products are used. For
SDRAM and SRAM, Hitachi and Toshiba products are used, respectively.

The Intel flash memory has a total capacity of 160M bits (8M x 8 x 2 chips and
2M x 16). Program code uses two Intel 28F64J3A memories, and data uses
Intel 28F32J3A. The power supply voltages for these memories range from
2.7 V to 3 V. Hitachi memory has a total capacity of 96M bits in this example.
Two flash memories are used for program code, and one flash memory is used
for data. The power supply voltage also ranges from 2.7 V to 3 V.

Hitachi SDRAM (HM52Y64165F) has a total capacity of 64M bits (4M x 16).
Its power supply voltage ranges from 2.5 V to 2.8 V. Toshiba SRAM
(JT5MM6A-AD) has 8M-bit capacity and 2.7-V to 3-V power supply voltage
ranges.

Figure 4–19 shows external memory interconnection using Intel flash
memory, and Figure 4–20 shows external memory interconnection using
Hitachi flash memory.

Interfacing Memories With the OMAP5910 Device

 4-58

Figure 4–19. External Memory Interconnection Using Intel Flash Memory

SDRAM

CLK
CKE

DQMU
DQML

DQ[15:0]

BA[1:0]
A[11:0]

NC

GND fixedHM52Y64165F

NC

Flash

Flash

DQ[7:0]

A[22:0]

STS

GND fixed

STS

A[22:0]
DQ[7:0]

GND fixed

GND fixed

BVLZ
SRAM

R/W

DQ[15:0]
A[18:0]

JT5MM6A–AS
CE2

LB
UB

(Hitachi)

(INTEL 28F64J3A)

(INTEL 28F64J3A)

(TOSHIBA)

(X8)

(X8)

(X16)

Flash

STS
A[0]

A[21:1]
DQ[15:0]

(INTEL 28F32J3A)
(X16)

NC

NC

fdata[7:0]

fdata[15:8]

NC
NC

VCCR

for Data

for Code

for Code

2.5 V–2.8 V

2.7 V–3.0 V

OMAP5910

2.7 V–3.0 V

2.7 V–3.0 V

2.7 V–3.0 V

SDRAM_CLK
SDRAM.CKE
SDRAM.RAS
SDRAM.CAS
SDRAM.WE

SDRAM.DQMU
SDRAM.DQML

SDRAM.D[15:0]

SDRAM.BA[1:0]
SDRAM.A[11:0]
SDRAM.A[12]

FLASH.RDY
FLASH.CS0
FLASH.RP
FLASH.OE
FLASH.WE

FLASH.A[24]
FLASH.A[23:1]
FLASH.D[15:0]

FLASH.BAA
FLASH.ADV
FLASH.CLK
FLASH.WP

FLASH.CS1

FLASH.CS3

FLASH.BE[0]
FLASH.BE[1]

VCC

VCC

BYTE

CS

RAS
CAS
WE

CE2
CE1
CE0

RP
OE
WE

BYTE
CE2

RP
OE
WE

CE1
CE0

BYTE
CE2

RP
OE

CE1
CE0

WE

CE1

OE

BYTE

Interfacing Memories With the OMAP5910 Device

4-59Memory Interface Traffic Controller

Figure 4–20. External Memory Interconnection Using Hitachi Flash Memory

SDRAM

CLK
CKE

DQMU
DQML

DQ[15:0]

BA[1:0]
A[11:0]

NC

GND FixedHM52Y64165F

NC

Flash

Flash

DQ[7:0]

A[20:–1]
R/B

GND Fixed

R/B
A[20:–1]
DQ[7:0]

GND Fixed

BVLZ
SRAM

R/W

DQ[15:0]
A[18:0]

JT5MM6A–AS

CE2

LB
UB

(Hitachi)

(HITACHI 32M)

(HITACHI 32M)

(TOSHIBA)

(X8)

(X8)

(X16)

Flash

R/B
A[20:0]

DQ[15:0]

(HITACHI 32M)
(X16)

NC

NC

fdata[7:0]

fdata[15:8]

NC

VCC

VCC

VCCR

for Data

for Code

for Code

2.5 V–2.8 V

2.7 V–3.0 V

OMAP5910

2.7 V–3.0 V

2.7 V–3.0 V

2.7 V–3.0 V

SDRAM_CLK
SDRAM.CKE
SDRAM.RAS
SDRAM.CAS
SDRAM.WE

SDRAM.DQMU
SDRAM.DQML

SDRAM.D[15:0]

SDRAM.BA[1:0]
SDRAM.A[11:0]
SDRAM.A[12]

FLASH.RDY
FLASH.CS0
FLASH.RP
FLASH.OE
FLASH.WE

FLASH.A[24]
FLASH.A[23:1]
FLASH.D[15:0]

FLASH.BAA
FLASH.ADV
FLASH.CLK

FLASH.CS1

FLASH.CS3

FLASH.BE[0]
FLASH.BE[1]

FLASH.WP

CS

RAS
CAS
WE

BYTE

CE
RP
OE
WE
WP

BYTE

CE
RP
OE
WE
WP

BYTE

CE
RP
OE
WE
WP

CE1

OE

BYTE

5-1

System DMA Controller

This chapter describes the system DMA controller for the OMAP5910
multimedia processor.

Topic Page

5.1 Introduction 5-2.

5.2 External Connections 5-8.

5.3 Generic Channels 5-9.

5.4 LCD Dedicated Channel 5-26.

5.5 DMA Request Mapping 5-32.

5.6 Registers 5-34.

Chapter 5

Introduction

 5-2

5.1 Introduction

The system direct memory access (DMA) controller transfers data between
points in the memory space without intervention by the MPU. The DMA allows
movements of data to and from internal memory, external memory, and periph-
erals to occur in the background of MPU operation. It is designed to off-load
the block data transfer function from the MPU processor.

Figure 5–1 shows the OMAP5910 device with the DMA controller highlighted.
Figure 5–2 shows the controller in more detail.

Figure 5–1. Highlight of DMA Controller

MPU Core
(TI925T)

(Instruction
Cache, Data

Cache, MMU)

System
DMA

controller

TMS320C55x DSP
(Instruction Cache, SARAM,

 DARAM, DMA,
 H/W accelerators)

MPU
peripheral

bridge

LCD
I/F

MPU
interface

SRAM

SDRAM
memories

Flash and
SRAM

memories

DSP
MMU

16

16

32

16

32

32

32

32

32

32

16

MPU private peripheral bus

DSP public (shared) peripheral bus

32
MPU public

16

DSP

DSP public peripherals

McBSP1

McBSP3

MPU public peripherals

USB Host I/F

JTAG/
emulation

I/F
OSC

12 MHz Clock

OSC

OMAP5910

ETM9

Timers (3)

MPU/DSP shared peripherals

Mailbox

MPU Private Peripherals

Timers (3)

16

Memory interface

Reset External clock

MPU Bus

32 kHz

1.5M bits

traffic controller (TC)

Watchdog Timer

Level 1/2 Interrupt handlers

Configuration registers

Clock and reset management

Watchdog Timer
Level 1/2

Private Peripherals

GPIO I/F

USB Function I/F

Camera I/F
MPUIO

32-kHz Timer
PWT
PWL

M
I
F
S

M
I
F
F

I
M
I
F

MCSI1
MCSI2

Keyboard I/F

requests

E

E

TIPB
Switch

UART1
UART2

UART3 IrDA

32

MMC/SD
LPG x2

HDQ / 1-WIRE

DSP private
peripheral bus

peripheral bus

McBSP2

Device identification

RTC

Interrupt handlers

I2C
µWire

Frame adjustment
counter

32

32

32

32

Introduction

5-3System DMA Controller

Figure 5–2. DMA Controller Block Diagram

Local

Interleaver

Local
Mux

TIPB Port

Interleaver

EMIFS
Mux

EMIFF Port

Interleaver

IMIF Port

Interleaver

EMIFS

Interleaver

MPUI TIPB

Interleaver

EMIFF
Mux

IMIF
Mux

TIPB
Mux

MPUI

Mux

DIN

DOUT

Addr LCD FIFO
64 x17 Bits

Interrupt
generator

Event
synchro

Dma_nreq
(5:0)

Ndma_req
(5:0)

TI

dma_lcd_ram(15:0)

System DMA controller

Request
Allocator

To interleaver

LCD
Port

Din

Dout

DIN

DOUT

Addr

DIN

DOUT

Addr

DIN

DOUT

Addr

DIN

DOUT

Addr

DIN

DOUT

Addr

FIFO 0

R/W Unit 0

FIFO 8

R/W Unit 8

Configuration
register
bank 8

Configuration
register
bank 0

LCD R Addr CFG LCD

peripheral
bus

Port

Port

Port

TIPB

TI
peripheral

bus
interface TI

interface
bus

peripheral

Introduction

 5-4

Transfers are made through a physical channel that can be thought of as a pipe
that connects a source and a destination for the duration of a transfer. Data
flows through this pipe from the source to the destination. After the transfer is
completed, the pipe (channel) can be used to perform other data transfers that
involve the same or other sources and destinations.

The DMA channels are said to be physical because each of them is hardware-
implemented. Each channel is controlled by a set of configuration registers,
where the software sets up the transfer parameters such as length, source,
and destination addresses. This set of registers is called the transfer descrip-
tor or the transfer contexts. The transfer contexts are set up by the processor
through the MPU’s private TI peripheral bus (TIPB). Physical channel configu-
ration registers are in the MPU’s memory space.

All of the physical channels operate concurrently, which allows several data
transfers to run in parallel, one in each channel. If several channels use the
same DMA port, they are time-multiplexed by this port and can be priority
scheduled through software parameters available to the user. Thus, the user
is able to control the sharing of a port between channels by the assignment of
priority levels.

The system DMA controller has nine independently programmable generic
channels plus one channel that is specifically dedicated only to transfers from
either the IMIF or the EMIFF ports to the LCD port. By dynamically assigning
one of the nine physical channels to a pair of ports, data can be transferred
to/from the designated ports.

The DMA interface with the source and destination of transfers is called a port.
Each port can have its own protocol to communicate to the resource (memory
or TIPB bridge) to which it is connected. All of the existing DMA ports used by
the system DMA are described in detail later in this document.

The DMA has six general-purpose ports:

� External memory interface fast (EMIFF) port
� External memory interface slow (EMIFS) port
� Internal memory interface (IMIF) port
� Local bus interface (Local) port
� MPU interface (MPUI) port
� TIPB interface (TIPB) port

A seventh, special port is provided to interface with an LCD controller. This
port, the LCD port, has a dedicated channel that connects either the IMIF or
EMIFF port to the LCD controller. Unlike the other DMA ports, the LCD port can
only receive data from the IMIF or EMIFF ports.

Introduction

5-5System DMA Controller

The system DMA controller is controlled by the MPU (via the TIPB). The DMA
controller meets the high-rate-flow requirements of the multichannel applica-
tions used by wireless base stations.

The system DMA controller is designed for low-power operation. Its clock can
be automatically disabled as required. This function is synchronous to the
MPU TIPB and is entirely under hardware control. No specific programming
is required.

The functional features of the system DMA controller for general-purpose
transfers are:

� Nine general-purpose and one dedicated (LCD) DMA channels

� Software programmable DMA access priority-based on resource alloca-
tion versus processor (MPU or DSP) access. Through the assignment of
priority levels for each channel, the user can determine how the ports are
shared between channels.

� Concurrent DMA transfers capability

� Start of transfer on peripheral request or host request

� Byte alignment capability

� Byte packing/unpacking

� Byte transfer count

� Configurable indexes through memory for each channel source and
destination address register. The address may remain constant or post-
increment.

� Access available to all of the memory range (physical memory mapping
and I/O space)

� Seven ports available for different kinds of hardware resources. All data
exchanges are done with a simple handshake mechanism with request,
ready, and abort signals. All of the ports except the TIPB have burst access
capability.

� EMIFS port
� EMIFF port
� IMIF port
� MPUI port
� TIPB port
� Local port
� LCD port

Introduction

 5-6

� Memory-to-memory transfer granularity of 8, 16, and 32 bits. Only the
number of programmed bytes is transferred; that is, there are no trailing
or dirty bytes at the end of transfer.

� TIPB-to-memory transfer:

� When performing DMA transfers from a TIPB peripheral, is it ideal that
the peripheral FIFO size be 16 bytes, which corresponds to the DMA
channel FIFO size.

� If the peripheral FIFO size is not 16 bytes, use a general-purpose timer
as a time-out counter to avoid the possibility that some data might
remain in the channel FIFO at the end of frame. When the MPU
receives the interrupt, it must check the DMA channel FIFO status and
read the data located in the FIFO, if needed.

Additional functional features and limitations of the DMA controller include:

� General-purpose DMA channels can perform 4x32 bit bursts; this is the
only burst mode supported by the non-LCD DMA channels. Bursts can
only be performed on the IMIF, EMIFF, EMIFS, and local bus ports.

� All LCD DMA accesses are performed in bursts of 8 x16 bits. The LCD
video buffer data must be a multiple of 16 bytes. The start address and end
address must be aligned on a 16-bit boundary.

� General-purpose channel priority on the external EMIFF/IMIF bus is
software programmable.

� LCD channel FIFO size is 64x17 bits.

� The interface between the LCD controller and the DMA controller uses a
different protocol from the other DMA channels. The LCD controller is the
master of this interface, and it generates the addresses according to the
FIFO status.

� The LCD controller allows the use of one or two video buffer(s) and is
configurable.

� No bursts are supported on the TIPB and MPUI DMA interfaces.

� Burst transfers can be combined with single or double-indexed addressing
modes, but the burst request is only issued if contiguous addresses can
be ensured for the length of the burst. For example, if the element index
contains a value that causes noncontiguous addresses between
elements, then the system DMA logic does not generate burst requests.

Table 5–1 lists the possible data transfers, and Table 5–2 lists the possible
transfer sizes and types.

Introduction

5-7System DMA Controller

Table 5–1. Possible Data Transfers

Destinations
vs. Sources

EMIFS
Bus

EMIFF
Bus

IMIF
Bus TIPB MPUI LCD Local Bus

EMIFS bus Yes Yes Yes Yes Yes No Yes

EMIFF bus Yes Yes Yes Yes Yes Yes Yes

IMIF bus Yes Yes Yes Yes Yes Yes Yes

TIPB Yes Yes Yes Yes Yes No Yes

MPUI Yes Yes Yes Yes Yes No Yes

Local bus Yes Yes Yes Yes Yes No Yes

Table 5–2. Possible Transfer Sizes and Types

Source
Destination:
8-Bit TIPB

Destination:
8-Bit Non-TIPB

Destination:
16-Bit TIPB

Destination:
16-Bit

Non-TIPB
Destination:
32-Bit TIPB

Destination:
32-Bit

Non-TIPB

8-bit TIPB Valid only with
no packing

s8

Valid

s8

Not allowed Valid

s8

Not allowed Valid

s8

8-bit
non-TIPB

Valid only with
no packing

s8

Valid

s8

Not allowed Valid

s8,s16

Not allowed Valid

s8,s16,32

16-bit
TIPB

Not allowed Valid

s16

Valid only with
no packing

s16

Valid

s16

Not allowed Valid

s16

16-bit
non-TIPB

Valid with s8 and
no packing

Valid

s8

Valid only with
no packing

s16

Valid

s8,s16

Valid only with
packing

s32

Valid

s8,s16,32

32-bit
TIPB

Not allowed Valid

s32

Not allowed Valid

s32

Valid

s32

Valid

s32

32-bit
non-TIPB

Valid with s8 and
no packing

Valid

s8

Valid only with
no packing

s16

Valid

s8,s16

Valid S32 Valid

s8,s16,32

Note: s8 = 8-bit scalar data type; s16 = 16-bit scalar data type; s32 = 32-bit scalar data type

External Connections

 5-8

5.2 External Connections

The system DMA controller is interconnected with other OMAP5910
components as shown in Figure 5–3.

Figure 5–3. System DMA External Connections

TIPB

DMA_IT_NF(5–0)

LCD
protocol (specific)

TIPB protocol

TIPB protocol

DMA_REG

DMA configuration bus

MIF

EMIFS
port

IMIF
port

EMIFF
port

Local
bus
port

Local bus

LCD controller
LCD

display

MPUI
port

TIPB
port T

I
P
B

IMIF

EMIFS

EMIFF

P1

P0

System DMA
controller

TIPB
bridge

Generic Channels

5-9System DMA Controller

5.3 Generic Channels

This section discusses the following generic channel topics:

� Transfers
� Addressing modes
� Data packing and bursting
� Data alignment
� Constraint on channel configuration parameters
� Endianism
� Interrupt generation
� Memory space protection

5.3.1 Transfers

5.3.1.1 Transfer Sources and Destination

Each DMA channel can be configured independently from other channels.
This implies that a port can be shared by several channel requests. Therefore,
these requests are time-multiplexed by the port.

For example, in Figure 5–4 a DMA port must service requests from three DMA
channels:

� Channel 0 as a source port (read requests, r0)
� Channel 3 as a destination port (write requests, w3)
� Channel 5 as a destination port (write requests. w5)

Figure 5–4 shows how these requests are multiplexed in time by the port.

Figure 5–4. Time-Sharing on a DMA Port

r0, r0, r0
Requests

waiting for
service

Portw3, w3, w3

w5, w5, w5

w5, w3, r0, w5, w3, r0, w5, w3, r0

Requests served

A system DMA port can handle 10 read requests and 10 write requests (all the
possible requests in the DMA) simultaneously.

Generic Channels

 5-10

5.3.1.2 Transfer Control

Figure 5–5. Basic Flow of DMA Transfer

MPU loads the
transfer

configuration
registers.

DMA channel
IDLE

No request

Transfer one
element/frame

Transfer
completed

Interrupt
generated

Yes

Synchronized
request?

Hardware
signal OK?

No

NoYes

Yes

DMA request

No

Generic Channels

5-11System DMA Controller

5.3.1.3 Transfer Start

There are two ways to start a DMA transfer:

� Software start (software request): After setting up the configuration regis-
ters of a DMA channel, the processor activates the transfer in this channel
by writing the DMA_CCR.en bit of this channel. The transfer immediately
starts.

� Hardware start (hardware request): The processor sets up a DMA channel
and sets the transfer in this channel as a synchronized transfer (demand-
driven by DMA request signal lines from the outside world). The channel
then waits for a DMA request to start transferring data.

Note:

Be sure to enable the channel before sending in the DMA request.

Each time a DMA request is made for this channel, an amount of data is
transferred. This amount of data can be:

� An element

A complete element is transferred in response to a DMA request.

� An entire frame

A complete frame of several elements is transferred in response to a
DMA request.

All the transfers can be synchronized on DMA requests, regardless of their
sources and destinations. DMA requests can come from DMA ports. Each
channel can be triggered by one DMA request among 31. One DMA request
can trigger several channels at the same time. The relevant bits are extracted
from the DMA_CCR register.

5.3.1.4 Transfer Suspension

A synchronized channel enters a suspended state when a DMA request is
served, and it waits for a new DMA request.

All the DMA channels enter a suspended state if:

� The DMA idle input is active. The DMA suspends all its transfers and its
clock can be externally cut off for power-saving purposes.

� The DMA suspend input is active, and the FREE bit in the DMA_GCR reg-
ister is equal to zero. The processor asserts this input, then it is halted by
a breakpoint. When this occurs, the DMA suspends or continues its trans-
fers, according to the value of the FREE bit. The DMA clock must be on
when the DMA is suspended.

Generic Channels

 5-12

5.3.1.5 Autoinitialization

A DMA channel (synchronized or not) can operate in two modes.

� Single transfer mode

In this mode, a channel stops when the current transfer finishes.

� Autoinitialization mode

In this mode, a channel loads a new configuration and automatically
restarts a new transfer when the current one finishes.

A DMA channel has two sets of configuration registers: programming and
active. Only the programming set is accessible through the TIPB. When a
channel is enabled for the first time or when a channel autoinitializes, the
programming set is copied in the active set of registers. You can then pro-
gram the programming set to configure the next transfer while the current
transfer is running.

This feature can be used in two ways:

� Continuous operation

You can change the programming registers while the current configu-
ration is executed. The next transfer is transferred with a new context
but without stopping the DMA.

� Repetitive operation

You never modify the programming registers. The same context is
always used.

The programming set includes the following registers:

� DMA_CSSA_L
� DMA_CSSA_U
� DMA_CDSA_L
� DMA_CDSA_U
� DMA_CEN
� DMA_CFN
� DMA_CFI
� DMA_CEI

The following registers are part of the working set and are accessible. They
always have impact on the current transfer.

� DMA_CSDP
� DMA_CCR
� DMA_CICR
� DMA_CSR

Generic Channels

5-13System DMA Controller

To avoid the reload of a configuration when the MPU programs the channel,
the MPU can use the autoinitialization bits of the DMA_CCR register, which are
described in Table 5–3.

Table 5–3. Autoinitialization Configuration Bits Summary

AUTOINIT END_PROG REPEAT Autoinitialization Behavior

0 x x No autoinitialization

1 0 0 At the end of current transfer, channel waits until END_PROG = 1
to load the programming register set in its working register set.

1 1 0 At the end of current transfer, channel immediately loads the
programming register set in its working register set

1 x 1
programming register set in its working register set.

5.3.1.6 Priorities Between Channels

Each channel can be given a low- or high-priority level. When a DMA port
receives requests from several channels, it looks at their priorities:

� Requests from high-priority channels are served first.

� Requests from low-priority channels are served only if there are no
requests from high-priority channels on the port. This can occur if there are
no high-priority channels activated, if the high-priority channels are stalled
(by a slow source or destination), or if the high-priority channels are
waiting for a synchronization event.

� Requests of the same priority level are served in a round-robin manner
(time division multiplex).

5.3.2 Addressing Modes

Figure 5–6 provides an example of address index management. In this
example, Element Size = 4, Element Index = 3, Frame Size = 2, and
Frame Index = 5.

An addressing mode is an address computation algorithm a DMA channel can
use to know where to access data. The system DMA has four addressing
modes: constant, post-incremented, indexed, and double-indexed.

Generic Channels

 5-14

Figure 5–6. Memory Representation

Element n

Element n+1

Element size

(Can be 1, 2, 4. Here: Element size = 4)

Element index (address increments by this

(Can be different from element size)

(Here: Element Index = 3)

Frame index (address increments by this

(Can be different from element size)

(Here: Frame Index = 5)

MEMORY

Byte @ addr 00

Byte @ 01

Frame n+1

Frame n

Byte @ 02
Byte @ 03

Byte @ 04

Byte @ 05

Byte @ 06

Byte @ 07

Byte @ 08
Byte @ 09

Byte @ 0A

Byte @ 0B

Byte @ 0C

Byte @ 0D

Byte @ 0E

Byte @ 0F

Byte @ 10

Byte @ 11

Byte @ 12

Byte @ 13

Byte @ 14

Byte @ 15

Byte @ 16

Byte @ 17

value after an element)

value after a frame)
Block n

The amount of data (block size) to transfer is programmed in bytes. This size
can be odd or even. The start address for a transfer is a byte address and can
be odd—in other words, non-word aligned (this is true only if bursting is not
enabled, because any DMA channel that has bursting enabled must use a start
address that is 32-bit word aligned. Furthermore, a DMA channel using burst-
ing must be configured such that all addresses accessed by that channel are
also 32-bit word aligned). The data block to transfer is split in frames and
elements. The byte size of this data block is:

BS = FN x EN x ES

where:

BS is the block size in bytes.

Generic Channels

5-15System DMA Controller

FN is the number of frames in the block, 1 ≤ FN ≤ 65535.

EN is the number of elements per frame, 1 ≤ EN ≤ 65535.

ES is the number of bytes per element, ES ∈ {1, 2, 4}.

An element can be:

� 8-bit scalar data, s8
� 16-bit scalar data, s16
� 32-bit scalar data, s32

Types of data transferred in a channel include s8, s16, and s32. FN, EN, and
ES (or data type) are extracted from the configuration registers of the channel.

To set up a channel for a transfer, the software must program two addressing
modes:

� Source addressing mode
� Destination addressing mode

These modes work independently. For example, to transfer data from a TIPB
serial port to internal memory, the source-addressing mode is constant (for ex-
ample, when the read operation must be done at a unique register address)
and the destination addressing mode is post-incremented.

The number of frames, the number of elements, and the element size are the
same for source and destination. Each of the following algorithms describes
address computation for each byte of the transfer.

5.3.2.1 Constant Addressing Mode

Address remains constant.

a(i) = SA, 0 ≤ i ≤ BS – 1

where:

a(i) is the address of the byte number i within the transfer.

SA is the start address of the transfer.

BS is the block size in bytes.

Generic Channels

 5-16

5.3.2.2 Post-Incremented Addressing Mode

Address is always incremented by 1.

a(0) =SA

a(i) =a(i – 1) + 1, 1 ≤ i ≤ BS –1

where:

a(i) is the address of the byte number i within the transfer.

SA is the start address of the transfer.

BS is the block size in bytes.

5.3.2.3 Single-Indexed Addressing Mode

Address is incremented by 1 if the end of the current element is not reached.

Address is incremented by an element index if the end of the current element
is reached.

a(0) = SA

a(i) = a(i – 1) + 1 if (i mod ES) ≠ 0, 1 ≤ i ≤ BS – 1

a(i) = a(i – 1) + EI if (i mod ES) = 0, 1 ≤ i ≤ BS – 1

where:

a(i) is the address of the byte number i within the transfer.

SA is the start address of the transfer.

BS is the block size in bytes.

ES is the element size in bytes, 1 ≤ ES ≤ 2.

EI is the element index in bytes, specified in a configuration register,
–32768 ≤ EI ≤ 32767.

5.3.2.4 Double-Indexed Addressing Mode

Address is incremented by a frame index if the end of the current frame is
reached.

Address is incremented by an element index if the end of the current element
is reached and end of frame is not reached.

Address is incremented by one if the end of the current element and the end
of current frame are not reached.

Generic Channels

5-17System DMA Controller

a(0) = SA

a(i) = a(i – 1) + 1 if (i mod ES) ≠ 0 and (i mod FS) ≠ 0, 1 ≤ i ≤ BS – 1

a(i) = a(i – 1) + EI if (i mod ES) = 0 and (i mod FS) ≠ 0, 1 ≤ i ≤ ΒS – 1

a(i) = a(i – 1) + FI if (i mod FS) = 0, 1 ≤ i ≤ BS – 1

where:

a(i) is the address of the byte number i within the transfer.

SA is the start address of the transfer.

BS is the block size in bytes.

ES is the element size in bytes.

EI is the element index in bytes, specified in a configuration register,
–32768 ≤ EI ≤ 32767.

FS is the frame size in bytes, FS = ES x EN.

FI is the frame index in bytes, specified in a configuration register,
–32768 ≤ FI ≤ 32767

5.3.3 Data Packing and Bursting

A DMA channel has the capacity to:

� Pack several consecutive byte accesses in a single word16 (16-bit word),
word32 (32-bit word), burst4 (burst of four 32-bit words), or burst8 (burst
of eight words) access (only the LCD channel can perform burst8 ac-
cesses). This increases the transfer rate. For a channel, the decision to
pack or burst accesses to its source port is made by the source address
unit and depends on source port access capability. The decision to pack
and/or burst accesses to its destination port is made by the destination
address unit and depends on destination port access capability. Packing
and bursting are performed only if the software allows it via proper
configuration of the DST_PACK, SRC_PACK, DST_BURST_EN, and
SRC_BURST_EN fields in the appropriate DMA_CSDP register.

� Split a single word transfer into several byte accesses. This is done if the
DMA port data size is less than the size (or does not match the type) of the
data moved.

Table 5–4 summarizes the possible transfer configurations and shows the
cases where packing and splitting are performed.

Generic Channels

 5-18

Table 5–4. Packing and Splitting Summary

Data Type Port Access Capability Packing/Splitting

s8 8 –

16 pack 2 x s8 => 16

32 pack 4 x s8 => 32

s16 8 split s16 => 2 x 8

16 –

32 pack 2x s16 => 32

s32 8 split s32 => 4 x 8

16 split s32 => 2 x 16

32 –

To compute the type of an access (8-, 16-, 32-bit or burst) and decide whether
or not to pack consecutive accesses, an address unit checks:

� Its related DMA port capabilities

� Can the port perform byte, 16-bit, 32-bit accesses?
� Can the port perform burst accesses?

� What is allowed by the software in the configuration registers:

� Is packing allowed (DST_PACK or SRC_PACK set)?
� Is bursting allowed (DST_BURST_EN or SRC_BURST_EN set)?

� The last bits of the address:

� Is the address even or odd?
� Is the address word16, word32, burst4, burst8 aligned?

� The number of elements remaining in the frame.

When the type of access is determined, the current byte address can be in-
cremented by 1, 2, or 4 to reach the next memory space location to access.
Then, the DMA port checks the channel FIFO to see if there is enough data
(write access) or enough space (read access) in the FIFO before issuing the
access.

Not every DMA port has the capability to support every data type (s8, s16, s32)
and transfer size. Therefore, software must carefully set up all DMA transfers
according to the constrains detailed in Table 5–2.

Generic Channels

5-19System DMA Controller

A transfer to/from a DMA port with 32-bit only access capability must be set
up as follows:

� Element size is a multiple of four.

� Start address is aligned on a 32-bit word.

� If frame index is used, it must always produce addresses aligned on a
32-bit word.

� If element index is used, it must always produce addresses aligned on a
32-bit word.

A transfer to/from a DMA port with 16-bit only access capability must be set
up as follows:

� Element size is a multiple of two.

� Start address is aligned on a 16-bit word.

� If frame index is used, it must always produce addresses aligned on a
16-bit word.

� If element index is used, it must always produce addresses aligned on a
16-bit word.

� Example 5–1 provides an example of packing and splitting.

Example 5–1. Packing 2 x s16 => 32

� A channel is set up for a transfer with the following parameters for its
source:

� Number of frames in the block: FN = 2

� Number of elements per frame: EN = 5

� Type of data is s16

� Frame index in bytes: FI = 13

� Element index in bytes: EI = 1

� Source start address: SA = 2

� The source port is a 32-bit port with byte word16 and word32 access
capability.

� Bursts are disabled.

Memory block to transfer is as identified in Table 5–5 (element i, j is the
element number j of frame i).

Generic Channels

 5-20

Table 5–5. Data Block to Transfer

Address Byte 0 Byte 1 Byte 2 Byte 3

0 Element 1, 1

4 Element 1, 2 Element 1, 3

8 Element 1, 4 Element 1, 5

12

16

20

24 Element 2, 1 Element 2, 2

28 Element 2, 3 Element 2, 4

32 Element 2, 5

36

40

The computed addresses and access types are as identified in Table 5–6.

Table 5–6. Address and Access Types

Clock Cycle Frame Number j Element Number i Address Access

0 1 1 2 16 bits

1 1 2 4 32 bits

2 1 4 8 32 bits

3 2 1 24 32 bits

4 2 3 28 32 bits

5 2 5 32 16 bits

6 End of transfer

Generic Channels

5-21System DMA Controller

5.3.4 Data/Address Alignment

During a transfer, all the addresses computed by the DMA must be aligned on
the type of data transferred:

� If the data type is s8 (8 bits scalar data), addresses can have any value.

� If the data type is s16 (16 bits scalar data), addresses must be aligned on
16-bit word boundary (the least bit of the address is always 0).

� If the data type is s32 (32 bits scalar data), addresses must be aligned on
32-bit word boundary (the two least bits of the address are always 00).

� If bursting is enabled, addresses must be aligned on a four-word burst
boundary (128 bits) regardless of data type (the four least-significant bits
of the address are always 0000).

When using the indexed addressing modes (element index and/or frame
index), all the addresses computed must be aligned on the data type.

Failure to adhere to these address alignment requirements could
yield unexpected results. In the case of the four-word bursting
alignment, failure to properly align the addresses could result in a
lockup condition on the DMA channel. To accomplish proper
alignment, programming of the start address, block size, frame
size, and all indexes must be such that the address of every DMA
access is properly aligned (for a burst, this would mean the first
access of the burst).

5.3.5 Constraint on Channel Configuration Parameters

Verifying this constraint ensures correct DMA operations when transferring
data between ports with different access capabilities as follows:

[SA modulo]/ES = 0,

Where SA is source address and ES is the element size.

Generic Channels

 5-22

5.3.6 Endianism

The endianism of a bus or a memory designates the way data is stored on this
bus or in this memory. There are two types of endianism:

� Big endian

The MSB of the word is stored at the least address in the memory for a bus.
The MSB of the word is placed on the MSB of the bus.

� Little endian:

The MSB of the word is stored at the highest address in the memory for a
bus. The MSB of the word is placed on the LSB of the bus.

The internal FIFOs of the system DMA are big endian. All system DMA ports
are treated as little endian on OMAP5910. Therefore, the system DMA con-
tains adaptation logic to convert incoming data to big endian and outgoing data
back to little endian. This adaptation logic is static, can not be configured, and
is transparent to system DMA operation.

Additional logic (unrelated to the system DMA) is available to perform endian-
ism conversion between the DSP and the MPU at the DSP MMU and the MPUI
interfaces. These are described in section 2.11, Endianism Conversion.

The DMA internal FIFOs are big endian.

This adaptation is static and always the same for a given DMA application.
Each DMA port contains an endianism adaptation module.

Figure 5–7. Endianism Adaptation on Transferred Data

Little
endian

memory

Endian
adaptation

Source
port Channel

FIFO

Big endian

Channel

Endian
adaptation

Destination
port Little

endian
memory

System DMA

Generic Channels

5-23System DMA Controller

5.3.7 Interrupt Generation

Each DMA physical channel can generate an interrupt to the processor to
reflect the transfer status. Each DMA physical channel has a dedicated inter-
rupt line to the processor. All the DMA interrupts are level interrupts.

For every DMA logical channel, the following interrupt sources can be
programmed:

� End of block: The last byte of the transfer has been written in destination.

� End of frame: The last byte of the current frame has been written in
destination.

� Half of frame: The middle byte of the current frame has been written in
destination.

� Start of last frame: The first word of the last frame has been written in
destination.

� DMA request collision: A new DMA request occurred before the end of
service of the previous one.

� Time-out: An access has been timed out.

To prevent a definitive lock by a channel on a memory location or peripher-
al, all the DMA ports to memory/peripheral requests are monitored by a
time-out counter in the following sequence:

1) When the request is sent by the DMA to transfer data in a channel, a
time-out counter is triggered.

2) The request is acknowledged, and the time-out counter is stopped.

3) If the time-out counter reaches its threshold before the request is
acknowledged, the request is discarded and an error is reported in the
DMA channel by setting the relevant bit in DMA_CSR (channel status
register) and sending an interrupt to the processor. The channel is
stopped.

The time-out information is generated in the resources accessed by the
DMA:

� System IMIF/local bus port: Time-out is signaled by the IMIF or the
local bus.

� System TI peripheral bus port: Time-out is signaled by the TIPB
bridge.

� System EMIFS/EMIFF port: Time-out is signaled by the EMIFS/
EMIFF (or traffic controller).

Generic Channels

 5-24

The system DMA has nine physical channels; each has the capability to gener-
ate interrupts. The DMA has seven interrupt lines, some of which are shared
by two physical channels. Each of these seven interrupt lines is routed as an
interrupt input on the MPU level2 interrupt handler.

For a physical channel, all the sources are ORed together to generate one
interrupt. When an interrupt is issued by a physical channel, its status register
(DMA_CSR) is set to record the interrupt cause. The processor interrupt
service routine (ISR) can read this channel status register to find the source
of the interrupt. The status bits are automatically cleared after they are read.
One read in the status register clears all the status bits.

� Interrupt line 0 (MPU level2 IRQ19) is shared by channel 0 and 6.
� Interrupt line 1 (MPU level2 IRQ20) is shared by channel 1 and 7.
� Interrupt line 2 (MPU level2 IRQ21) is shared by channel 2 and 8.
� Interrupt line 3 (MPU level2 IRQ22) is dedicated to channel 3.
� Interrupt line 4 (MPU level2 IRQ23) is dedicated to channel 4.
� Interrupt line 5 (MPU level2 IRQ24) is dedicated to channel 5.
� Interrupt line 6 (MPU level2 IRQ25) is dedicated to the LCD channel.

If simultaneous events occur in two physical channels that share the same
interrupt line, only one interrupt is generated, and all the relevant status bits
are set.

Each physical channel has a 7-bit status register. When an interrupt is shared
by two physical channels, the MPU can read the status from the two channels
in one TIPB access. Figure 5–8 shows the data read format for two shared
physical channels.

Figure 5–8. Data Read Format—Two Shared Physical Channels

0 0

Physical channel 0
status register

Physical channel 6
status register

This unique status is accessible either at channel 6 DMA_CSR, or at channel
0 DMA_CSR. Any MPU read (at channel 0 DMA_CSR address or at channel
1 DMA_CSR address) clears all status for the two channels.

When an interrupt is dedicated to 1 physical channel, the MPU can read the
status from this channel in one TIPB access. Figure 5–9 shows the data read
format for one physical channels.

Generic Channels

5-25System DMA Controller

Figure 5–9. Data Read Format—One Physical Channel

0 00 00 0 0 0 0

Physical channel 3
status register

5.3.8 Memory Space Protection

To set up a transfer, the software specifies:

� A source port with an address that must hit in the source port memory
space.

� A destination port with an address that must hit in the destination port
memory space.

If the software specifies a port with an address that does not hit this port
memory space (example: source port = EMIFF with an EMIFS start address
specified), the transfer continues and memory can be corrupted. No address
space check is performed by the DMA or outside the DMA.

It is the programmer’s responsibility to ensure coherency between
the source port and source start address, and between the
destination port and destination start address.

LCD Dedicated Channel

 5-26

5.4 LCD Dedicated Channel

The LCD channel transfers 16-bit data to the LCD controller from a video frame
buffer stored in memory.

5.4.1 Functional Description

The memory source for the LCD dedicated transfer can be either IMIF or
EMIFF. These transfers can be arranged to one or two frames but they are
always done in frame addressing mode. There is no capability for various
addressing modes as in the other channels. The dual-frame mode allows
concurrent transfer and image processing (reload of one frame while another
is being processed).

Figure 5–10. LCD Channel

dma_first_word (17th bit) IMIF
scheduler

IRQ_DMA_CH_LCD

FIFO and LCD
control logic

LCD
FIFO

64x17 bits Read
control
logic

LCD address
unit (read)

dma_lcd_ram(15–0)

dma_lcd_enable
dma_lcd_ready

dma_lcd_un_flow

dma_lcd_add(5–0)

Interrupt
generator

LCD registers

IMIF
port

EMIFF
port

Priority (always high)
From/to generic channels

LCD
controller EMIFF

scheduler

IMIF

EMIFF

TIPB

system DMA

LCD channel

Read address

Data (16-bits)

Asyncronous

RAM memory

Switching from one frame to another is achieved by loading the top address
of the second frame buffer after the first frame buffer has been fully transferred.
The LCD channel sends the read request on the relevant port according to the
LCD_SOURCE bit.

The LCD_SOURCE bit is read from the DMA_LCD_CTRL register. The dedi-
cated DMA channel contains a 64 by 17-bit words FIFO (asynchronous RAM
built-in). The dma_lcd_first_word that is used as frame synchronizer by the
LCD controller is the 17th FIFO bit output. To ensure correct throughput from

LCD Dedicated Channel

5-27System DMA Controller

the DMA to the LCD FIFO, the maximum burst length is set to eight. Only near
frame boundaries, in case of nonmultiple frames, are single transfers started;
otherwise, all requests to the source memory are in 8x16 burst requests. The
LCD channel priority bit is fixed high (hard-coded LCD channel constant
parameter).

The configuration registers contain top and bottom address registers for the
two frame buffers and a control register that manages the operation mode
(dual or single), the enable bits for the interrupts, and the source port for the
next transfer. It then returns information by setting the status bits in the same
control register. An interrupt can be sent at the end of the transfer of each
frame. This interrupt line is connected to the global nIRQ line of the DMA.

5.4.2 Addressing Units

The LCD channel does not contain the same (read) address unit as the generic
channels. This is because the addressing modes used in the LCD channel are
not compliant with the generic modes. The generic channels receive two
instances of the address unit. The LCD channel does not have the write
address unit instantiated because there is no write address to compute; that
is, the read FIFO address is given by the OMAP LCD controller, so there is no
write address.

5.4.2.1 LCD Addressing

At the beginning of LCD operation, the LCD channel gives a start address,
which is conventionally called the top address of the current frame buffer. This
address is sent to the relevant memory port via the scheduler. LCD DMA
requests to the memory port are time-multiplexed along with requests from
generic channels, as described in section 5.3.1, Transfers.

a(0) = SA

a(next) = a(current) + 2

a(next) = TF1 if (a(next) = BF2 and DFM) or (a(next) = BF1 and not (DFM))

a(next) = TF2 if a(next) = BF1 and DFM

where:

a(0) is the first address to be computed.

SA is the start address of the transfer, which is always the top address given
for the first frame buffer.

a(current) is the current address of the byte number within the transfer.

a(next) is the next address to be computed.

BF1 is bottom address for frame 1.

LCD Dedicated Channel

 5-28

BF2 is bottom address for frame 2.

TF1 is top address for frame 1.

TF2 is top address for frame 2.

DFM is the dual-frame mode.

In other words, the next address is always the current address + 2 unless the
frame boundaries (inclusive) have been reached (address is a byte address;
it is necessary to increment by two, because all LCD transfers are 16 bits). In
this case, the next address computed is the top address for the frame 1 if in
single frame mode; otherwise, the top address for frame 2 is loaded.

5.4.3 LCD Channel Usage Restrictions

5.4.3.1 Exclusive Frames

The hardware design does not support inclusion of a frame buffer into another
frame buffer; that is, the start and stop address of each buffer must represent
two different physical parts into the memory. In dual-frame mode the top
address for the second frame must be greater (and not equal) than the bottom
address of the first frame.

5.4.3.2 Both Frames Must Belong to a Single Source

In case of dual-frame operation it is not possible to have one frame read from
one source and one frame read from second source. For changing from one
source to another, the LCDEN bit of the LCD control register (see Section 11.8,
LCD Controller Registers) must be cleared to 0 and all pending LCD interrupts
processed. The LCDEN bit level is connected to the dma_lcd_en input of the
DMA LCD channel module as pictured in Figure 5–10.

5.4.3.3 LCD Registers Must Remain Steady From One Transfer to Another

It is not possible to change any bit of the LCD channel registers until a transfer
has been fully completed. No shadow registers exist in the LCD channel as in
generic channels. Changing bits before transfer completion has not been
tested; results of doing so are unknown. To update registers, the LCDEN bit
should be cleared to 0 and all pending LCD interrupts processed.

5.4.3.4 FIFO Out of Data (Bandwidth Break)

FIFO reads are controlled by a state machine that provides the flow control for
the LCD controller. In case of a time-out or bus error while reading the source
memory, the state machine detects the error and does not allow read activity

LCD Dedicated Channel

5-29System DMA Controller

to continue until the LCD enable signal (dma_lcd_en) is disabled one time
(LCDEN = 0). This mechanism is provided to avoid having dummy high-priority
requests to the ports because the LCD channel’s frame data flow has been
corrupted. If the LCD controller loses the flow, it should send a software inter-
rupt to cause the MPU to quickly stop the current transfer. The transfer is
allowed to run normally after the dma_lcd_en is asserted again (LCDEN = 1).

5.4.4 LCD Transfer Examples

5.4.4.1 EMIFF to LCD, One Frame

Figure 5–11 shows a transfer for a video frame located in EMIFF to the LCD
controller. The size for the LCD display is 6x16 pixels with 16 bits per pixel.

So the length of the video frame is:

6 x16 x 2 (in bytes) + 32 bytes for the palette = 224 bytes

If the video frame starts at address 0x0B0000, the bottom address of the video
frame is 0x0B00DE.

Registers settings are shown in Table 5–8.

Table 5–7. EMIF to LCD Register Settings—One Frame

DMA_LCD_CTRL Register Settings

Frame_mode 0 (one frame)

Frame_it_ie 1

Bus_error_ie 1

Lcd_source 0 (SDRAM)

DMA_LCD_TOP_F1_U 0x000B

DMA_LCD_TOP_F1_L 0x0000

DMA_LCD_BOT_F1_U 0x000B

DMA_LCD_BOT_F1_L 0x00DE

DMA_LCD_TOP_F2_U irrelevant

DMA_LCD_TOP_F2_L irrelevant

DMA_LCD_BOT_F2_U irrelevant

DMA_LCD_BOT_F2_L irrelevant

The transfer starts when the enable (hardware) signal from the LCD controller
is asserted high.

LCD Dedicated Channel

 5-30

The transfer runs, and an interruption is generated at the end of the frame.

Figure 5–11.LCD One Frame Mode Transfer Scheme
SDRAM

Video frame

0x0B 0000

0x0B 00DE

LCD
controller

lcd_top_frame1

DMA

lcd_bot_frame1

When an interrupt occurs, read the DMA_LCD_CTRL register to find the
source of the interrupt.

If DMA_LCD_CTRL(3) = 1, end frame 1 interrupt.

If end of frame is reached, the DMA restarts at the top of the frame. Reset
DMA_LCD_CTRL(3) and wait for another interrupt.

5.4.4.2 IMIF to LCD, Two Frames

Figure 5–12 shows a transfer from two video frames located in IMIF to the LCD
controller. The size for the LCD display is 6 x 16 pixels with 16 bits per pixel.
So the length of one video frame is:

6 x 16 x 2 (in bytes) + 32 bytes for the palette = 224 bytes

If the video frame 1 starts at address 0x0B0000, the bottom address of the
video frame is 0x0B00DE. If the video frame 2 starts at address 0x0C0000, the
bottom address of the video frame is 0x0C00DE.

Registers settings are shown in Table 5–8.

Table 5–8. IMIF LCD Register Settings—Two Frames

DMA_LCD_CTRL Register Settings

Frame_mode 1 (two frame)

Frame_it_ie 1

Bus_error_ie 1

Lcd_source 1 (IMIF)

DMA_LCD_TOP_F1_U 0x000B

LCD Dedicated Channel

5-31System DMA Controller

Table 5–8. IMIF LCD Register Settings—Two Frames (Continued)

DMA_LCD_CTRL Register Settings

DMA_LCD_TOP_F1_L 0x0000

DMA_LCD_BOT_F1_U 0x000B

DMA_LCD_BOT_F1_L 0x00DE

DMA_LCD_TOP_F2_U 0x000C

DMA_LCD_TOP_F2_L 0x0000

DMA_LCD_BOT_F2_U 0x000C

DMA_LCD_BOT_F2_L 0x00DE

The transfer starts when the enable (hardware) signal from the LCD controller
is asserted high.

The transfer runs, and the interrupts are generated at the ends of frames 1
and 2.

Figure 5–12. LCD Dual-Frame Mode Transfer Scheme

IMIF

Video frame 1

LCD
controllerDMA

Video frame 2

0x0B 0000

0x0C 0000

0x0B 00DE

0x0C 00DE

When an interrupt occurs, read the DMA_LCD_CTRL register to find the
source of the interrupt.

If DMA_LCD_CTRL(3) = 1, end frame 1 interrupt.

If DMA_LCD_CTRL(4) = 1, end frame 2 interrupt.

When bottom of frame 1 is reached, the DMA loads the top frame 2 addresses.
When bottom of frame 2 is reached, the DMA loads the top frame 1 address.

Reset DMA_LCD_CTRL3 and 4 and wait for another interrupt.

DMA Request Mapping

 5-32

5.5 DMA Request Mapping

Table 5–9 shows the DMA request mapping for the OMAP5910 device.

Table 5–9. DMA Request Mapping

MPU System DMA Requests MPU System DMA

MCSI1 TX DMA_REQ_01

MCSI1 RX DMA_REQ_02

I2C RX DMA_REQ_03

I2C TX DMA_REQ_04

EXT_DMA_REQ0 (MPUIO2) DMA_REQ_05

EXT_DMA_REQ1 (MPUIO4) DMA_REQ_06

MicroWire TX DMA_REQ_07

McBSP1 TX DMA_REQ_08

McBSP1 RX DMA_REQ_09

McBSP3 TX DMA_REQ_10

McBSP3 RX DMA_REQ_011

UART1 TX DMA_REQ_012

UART1 RX DMA_REQ_013

UART2 TX DMA_REQ_014

UART2 RX DMA_REQ_015

McBSP2 TX DMA_REQ_016

McBSP2 RX DMA_REQ_017

UART3 TX DMA_REQ_018

UART3 RX DMA_REQ_019

Camera RX DMA_REQ_020

MMC TX DMA_REQ_021

MMC RX DMA_REQ_022

Reserved DMA_REQ_023

Reserved DMA_REQ_024

DMA Request Mapping

5-33System DMA Controller

Table 5–9. DMA Request Mapping (Continued)

MPU System DMA Requests MPU System DMA

Reserved DMA_REQ_025

USB function RX0 DMA_REQ_026

USB function RX1 DMA_REQ_027

USB function RX2 DMA_REQ_028

USB function TX0 DMA_REQ_029

USB function TX1 DMA_REQ_030

USB function TX2 DMA_REQ_031

Registers

 5-34

5.6 Registers
Table 5–10 describes the DMA controller registers.

Note:

The DMA control registers are part of a register superset for multiple OMAP-
based devices. They are defined for a 16-port, 16-channel DMA controller.
Thus as generic as possible a register mapping is provided, so some regis-
ters may appear to be almost empty. Only the 16 LSBs are used; in fact, the
DMA registers must always be accessed as 16-bit registers.

Base address for system DMA: FFFE–D800

Table 5–10. DMA Controller Registers

Name Description R/W
Size
(Bits) Address Reset Value

DMA_GCR Global control R/W 16 0xFFFEDC00 0x0008

DMA_CSDP_CH0 Channel 0 source destination
parameters

R/W 16 0xFFFED800 0x0000

DMA_CCR_CH0 Channel 0 control R/W 16 0xFFFED802 0x0000

DMA_CICR_CH0 Channel 0 interrupt control R/W 16 0xFFFED804 0x0003

DMA_CSR_CH0 Channel 0 status R 16 0xFFFED806 0x0000

DMA_CSSA_L_CH0 Channel 0 source start
address—lower bits

R/W 16 0xFFFED808 U

DMA_CSSA_U_CH0 Channel 0 source start
address—upper bits

R/W 16 0xFFFED80A U

DMA_CDSA_L_CH0 Channel 0 destination start
address—lower bits

R/W 16 0xFFFED80C U

DMA_CDSA_U_CH0 Channel 0 destination start
address—upper bits

R/W 16 0xFFFED80E U

DMA_CEN_CH0 Channel 0 element number R/W 16 0xFFFED810 U

DMA_CFN_CH0 Channel 0 frame number R/W 16 0xFFFED812 U

DMA_CFI_CH0 Channel 0 frame index R/W 16 0xFFFED814 U

DMA_CEI_CH0 Channel 0 element index R/W 16 0xFFFED816 U

DMA_CPC_CH0 Channel 0 channel progress counter R/W 16 0xFFFED818 U

DMA_CSDP_CH1 Channel 1 source destination
parameters

R/W 16 0xFFFED840 0x0000 0000

Registers

5-35System DMA Controller

Table 5–10. DMA Controller Registers (Continued)

Name Reset ValueAddress
Size
(Bits)R/WDescription

DMA_CCR_CH1 Channel 1 control R/W 16 0xFFFED842 0x0000

DMA_CICR_CH1 Channel 1 interrupt control R/W 16 0xFFFED844 0x0003

DMA_CSR_CH1 Channel 1 status R 16 0xFFFED846 0x0000

DMA_CSSA_L_CH1 Channel 1 source start address
lower bits

R/W 16 0xFFFED848 U

DMA_CSSA_U_CH1 Channel 1 source start address
upper bits

R/W 16 0xFFFED84A U

DMA_CDSA_L_CH1 Channel 1 destination start address
lower bits

R/W 16 0xFFFED84C U

DMA_CDSA_U_CH1 Channel 1 destination start address
upper bits

R/W 16 0xFFFED84E U

DMA_CEN_CH1 Channel 1 element number R/W 16 0xFFFED850 U

DMA_CFN_CH1 Channel 1 frame number R/W 16 0xFFFED852 U

DMA_CFI_CH1 Channel 1 frame index R/W 16 0xFFFED854 U

DMA_CEI_CH1 Channel 1 element index R/W 16 0xFFFED856 U

DMA_CPC_CH1 Channel 1 channel progress counter R/W 16 0xFFFED858 U

DMA_CSDP_CH2 Channel 2 source destination
parameters

R/W 16 0xFFFED880 0x0000

DMA_CCR_CH2 Channel 2 control R/W 16 0xFFFED882 0x0000

DMA_CICR_CH2 Channel 2 interrupt control R/W 16 0xFFFED884 0x0003

DMA_CSR_CH2 Channel 2 status R 16 0xFFFED886 0x0000

DMA_CSSA_L_CH2 Channel 2 source start address
lower bits

R/W 16 0xFFFED888 U

DMA_CSSA_U_CH2 Channel 2 source start address
upper bits

R/W 16 0xFFFED88A U

DMA_CDSA_L_CH2 Channel 2 destination start address
lower bits

R/W 16 0xFFFED88C U

DMA_CDSA_U_CH2 Channel 2 destination start address
upper bits

R/W 16 0xFFFED88E U

DMA_CEN_CH2 Channel 2 element number R/W 16 0xFFFED890 U

Registers

 5-36

Table 5–10. DMA Controller Registers (Continued)

Name Reset ValueAddress
Size
(Bits)R/WDescription

DMA_CFN_CH2 Channel 2 frame number R/W 16 0xFFFED892 U

DMA_CFI_CH2 Channel 2 frame index R/W 16 0xFFFED894 U

DMA_CEI_CH2 Channel 2 element index R/W 16 0xFFFED896 U

DMA_CPC_CH2 Channel 2 channel progress counter R/W 16 0xFFFED898 U

DMA_CSDP_CH3 Channel 3 source destination
parameters

R/W 16 0xFFFED8C0 0x0000

DMA_CCR_CH3 Channel 3 control R/W 16 0xFFFED8C2 0x0000

DMA_CICR_CH3 Channel 3 interrupt control R/W 16 0xFFFED8C4 0x0003

DMA_CSR_CH3 Channel 3 status R 16 0xFFFED8C6 0x0000

DMA_CSSA_L_CH3 Channel 3 source start address
lower bits

R/W 16 0xFFFED8C8 U

DMA_CSSA_U_CH3 Channel 3 source start address
upper bits

R/W 16 0xFFFED8CA U

DMA_CDSA_L_CH3 Channel 3 destination start address
lower bits

R/W 16 0xFFFED8CC U

DMA_CDSA_U_CH3 Channel 3 destination start address
upper bits

R/W 16 0xFFFED8CE U

DMA_CEN_CH3 Channel 3 element number R/W 16 0xFFFED8D0 U

DMA_CFN_CH3 Channel 3 frame number R/W 16 0xFFFED8D2 U

DMA_CFI_CH3 Channel 3 frame index R/W 16 0xFFFED8D4 U

DMA_CEI_CH3 Channel 3 element index R/W 16 0xFFFED8D6 U

DMA_CPC_CH3 Channel 3 channel progress counter R/W 16 0xFFFED8D8 U

DMA_CSDP_CH4 Channel 4 source destination
parameters

R/W 16 0xFFFED900 0x0000

DMA_CCR_CH4 Channel 4 control R/W 16 0xFFFED902 0x0000

DMA_CICR_CH4 Channel 4 interrupt control R/W 16 0xFFFED904 0x0003

DMA_CSR_CH4 Channel 4 status R 16 0xFFFED906 0x0000

DMA_CSSA_L_CH4 Channel 4 source start address
lower bits

R/W 16 0xFFFED908 U

Registers

5-37System DMA Controller

Table 5–10. DMA Controller Registers (Continued)

Name Reset ValueAddress
Size
(Bits)R/WDescription

DMA_CSSA_U_CH4 Channel 4 source start address
upper bits

R/W 16 0xFFFED90A U

DMA_CDSA_L_CH4 Channel 4 destination start address
lower bits

R/W 16 0xFFFED90C U

DMA_CDSA_U_CH4 Channel 4 destination start address
upper bit

R/W 16 0xFFFED90E U

DMA_CEN_CH4 Channel 4 element number R/W 16 0xFFFED910 U

DMA_CFN_CH4 Channel 4 frame number R/W 16 0xFFFED912 U

DMA_CFI_CH4 Channel 4 frame index R/W 16 0xFFFED914 U

DMA_CEI_CH4 Channel 4 element index R/W 16 0xFFFED916 U

DMA_CPC_CH4 Channel 4 channel progress counter R/W 16 0xFFFED918 U

DMA_CSDP_CH5 Channel 5 source destination
parameters

R/W 16 0xFFFED940 0x0000

DMA_CCR_CH5 Channel 5 control R/W 16 0xFFFED942 0x0000

DMA_CICR_CH5 Channel 5 interrupt control R/W 16 0xFFFED944 0x0003

DMA_CSR_CH5 Channel 5 status R 16 0xFFFED946 0x0000

DMA_CSSA_L_CH5 Channel 5 source start address
lower bits

R/W 16 0xFFFED948 U

DMA_CSSA_U_CH5 Channel 5 source start address
upper bits

R/W 16 0xFFFED94A U

DMA_CDSA_L_CH5 Channel 5 destination start address
lower bits

R/W 16 0xFFFED94C U

DMA_CDSA_U_CH5 Channel 5 destination start address
upper bits

R/W 16 0xFFFED94E U

DMA_CEN_CH5 Channel 5 element number R/W 16 0xFFFED950 U

DMA_CFN_CH5 Channel 5 frame number R/W 16 0xFFFED952 U

DMA_CFI_CH5 Channel 5 frame index R/W 16 0xFFFED954 U

DMA_CEI_CH5 Channel 5 element index R/W 16 0xFFFED956 U

DMA_CPC_CH5 Channel 5 channel progress counter R/W 16 0xFFFED958 U

Registers

 5-38

Table 5–10. DMA Controller Registers (Continued)

Name Reset ValueAddress
Size
(Bits)R/WDescription

DMA_CSDP_CH6 Channel 6 source destination
parameters

R/W 16 0xFFFED980 0x0000

DMA_CCR_CH6 Channel 6 control R/W 16 0xFFFED982 0x0000

DMA_CICR_CH6 Channel 6 interrupt control R/W 16 0xFFFED984 0x0003

DMA_CSR_CH6 Channel 6 status R 16 0xFFFED986 0x0000

DMA_CSSA_L_CH6 Channel 6 source start address
lower bit

R/W 16 0xFFFED988 U

DMA_CSSA_U_CH6 Channel 6 source start address
upper bits

R/W 16 0xFFFED98A U

DMA_CDSA_L_CH6 Channel 6 destination start address
lower bits

R/W 16 0xFFFED98C U

DMA_CDSA_U_CH6 Channel 6 destination start address
upper bits

R/W 16 0xFFFED98E U

DMA_CEN_CH6 Channel 6 element number R/W 16 0xFFFED990 U

DMA_CFN_CH6 Channel 6 frame number R/W 16 0xFFFED992 U

DMA_CFI_CH6 Channel 6 frame index R/W 16 0xFFFED994 U

DMA_CEI_CH6 Channel 6 element index R/W 16 0xFFFED996 U

DMA_CPC_CH6 Channel 6 channel progress counter R/W 16 0xFFFED998 U

DMA_CSDP_CH7 Channel 7 source destination
parameters

R/W 16 0xFFFED9C0 0x0000

DMA_CCR_CH7 Channel 7 control R/W 16 0xFFFED9C2 0x0000

DMA_CICR_CH7 Channel 7 interrupt control R/W 16 0xFFFED9C4 0x0003

DMA_CSR_CH7 Channel 7 status R 16 0xFFFED9C6 0x0000

DMA_CSSA_L_CH7 Channel 7 source start address
lower bits

R/W 16 0xFFFED9C8 U

DMA_CSSA_U_CH7 Channel 7 source start address
upper bits

R/W 16 0xFFFED9CA U

DMA_CDSA_L_CH7 Channel 7 destination start address
lower bits

R/W 16 0xFFFED9CC U

DMA_CDSA_U_CH7 Channel 7 destination start address
lower bits

R/W 16 0xFFFED9CE U

DMA_CEN_CH7 Channel 7 element number R/W 16 0xFFFED9D0 U

DMA_CFN_CH7 Channel 7 frame number R/W 16 0xFFFED9D2 U

Registers

5-39System DMA Controller

Table 5–10. DMA Controller Registers (Continued)

Name Reset ValueAddress
Size
(Bits)R/WDescription

DMA_CFI_CH7 Channel 7 frame index R/W 16 0xFFFED9D4 U

DMA_CEI_CH7 Channel 7 element frame R/W 16 0xFFFED9D6 U

DMA_CPC_CH7 Channel 7 channel progress counter R/W 16 0xFFFED9D8 U

DMA_CSDP_CH8 Channel 8 source destination
parameters

R/W 16 0xFFFEDA00 0x0000

DMA_CCR_CH8 Channel 8 control R/W 16 0xFFFEDA02 0x0000

DMA_CICR_CH8 Channel 8 interrupt control R/W 16 0xFFFEDA04 0x0003

DMA_CSR_CH8 Channel 8 status R 16 0xFFFEDA06 0x0000

DMA_CSSA_L_CH8 Channel 8 source start address
lower bits

R/W 16 0xFFFEDA08 U

DMA_CSSA_U_CH8 Channel 8 source start address
upper bits

R/W 16 0xFFFEDA0A U

DMA_CDSA_L_CH8 Channel 8 destination start address
lower bits

R/W 16 0xFFFEDA0C U

DMA_CDSA_U_CH8 Channel 8 destination start address
upper bits

R/W 16 0xFFFEDA0E U

DMA_CEN_CH8 Channel 8 element number R/W 16 0xFFFEDA10 U

DMA_CFN_CH8 Channel 8 frame number R/W 16 0xFFFEDA12 U

DMA_CFI_CH8 Channel 8 frame index R/W 16 0xFFFEDA14 U

DMA_CEI_CH8 Channel 8 element index R/W 16 0xFFFEDA16 U

DMA_CPC_CH8 Channel 8 channel progress counter R/W 16 0xFFFEDA18 U

DMA_LCD_CTRL LCD control R/W 16 0xFFFEDB00 0x0000

DMA_LCD_TOP_
F1_L

LCD top address for frame buffer 1
lower bits

R/W 16 0xFFFEDB02 U

DMA_LCD_TOP_
F1_U

LCD top address for frame buffer 1
upper bits

R/W 16 0xFFFEDB04 U

DMA_LCD_BOT_
F1_L

LCD bottom address for frame buffer
1 lower bits

R/W 16 0xFFFEDB06 U

DMA_LCD_BOT_
F1_U

LCD bottom address for frame buffer
1 upper bits

R/W 16 0xFFFEDB08 U

Registers

 5-40

Table 5–10. DMA Controller Registers (Continued)

Name Reset ValueAddress
Size
(Bits)R/WDescription

DMA_LCD_TOP_
F2_L

LCD top address for frame buffer 2
lower bits

R/W 16 0xFFFEDB0A U

DMA_LCD_TOP_
F2_U

LCD top address for frame buffer 2
upper bits

R/W 16 0xFFFEDB0C U

DMA_LCD_BOT_
F2_L

LCD bottom address for frame buffer
2 lower bits

R/W 16 0xFFFEDB0E U

DMA_LCD_BOT_
F2_U

LCD bottom address for frame buffer
2 upper bits

R/W 16 0xFFFEDB10 U

Table 5–11 shows the global control register bit descriptions.

Table 5–11. DMA Global Control register (DMA_GCR)

Bit Name Value Description Type
Reset
Value

15–4 RESERVED

3 AUTOGATING_ON DMA clock autogating is as follows: RW 1

0 Reserved. Do not use this setting.

1 Allows the DMA to dynamically cut off its clocks
according to its activity. This bit should always be
set to 1.

2 FREE DMA reaction to the suspend signal is as follows: RW 0

0 The DMA suspends all the current transfers when
it receives the suspend signal from the processor.
Transfers resume when the processor releases
the suspend signal. The DMA clock must not be
cut off when the DMA is suspended.

1 The DMA continues running when it receives the
suspend signal from the processor (when the
processor is halted for debug by a breakpoint, for
example).

1–0 RESERVED

Registers

5-41System DMA Controller

5.6.1 Generic Channel Registers

There is one set of these registers for each generic DMA channel. Although
the DMA has a 32-bit TIPB, all registers are in 16-bit format and must be
accessed as 16-bit data by the MPU.

Table 5–12. Channel Source Destination Parameters Register (DMA_CSDP)

Bit Name Value Description Type
Reset
Value

15–14 DST_BURST_EN Destination burst enable

Enable/disable bursting on the destination port.
When bursting is enabled, the destination port
performs bursts
4 x dst_width. When bursting is disabled, the
destination port performs single accesses of
dst_width bits.

RW 00

00 Single access (no burst)

01 Single access (no burst)

10 Burst 4

11 Reserved (do not use this setting)

If the destination port of the channel has no burst
access capability, this field is ignored.

13 DST_PACK Destination packing

The DMA ports can have a data bus width
different from that of the type of data moved by
the DMA channel. For example, s8 data can be
read on a 32-bit DMA port. The DMA channel has
the capacity to pack four consecutive s8 data
reads in a single 32-bit read access to increase
bandwidth.

RW 0

0 The destination port never makes packed
accesses.

1 The destination port makes packed accesses.

Registers

 5-42

Table 5–12. Channel Source Destination Parameters Register (DMA_CSDP) (Continued)

Bit
Reset
ValueTypeDescriptionValueName

12–9 DST Transfer destination

A unique identifier is given to each port. This field
indicates which port is the originator of the
transfer.

RW 0000

0000 EMIFF

0001 EMIF

0010 IMIF

0011 TIPB

0100 Local

0101 TIPB_MPUI

Others: Illegal (do not use this setting)

8–7 SRC_BURST_EN Source burst enable

Enable/disable bursting on the source port. When
bursting is enabled, the source port performs
bursts 4 x src_width. When bursting is disabled,
the source port performs single accesses of
src_width bits.

RW 00

00 Single access (no burst)

01 Single access (no burst)

10 Burst 4

11 Reserved (do not use this setting)

If the source port of the channel has no burst
access capability, this field is ignored.

Registers

5-43System DMA Controller

Table 5–12. Channel Source Destination Parameters Register (DMA_CSDP) (Continued)

Bit
Reset
ValueTypeDescriptionValueName

6 SRC_PACK Source packing

The DMA ports can have a data bus width
different from that of the type of data moved by
the DMA channel. For example, s8 data can be
read on a 32-bit DMA port. The DMA channel has
the capacity to pack four consecutive s8 data
reads in a single 32-bit read access to increase
bandwidth.

RW 0

0 The source port never makes packed accesses.

1 The source port makes packed accesses.

5–2 SRC Transfer source

A unique identifier is given to each port. This field
indicates which port is the originator of the
transfer.

RW 0000

0000 EMIFF

0001 EMIF

0010 IMIF

0011 TIPB

0100 Local

0101 TIPB_MPUI

Others: Illegal (do not use this setting)

Registers

 5-44

Table 5–12. Channel Source Destination Parameters Register (DMA_CSDP) (Continued)

Bit
Reset
ValueTypeDescriptionValueName

1–0 DATA_TYPE Defines the type of the data moved in the channel RW 00

00 s8, 8 bits scalar

01 s16, 16 bits scalar

10 s32, 32 bits scalar

11 Illegal value

Start address must be aligned on the boundary of
the type of data moved. For example, if type is
s32, the source and destination start address
must be aligned on a 32-bit word. If type is s8,
source and destination start address can have
any value. The DMA forces by hardware the start
address value on the type of data transferred.

Registers

5-45System DMA Controller

Table 5–13. DMA Channel Control Register (DMA__CCR)

Bit Name Value Description Type
Reset
Value

15–14 DST_AMODE Destination addressing mode

This field is used to choose the addressing mode on
the destination port of a channel.

RW 00

00 Constant address

01 Post-incremented address

10 Single index (element index)

11 Double index (element index and frame index)

13–12 SRC_AMODE Source addressing mode

This field is used to choose the addressing mode on
the source port of a channel.

RW 00

00 Constant address

01 Post-incremented address

10 Single index (element index)

11 Double index (element index and frame index)

11 END_PROG End of programming RW-
RST

0

0 Delays the channel autoinitialization if
AUTO_INIT = 1 and REPEAT = 0.

1 Allows the channel to reinitialize itself if
AUTO_INIT = 1

10 RESERVED RW-
RST

0

9 REPEAT Repetitive operations RW 0

0 When the current transfer is complete, the channel
automatically reinitializes itself and starts a new
transfer only if END_PROG = 1.

1 When the current transfer is complete, the channel
automatically reinitializes itself and starts a new
transfer disregarding END_PROG.

Registers

 5-46

Table 5–13. DMA Channel Control Register (DMA__CCR) (Continued)

Bit
Reset
ValueTypeDescriptionValueName

8 AUTO_INIT Autoinitialization at the end of the transfer RW 0

0 The channel stops at the end of the current transfer.

1 When the current transfer is complete, the channel
automatically reinitializes itself and starts a new
transfer.

There are two ways to stop a channel while it is in
autoinitialization mode:

� Write a 0 to the DMA_CCR EN bit; the channel
immediately stops.

� Write a 0 to the DMA_CCR AUTO_INIT bit; the
channel completes the current transfer and stops.

7 EN Enable

This bit is used to enable/disable the transfer in the
DMA channel.

RW-
RST

0

0 The transfer stops, and it is reset.

1 The transfer starts.

This bit is automatically cleared by the DMA once the
transfer is accomplished. Clearing of this bit by the
DMA has the priority over write by the processor. If
both simultaneously occur, the processor write is
discarded.

6 PRIO Channel priority RW 0

0 The channel has low priority level.

1 The channel has high priority level.

Registers

5-47System DMA Controller

Table 5–13. DMA Channel Control Register (DMA__CCR) (Continued)

Bit
Reset
ValueTypeDescriptionValueName

5 FS Frame synchronization

This bit is used to program the way a DMA request is
serviced in a synchronized transfer.

RW 0

0 An element is transferred each time a DMA request is
made. This element can be interleaved on the DMA
port with other channel requests.

1 An entire frame is transferred each time a DMA
request is made. This frame can be interleaved on the
DMA ports with other channel requests.

4–0 SYNC Synchronization control

This field is used to specify the external DMA request,
which can trigger the transfer in this channel. One
DMA request among 15 possible can be chosen. The
values for this field are defined in Table 5–9.

RW 00000

0000 Transfer not synchronized

i Transfer synchronized on DMA request [i], i ≠ 0
regarding the table described

Registers

 5-48

Table 5–14. DMA Channel Interrupt Control Register (DMA_CICR)

Bit Name Value Description Type
Reset
Value

15–7 RESERVED

6 RESERVED R 0

5 BLOCK_IE End block interrupt enable RW 0

0 The channel does not interrupt the processor when the
transfer of the block completes.

1 The channel sends an interrupt to the processor when
the transfer of the block completes.

4 LAST_IE Last frame interrupt enable RW 0

0 The channel does not interrupt the processor when the
transfer of the last frame starts.

1 The channel sends an interrupt to the processor when
the transfer of the last frame starts.

3 FRAME_IE Frame interrupt enable RW 0

0 The channel does not interrupt the processor when the
transfer of the current frame completes.

1 The channel sends an interrupt to the processor when
the transfer of the current frame completes.

2 HALF_IE Half frame interrupt enable RW 0

0 The channel does not interrupt the processor when the
transfer of the first half of the current frame completes.

1 The channel sends an interrupt to the processor when
the transfer of the first half of the current frame
completes.

1 DROP_IE Synchronization event drop interrupt enable RW 1

0 The channel does not interrupt the processor when a
synchronization event drop occurs.

1 The channel sends an interrupt to the processor if the
channel transfer is synchronized on DMA requests and
on successive DMA request drops. This occurs when
a new DMA request is made while the service of the
previous one is not finished yet.

Registers

5-49System DMA Controller

Table 5–14. DMA Channel Interrupt Control Register (DMA_CICR) (Continued)

Bit
Reset
ValueTypeDescriptionValueName

0 TOUT_IE Time-out interrupt enable RW 1

0 The DMA does not send an interrupt to the processor if
a time-out error occurs.

1 The DMA sends an interrupt to the processor if a
time-out error occurs either in the source or in the
destination port of the channel.

The interrupt enable bits are used to choose the events that cause the DMA
channel to send an interrupt to the processor. There are two classes of events:

� Error events: errors during the transfer (time out, event drop)
� Status events: new frame starts, end of data block to transfer is reached.

Each time an event occurs, if the corresponding interrupt enable bit is set, the
channel sends an interrupt to the processor. At the same time, the correspond-
ing status bit is set in DMA_CSR (DMA channel status register) or in
DMA_TSR (DMA time-out error status register). A status bit is not set if the
corresponding interrupt enable bit in DMA_CICR equals 0.

Table 5–15. DMA Channel Status Register (DMA_CSR)

Bit Name Value Description Type
Reset
Value

15–14 RESERVED

13–7 ALT_STATUS Alternate status bits for channels with shared
interrupts. For DMA channels with shared
interrupts, these seven bits have the same
function as bits 6–0 of this register, except they
correspond to the other channel that shares the
interrupt. For example, in register
DMA_CSR_CH0, these bits correspond to
channel 6 status and mirror the values present in
DMA_CSR_CH6[6–0]. DMA_CSR registers for
both channel 0 and 6 are cleared when either
register is read. For channels without shared
interrupts, these bits are reserved.

0000000

Registers

 5-50

Table 5–15. DMA Channel Status Register (DMA_CSR) (Continued)

Bit
Reset
ValueTypeDescriptionValueName

6 SYNC Synchronization status

This bit is not set to one when an interrupt is
generated, but when a DMA request is made in a
synchronized channel. When the DMA request is
serviced, the bit returns to zero.

R 0

0 No DMA request is in service.

1 A DMA request was made for this channel when
it was in service.

5 BLOCK End block R 0

0 Current transfer is not finished yet.

1 The current transfer in the channel is finished
(another one may have start if DMA_CCR2
AUTOINIT = 1).

4 LAST Last frame R 0

0 Last frame did not start yet.

1 The transfer of the last frame has started.

3 FRAME Frame R 0

0 Transfer of the current frame still in progress

1 A complete frame was transferred.

2 HALF Half frame R 0

0 First half of the current frame not transferred yet

1 First half of the current frame was transferred.

1 DROP Event drop R 0

0 No event drop occurred during the transfer.

1 An event drop occurred during the transfer.

0 TOUT Time-out in the channel R 0

0 No time-out error occurred in channel.

1 Time-out occurred in channel.

Registers

5-51System DMA Controller

This register is written by the DMA to reflect the channel status. It can be read
by the processor (by polling or after an interrupt) to see the channel status. Af-
ter a functional read, all the DMA_CSR bits are automatically cleared. The
DMA_CSR bit is not cleared after an emulation read via the debugger. The reg-
ister bit is only set when its associated DMA_CICR is enabled.

The DMA interrupt status bits are set by hardware and cleared by a software
read operation to DMA_CSR. A subsequent DMA interrupt cannot be issued
until a program read of DMA_CSR has cleared the interrupt status bits. For on-
going operation of the DMA channel, the ISR must read DMA_CSR after each
DMA interrupt.

Table 5–16. DMA Channel Source Start Address–Lower Bits Register (DMA_CSSA_L)

Bit Name Description Type
Reset
Value

15–0 Source start
address, lower
bits

Lower bits of the source start address, expressed in
bytes. The source start address output by the DMA is an
up-to-32-bit byte address made of the concatenation of
DMA_CSSA_U and DMA_CSSA_L.

RW Undefined

Table 5–17. DMA Channel Source Start Address–Upper Bits Register (DMA_CSSA_U)

Bit Name Description Type
Reset
Value

15–0 Source start
address, upper
bits

Upper bits of the source start address, expressed in
bytes. The source start address output by the DMA is a
32-bit byte address made of the concatenation of
DMA_CSSA_U and DMA_CSSA_L.

RW Undefined

Table 5–18. DMA Channel Destination Start Address–Lower Bits Register (DMA_CDSA_L)

Bit Name Description Type
Reset
Value

15–0 Destination
start address,
lower bits

Lower bits for the destination start address, expressed in
bytes. The destination start address is up to an up-to-
32-bit byte address made of the concatenation of
DMA_CDSA_U and DMA_CDSA_L.

RW Undefined

Registers

 5-52

Table 5–19. DMA Channel Destination Start Address–Upper Bits Register (DMA_CDSA_U)

Bit Name Description Type
Reset
Value

15–0 Destination
start address,
upper bits

Upper bits for the source start address, expressed in
bytes. The destination start address is made of the
concatenation of DMA_CDSA_U and DMA_CDSA_L.

RW Undefined

Table 5–20. DMA Channel Element Number Register (DMA_CEN)

Bit Name Description Type
Reset
Value

15–0 Channel
element
number

Number of elements within a frame. The maximum
element number is 65535.

RW Undefined

Table 5–21. DMA Channel Frame Number Register (DMA_CFN)

Bit Name Description Type
Reset
Value

15–0 Channel
frame
number

Number of frames within the block to transfer. The
maximum frame number is 65535.

The size in bytes of the data block to transfer is
DMA_CFN x DMA_CEN x DMA_CES. This size is
programmed in bytes to:

� Allow transfer of an odd byte number

� Accommodate the requirement of different access
sizes on source and destination ports

RW Undefined

Table 5–22. DMA Channel Frame Index Register (DMA_CFI)

Bit Name Description Type
Reset
Value

15–0 Frame index Contains the frame index, expressed in bytes, used to
compute the addresses when double-index addressing
mode is used.

RW Undefined

Registers

5-53System DMA Controller

Table 5–23. DMA Channel Element Index Register (DMA_CEI)

Bit Name Description Type
Reset
Value

15–0 Element index Contains the element index, expressed in bytes, used to
compute the addresses when single-index addressing
mode is used.

RW Undefined

Table 5–24. DMA Channel Progress Counter Register (DMA_CPC)

Bit Name Description Type
Reset
Value

15–0 Last element/
frame address
16 LSB

This register can be used to monitor the progress of a
DMA transfer:

� If the channel transfer is synchronized on elements
(DMA_CCR SYNC ≠ 0 and DMA_CCR FS = 0), the
register is updated with the address 16 LSB each time
the destination port issues the last request for an
element.

� If the channel transfer is synchronized on frames
(DMA_CCR SYNC ≠ 0 and DMA_CCR FS = 1) or not
synchronized (DMA_CCR SYNC = 0), the register is
updated with 16 LSB of the address each time the
destination port issues the last request for a frame.

R Undefined

The DMA LCD control register contains seven bits that control the LCD chan-
nel operation. There are two cases of interruption: end frame buffer or abort
on the bus (bus error). Bit IE (interrupt enable) enables the generation of the
interruption.

If the COND bit and the corresponding IE bit are set, an interrupt signal is sent
from the DMA channel to the MPU. The MPU reads this register to find the
cause of the interruption.

� COND = 0: Condition not detected

� COND = 1: Condition detected

The COND bit is updated during a transfer, and the host processor must reset
this bit after reading.

Registers

 5-54

Table 5–25. DMA LCD Control Register (DMA_LCD_CTRL)

Bit Name Value Description Type
Reset
Value

15–7 RESERVED

6 LCD_SOURCE Memory source for the LCD channel

This bit indicates the memory source for the next LCD
transfer.

RW 0

0 Memory source is EMIFF.

1 Memory source is IMIF.

5 BUS_ERROR_
IT_COND

Status LCD channel register (must be reset after
read)

R–R 0

0 No bus error interrupt detected

1 Bus error interrupt detected

4 FRAME_2_
IT_COND

Status LCD channel register (must be reset after
read)

R–R 0

0 No end of frame 2 interrupt detected

1 End of frame 2 interrupt detected

3 FRAME_1_
IT_COND

Status LCD channel register (must be reset after
read)

R–R 0

0 No end of frame 1 interrupt detected

1 End of frame 1 interrupt detected

2 BUS_ERROR_
IT_IE

Bus error interrupt enable RW 0

0 Interrupt disabled

1 Interrupt enabled

1 FRAME_IT_IE End frame interrupt enable RW 0

0 Interrupt disabled

1 Interrupt enabled

Registers

5-55System DMA Controller

Table 5–25. DMA LCD Control Register (DMA_LCD_CTRL) (Continued)

Bit
Reset
ValueTypeDescriptionValueName

0 FRAME_MODE Kind of frame mode used for LCD transfer RW 0

0 One frame buffer; only registers for frame 1 are used.

1 Two frame buffers; LCD channel reads alternatively
top_frame_1 and top_frame_2

5.6.1.1 LCD Top Address for Frame Buffer 1 Registers (DMA_LCD_TOP_F1_L and
DMA_LCD_TOP_F1_U)

The LCD top address registers are two 16-bit registers that contain the start
address for the video RAM buffer 1. The 32-bit address is obtained by the
concatenation of the two 16-bit words as described here:
LCD_TOP_F1 = DMA_LCD_TOP_F1_U & DMA_LCD_TOP_F1_L.

Note:

LSB of the 32-bit word is equal to zero. Address of video buffer must always
be even.

Table 5–26. LCD Top Address for Frame Buffer 1—Lower Bits Register
(DMA_LCD_TOP_F1_L)

Bit Name Description Type
Reset
Value

15–1 LCD_TOP_F1_
L[15–1]

LCD top address for frame buffer 1 lower bits [15–1] RW Unde-
fined

0 LCD_TOP_F1_
L[0]

Address bit 0. Fixed at 0 since address must be even. R 0

Table 5–27. LCD Top Address for Frame Buffer 1—Upper Bits Register
(DMA_LCD_TOP_F1_U)

Bit Name Description Type
Reset
Value

15–0 LCD_TOP_F1_
L[31–16]

LCD top address for frame buffer 1 upper bits [31–16] RW Unde-
fined

Registers

 5-56

5.6.1.2 LCD Bottom Address for Frame Buffer 1 Registers (DMA_LCD_BOT_F1_L and
DMA_LCD_BOT_F1_

The LCD bottom address registers are two 16-bit registers that contain the
bottom address for the video RAM buffer 1. The 32-bit address is obtained by
the concatenation of the two 16-bit words as described here:
LCD_BOTTOM_F1 = DMA_LCD_BOT_F1_U and DMA_LCD_BOT_F1_L

Note:

LSB of the 32-bit word is equal to zero. Address of video buffer must always
be even.

Table 5–28. LCD Bottom Address for Frame Buffer 1 Register—Lower Bits Register
(DMA_LCD_BOT_F1_L)

Bit Name Description Type
Reset
Value

15–1 LCD_BOT_F1_
L[15–1]

LCD bottom address for frame buffer 1 lower bits [15–1] RW Undefined

0 LCD_BOT_F1_
L[0]

Address bit 0. Fixed at 0 since address must be even. R 0

Table 5–29. LCD Bottom Address for Frame Buffer 1 Register—Upper Bits Register
(DMA_LCD_BOT_F1_U)

Bit Name Description Type
Reset
Value

15–0 LCD_BOT_F1_
L[31–16]

LCD bottom address for frame buffer 1 upper bits [31–16] RW Undefined

Registers

5-57System DMA Controller

5.6.1.3 LCD Top Address for Frame Buffer 2 Registers (DMA_LCD_TOP_F2_L and
DMA_LCD_TOP_F2_U)

The LCD top address registers are two 16-bit registers that contain the start
address for the video RAM buffer 2. The 32-bit address is obtained by the
concatenation of the two 16-bit words as described here:
LCD_TOP_F2 = DMA_LCD_TOP_F2_U & DMA_LCD_TOP_F2_L

Note:

LSB of the 32-bit word is equal to zero. Address of video buffer must always
be even.

Table 5–30. LCD Top Address for Frame Buffer 2—Lower Bits Register
(DMA_LCD_TOP_F2_L)

Bit Name Description Type
Reset
Value

15–1 LCD_TOP_F2_
L[15–1]

LCD top address for frame buffer 2 lower bits [15–1] RW Undefined

0 LCD_TOP_F2_
L[0]

Address bit 0. Fixed at 0 since address must be even. R 0

Table 5–31. LCD Top Address for Frame Buffer 2—Upper Bits Register
(DMA_LCD_TOP_F2_U)

Bit Name Description Type
Reset
Value

15–0 LCD_TOP_F2_
L[31–16]

LCD top address for frame buffer 2 upper bits [31–16] RW Undefined

Registers

 5-58

5.6.1.4 LCD Bottom Address for Frame Buffer 2 Registers (DMA_LCD_BOT_F2_L and
DMA_LCD_BOT_F2_U)

The LCD bottom address registers are two 16-bit registers that contain the
bottom address for the video RAM buffer 2. The 32-bit address is obtained by
the concatenation of the two 16-bit words as described here:
LCD_BOTTOM_F2 = DMA_LCD_BOT_F2_U and DMA_LCD_BOT_F2_L

Note:

LSB of the 32-bit word is equal to zero. Address of video buffer must always
be even.

Table 5–32. LCD Bottom Address for Frame Buffer 2—Lower Bits Register
(DMA_LCD_BOT_F2_L)

Bit Name Description Type
Reset
Value

15–1 LCD_BOT_F2_
L[15–1]

LCD bottom address for frame buffer 2 lower bits [15–1] RW Undefined

0 LCD_BOT_F2_
L[0]

Address bit 0. Fixed at 0 since address must be even. R 0

Table 5–33. LCD Bottom Address for Frame Buffer 2—Upper Bits Register
(DMA_LCD_BOT_F2_U)

Bit Name Description Type
Reset
Value

15–0 LCD_BOT_F2_
L[31–16]

LCD bottom address for frame buffer 2 upper bits
[31–16]

RW Undefined

6-1

MPU Private Peripherals

This chapter describes the OMAP5910 multimedia processor MPU private
peripherals.

Topic Page

6.1 Overview 6-2.

6.2 Timer Description 6-3.

6.3 Watchdog Timer 6-8.

6.4 MPU Interrupt Handlers 6-14.

6.5 Level 1 and Level 2 Interrupt Mapping 6-17.

6.6 Interrupt Handler Level 1 and Level 2 Registers 6-20.

6.7 Configuration Module 6-24.

6.8 OMAP5910 Configuration Registers 6-27.

6.9 Device Identification 6-70.

Chapter 6

Overview

 6-2

6.1 Overview

Three standard peripherals are attached to and accessible only by the TI925T
RISC processor private bus (TIPB) to provide housekeeping functions for the
operating system (OS) and applications. These peripherals include timers, a
watchdog timer, and interrupt handlers.

The configuration module allows the software to control the different
OMAP5910 modes. The device identification registers allow the software to
read the different OMAP5910 identification codes.

Figure 6–1 shows the OMAP5910 device with the MPU private peripherals
highlighted.

Figure 6–1. MPU Private Peripherals

MPU Core
(TI925T)

(Instruction
Cache, Data

Cache, MMU)

System
DMA

controller

TMS320C55x DSP
(Instruction Cache, SARAM,

 DARAM, DMA,
 H/W accelerators)

MPU
peripheral

bridge

LCD
I/F

MPU
interface

SRAM

SDRAM
memories

Flash and
SRAM

memories

DSP
MMU

16

16

32

16

32

32

32

32

32

32

16

MPU private peripheral bus

DSP public (shared) peripheral bus

32
MPU public

16

DSP

DSP public peripherals

McBSP1

McBSP3

MPU public peripherals

USB host I/F

JTAG/
emulation

I/F
OSC

12 MHz Clock

OSC

OMAP5910

ETM9

Timers (3)

MPU/DSP shared peripherals

Mailbox

MPU private peripherals

Timers (3)

16

Memory interface

Reset External clock

MPU Bus

32 kHz

1.5M bits

Traffic controller (TC)

Watchdog timer

Level 1/2 interrupt handlers

Configuration registers

Clock and reset management

Watchdog timer
Level 1/2

Private peripherals

GPIO I/F

USB function I/F

Camera I/F
MPUIO

32-kHz timer
PWT
PWL

M
I
F
S

M
I
F
F

I
M
I
F

MCSI1
MCSI2

Keyboard I/F

requests

E

E

TIPB
switch

UART1
UART2

UART3 IrDA

32

MMC/SD
LPG x2

HDQ / 1-WIRE

DSP private
peripheral bus

peripheral bus

McBSP2

Device identification

RTC

Interrupt handlers

I2C
µWire

Frame adjustment
counter

32

32

32

32

Timer Description

6-3MPU Private Peripherals

6.2 Timer Description

Three 32-bit timers for the operating system provide general-purpose house-
keeping functions. These timers are configured either in autoreload or one-
shot mode with on-the-fly read capability. The timers generate an interrupt to
the TI925T RISC processor when equal to zero. Figure 6–2 shows the 32-bit
timer.

Figure 6–2. 32-Bit Timer

Divide clock down by

2 (PTV+1) READ_TIM

LOAD_TIM

CLK CLK / 2 (PTV+1)

If autoreload, then
load when timer
underflows

IRQ when timer
underflows

32-bit timer

Timer 1: IRQ_26
Timer 2: IRQ_30
Timer 3: IRQ_16

MPUTIM_CK
12 MHz

Load when timer starts

Table 6–1 identifies the level 1 interrupts for the three 32-bit timers.

Table 6–1. Timer Level 1 Interrupt

Timer Corresponding Level 1 Interrupt

1 IRQ_26

2 IRQ_30

3 IRQ_16

The timers are 32-bit counters that receive a dedicated clock from clock gener-
ator module 1 (either CLKIN or DPLL1 output). This clock can then be pres-
caled, which divides it down further. Prescaling is controlled by the PTV field
of the control timer register (CNTL_TIMER) (see Table 6–1).

Timer Description

 6-4

Table 6–2 provides division values for each PTV field.

Table 6–2. PTV Value and Corresponding Division Value

PTV Divisor

0 2

1 4

2 8

3 16

4 32

5 64

6 128

7 256

The timer interrupt period is determined in the following manner, where tclk is
the clock period of the input clock, LOAD_TIM (see Table 6–1) is the register
that holds the value loaded when the timer passes through 0 or when it starts,
and PTV is the prescaler field located in the control timer register
(CNTL_TIMER):

tint = tclk X (LOAD_TIM + 1) x 2(PTV+1)

Table 6–3 shows the timer characteristics for the three timers for different input
frequencies.

Table 6–3. Timer Characteristics

Input Clock
tclk, Clock

Period LOAD_TIM

tint, Timer
Interrupt

Period, for
PTV = 0

tint, Timer Interrupt Period,
for PTV = 7

100 MHz 10 ns 0000 0001 40 ns 5.12 µs

100 MHz 10 ns FFFF FFFF (max
interrupt period)

85.9 s 10995 s (3 hr 3’ 25”)

12 MHz 83.3 ns 0000 0001 333.4 ns 42.64 µs

12 MHz 83.3 ns FFFF FFFF (max
interrupt period)

715.5 s 91589 s (25 hr, 26’29”)

Timer Description

6-5MPU Private Peripherals

If LOAD_TIM = 0 and AR (auto-reload mode) = 1, the timer is always 0 and can
never decrement. Here the timer interrupt is asserted and stays asserted all
the time. Since the timer interrupts are edge-senditive, only one interrupt is
recognized because there is one initial edge, and then the interrupt is asserted
constantly.

6.2.1 Programming the Timer

Before a timer can be used, you must enable its internal clock by setting the
CLOCK_ENABLE bit of the control timer register (CNTL_TIMER) to 1. A timer
is started by setting the ST field of the control timer register (CNTL_TIMER)
to 1. It is stopped by resetting this bit to 0. When the timer is stopped, the
content of the decrementer is frozen.

If the autoreload bit is disabled (AR field of control timer register (CNTL_TIM-
ER) is 0), the timer decrements from the loaded value down to zero and then
stops. If the autoreload bit is enabled (AR=1), the timer continues. A new value
(from the load register) is loaded into the timer when it passes though zero or
when it starts. An interrupt is produced when the corresponding timer passes
through zero.

To avoid undefined results, do not change the settings of the PTV or AR fields
of the control timer register (CNTL_TIMER) or the LOAD_TIM register while the
timer is running.

The timer value is held in the VALUE_TIM field of the READ_TIM and can be
read while the timer is running or stopped.

Figure 6–3. Timer Diagram

TIMER_CLK

4 3 2 1 0 15TIMER

TIMER_IRQ

Timer Description

 6-6

6.2.2 Timer Registers

Table 6–4 lists the timer registers. Table 6–5 through Table 6–7 describe the
register bits.

Base address for timer 1: FFFE:C500

Base address for timer 2: FFFE:C600

Base address for timer 3: FFFE:C700

Bit width: 32 bits

Table 6–4. Timer Registers

Timer 1, Timer 2, and Timer 3

Register Descriptions R/W Size Offset Reset Value

CNTL_TIMER Control timer R/W 32 bits x00 0x0000 0000

LOAD_TIM Load timer W 32 bits x04 U

READ_TIM Read timer R 32 bits x08 U

Table 6–5. Control Timer Register (CNTL_TIMER)

Bits Name Value Description
Reset
Value

31–7 RESERVED

6 FREE FREE bit 0

0 Timer stops counting in suspend mode.

1 Timer continues counting in suspend mode.

5 CLOCK_ENABLE External timer clock enable 0

4–2 PTV Prescale clock timer value (see Table 6–2) 0

1 AR 0 One-shot timer 0

1 Autoreload timer

0 ST 0 Stop timer
1:

0

1 Start timer

Timer Description

6-7MPU Private Peripherals

Table 6–6. Load Timer Register (LOAD_TIMER)

Bit Name Description
Reset
Value

31–0 LOAD_TIM The value is loaded into the VALUE_TIM when the timer passes
through 0 or when it starts.

Undefined

Table 6–7. Read Timer Register (READ_TIMER)

Bit Name Description
Reset
Value

31–0 VALUE_TIM Value of timer Undefined

Watchdog Timer

 6-8

6.3 Watchdog Timer

The watchdog timer (see Figure 6–4) can be configured as either a watchdog
timer or a general-purpose timer.

6.3.1 Introduction

The watchdog timer is power-up enabled and defaults to watchdog timer for
the TI925T RISC processor. A watchdog timer requires that the user program
or OS periodically write to the count register before the counter underflows. If
the counter underflows, the watchdog timer generates a reset to the TI925T
RISC processor and to the TMS320C55x DSP. The watchdog timer detects
user programs stuck in an infinite loop, loss of program control, or a runaway
condition. When used as a general-purpose timer, the watchdog timer is a
16-bit timer configurable either in autoreload or one-shot mode with on-the-fly
read capability. The timer generates an interrupt to the TI925T RISC processor
when the count passes through zero (see Figure 6–5).

Figure 6–4. Watchdog Timer

Divide clock down by

2 (PTV+1) READ_TIMER

LOAD_TIMER

CLK CLK / 2 (PTV+1)

If autoreload, then
load when timer
underflows

Reset or IRQ when
timer underflows

Watchdog timer

Watchdog module: RESET
Timer mode: IRQ_27

MPUWD_CK
0.86 MHz (12 MHz/14)

Load when timer starts

Table 6–8. Watchdog Timer Level 1 Interrupt

Timer Corresponding Level 1 Interrupt

WD IRQ_27

Watchdog Timer

6-9MPU Private Peripherals

By default, this timer is configured as a watchdog timer and
generates a reset of the TI925T RISC processor approximately
every 19 seconds, unless you disable or update properly. If you do
not, you may during system development encounter an
unexpected reset every 19 seconds or so.

Be certain to disable the watchdog timer before placing the TI925T RISC proc-
essor in deep sleep mode. It must not be left configured as a watchdog timer.
The watchdog timer underflow generates a reset to the TI925T RISC proces-
sor and the C55x DSP processor. If CLKIN is 12 MHz and the watchdog timer
values are left at their power-up state (the value loaded into LOAD_TIM is set
to the maximum value of 0xFFFF at power-up), the reset occurs in approxi-
mately 19 seconds.

The watchdog timer uses a special clock from the MPU clock frequency gener-
ation module (CLKM1). This clock is CLKIN/14. When configured as a watch-
dog timer, the prescaler field (PTV of CNTL_TIMER (reference)) is fixed at 7.
When configured as a general-purpose timer, the prescaler field can range
from 0 to 7. The time from writing a new value to counter underflow is between
256*Tclk to 16,777,216*Tclk, where Tclk = CLKIN/14, for a CLKIN clock
frequency of 12 MHz, and the reset time is: 298 µs < t > 19s.

Table 6–9. PTV Value and Associated Divisor Value

PTV Divisor

0 2

1 4

2 8

3 16

4 32

5 64

6 128

7 256

The timer interrupt period is determined in the following manner, where tclk is
the clock period of the input clock, LOAD_TIM is the register that holds the val-
ue loaded when the timer passes through 0 or when it starts, and PTV is the
prescaler field located in the control timer register (CNTL_TIMER). The value
of the PTV field is forced to 7 if the timer is in watchdog mode.

Watchdog Timer

 6-10

tint = tclk X (LOAD_TIM + 1) x 2(PTV+1)

Table 6–10 shows the characteristics of the watchdog timer for different
LOAD_TIM values.

Table 6–10. Watchdog Timer Characteristics

Input clock,
CLKIN

tclk,
Clock Period† LOAD_TIM

tint, Timer Interrupt Period,
for PTV = 7

12 MHz 1167 ns 0001 597.34 µs

12 MHz 1167 ns FFFF (max interrupt period) 19.57 s

† The 12-MHz clock is divided by 14.

If LOAD_TIM = 0 and AR (auto-reload mode) = 1, the timer is always 0 and can
never decrement. Here the timer interrupt is asserted and stays asserted all
the time. Since the timer interrupts are edge-senditive, only one interrupt is
recognized because there is one initial edge, and then the interrupt is asserted
constantly.

6.3.2 Programming the Watchdog Timer in Watchdog Mode

On power up, the watchdog timer defaults to watchdog mode and the value
loaded into the LOAD_TIM register is set to the maximum value (0xFFFF).
This gives the user a time of 16,777,216 * tclk (19.57 seconds) to change the
timer mode or write a new value (different from 0xFFFF) into the LOAD_TIM
register.

The user program or the OS must write periodically to the count register,
LOAD_TIM, before the counter underflows. The new loaded value must be
different from the previous value because the write is taken into account only
if the newly loaded value is different from the previous value. Due to internal
sequencing, the user must wait three timer clock periods before writing a new
value into the LOAD_TIM register. If CLKIN is 12 MHz, the duration of three
timer clock periods is approximately 3.5 µs.

By writing a predefined sequence (0xF5 followed by 0xA0) to the TIM-
ER_MODE register (see Table 6–15), the timer can be configured as a gener-
al-purpose timer. A sequence decode is initialized when 0xF5 is written to the
TIMER_MODE register. Once in this state, if the next write is different from
0xA0, the state machine causes a reset as if the watchdog timer has under-
flowed. You cannot disable the watchdog timer by simply clearing the watch-
dog bit of the TIMER_MODE register.

Watchdog Timer

6-11MPU Private Peripherals

When the timer has been configured as a general-purpose timer, it can be
switched back to watchdog mode by writing a 1 to the watchdog bit of the
TIMER_MODE register. In this case, the value loaded into LOAD_TIM is set
to the maximum value (0xFFFF) as on power up.

In watchdog mode, the control timer register (CNTL_TIMER) must not be
used. The watchdog timer cannot be stopped by clearing the ST field. The
prescale value is 7, regardless of the PTV field value. Autoreload and one-shot
do not apply, because, if the counter underflows, the processor is reset and the
watchdog registers are reinitialized.

Figure 6–5. Timer Diagram

TIMER_CLK

4 3 2 1 0 15TIMER

TIMER_IRQ

6.3.3 Programming the Watchdog Timer in Timer Mode

The timer is started by setting the ST field of the control timer register
(CNTL_TIMER) to 1. It is stopped by resetting this bit to 0. When the timer is
stopped, the content of the decrementer is frozen.

If the autoreload bit is disabled (the AR field of control timer register
(CNTL_TIMER) is 0), the timer decrements from the loaded value down to
zero and then stops. If the autoreload bit is enabled (AR = 1), the timer contin-
ues. A new value (from the load register) is loaded into the timer when it passes
though zero or when it starts. An interrupt is produced when the corresponding
timer is equal to zero.

To avoid undefined value, do not change the setting of the PTV field or the AR
field of the control timer register (CNTL_TIMER) or the LOAD_TIM register
while the timer is running. PTV can be set to values other than 7 when the
watchdog timer is in timer mode.

The timer value is held in the VALUE_TIM field of the READ_TIM register and
can be read while the timer is running or stopped.

Watchdog Timer

 6-12

6.3.4 Watchdog Timer Registers

Table 6–11 lists the watchdog timer registers. Table 6–12 through Table 6–15
describe the register bits.

Base address for watchdog timer: FFFE:C800

Bit width: 32 bits

Table 6–11. Watchdog Timer Registers

Name Description R/W Size Offset
Reset
Value

CNTL_TIMER Control timer R/W 16 bits x00 0x0002

LOAD_TIM Load timer W 16 bits X04 0xFFFF

READ_TIM Read timer R 16 bits X04 0xFFFF

TIMER_MODE Timer mode R/W 16 bits X08 0x8000

Table 6–12. Control Timer Register (CNTL_TIMER)

Bits Name Value Description
Reset
Value

15–12 RESERVED

11–9 PTV Prescale clock timer value 0

8 AR 0 One-shot timer 0

1 Autoreload timer

7 ST 0 Stop timer 0

1 Start timer

6–2 RESERVED

1 FREE 0 Enables suspend functionality 1

1 Timer runs free, regardless of suspend value.

0 RESERVED Reserved

Watchdog Timer

6-13MPU Private Peripherals

Table 6–13. Load Timer Register (LOAD_TIM)

Bit Name Description
Reset
Value

15–0 LOAD_TIM General-purpose timer:

This value is loaded when timer passes through 0 or when it
starts.

Watchdog timer:

Reload timer with this value.

FFFF

Table 6–14. Read Timer Register (READ_TIM)

Bit Name Description
Reset
Value

15–0 VALUE_TIM Read timer value FFFF

Table 6–15. Timer Mode Register (TIMER_MODE)

Bit Name Value Description
Reset
Value

15 WATCHDOG Write access 1

1 Switchback timer mode to watchdog. Writing a 0 in
this bit has no effect.

14–8 RESERVED

7–0 WATCHDOG_DIS Write access only

Writing a predefined sequence (0xF5) followed by
0xA0 in this field disables the watchdog.

Functionality:

After receiving 0xF5, if the second write access is
different from 0xA0, the MPU core is reset.

NA

MPU Interrupt Handlers

 6-14

6.4 MPU Interrupt Handlers

The MPU only supports two interrupt sources: IRQ and FIQ. However, the
OMAP5910 has numerous peripherals and DMA channels which provide
interrupts. To allow these numerous interrupts to be supported using just two
interrupt sources, an interrupt handler is used. The interrupt handlers allow up
to 32 individual interrupts to be programmed to assert either IRQ or FIQ and
they allow these interrupt sources to be masked as well as prioritized with rela-
tionship to one another. If any of these unmasked interrupts occur, then either
a FIQ or IRQ interrupt occurs.

The OMAP5910 has two layers of interrupt handlers, as shown in Figure 6–6.
If an unmasked interrupt occurs on the level 2 interrupt handler, it asserts
IRQ_0 of the level 1 interrupt handler. This allows up to 62 interrupt sources
to be supported.

The OMAP5910 device does not support nested interrupts.

6.4.1 MPU Level 1 Interrupt Handler

The MPU level 1 interrupt handler has 32 interrupt request lines (IRQ_[31:0]).
These interrupts are generated by peripherals such as the timers, camera,
LCD, the system DMA controller, and the DSP. The interrupt handler handles
edge-triggered or level-sensitive interrupts (individually programmable via the
ILRn registers—see Table 6–23). All interrupts are maskable (individually
enabled and disabled via the mask interrupt register (MIR)—see Table 6–19)
with an internal register. The interrupt source information can be read back
from the ITR register (see Table 6–18, Table 6–19, and Table 6–20). Interrupt
priority is also programmable (ILRn registers) to allow flexibility for different
applications (see Table 6–1). The output from the interrupt handler is routed
to one of the two MPU interrupt (IRQ or FIQ—see Figure 6–6) inputs according
to that interrupt ILRn configuration bit.

A clock request mechanism is implemented to wake up and provide a clock
to the interrupt handler when the OMAP5910 device is in one of the sleep
modes.

MPU Interrupt Handlers

6-15MPU Private Peripherals

Figure 6–6. MPU Interrupt Handlers

Level 2
interrupt
handler

Keypad IRQ 1

FAC IRQ 0

MicroWire transmit IRQ 2

MicroWire receive IRQ 3

MPUIO IRQ 5

I2C IRQ 4

USB HHC 1 IRQ 6

USB HHC 2 IRQ 7

Reserved IRQ 9

Reserved IRQ 8

McBSP3 transmit IRQ 10

McBSP3 receive IRQ 11

McBSP1 receive IRQ 13

McBSP1 transmit IRQ 12

UART1 IRQ 14

UART2 IRQ 15

MCSI2 frame error IRQ 17

MCSI1 frame error IRQ 16

Reserved IRQ 18

Reserved IRQ 19

1-wire IRQ 21

USB function gen IRQ 20

32K timer IRQ 22

MMC IRQ 23

RTC timer IRQ 25

ULPD gauging IRQ 24

RTC alarm IRQ 26
Reserved IRQ 27

USB function ISO on IRQ 29

DSP MMU IRQ 28

USB funciton non ISO on IRQ 30
McBSP2 receive overflow IRQ 31

IRQ from Level2

Camera interrupt

Level 1
Interrupt
Handler

IRQ 1

IRQ 0

IRQ 2

IRQ 3

IRQ 5

IRQ 4

IRQ 6

IRQ 7

IRQ 9

IRQ 8

IRQ 10

IRQ 11

IRQ 13

IRQ 12

IRQ 14

IRQ 15

IRQ 17

IRQ 16

IRQ 18

IRQ 19

IRQ 21

IRQ 20

IRQ 22

IRQ 23

IRQ 25

IRQ 24

IRQ 26

IRQ 27

IRQ 29

IRQ 28

IRQ 30

IRQ 31

FIQ from Level 1

IRQ from Level 1 MPU

Reserved

External FIQ

McBSP2 SPI transmit

McBSP2 SPI receive

RTDX

DSP MMU ABORT

Host INT

ABORT

DSP mailbox 1

DSP mailbox 2

Reserved

Private bus bridge

GPIO

UART3

Timer 3

Local bus MMU

Reserved

DMA CH0/6

DMA CH1/7

DMA CH2/8

DMA CH3

DMA CH4

DMA CH5

DMA CH LCD

Timer 1

Watchdog timer

Public bus bridge

Local bus I/F

Timer 2

LCD CTRL

MPU Interrupt Handlers

 6-16

6.4.2 MPU Level 2 Interrupt Handler

Because the number of interrupts that the OMAP5910 device must manage
is greater than 32, a second interrupt handler is used. The resulting interrupt
is connected to the IRQ_0 of the TI925T RISC processor interrupt handler,
which must be programmed as a level interrupt. The added (L2) interrupt
handler is similar to the level 1 interrupt handler.

The result of connecting the two interrupt handlers in a cascade manner is to
increase the total number of input interrupts from 32 to 62.

The simplified sequence for the MPU to receive an input interrupt is as follows:

Step 1: Read the SIR_IRQ_CODE register of the level 1 MPU interrupt
handler.

Step 2: If the interrupt is caused by the level 2 interrupt handler (as indicated
by an IRQ of 0), read the SIR_IRQ_CODE register of the level 2
interrupt handler.

Step 3: If the interrupt is a level interrupt, the corresponding interrupt routine
must first clear the interrupt source (usually by writing to a register
in the module generating the interrupt) or at least mask the interrupt.
Then it must write 1 into the NEW_IRQ_AGR field of the level 2 inter-
rupt handler CONTROL_REG. Then, the ITR register of the level 1
interrupt handler must be cleared. Finally, 1 must be written into the
NEW_IRQ_AGR field of the level 1 interrupt handler.

Step 4: If it is an edge interrupt, read the status register to determine the
cause of the interrupt, start interrupt routine, then write 1 into the
NEW_IRQ_AGR field of the level 2 interrupt handler
CONTROL_REG. Clear the ITR of the level 1 interrupt handler, then
write 1 into the NEW_IRQ_AGR field of the level 1 interrupt handler
CONTRL_REG.

Level 1 and Level 2 Interrupt Mapping

6-17MPU Private Peripherals

6.5 Level 1 and Level 2 Interrupt Mapping

Table 6–16 lists the mapping of the incoming interrupts.

IRQ_ABORT (IRQ_9) is the traffic controller abort IRQ. It is also connected to
DSP IRQ_12. This interrupt comes from either a TIPB bus or the MPUI and
is caused by a time-out abort.

Table 6–16. Level 1 and Level 2 OMAP5910 MPU Interrupt Mapping

Incoming Interrupts

Default
Sensitivity

Configuration
Interrupt Line

on Level 1
Interrupt Line

on Level 2

Level 2 interrupt handler IRQ Level IRQ_0 —

Camera interrupt Level IRQ_1 —

Reserved IRQ_2 —

External FIQ Edge IRQ_3 —

McBSP2 TX interrupt Edge IRQ_4 —

McBSP2 RX interrupt Edge IRQ_5 —

IRQ_RTDX† Level IRQ_6 —

IRQ_DSP_MMU_ABORT Level IRQ_7 —

IRQ_HOST_INT Level IRQ_8 —

IRQ_ABORT Level IRQ_9 —

IRQ_DSP_MAILBOX1 Level IRQ_10 —

IRQ_DSP_MAILBOX2 Level IRQ_11 —

Reserved

IRQ_TIPB_BRIDGE_PRIVATE Level IRQ_13 —

IRQ_GPIO Level IRQ_14 —

IRQ_UART3 Level IRQ_15 —

IRQ_TIMER3 Edge IRQ_16 —

IRQ_LB_MMU Level IRQ_17 —

Reserved

IRQ_DMA_CH0_CH6 Level IRQ_19 —

IRQ_DMA_CH1_CH7 Level IRQ_20 —

IRQ_DMA_CH2_CH8 Level IRQ_21 —

† IRQ_RTDX is used in emulation for the Code Composer Studio RTDX (real time data exchange) interrupt.

Level 1 and Level 2 Interrupt Mapping

 6-18

Table 6–16. Level 1 and Level 2 OMAP5910 MPU Interrupt Mapping (Continued)

Incoming Interrupts
Interrupt Line

on Level 2
Interrupt Line

on Level 1

Default
Sensitivity

Configuration

IRQ_DMA_CH3 Level IRQ_22 —

IRQ_DMA_CH4 Level IRQ_23 —

IRQ_DMA_CH5 Level IRQ_24 —

IRQ_DMA_CH_LCD Level IRQ_25 —

IRQ_TIMER1 Edge IRQ_26 —

IRQ_WD_TIMER Edge IRQ_27 —

IRQ_TIPB_BRIDGE_PUBLIC Level IRQ_28 —

IRQ_LOCAL_BUS_I/F Level IRQ_29 —

IRQ_TIMER2 Edge IRQ_30 —

IRQ_LCD_CTRL Level IRQ_31 —

FAC Level IRQ0 IRQ_00

Keyboard Edge IRQ0 IRQ_01

MicroWire TX Edge IRQ0 IRQ_02

MicroWire RX Edge IRQ0 IRQ_03

I2C Edge IRQ0 IRQ_04

MPUIO Level IRQ0 IRQ_05

USB HHC 1 Level IRQ0 IRQ_06

Reserved IRQ0 IRQ_07

Reserved IRQ0 IRQ_08

Reserved IRQ0 IRQ_09

McBSP3 TX interrupt Edge IRQ0 IRQ_10

McBSP3 RX interrupt Edge IRQ0 IRQ_11

McBSP1 TX interrupt Edge IRQ0 IRQ_12

McBSP1 RX interrupt Edge IRQ0 IRQ_13

UART1 (Bluetooth) Level IRQ0 IRQ_14

UART2 (communication) Level IRQ0 IRQ_15

† IRQ_RTDX is used in emulation for the Code Composer Studio RTDX (real time data exchange) interrupt.

Level 1 and Level 2 Interrupt Mapping

6-19MPU Private Peripherals

Table 6–16. Level 1 and Level 2 OMAP5910 MPU Interrupt Mapping (Continued)

Incoming Interrupts
Interrupt Line

on Level 2
Interrupt Line

on Level 1

Default
Sensitivity

Configuration

MCSI1 combined TX/RX/frame error
interrupt

Level IRQ0 IRQ_16

MCSI2 combined TX/RX/frame error
interrupt

Level IRQ0 IRQ_17

Reserved IRQ0 IRQ_18

Reserved IRQ0 IRQ_19

USB function Geni interrupt Level IRQ0 IRQ_20

1-Wire interrupt Level IRQ0 IRQ_21

Timer 32K interrupt Edge IRQ0 IRQ_22

MMC interrupt Level IRQ0 IRQ_23

ULPD interrupt Level IRQ0 IRQ_24

RTC periodical timer Edge IRQ0 IRQ_25

RTC alarm Level IRQ0 IRQ_26

Reserved IRQ0 IRQ_27

DSPMMU IRQ IRQ0 IRQ_28

USB function IRQ ISO On Level IRQ0 IRQ_29

USB function IRQ Non-ISO On Level IRQ0 IRQ_30

McBSP2 RX OVERFLOW It Edge IRQ0 IRQ_31

† IRQ_RTDX is used in emulation for the Code Composer Studio RTDX (real time data exchange) interrupt.

Note:

This version of the interrupt controller does not support nested interrupts.

Level-sensitive interrupts remain asserted until acknowledged.

Edge-triggered interrupts do not remain asserted. The interrupt is cleared
upon reading the SIR registers or writing a 0 to the ITR registers in the interrupt
handler.

Interrupt Handler Level 1 and Level 2 Registers

 6-20

6.6 Interrupt Handler Level 1 and Level 2 Registers
There are two sets of interrupt handler registers: one for the level 1 handler,
the other for the level 2 handler (see Table 6–17). Table 6–18 through
Table 6–24 describe the register bits.

Base address for interrupt handler 1: FFFE:CB00

Base address for interrupt handler 2: FFFE:0000

Bit width: 32 bits

Table 6–17. Interrupt Handler Registers

Name Description R/W Bits Offset
Reset
Value

ITR Interrupt input R/W 32 bits 0X00 0x0000 0000

MIR Mask interrupt R/W 32 bits 0X04 0xFFFF FFFF

SIR_IRQ_CODE Interrupt encoded source (IRQ) R 5 bits 0X10 0x00

SIR_FIQ_CODE Interrupt encoded source (FIQ) R 5 bits 0X14 0x00

CONTROL_REG Interrupt control register R/W 2 bits 0X18 0x0

ILR0 Interrupt priority level for IRQ 0 R/W 7 bits 0X1C 0x00

ILR1 Interrupt priority level for IRQ 1 R/W 7 bits 0X20 0x00

ILR2 Interrupt priority level for IRQ 2 R/W 7 bits 0X24 0x00

ILR3 Interrupt priority level for IRQ 3 R/W 7 bits 0X28 0x00

ILR4 Interrupt priority level for IRQ 4 R/W 7 bits 0X2C 0x00

ILR5 Interrupt priority level for IRQ 5 R/W 7 bits 0X30 0x00

ILR6 Interrupt priority level for IRQ 6 R/W 7 bits 0X34 0x00

ILR7 Interrupt priority level for IRQ 7 R/W 7 bits 0X38 0x00

ILR8 Interrupt priority level for IRQ 8 R/W 7 bits 0X3C 0x00

ILR9 Interrupt priority level for IRQ 9 R/W 7 bits 0X40 0x00

ILR10 Interrupt priority level for IRQ 10 R/W 7 bits 0X44 0x00

ILR11 Interrupt priority level for IRQ 11 R/W 7 bits 0X48 0x00

ILR12 Interrupt priority level for IRQ 12 R/W 7 bits 0X4C 0x00

ILR13 Interrupt priority level for IRQ 13 R/W 7 bits 0X50 0x00

ILR14 Interrupt priority level for IRQ 14 R/W 7 bits 0X54 0x00

Interrupt Handler Level 1 and Level 2 Registers

6-21MPU Private Peripherals

Table 6–17. Interrupt Handler Registers (Continued)

Name
Reset
ValueOffsetBitsR/WDescription

ILR15 Interrupt priority level for IRQ 15 R/W 7 bits 0X58 0x00

ILR16 Interrupt priority level for IRQ 16 R/W 7 bits 0X5C 0x00

ILR17 Interrupt priority level for IRQ 17 R/W 7 bits 0X60 0x00

ILR18 Interrupt priority level for IRQ 18 R/W 7 bits 0X64 0x00

ILR19 Interrupt priority level for IRQ 19 R/W 7 bits 0X68 0x00

ILR20 Interrupt priority level for IRQ 20 R/W 7 bits 0X6C 0x00

ILR21 Interrupt priority level for IRQ 21 R/W 7 bits 0X70 0x00

ILR22 Interrupt priority level for IRQ 22 R/W 7 bits 0X74 0x00

ILR23 Interrupt priority level for IRQ 23 R/W 7 bits 0X78 0x00

ILR24 Interrupt priority level for IRQ 24 R/W 7 bits 0X7C 0x00

ILR25 Interrupt priority level for IRQ 25 R/W 7 bits 0X80 0x00

ILR26 Interrupt priority level for IRQ 26 R/W 7 bits 0X84 0x00

ILR27 Interrupt priority level for IRQ 27 R/W 7 bits 0X88 0x00

ILR28 Interrupt priority level for IRQ 28 R/W 7 bits 0X8C 0x00

ILR29 Interrupt priority level for IRQ 29 R/W 7 bits 0X90 0x00

ILR30 Interrupt priority level for IRQ 30 R/W 7 bits 0X94 0x00

ILR31 Interrupt priority level for IRQ 31 R/W 7 bits 0X98 0x00

ISR Software interrupt set register R/W 32 bits 0X9C 0x0000 0000

Interrupt Handler Level 1 and Level 2 Registers

 6-22

Table 6–18. Interrupt Input Register(ITR)

Bit Name Description
Reset
Value

31 IRQ_31 Interrupt request—1 indicates that the peripheral occupying the
IRQ_31 address space has requested interrupt service from the
MPU.

An edge-triggered interrupt is stored in this register as an
incoming interrupt. When the MPU reads the SIR_IRQ_CODE or
the SIR_FIQ_CODE register, the bit corresponding to the
pending interrupt is reset.

The MPU can also individually clear each bit by writing a 0 to that
bit. (Writing a 1 to the bit does not change the previous state.
This can be used just before the MPU unmasks some interrupts
to ignore specific interrupts.

0

30–0 IRQ_30–IRQ_0 (Same as bit 31) 0

Table 6–19. Mask Interrupt Register (MIR)

Bit Name Description
Reset
Value

31 IRQ_31_MSK Interrupt mask bit—1 prevents IRQ_31 from interrupting MPU
program flow.

If the peripheral on IRQ_31 has been configured to request an
interrupt but masked out in this register, the IRQ_31 bit in the IRQ
register is still set on an interrupt event (and can be read by the
MPU) but does not interrupt program flow.

1

30–0 IRQ_30_MSK–
IRQ_0_MSK

(Same as bit 31) 1

Table 6–20. Binary-Coded Source IRQ Register (SIR_IRQ_CODE)

Bit Name Description
Reset
Value

4–0 IRQ_NUM This register indicates the IRQ interrupt that is currently being
serviced by the MPU. Reading this register clears the
corresponding bit in the ITR register if the interrupt is configured
as edge triggered.

0

Interrupt Handler Level 1 and Level 2 Registers

6-23MPU Private Peripherals

Table 6–21. Binary-Coded Source FIQ Register (SIR_FIQ_CODE)

Bit Name Description
Reset
Value

4–0 FIQ_NUM This register indicates the IRQ interrupt that is currently being
serviced by the MPU. Reading this register clears the
corresponding bit in the ITR register if the interrupt is configured
as edge triggered.

0

This register is only used by the level 1 handler, because the level 2 handler
cannot be programmed to generate FIQ interrupts.

Table 6–22. Control Register (CONTROL_REG)

Bit Name Description
Reset
Value

1 NEW_FIQ_REG New FIQ agreement. Writing a 1 resets FIQ output, clears source
FIQ register, and enables new IRQ generation.

0

0 NEW_IRQ_REG New IRQ agreement. Writing a 1 resets IRQ output, clears source
IRQ register, and enables new IRQ generation.

0

Table 6–23. Interrupt Level Registers (ILR0...ILR31)

Bit Name Value Description
Reset
Value

6–2 PRIORITY Defines the priority level when the corresponding
interrupt is routed to IRQ or FIQ (31 down to 0)

0

1 SENS_EDGE 0 Interrupt is falling-edge-triggered. 0

1 Interrupt is low-level-triggered.

0 FIQ† 0 Interrupt is routed to IRQ. 0

1 Interrupt is routed to FIQ.

† IRQ is the only valid setting fo this bit when used with the level 2 handler—it cannot be used to generate FIQ sources.

Table 6–24. Interrupt Set Register (ISR)

Bit Name Description
Reset
Value

31–0 SWI[31:0] Software interrupt set register. Writing a 1 to any bit generates an
interrupt to the MPU if the corresponding ILRn is configured as
edge-triggered; otherwise no interrupt is generated. A read to this
register always returns 0x00000000.

0

Configuration Module

 6-24

6.7 Configuration Module

The OMAP5910 configuration module allows the software of the OMAP5910
device to control the various static modes supported by the device. This
module is the primary point of control for the following areas of the OMAP5910
device:

� Functional I/O multiplexing
� Debug and observation I/O multiplexing
� I/O gating and inhibiting for power-down modes
� Pull-down enable control
� Interface voltage selection
� Pseudostatic module configuration

Note:

This configuration must be done only during the boot time while the
OMAP5910 peripherals are under reset.

6.7.1 Configuration Register Capabilities

The OMAP5910 configuration module is functionally simple. The module is a
bank of 32-bit registers that can be read and written by firmware. This bank of
registers can be broken down into eight primary sections. These are:

� OMAP5910 generic multiplexing registers (0x0010h to 0x0038h address
range)

� OMAP5910 pullup/pulldown control registers (0x0040h to 0x004Ch
address range)

� OMAP5910 gating and inhibiting registers (0x0050h address range)

� OMAP5910 voltage control registers (0x0060h address range)

� OMAP5910 test and debug registers (0x0070h address range)

� OMAP5910 module configuration registers (0x0080h address range)

6.7.2 OMAP5910 Native and Compatibility Modes

The major functionality of this module beyond the register banks is to support
compatibility with the previous prototype devices via the implementation of
native and compatibility modes. The OMAP5910 device resets to compatibility
mode. This functionality is in place to allow software compatibility of

Configuration Module

6-25MPU Private Peripherals

OMAP5910 with early development devices. The OMAP5910 configuration
registers have no effect on the compatibility mode. The firmware must first
write 0x0000EAEFh to the COMP_MODE_CTRL_0 register to utilize the pin
multiplexing and device configuration features available in native mode. Be
careful when enabling the native mode.

All OMAP5910 configuration registers reset to 0x0000h at power-on reset. It
is advisable to follow the following procedure before enabling the OMAP5910
mode:

1) Determine the desired values for each OMAP5910 configuration register.

2) Program the desired values by writing to the appropriate register.

3) Program the COMP_MODE_CTRL_0 register to 0x0000EAEFh.

4) The desired modes are now active.

This procedure allows the user to select all OMAP5910 configuration settings
with a series of register writes, then to enable all of the modes simultaneously.

6.7.3 OMAP5910 Generic Pin Multiplexing and Pullup/Pulldown Control

The OMAP5910 configuration module was developed with future versions of
OMAP5910 in mind. To enable software compatibility between OMAP5910
and future versions, this module allows for up to eight multiplexing options on
all device pins and independent pin-by-pin pulldown control except:

� SDRAM
� Flash memory
� LCD
� Power and ground pins
� Analog I/O functions
� Test and emulation pins

The OMAP5910 FUNC_MUX_CTRL (3–D) registers control this generic func-
tional pin multiplexing. The OMAP5910 PULL_DWN_CTRL (0–3) registers
control the independent pin-by-pin pulldown enables.

For more information on what functional multiplexing is available on the
OMAP5910, see Appendix A, Input/Output Descriptions. Once the desired
functionality is determined, the OMAP5910 FUNC_MUX_CTRL (3–D) regis-
ters can be programmed to correspond to the chosen multiplexing. The value
for the three FUNC_MUX_CTRL register bits that correspond to a given pin
can be determined in Table 6–25.

Configuration Module

 6-26

Table 6–25. Functional Pin Multiplexing Control Register 3
(FUNC_MUX_CTRL3...FUNC_MUX_CTRLD)

FUNC_MUX_CTRL(2:0)
Register Value Corresponding Functional Modes

000 Default configuration/functional multiplexing 0

001 Functional multiplexing 1

010 Functional multiplexing 2

011 Functional multiplexing 3

100 Functional multiplexing 4 (Reserved)

101 Functional multiplexing 5 (Reserved)

110 Functional multiplexing 6 (Reserved)

111 Functional multiplexing 7 (Reserved)

For a given interface, the value of the FUNC_MUX_CTRL(2:0) register can
vary from pin to pin. For example, the USB1_HOST port is split between func-
tional multiplexing 2 and functional multiplexing three modes in Appendix A,
Input/Output Descriptions. In this case four of the FUNC_MUX_
CTRL(2:0) registers has a value of 001 and the other four
FUNC_MUX_CTRL(2:0) registers have a value of 010.

6.7.4 OMAP5910 MMC/SD Pin Multiplexing
The enabling of the MMC/SD function on the device’s pins is a special case
on the OMAP5910 device. The MMC/SD pin interface uses the state of a
device pin (STAT_VAL/WKUP) at release of power-on reset to determine if the
MMC/SD function is enabled at the device’s pins. The power-on reset sam-
pling of a high level on this pin forces the device’s I/O into a state that is consis-
tent with MMC/SD. This means that several pullups are enabled when in MMC/
SD mode. Users must program the OMAP5910 configuration registers to set
up the proper functional multiplexing modes. Users of 4-bit MMC/sd must be
particularly aware that the CONF_MOD_MSMMC_VSS_HIZ_OVERRIDE bit
in the MOD_CONF_CTRL_0 register must be programmed to a 1 to enable
the use of the MMC.DAT2 device pin. For further details on the MMC/SD
pin multiplexing on the OMAP5910 device, see Appendix A, Input/Output
Descriptions, and Section 7.12, MMC/SD Host Controller.

6.7.5 OMAP5910 Pullups and Pulldowns
The OMAP5910 device implements both pullups and pulldowns on several
I/Os. In this document there are several references to pulldowns and pulldown
enables. It is proper to assume that if an OMAP5910 device pin has a pullup,
the corresponding pulldown enables (enables = 0/disables = 1) the pullup.

OMAP5910 Configuration Registers

6-27MPU Private Peripherals

6.8 OMAP5910 Configuration Registers

Table 6–26 lists the 32-bit read/write configuration registers. Table 6–27
through Table 6–49 describe the register bits. The compatibility mode control
0 register (COMP_MODE_CTRL_0) must be programmed to 0xEAEFh for
any of these configuration registers to exercise their associated control. The
base address for the configuration registers is FFFE:1000.

Table 6–26. Configuration Registers

Register Description Offset

FUNC_MUX_CTRL_0 Functional multiplexing control 0 0x00

FUNC_MUX_CTRL_1 Functional multiplexing control 1 0x04

FUNC_MUX_CTRL_2 Functional multiplexing control 2 0x08

COMP_MODE_CTRL_0 Compatibility mode control 0 0x0C

FUNC_MUX_CTRL_3 Functional multiplexing control 3 0x10

FUNC_MUX_CTRL_4 Functional multiplexing control 4 0x14

FUNC_MUX_CTRL_5 Functional multiplexing control 5 0x18

FUNC_MUX_CTRL_6 Functional multiplexing control 6 0x1C

FUNC_MUX_CTRL_7 Functional multiplexing control 7 0x20

FUNC_MUX_CTRL_8 Functional multiplexing control 8 0x24

FUNC_MUX_CTRL_9 Functional multiplexing control 9 0x28

FUNC_MUX_CTRL_A Functional multiplexing control A 0x2C

FUNC_MUX_CTRL_B Functional multiplexing control B 0x30

FUNC_MUX_CTRL_C Functional multiplexing control C 0x34

FUNC_MUX_CTRL_D Functional multiplexing control D 0x38

PULL_DWN_CTRL_0 Pulldown control 0 0x40

PULL_DWN_CTRL_1 Pulldown control 1 0x44

PULL_DWN_CTRL_2 Pulldown control 2 0x48

PULL_DWN_CTRL_3 Pulldown control 3 0x4C

GATE_INH_CTRL_0 Gate and inhibit control 0 0x50

VOLTAGE_CTRL_0 Voltage control 0 0x60

TEST_DBG_CTRL_0 Test debug control 0 0x70

MOD_CONF_CTRL_0 Module configuration control 0 0x80

OMAP5910 Configuration Registers

 6-28

Table 6–27. Functional Multiplexing Control 0 Register (FUNC_MUX_CTRL_0)

Bit Name Value Description R/W
Reset
Value

31 CTRL_288_1 This bit configures the control mode 288_1
which enables the control of the OMAP
chip_nwakeup signal from the static_valid pad.

R/W 0x0

0 Functional mode; ULPD controls the OMAP
chip_nwakeup signal.

1 Debug; the OMAP5910 static_valid pad controls
the OMAP chip_nwakeup signal.

This bit is valid in compatibility and native
modes.

30–23 RESERVED Reserved. These bits must always be written as
0.

R/W 0x0

22 LB_RESET_DISABLE This bit holds the OMAP local bus reset input
active. Set this to 1 when using OMAP5910
USB_HHC module.

R/W 0x0

0 Local bus RESET <= 0

1 Local bus RESET <= USB_HHC LB reset

This bit is valid in compatibility and native
modes.

21 RESERVED Reserved. This bit must always be written as 0. R/W 0x0

20 LRU_SEL This field configures the OMAP traffic controller
arbitration algorithm.

R/W 0x0

0 LRU priority scheme is used for arbitration.

1 Fixed priority scheme is used for arbitration.

This bit must only be changed if the DSP is in
reset. This bit is valid in compatibility and native
modes.

OMAP5910 Configuration Registers

6-29MPU Private Peripherals

Table 6–27. Functional Multiplexing Control 0 Register (FUNC_MUX_CTRL_0) (Continued)

Bit
Reset
ValueR/WDescriptionValueName

19 VBUS_CTRL This bit can be programmed to indicate an
external USB insertion/disconnection to the
OMAP5910 USB core.

R/W 0x0

0 Indicates an external USB disconnection

1 Indicates an external USB insertion

This bit is valid in compatibility and native
modes. There are several methods for VBUS
detect in native mode.

18 VBUS_MODE Selects the USB vbus_ctrl input source, used
for USB insertion/disconnection detection.

R/W 0x0

0 USB input vbus_ctrl <= Hardware detection
(see bit (i7) of the MOD_CONF_CTRL_0
register)

1 USB input vbus_ctrl <= OMAP5910
configuration VBUS_CTRL bit

17–15 RESERVED Reserved. These bits must always be written as
0.

R/W 0x0

14 NRESET_ENABLE Allows AND gating of OMAP5910 outputs with
the OMAP CHIP_NRESET_OUT

R/W 0x0

0 Disabled

1 Allowed

This bit is valid in compatibility and native
modes.

13 PWR_MASK_IN 0 Does not allow AND gating of OMAP5910
inputs with COM_PWR_REQ (GPIO9) and
COM_STS (MPUIO(3)) OMAP5910 input pins

R/W 0x0

1 Allows AND gating of OMAP5910 inputs with
COM_PWR_REQ (GPIO9) and COM_STS
(ARMIO3) OMAP5910 input pins

This bit is valid in compatibility and native
modes.

OMAP5910 Configuration Registers

 6-30

Table 6–27. Functional Multiplexing Control 0 Register (FUNC_MUX_CTRL_0) (Continued)

Bit
Reset
ValueR/WDescriptionValueName

12 PWR_MASK_OUT 0 Does not allow AND gating of OMAP5910
outputs with COM_PWR_REQ (GPIO9) and
COM_STS (MPUIO3) OMAP5910 input pins

R/W 0x0

1 Allows AND gating of OMAP5910 outputs with
COM_PWR_REQ (GPIO9) and COM_STS
(MPUIO3) OMAP5910 input pins

This bit is valid in compatibility and native
modes.

11 BVLZ_MASK_IN 0 Does not allow AND gating of OMAP5910
inputs with BFAIL/EXT_FIQ OMAP5910 input
pin

R/W 0x0

1 Allows AND gating of OMAP5910 inputs with
BFAIL/EXT_FIQ OMAP5910 input pin

This bit is valid in compatibility and native
modes.

10 BVLZ_MASK_OUT 0 Does not allow AND gating of outputs with
BFAIL/EXT_FIQ OMAP5910 input pin

R/W 0x0

1 Allows AND gating of outputs with
BFAIL/EXT_FIQ OMAP5910 input pin

This bit is valid in compatibility and native
modes.

9–0 RESERVED Reserved. These bits must always be written as
0.

R/W 0x0

Table 6–28. Functional Multiplexing Control 1 Register (FUNC_MUX_CTRL_1)

Bits Name Description R/W
Reset
Value

31–0 RESERVED Reserved. These bits must always be written as 0. R/W 0x00000000

OMAP5910 Configuration Registers

6-31MPU Private Peripherals

Table 6–29. Functional Multiplexing Control 2 Register (FUNC_MUX_CTRL_2)

Bits Name Description R/W
Reset
Value

31–19 RESERVED Reserved. These bits must always be written as 0. R/W 0x00000000

18:13 DMAREQ_OBS This 6-bit field can be used to control the DMA re-
quests observability mux.

When a 6-bit value is written in this field, the corre-
sponding interrupt signal is output on the
UART3.RX pin for visibility.

Legal values are from 0 to 50. 0 is the functional
mode, values between 1 and 50 are for
observability mode.

0: Default; for i = 1 to 19: observability, pin
UART3.RX <= DSP DMA request(i), output; for i =
20 to 50: observability, pin UART3.RX <= system
DMA request(i–20), output

R/W 0x0000

12:6 IT_OBS This 7-bit field can be used to control the interrupt
observability mux.

When a 7-bit value is written in this field, the corre-
sponding interrupt signal is output on the
UART3.TX pin for visibility.

Legal values are from 0 to 101. 0 is the functional
mode; values between 1 and 101 are for
observability mode.

0: Default; for i in 1 to 16: observability, UART3.TX
pin <= DSP level2 interrupt(i–1);
for i in 17 to 37: observability, UART3.TX pin <=
DSP level1 interrupt(i–17);
for i in 38 to 69: observability, UART3.TX pin <=
MPU level1 interrupt(i–38);
for i in 70 to 101: observability, UART3.TX pin <=
MPU level2 interrupt(i–70);

R/W 0x0000

5–0 RESERVED Reserved. These bits must always be written as 0. R/W 0x00000000

At reset, the OMAP5910 device configuration registers are software compat-
ible with previous prototype devices. Writing an 0x0000EAEFh to the compati-
bility mode control 0 register (COMP_MODE_CTRL_0) enables the new
functional multiplexing registers found at offset 0x10h and above.

OMAP5910 Configuration Registers

 6-32

Table 6–30. Compatibility Mode Control 0 Register (COMP_MODE_CTRL_0)

Bits Name Description R/W
Reset
Value

31–16 RESERVED Reserved for future expansion. These bits must be
written to 0x0000h when enabling the OMAP5910
configuration registers.

R 0x0000

15–0 CONF_COMPATIBILITY_R These bits must be written to 0x0000EAEFh to
enable OMAP5910 configuration bits at offset
0x10h and above. Take care to set the
configuration bits at 0x10h and above
appropriately before writing 0x0000EAEFh to this
register.

R/W 0x0000

Table 6–31. Functional Multiplexing Control 3 Register (FUNC_MUX_CTRL_3)

Bits Name Description R/W
Reset
Value

31–0 RESERVED Reserved for future expansion. These bits must
always be written as 0.

R/W 0x0

Table 6–32. Functional Multiplexing Control 4 Register (FUNC_MUX_CTRL_4)

Bits Name Description R/W
Reset
Value

31–30 RESERVED Reserved for future expansion. These bits must
always be written as 0.

R/W 0x0

29–27 CONF_CAM_D_7_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to CAM.D[7] at
reset.

The control for this I/O is forced to 000 at reset
and while in compatibility mode.

R/W 0x0

26–24 CONF_CAM_LCLK_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to CAM.LCLK at
reset.

The control for this I/O is forced to 000 at reset
and while in compatibility mode.

R/W 0x0

OMAP5910 Configuration Registers

6-33MPU Private Peripherals

Table 6–32. Functional Multiplexing Control 4 Register (FUNC_MUX_CTRL_4) (Continued)

Bits
Reset
ValueR/WDescriptionName

23–21 CONF_CAM_EXCLK_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to CAM.EXCLK at
reset.

The control for this I/O is forced to 000 at reset
and while in compatibility mode.

R/W 0x0

20–18 RESERVED Reserved for future expansion. These bits must
always be written as 0.

R/W 0x0

17–15 CONF_MCBSP1_DOUT_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MCBSP1.DX at
reset.

The control for this I/O is forced to 000 at reset
and while in compatibility mode.

R/W 0x0

14–12 CONF_MCBSP1_SYNC_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MCBSP1.FSX
at reset.

The control for this I/O is forced to 000 at reset
and while in compatibility mode.

R/W 0x0

11–0 RESERVED Reserved for future expansion. These bits must
always be written as 0.

R/W 0x0

Table 6–33. Functional Multiplexing Control 5 Register (FUNC_MUX_CTRL_5)

Bits Name Description R/W
Reset
Value

31–30 RESERVED Reserved for future expansion. These bits must
always be written as 0.

R/W 0x0

29–27 CONF_CAM_RSTZ_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to CAM.RSTZ at
reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

OMAP5910 Configuration Registers

 6-34

Table 6–33. Functional Multiplexing Control 5 Register (FUNC_MUX_CTRL_5) (Continued)

Bits
Reset
ValueR/WDescriptionName

26–24 CONF_CAM_HS_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to CAM.HS at
reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

23–21 CONF_CAM_VS_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to CAM.VS at
reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

20–18 CONF_CAM_D_0_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to CAM.D[0] at
reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

17–15 CONF_CAM_D_1_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to CAM.D[1] at
reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

14–12 CONF_CAM_D_2_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to CAM.D[2] at
reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

11–9 CONF_CAM_D_3_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to CAM.D[3] at
reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

8–6 CONF_CAM_D_4_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to CAM.D[4] at
reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

OMAP5910 Configuration Registers

6-35MPU Private Peripherals

Table 6–33. Functional Multiplexing Control 5 Register (FUNC_MUX_CTRL_5) (Continued)

Bits
Reset
ValueR/WDescriptionName

5–3 CONF_CAM_D_5_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to CAM.D[5] at
reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

2–0 CONF_CAM_D_6_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to CAM.D[6] at
reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

Table 6–34. Functional Multiplexing Control 6 Register (FUNC_MUX_CTRL_6)

Bits Name Description R/W
Reset
Value

31–30 RESERVED Reserved for future expansion. These bits must always
be written as 0.

R/W 0x0

29–27 CONF_GPIO_4_R These bits control the multiplexing on the OMAP5910
I/O, which defaults to GPIO4 at reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

26–24 CONF_GPIO_6_R These bits control the multiplexing on the OMAP5910
I/O, which defaults to GPIO6 at reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

23–21 CONF_GPIO_7_R These bits control the multiplexing on the OMAP5910
I/O, which defaults to GPIO7 at reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

20–18 CONF_GPIO_11_R These bits control the multiplexing on the OMAP5910
I/O, which defaults to GPIO11 at reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

OMAP5910 Configuration Registers

 6-36

Table 6–34. Functional Multiplexing Control 6 Register (FUNC_MUX_CTRL_6) (Continued)

Bits
Reset
ValueR/WDescriptionName

17–15 CONF_GPIO_12_R These bits control the multiplexing on the OMAP5910
I/O, which defaults to GPIO12 at reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

14–12 CONF_GPIO_13_R These bits control the multiplexing on the OMAP5910
I/O, which defaults to GPIO13 at reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

11–9 CONF_GPIO_14_R These bits control the multiplexing on the OMAP5910
I/O, which defaults to GPIO14 at reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

8–6 CONF_GPIO_15_R These bits control the multiplexing on the OMAP5910
I/O, which defaults to GPIO15 at reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

5–3 CONF_RX3_R These bits control the multiplexing on the OMAP5910
I/O, which defaults to UART3.RX at reset.

The control for this I/O is forced to 000 at reset and in
compatibility mode.

R/W 0x0

2–0 CONF_TX3_R These bits control the multiplexing on the OMAP5910
I/O, which defaults to UART3.TX at reset.

The control for this I/O is forced to 000 at reset and in
compatibility mode.

R/W 0x0

OMAP5910 Configuration Registers

6-37MPU Private Peripherals

Table 6–35. Functional Multiplexing Control 7 Register (FUNC_MUX_CTRL_7)

Bits Name Description R/W
Reset
Value

31–21 RESERVED Reserved for future expansion. These bits must always
be written as 0.

R/W 0x0

20–18 CONF_ARMIO_2_R These bits control the multiplexing on the OMAP5910
I/O, which defaults to MPUIO2 at reset

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

17–15 CONF_ARMIO_4_R These bits control the multiplexing on the OMAP5910
I/O, which defaults to MPUIO4 at reset

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

14–12 CONF_ARMIO_5_R These bits control the multiplexing on the OMAP5910
I/O, which defaults to MPUIO5 at reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

11–9 CONF_GPIO_0_R These bits control the multiplexing on the OMAP5910
I/O, which defaults to GPIO0 at reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

8–6 CONF_GPIO_1_R These bits control the multiplexing on the OMAP5910
I/O, which defaults to GPIO1 at reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

5–3 CONF_GPIO_2_R These bits control the multiplexing on the OMAP5910
I/O, which defaults to GPIO2 at reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

2–0 CONF_GPIO_3_R These bits control the multiplexing on the OMAP5910
I/O, which defaults to GPIO3 at reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

OMAP5910 Configuration Registers

 6-38

Table 6–36. Functional Multiplexing Control 8 Register (FUNC_MUX_CTRL_8)

Bits Name Description R/W
Reset
Value

31–30 RESERVED Reserved for future expansion. These bits must
always be written as 0.

R/W 0x0

29–27 CONF_ARM_BOOT_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MPU_BOOT at
reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

26–15 RESERVED Reserved for future expansion. These bits must
always be written as 0.

R/W 0x0

14–12 CONF_WIRE_NSCS3_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to UWIRE.CS3 at
reset.

The control for this I/O is forced to 000 at reset and
in compatibility mode.

R/W 0x0

11–9 CONF_WIRE_NSCS0_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to UWIRE.CS0 at
reset.

The control for this I/O is forced to 000 at reset and
in compatibility mode.

R/W 0x0

8–6 CONF_WIRE_SCLK_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to UWIRE.SCLK at
reset.

The control for this I/O is forced to 000 at reset and
in compatibility mode.

R/W 0x0

5–3 CONF_WIRE_SDO_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to UWIRE.SDO at
reset.

The control for this I/O is forced to 000 at reset and
in compatibility mode.

R/W 0x0

2–0 CONF_WIRE_SDI_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to UWIRE.SDI at
reset.

The control for this I/O is forced to 000 at reset and
in compatibility mode.

R/W 0x0

OMAP5910 Configuration Registers

6-39MPU Private Peripherals

Table 6–37. Functional Multiplexing Control 9 Register (FUNC_MUX_CTRL_9)

Bits Name Description R/W
Reset
Value

31–30 RESERVED Reserved for future expansion. These bits must
always be written as 0.

R/W 0x0

29–27 CONF_UARTS_CLKREQ_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to
UART3.CLKREQ at reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

26–24 CONF_MCSI1_DOUT_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MCSI1.DOUT
at reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

23–21 CONF_TX1_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to UART1.TX at
reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

20–15 RESERVED Reserved for future expansion. These bits must
always be written as 0.

R/W 0x0

14–12 CONF_RTS1_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to UART1.RTS at
reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

11–6 RESERVED Reserved for future expansion. These bits must
always be written as 0.

R/W 0x0

5–3 CONF_MCBSP3_CLK_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to
MCBSP3.CLKX at reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

2–0 CONF_COM_
SHUTDOWN_R

These bits control the multiplexing on the
OMAP5910 I/O, which defaults to
RST_HOST_OUT at reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

OMAP5910 Configuration Registers

 6-40

Table 6–38. Functional Multiplexing Control A Register (FUNC_MUX_CTRL_A)

Bits Name Description R/W
Reset
Value

31–27 RESERVED Reserved for future expansion. These bits must
always be written as 0.

R/W 0x0

26–24 CONF_MMC_DAT1_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MMC.DAT1 at
reset.

As long as the STATIC_VALID pin is sampled high
upon reset, the control for this I/O is force to 000
at reset and while in compatibility mode.
STATIC_VALID must sample high at reset for the
associated OMAP5910 pin to function properly.

R/W 0x0

23–21 RESERVED Reserved. These bits must always be written as 0. R/W 0x0

20–18 CONF_MMC_DAT2_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MMC.DAT2 at
reset.

As long as the STATIC_VALID pin is sampled high
upon reset, the control for this I/O is force to 000
at reset and while in compatibility mode.
STATIC_VALID must sample high at reset for the
associated OMAP5910 pin to function properly.

R/W 0x0

17–15 RESERVED Reserved for future expansion. These bits must
always be written as 0.

R/W 0x0

14–12 CONF_CLK32K_OUT_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to CLK32K_OUT
at reset.

The control for this I/O is forced to 000’at reset
and in compatibility mode.

R/W 0x0

11–9 CONF_MCSI1_DIN_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MCSI1.DIN at
reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

8–6 CONF_MCSI1_BCLK_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MCSI1.CLK at
reset.

The control for this I/O is forced to 000’at reset
and in compatibility mode.

R/W 0x0

OMAP5910 Configuration Registers

6-41MPU Private Peripherals

Table 6–38. Functional Multiplexing Control A Register (FUNC_MUX_CTRL_A) (Continued)

Bits
Reset
ValueR/WDescriptionName

5–3 CONF_MCSI1_SYNC_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MCSI1.SYNC at
reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

2–0 CONF_UARTS_CLKIO_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to BCLK at reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

Table 6–39. Functional Multiplexing Control B Register (FUNC_MUX_CTRL_B)

Bits Name Description R/W
Reset
Value

31–21 RESERVED Reserved for future expansion. These bits must
always be written as 0.

R/W 0x0

20–18 CONF_COM_MCLK_REQ_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to
UART2.CLKREQ at reset.

The control for this I/O is forced to 000 at reset
and while in compatibility mode.

R/W 0x0

17–15 RESERVED Reserved for future expansion. These bits must
always be written as 0.

R/W 0x0

14–12 CONF_MCSI2_SYNC_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MCSI2.SYNC
at reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

11–9 CONF_MCSI2_DOUT_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MCSI2.DOUT
at reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

OMAP5910 Configuration Registers

 6-42

Table 6–39. Functional Multiplexing Control B Register (FUNC_MUX_CTRL_B) (Continued)

Bits
Reset
ValueR/WDescriptionName

8–6 CONF_MCSI2_DIN_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MCSI2.DIN at
reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

5–3 CONF_MCSI2_CLK_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MCSI2.CLK at
reset.

The control for this I/O is forced to 000 at reset
and in compatibility mode.

R/W 0x0

2–0 RESERVED Reserved for future expansion. These bits must
always be written as 0.

R/W 0x0

Table 6–40. Functional Multiplexing Control C Register (FUNC_MUX_CTRL_C)

Bits Name Description R/W
Reset
Value

31–30 RESERVED Reserved for future expansion. These bits must
always be written as 0.

R/W 0x0

29–27 CONF_TX2_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to UART2.TX at
reset.

The control for this I/O is forced to 000 at reset and
in compatibility mode.

R/W 0x0

26–24 CONF_RTS2_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to UART2.RTS at
reset.

The control for this I/O is forced to 000’at reset and
in compatibility mode.

R/W 0x0

23–21 CONF_CTS2_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to UART2.CTS at
reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

OMAP5910 Configuration Registers

6-43MPU Private Peripherals

Table 6–40. Functional Multiplexing Control C Register (FUNC_MUX_CTRL_C) (Continued)

Bits
Reset
ValueR/WDescriptionName

20–18 CONF_RX2_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to UART2.RX at
reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

17–15 CONF_MCBSP2_DOUT_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MCBSP2.DOUT
at reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

14–12 CONF_MCBSP2_RSYNC_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MCBSP2.FSR at
reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

11–9 RESERVED Reserved for future expansion. These bits must
always be written as 0.

R/W 0x0

8–6 CONF_MCBSP2_CLKR_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MCBSP2.CLKR
at reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

5–3 RESERVED Reserved for future expansion. These bits must
always be written as 0.

R/W 0x0

2–0 CONF_MCBSP2_DIN_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MCBSP2.DR at
reset.

The control for this I/O is forced to 000 at reset and
while in compatibility mode.

R/W 0x0

OMAP5910 Configuration Registers

 6-44

Table 6–41. Functional Multiplexing Control D Register (FUNC_MUX_CTRL_D)

Bits Name Description R/W
Reset
Value

31–15 RESERVED Reserved for future expansion. These bits must
always be written as 0.

R/W 0x00000

14–12 CONF_MMC_DAT3_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to MMC.DAT3 at
reset

The control for this I/O is forced to 000 at reset.

R/W 0x0

11–9 RESERVED Reserved for future expansion. These bits must
always be written as 0.

R/W 0x0

8–6 CONF_NFCS2_R These bits control the multiplexing on the
OMAP5910 I/O, which defaults to FLASH.CS2 at
reset.

The control for this I/O is forced to 000 at reset.

R/W 0x0

5–0 RESERVED Reserved for future expansion. These bits must
always be written as 0.

R/W 0x0

OMAP5910 Configuration Registers

6-45MPU Private Peripherals

Table 6–42. Pulldown Control 0 Register (PULL_DWN_CTRL_0)

Bits Name Value Description (see Note) R/W
Reset
Value

31–29 RESERVED Reserved for future expansion.
These bits must always be written as
0.

R/W 0x0

28 CONF_PDEN_CAM_HS_R These bits control the pulldown
enable on the OMAP5910 I/O, which
defaults to CAM.HS at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

27–25 RESERVED Reserved for future expansion.
These bits must always be written as
0.

R/W 0x0

24 CONF_PDEN_CAM_D_2_R These bits control the pulldown en-
able on the OMAP5910 I/O, which
defaults to CAM.D[2] at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

23 CONF_PDEN_CAM_D_3_R These bits control the pulldown en-
able on the OMAP5910 I/O, which
defaults to CAM.D[3] at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

22 RESERVED Reserved for future expansion.
These bits must always be written as
0.

R/W 0x0

21 CONF_PDEN_CAM_D_5_R These bits control the pulldown en-
able on the OMAP5910 I/O, which
defaults to CAM.D[5] at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

Note: Unless otherwise indicated, pulldown control for each I/O is forced off at reset while in compatibility mode. The pull-
down control register bits only control the pulldowns while in native mode. Depending upon the pin multiplexing config-
uration of any particular I/O, a pulldown may not be available. Consult Appendix A of this document or the OMAP5910
data manual (literature number SPRS197) to determine whether a pulldown exists for each I/O.

OMAP5910 Configuration Registers

 6-46

Table 6–42. Pulldown Control 0 Register (PULL_DWN_CTRL_0) (Continued)

Bits
Reset
ValueR/WDescription (see Note)ValueName

20–17 RESERVED Reserved for future expansion.
These bits must always be written as
0.

R/W 0x0

16 CONF_PDEN_MCBSP1_DIN_R These bits control the pulldown en-
able on the OMAP5910 I/O, which
defaults to MCBSP1.DR at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

15–0 RESERVED Reserved for future expansion.
These bits must always be written as
0.

R/W 0x0

Note: Unless otherwise indicated, pulldown control for each I/O is forced off at reset while in compatibility mode. The pull-
down control register bits only control the pulldowns while in native mode. Depending upon the pin multiplexing config-
uration of any particular I/O, a pulldown may not be available. Consult Appendix A of this document or the OMAP5910
data manual (literature number SPRS197) to determine whether a pulldown exists for each I/O.

Table 6–43. Pulldown Control 1 Register (PULL_DWN_CTRL_1)

Bit Name Value Description (See Note) R/W
Reset
Value

31–30 RESERVED Reserved for future expansion. These
bits must always be written as 0.

R/W 0x0

29 CONF_PDEN_MCBSP3_CLK_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to MCBSP3.CLKX at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

28 RESERVED Reserved for future expansion. These
bits must always be written as 0.

R/W 0x0

Note: Unless otherwise indicated, pulldown control for each I/O is forced off at reset while in compatibility mode. The pull-
down control register bits only control the pulldowns while in native mode. Depending upon the pin multiplexing config-
uration of any particular I/O, a pulldown may not be available. Consult Appendix A of this document or the OMAP5910
data manual (literature number SPRS197) to determine whether a pulldown exists for each I/O.

OMAP5910 Configuration Registers

6-47MPU Private Peripherals

Table 6–43. Pulldown Control 1 Register (PULL_DWN_CTRL_1) (Continued)

Bit
Reset
ValueR/WDescription (See Note)ValueName

27 CONF_PDEN_ARM_BOOT_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to MPU_BOOT at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

Control for this pulldown is forced on
at reset and while in compatibility
mode.

26 CONF_PDEN_NEMU1_R This bit controls the pullup enable on
the OMAP5910 I/O, which defaults to
EMU1 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

25 CONF_PDEN_NEMU0_R This bit controls the pullup enable on
the OMAP5910 I/O, which defaults to
EMU0 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

24–19 RESERVED Reserved for future expansion. These
bits must always be written as 0.

R/W 0x0

18 CONF_PDEN_WIRE_SDI_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to UWIRE.SDI at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

17–15 PULLDOWN Reserved for future expansion. These
bits must always be written as 0.

R/W 0x0

Note: Unless otherwise indicated, pulldown control for each I/O is forced off at reset while in compatibility mode. The pull-
down control register bits only control the pulldowns while in native mode. Depending upon the pin multiplexing config-
uration of any particular I/O, a pulldown may not be available. Consult Appendix A of this document or the OMAP5910
data manual (literature number SPRS197) to determine whether a pulldown exists for each I/O.

OMAP5910 Configuration Registers

 6-48

Table 6–43. Pulldown Control 1 Register (PULL_DWN_CTRL_1) (Continued)

Bit
Reset
ValueR/WDescription (See Note)ValueName

14 CONF_PDEN_ARMIO_2_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to MPUIO2 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced
on at reset and while in compatibility
mode.

13 CONF_PDEN_ARMIO_4_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to MPUIO4 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced
on at reset and while in compatibility
mode.

12 CONF_PDEN_ARMIO_5_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to MPUIO5 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced
on at reset and while in compatibility
mode.

Note: Unless otherwise indicated, pulldown control for each I/O is forced off at reset while in compatibility mode. The pull-
down control register bits only control the pulldowns while in native mode. Depending upon the pin multiplexing config-
uration of any particular I/O, a pulldown may not be available. Consult Appendix A of this document or the OMAP5910
data manual (literature number SPRS197) to determine whether a pulldown exists for each I/O.

OMAP5910 Configuration Registers

6-49MPU Private Peripherals

Table 6–43. Pulldown Control 1 Register (PULL_DWN_CTRL_1) (Continued)

Bit
Reset
ValueR/WDescription (See Note)ValueName

11 CONF_PDEN_GPIO_0_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to GPIO0 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced
on at reset and while in compatibility
mode.

10 CONF_PDEN_GPIO_1_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to GPIO1 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced
on at reset and while in compatibility
mode.

9 CONF_PDEN_GPIO_2_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to GPIO2 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced
on at reset and while in compatibility
mode.

Note: Unless otherwise indicated, pulldown control for each I/O is forced off at reset while in compatibility mode. The pull-
down control register bits only control the pulldowns while in native mode. Depending upon the pin multiplexing config-
uration of any particular I/O, a pulldown may not be available. Consult Appendix A of this document or the OMAP5910
data manual (literature number SPRS197) to determine whether a pulldown exists for each I/O.

OMAP5910 Configuration Registers

 6-50

Table 6–43. Pulldown Control 1 Register (PULL_DWN_CTRL_1) (Continued)

Bit
Reset
ValueR/WDescription (See Note)ValueName

8 CONF_PDEN_GPIO_3_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to GPIO3 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced
on at reset and while in compatibility
mode.

7 CONF_PDEN_GPIO_4_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to GPIO4 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced
on at reset and while in compatibility
mode.

6 CONF_PDEN_GPIO_6_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to GPIO6 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced
on at reset and while in compatibility
mode.

Note: Unless otherwise indicated, pulldown control for each I/O is forced off at reset while in compatibility mode. The pull-
down control register bits only control the pulldowns while in native mode. Depending upon the pin multiplexing config-
uration of any particular I/O, a pulldown may not be available. Consult Appendix A of this document or the OMAP5910
data manual (literature number SPRS197) to determine whether a pulldown exists for each I/O.

OMAP5910 Configuration Registers

6-51MPU Private Peripherals

Table 6–43. Pulldown Control 1 Register (PULL_DWN_CTRL_1) (Continued)

Bit
Reset
ValueR/WDescription (See Note)ValueName

5 CONF_PDEN_GPIO_7_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to GPIO7 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced
on at reset and while in compatibility
mode.

4 CONF_PDEN_GPIO_11_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to GPIO11 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced
on at reset and while in compatibility
mode.

3 CONF_PDEN_GPIO_12_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to GPIO12 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced
on at reset and while in compatibility
mode.

Note: Unless otherwise indicated, pulldown control for each I/O is forced off at reset while in compatibility mode. The pull-
down control register bits only control the pulldowns while in native mode. Depending upon the pin multiplexing config-
uration of any particular I/O, a pulldown may not be available. Consult Appendix A of this document or the OMAP5910
data manual (literature number SPRS197) to determine whether a pulldown exists for each I/O.

OMAP5910 Configuration Registers

 6-52

Table 6–43. Pulldown Control 1 Register (PULL_DWN_CTRL_1) (Continued)

Bit
Reset
ValueR/WDescription (See Note)ValueName

2 CONF_PDEN_GPIO_13_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to GPIO13 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced
on at reset and while in compatibility
mode.

1 CONF_PDEN_GPIO_14_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to GPIO14 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced
on at reset and while in compatibility
mode.

0 CONF_PDEN_GPIO_15_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to GPIO15 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced
on at reset and while in compatibility
mode.

Note: Unless otherwise indicated, pulldown control for each I/O is forced off at reset while in compatibility mode. The pull-
down control register bits only control the pulldowns while in native mode. Depending upon the pin multiplexing config-
uration of any particular I/O, a pulldown may not be available. Consult Appendix A of this document or the OMAP5910
data manual (literature number SPRS197) to determine whether a pulldown exists for each I/O.

OMAP5910 Configuration Registers

6-53MPU Private Peripherals

Table 6–44. Pulldown Control 2 Register (PULL_DWN_CTRL_2)

Bit Name Value Description (See Note) R/W
Reset
Value

31 CONF_PDEN_MCBSP2_
DOUT_R

This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to
MCBSP2.DX at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

30 CONF_PDEN_MCBSP2_
RSYNC_R

This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to
MCBSP2.FSR at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

29 CONF_PDEN_MCBSP2_
CLKX_R

This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to
MCBSP2.CLKX at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced on at
reset and while in compatibility mode.

28 CONF_PDEN_MCBSP2_
CLKR_R

This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to
MCBSP2.CLKR at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

Note: Unless otherwise indicated, pulldown control for each I/O is forced off at reset while in compatibility mode. The pull-
down control register bits only control the pulldowns while in native mode. Depending upon the pin multiplexing config-
uration of any particular I/O, a pulldown may not be available. Consult Appendix A of this document or the OMAP5910
data manual (literature number SPRS197) to determine whether a pulldown exists for each I/O.

OMAP5910 Configuration Registers

 6-54

Table 6–44. Pulldown Control 2 Register (PULL_DWN_CTRL_2) (Continued)

Bit
Reset
ValueR/WDescription (See Note)ValueName

27 CONF_PDEN_MCBSP2_
XSYNC_R

This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to
MCBSP2.FSX at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced on at
reset and while in compatibility mode.

26 CONF_PDEN_MCBSP2_
DIN_R

This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to
MCBSP2.DR at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

25 CONF_PDEN_
ARMIO_3_R

This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to MPUIO3 at
reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced on at
reset and while in compatibility mode.

24 CONF_PDEN_GPIO_8_R This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to GPIO.8 at
reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced on at
reset and while in compatibility mode.

Note: Unless otherwise indicated, pulldown control for each I/O is forced off at reset while in compatibility mode. The pull-
down control register bits only control the pulldowns while in native mode. Depending upon the pin multiplexing config-
uration of any particular I/O, a pulldown may not be available. Consult Appendix A of this document or the OMAP5910
data manual (literature number SPRS197) to determine whether a pulldown exists for each I/O.

OMAP5910 Configuration Registers

6-55MPU Private Peripherals

Table 6–44. Pulldown Control 2 Register (PULL_DWN_CTRL_2) (Continued)

Bit
Reset
ValueR/WDescription (See Note)ValueName

23 CONF_PDEN_GPIO_9_R This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to GPIO.9 at
reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced on at
reset and while in compatibility mode.

22 CONF_PDEN_COM_
MCLK_REQ_R

This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to
UART2.CLKREQ at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced on at
reset and while in compatibility mode.

21 RESERVED Reserved for future expansion. These bits
must always be written as 0.

R/W 0x0

20 CONF_PDEN_MCSI2_
SYNC_R

This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to
MCSI2.SYNC at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

19 RESERVED Reserved for future expansion. These bits
must always be written as 0.

R/W 0x0

18 CONF_PDEN_MCSI2_
DIN_R

This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to
MCSI2.DIN at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

Note: Unless otherwise indicated, pulldown control for each I/O is forced off at reset while in compatibility mode. The pull-
down control register bits only control the pulldowns while in native mode. Depending upon the pin multiplexing config-
uration of any particular I/O, a pulldown may not be available. Consult Appendix A of this document or the OMAP5910
data manual (literature number SPRS197) to determine whether a pulldown exists for each I/O.

OMAP5910 Configuration Registers

 6-56

Table 6–44. Pulldown Control 2 Register (PULL_DWN_CTRL_2) (Continued)

Bit
Reset
ValueR/WDescription (See Note)ValueName

17 CONF_PDEN_MCSI2_
CLK_R

This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to
MCSI2.CLK at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

16 CONF_PDEN_MMC_
DAT0_R

This bit controls the pullup enable on the
OMAP5910 I/O, which defaults to
MMC.DAT0 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

15 CONF_PDEN_MMC_
CMD_R

This bit controls the pullup enable on the
OMAP5910 I/O, which defaults to
MMC.CMD_SPI.DO at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

14 CONF_PDEN_MMC_
DAT1_R

This bit controls the pullup enable on the
OMAP5910 I/O, which defaults to
MMC.DAT1 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

13 RESERVED Reserved for future expansion. These bits
must always be written as 0.

R/W 0x0

12 CONF_PDEN_MMC_
DAT2_R

This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to
MMC.DAT2 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

Note: Unless otherwise indicated, pulldown control for each I/O is forced off at reset while in compatibility mode. The pull-
down control register bits only control the pulldowns while in native mode. Depending upon the pin multiplexing config-
uration of any particular I/O, a pulldown may not be available. Consult Appendix A of this document or the OMAP5910
data manual (literature number SPRS197) to determine whether a pulldown exists for each I/O.

OMAP5910 Configuration Registers

6-57MPU Private Peripherals

Table 6–44. Pulldown Control 2 Register (PULL_DWN_CTRL_2) (Continued)

Bit
Reset
ValueR/WDescription (See Note)ValueName

11–10 RESERVED Reserved for future expansion. These bits
must always be written as 0.

R/W 0x0

9 CONF_PDEN_MCSI1_
DIN_R

This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to
MCSI1.DIN at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

8 CONF_PDEN_MCSI1_
BCLK_R

This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to
MCSI1.CLK at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced on at
reset and while in compatibility mode.

7 CONF_PDEN_MCSI1_
SYNC_R

This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to
MCSI1.SYNC at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced on at
reset and while in compatibility mode.

6 CONF_PDEN_UARTS_
CLKIO_R

Reserved for future expansion. These bits
must always be written as 0.

R/W 0x0

Note: Unless otherwise indicated, pulldown control for each I/O is forced off at reset while in compatibility mode. The pull-
down control register bits only control the pulldowns while in native mode. Depending upon the pin multiplexing config-
uration of any particular I/O, a pulldown may not be available. Consult Appendix A of this document or the OMAP5910
data manual (literature number SPRS197) to determine whether a pulldown exists for each I/O.

OMAP5910 Configuration Registers

 6-58

Table 6–44. Pulldown Control 2 Register (PULL_DWN_CTRL_2) (Continued)

Bit
Reset
ValueR/WDescription (See Note)ValueName

5 CONF_PDEN_UARTS_
CLKREQ_R

This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to
UART3.CLKREQ at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

The control for this pulldown is forced on at
reset and while in compatibility mode.

4:3 RESERVED Reserved for future expansion. These bits
must always be written as 0.

R/W 0x0

2 CONF_PDEN_RX1_R This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to UART1.RX
at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

1 CONF_PDEN_R_R This bit controls the pulldown enable on the
OMAP5910 I/O, which defaults to
UART1.CTS at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

0 RESERVED Reserved for future expansion. These bits
must always be written as 0.

R/W 0x0

Note: Unless otherwise indicated, pulldown control for each I/O is forced off at reset while in compatibility mode. The pull-
down control register bits only control the pulldowns while in native mode. Depending upon the pin multiplexing config-
uration of any particular I/O, a pulldown may not be available. Consult Appendix A of this document or the OMAP5910
data manual (literature number SPRS197) to determine whether a pulldown exists for each I/O.

OMAP5910 Configuration Registers

6-59MPU Private Peripherals

Table 6–45. Pulldown Control 3 Register (PULL_DWN_CTRL_3)

Bit Name Value Description R/W
Reset
Value

31–14 RESERVED Reserved for future expansion. These
bits must always be written as 0.

R/W 0x00000

13 CONF_PDEN_NTRST_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to TRST at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

12 CONF_PDEN_TCK_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to TCK at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

11 CONF_PDEN_TMS_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to TMS at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

10 CONF_PDEN_TDI_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to TDI at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

9 CONF_PDEN_CONF_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to CONF at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

OMAP5910 Configuration Registers

 6-60

Table 6–45. Pulldown Control 3 Register (PULL_DWN_CTRL_3) (Continued)

Bit
Reset
ValueR/WDescriptionValueName

8 CONF_PDEN_MMC_DAT3_R This bit controls the pullup enable on
the OMAP5910 I/O, which defaults to
MMC.DAT3 at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

7–2 RESERVED Reserved for future expansion. These
bits must always be written as 0.

R/W 0x0

1 CONF_PDEN_CTS2_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to UART2.CTS at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

0 CONF_PDEN_RX2_R This bit controls the pulldown enable
on the OMAP5910 I/O, which defaults
to UART2.RX at reset.

R/W 0x0

0 Pulldown enabled

1 Pulldown disabled

Table 6–46. Gate and Inhibit Control 0 Register (GATE_INH_CTRL_0)

Bit Name Value Description R/W
Reset
Value

31–4 RESERVED Reserved for future expansion. These
bits must always be written as 0.

R/W 0x0000000

3 CONF_HIGH_IMP3 This bit is for control of
high-impedance on MCSI1.DOUT.

R/W 0x0

0 Normal function

1 Hi-impedance

OMAP5910 Configuration Registers

6-61MPU Private Peripherals

Table 6–46. Gate and Inhibit Control 0 Register (GATE_INH_CTRL_0) (Continued)

Bit
Reset
ValueR/WDescriptionValueName

2 CONF_
SOFTWARE_PWR_R

This bit controls software gating and
inhibiting of the OMAP5910 I/O, which
are gated or inhibited by COM_PWR
status.

If the gating and inhibiting logic are
enabled by FUNC_MUX_CTRL_0
(10–13) bits and
conf_software_gate_ena_r is set to 1,
this bit controls the com_pwr gating
and inhibiting instead of device pins.

This bit has no effect in compatibility
mode.

R/W 0x0

1 CONF_
SOFTWARE_BVLZ_R

This bit controls software gating and
inhibiting of the OMAP5910 I/O, which
are gated or inhibited by
BFAIL/EXT_FIQ.

If the gating and inhibiting logic are
enabled by FUNC_MUX_CTRL_0
(10–13) bits and
conf_software_gate_ena_r is set to 1,
this bit controls the BFAIL/EXT_FIQ
gating and inhibiting instead of device
pins.

This bit has no effect in compatibility
mode.

R/W 0x0

0 CONF_
SOFTWARE_
GATE_ENA_R

This bit controls software gating of the
OMAP5910 I/O, which are gated or
inhibited.

If the gating and inhibiting logic are
enabled by FUNC_MUX_CTRL_0
(10–13) bits, this enables software to
control the gating and inhibiting instead
of device pins.

This bit has no effect in compatibility
mode.

R/W 0x0

OMAP5910 Configuration Registers

 6-62

Table 6–47. Voltage Control 0 Register (VOLTAGE_CTRL_0)

Bit Name Value Description R/W
Reset
Value

31–3 RESERVED Reserved for future expansion.
These bits must always be written
as 0.

R/W 0x0000000

2 CONF_VOLTAGE_COMIF_R This bit controls the drive strength
of the OMAP5910 communication
processor interface I/O. This
allows the interface to be run at 1.8
V nom or 2.75 V nom.

R/W 0x0

0 Drive strength is 1.80 V

1 Drive strength is 2.75 V

At reset and in compatibility mode,
the interface is set for 2.75-V
operation. This register only
controls the interface in
OMAP5910 mode.

1 CONF_VOLTAGE_SDRAM_R This bit controls the drive strength
of the OMAP5910 SDRAM
interface I/O. This allows the
interface to be run at 1.8 V nom or
2.75 V nom.

R/W 0x0

0 Drive strength is 1.80 V

1 Drive strength is 2.75 V

At reset and in compatibility mode,
the interface is set for 2.75-V
operation. This register only
controls the interface in
OMAP5910 mode.

OMAP5910 Configuration Registers

6-63MPU Private Peripherals

Table 6–47. Voltage Control 0 Register (VOLTAGE_CTRL_0) (Continued)

Bit
Reset
ValueR/WDescriptionValueName

0 CONF_VOLTAGE_FLASH_R This bit controls the drive strength
of the OMAP5910 flash interface
I/O. This allows the interface to be
run at 1.8 V nom or 2.75 V nom.

R/W 0x0

0 Drive strength is 1.80 V

1 Drive strength is 2.75 V

At reset and in compatibility mode,
the interface is set for 2.75-V
operation. This register only
controls the interface in
OMAP5910 mode.

Table 6–48. Test Debug Control 0 Register (TEST_DBG_CTRL_0)

Bit Name Description R/W
Reset
Value

31–0 RESERVED These register is reserved for factory
testing purposes. All bits must be 0 at all
times to avoid errant behavior.

R/W 0x00000000

OMAP5910 Configuration Registers

 6-64

Table 6–49. Module Configuration Control 0 Register (MOD_CONF_CTRL_0)

Bit Name Value Description R/W
Reset
Value

31 CONF_MOD_UART3_
CLK_MODE_R

This bit determines the clock source of
UART3 on the OMAP5910 device.

R/W 0x0

0 12 MHz

1 48 MHz

30 CONF_MOD_UART2_
CLK_MODE_R

This bit determines the clock source of
UART2 on the OMAP5910 device.

R/W 0x0

0 32 kHz/12 MHz (see Chapter 12, UART
Devices)

1 48 MHz

29 CONF_MOD_UART1_
CLK_MODE_R

This bit determines the clock source of
UART1 on the OMAP5910 device.

R/W 0x0

0 12 MHz

1 48 MHz

28 MOD_MCBSP3_MODE_R This bit determines the method of frame
synchronization wrap-around used on
MCBSP3.

R/W 0x0

0 Wrap-around done in hardware external to
the McBSP.

1 Wrap-around disabled. Wrap around can
be performed within the McBSP module.

Modes documented in Chapter 9, DSP
Public Peripherals.

27–24 MOD_32KOSC_SW_R These bits determine the configuration of
the the 32-kHz oscillator. The reset
condition corresponds to a fast start-up
time.

R/W 0x0

1011 Fast start-up time

1000 Lowest-power mode

These bits are forced to 1011 during reset
and in compatibility mode. The user must
take care to program these bits
appropriately before entering native mode.

OMAP5910 Configuration Registers

6-65MPU Private Peripherals

Table 6–49. Module Configuration Control 0 Register (MOD_CONF_CTRL_0) (Continued)

Bit
Reset
ValueR/WDescriptionValueName

23 CONF_MOD_MMC_SD_
CLK_REQ_R

This is the functional 48-MHz clock request
for the OMAP5910 device MMC/SD
interface.

This bit resets to 0 at reset. This
corresponds to the MMC/SD clock not
being requested. Set the bit to 1 to request
the clock for the MMC/SD interface.

R/W 0x0

22 CONF_MOD_DPRAM_
ENABLE_R

This bit controls the DPRAM I/F of the
OMAP5910 device.

R/W 0x0

0 Normal flash interface operation

1 FLASH.CS2 assertion low is delayed to
allow for a DPRAM to be interfaced to the
flash interface of OMAP5910.

21 CONF_MOD_MSMMC_
VSS_HIZ_OVERRIDE

This bit disables the forced HI-Z on the the
MMC.DAT2 pin of the device. In order to
use this pin in a functional mode, the user
must set this bit to a 1.

R/W 0x0

20 CONF_MOD_MCBSP3_
AUXON

This bit enables the McBSP3 AUXON
functionality, which gates the functional
clock to the corresponding McBSP module.

R/W 0x0

0 The internal functional clock to McBSP3 is
active and depends upon the McBSP
configuration.

1 The internal functional clock to McBSP3 is
disabled or gated.

19 CONF_MOD_MCBSP2_
AUXON

This bit enables the McBSP2 AUXON
functionality, which gates the functional
clock to the corresponding McBSP module.

R/W 0x0

0 The internal functional clock to McBSP2 is
active and depends upon the McBSP
configuration.

1 The internal functional clock to McBSP2 is
disabled or gated.

OMAP5910 Configuration Registers

 6-66

Table 6–49. Module Configuration Control 0 Register (MOD_CONF_CTRL_0) (Continued)

Bit
Reset
ValueR/WDescriptionValueName

18 CONF_MOD_MCBSP1_
AUXON

This bit enables the McBSP1 AUXON
functionality, which gates the functional
clock to the corresponding McBSP module.

R/W 0x0

0 The internal functional clock to McBSP1 is
active and depends upon the McBSP
configuration.

1 The internal functional clock to McBSP1 is
disabled or gated.

17 CONF_MOD_USB_W2FC_
VBUS_MODE_R

This bit determines what hardware method
is used for USB.VBUS detection.

R/W 0x0

0 The VBUS detection is under control of the
GPIO0 input.

1 The VBUS detection is under control of the
VBUS detection I/O cell.

This bit resets to 0 during reset and
compatibility mode.

16 CONF_MOD_I2C_
SELECT_R

This bit selects the I2C module
compatibility mode. This bit resets to
standard mode.

R/W 0x0

0 The I2C module is in standard mode.

1 The I2C module is in compatibility mode.

15–14 RESERVED Reserved for future expansion. These bits
must always be written as 0.

R/W 0x0

13 CONF_MOD_SDRAM_
EMRS_BA1_CTRL

This bit allows the user to force the
SDRAM SDRAM.BA[1] pin to a high. With
proper disabling of SDRAM accesses from
OMAP5910, users can use this to program
the EMRS register of the SDRAM with an
MRS write instruction.

There are no hardware hooks to only
assert this when performing an MRS write.
Firmware must determine how to properly
control this.

R/W 0x0

OMAP5910 Configuration Registers

6-67MPU Private Peripherals

Table 6–49. Module Configuration Control 0 Register (MOD_CONF_CTRL_0) (Continued)

Bit
Reset
ValueR/WDescriptionValueName

12 CONF_MOD_COM_
MCLK_12_48_SEL_R

This bit determines if the UART2.CLKREQ
output of the OMAP5910 device is 12 MHz
or 48 MHz.

This bit resets to 0, which causes a
12-MHz clock to be seen on MCLK when
UART2.CLKREQ is low. When written to a
1, this bit causes 48-MHz clock to be seen
on MCLK when UART2.CLKREQ is low.
When 1, UART2.CLKREQ also starts the
12-MHz to 48-MHz DPLL.

R/W 0x0

11 CONF_MOD_USB_HOST_
UART_SELECT_R

This bit enables the multiplexing of
UART1.CTS, UART1.RX, and UART1.TX
signals to the USB_HMC host mux module.

R/W 0x0

0 UART1 uses the standard source location
as defined by the OMAP5910 functional
multiplexing.

1 UART1.TX, UART1.RX, and UART1.CTS1
are sourced from the USB_HMC module.

For details on this multiplexing please see
the USB_HMC spec.

10 RESERVED Reserved for future expansion. This bit
must always be written as 0.

R/W 0x0

9 CONF_MOD_USB_HOST_
HHC_UHOST_EN_R

Enable input for functional-mode clocking
of USB_HHC

R/W 0x0

0 Internal functional mode 48-MHz and
12-MHz clocks are disabled; USB_HHC
can not function as a USB host.

1 Internal functional mode 48-MHz and
12-MHz clocks are enabled.

OMAP5910 Configuration Registers

 6-68

Table 6–49. Module Configuration Control 0 Register (MOD_CONF_CTRL_0) (Continued)

Bit
Reset
ValueR/WDescriptionValueName

8 CONF_MOD_USB_HOST_
HMC_TLL_SPEED_R

Transceiverless link logic (TLL) USB speed
control. For HMC modes (as defined by
HMC_MODE_I and HMC_JTAG_EN_I)
where the TLL is used, determines whether
the modelling of the device pullup resistor
is on the internal D+ or internal D– signal.
The pullup is only modeled when
HMC_TLL_ATTACH_I is active. This signal
is ignored when either device drives USB
data and whenever HMC_MODE or
HMC_JTAG_EN_I specify that the TLL is
not being used.

R/W 0x0

0 When HMC_TLL_ATTACH_I is high, the
TLL is enabled, and neither the USB host
nor the external USB device attempts to
drive, the pullup is modeled on the D–
signal to indicate a low-speed device.

1 When HMC_TLL_ATTACH_I is high, the
TLL is enabled, and neither the USB host
nor the external USB device attempts to
drive, the pullup is modeled on the D–
signal to indicate a full-speed device.

OMAP5910 Configuration Registers

6-69MPU Private Peripherals

Table 6–49. Module Configuration Control 0 Register (MOD_CONF_CTRL_0) (Continued)

Bit
Reset
ValueR/WDescriptionValueName

7 CONF_MOD_USB_HOST_
HMC_TLL_ATTACH_R

Transceiverless link logic (TLL) USB attach
control. For HMC modes (as defined by
HMC_MODE_I and HMC_JTAG_EN_I)
where the TLL is used, determines whether
or not the TLL models its internal
representation of USB differential data
signals with or without a pullup when
neither the internal USB host nor the
external USB device is attempting to drive
the signals. This signal is ignored when
either device is driving USB data.

R/W 0x0

0 When neither the USB host nor the
external USB device attempts to drive, no
pullup is modeled. The associated USB
host port interprets this as no attached
device.

1 When neither the USB host nor the
external USB device attempts to drive, a
pullup is modeled on either the internal
representation of D+ or D–. The associated
USB host port interprets this as attached
device with the bus in an IDLE condition.

6–1 CONF_MOD_USB_HOST_
HMC_MODE_R

USB_HHC port multiplexing control. See
section 15.5, USB Pin Multiplexing, for
details. This resets to the following
configuration:

R/W 0x00

000000b USB port 0 is controlled by the USB
function, and USB ports 1 and 2 are held in
benign states.

All others: See section 15.5, USB Pin
Multiplexing.

0 RESERVED Reserved for future expansion. This bit
should always be written as 0.

R/W 0x0

Device Identification

 6-70

6.9 Device Identification

The device identification can be done by software via two registers:

� The identification code (IDCODE) register identifies the OMAP5910
device.

� The identification die (ID) register identifies the die.

6.9.1 Identification Code Register

The identification code register (IDCODE), shown in Table 6–50, can be split
into four fields:

� VERSION number (4 bits) (MSB) 31 to 28
� PART number (16 bits) 27 to 12
� Manufacturer Identity (11 bits) 11 to 1
� Fixed LSB (1 bit) (LSB) 0

Table 6–50. ID Code Register (IDCODE)

Register Name Size Access Capture Value Address

IDCODE 32 R See below FFFE:D404

The TI manufacturer identity is IEEE WW defined as 000 0001 0111.

For OMAP5910 design:
ID code = xxxx 1011 0100 0111 0000 0000 0010 1111 = xb47002f

The IDCODE register bits are described in Table 6–51.

Table 6–51. ID Code Register (IDCODE) Bits

Field Binary Value Decimal Value Hex Value

Version number xxxx [31–28] x x

Part number 1011 0100 0111 0000 [27–12] 46192 0xB470

Manufacturer identity 000 0001 0111 [11–1] 23 0x17

Fixed LSB 1 1 0x1

Device Identification

6-71MPU Private Peripherals

6.9.2 Die Identification (ID)

An electrically readable die ID permits tracing of individual dies back to
manufacturing data and aids in rapid ramp. Access to the die ID by both the
tester and the application is necessary.

The die ID is a 64-bit code. Of these, 56 bits (bits 0–55) are data bits that con-
tain x and y coordinates of the die, wafer number, lot number, and manufactur-
ing number. Eight bits (bits 56–63) are check bits computed using a Hamming
code.

The die ID can be read by software via the private TIPB (see Table 6–52).

Table 6–52. Die ID Address Space—Private TIPB Bridge

Device Name Start Address Size in Bytes
Data

Access

OMAP5910 Die ID FFFE:1800 4 bytes 32 LSB

OMAP5910 Die ID FFFE:1804 4 bytes 32 MSB

7-1

MPU Public Peripherals

This chapter describes the MPU public peripherals.

Topic Page

7.1 MPU Public Peripherals 7-2.

7.2 Camera Interface 7-3.

7.3 MPU I/O 7-17.

7.4 MicroWire Interface 7-30.

7.5 32-kHz Timer 7-46.

7.6 Pseudonoise Pulse-Width Light Modulator 7-50.

7.7 Pulse-Width Tone 7-52.

7.8 Inter-Integrated Circuit Controller 7-57.

7.9 LED Pulse Generator 7-100.

7.10 McBSP2 7-104.

7.11 USB Function Overview 7-117.

7.12 MMC/SD Host Controller 7-120.

7.13 Real-Time Clock 7-169.

7.14 USB Host Controller Overview 7-185.

7.15 HDQ and 1-Wire Protocols 7-185.

7.16 Frame Adjustment Counter 7-198.

Chapter 7

MPU Public Peripherals

 7-2

7.1 MPU Public Peripherals

Figure 7-1 shows the OMAP5910 device with the MPU public peripherals
highlighted.

Figure 7-1. MPU Public Peripherals Area

MPU Core
(TI925T)

(Instruction
Cache, Data

Cache, MMU)

System
DMA

controller

TMS320C55x DSP
(Instruction Cache, SARAM,

 DARAM, DMA,
 H/W accelerators

MPU
peripheral

bridge

LCD
I/F

MPU
interface

SRAM

SDRAM
memories

Flash and
SRAM

memories

DSP
MMU

16

16

32

16

32

32

32

32

32

32

16

MPU private Peripheral bus

DSP public (shared) peripheral bus

32
MPU public

16

DSP

DSP public peripherals

McBSP1

McBSP3

MPU public peripherals

USB host I/F

JTAG/
emulation

I/F
OSC

12 MHz Clock

OSC

OMAP5910

ETM9

Timers (3)

MPU/DSP shared peripherals

Mailbox

MPU private peripherals

Timers (3)

16

Memory interface

Reset External clock

MPU bus

32 kHz

1.5M bits

Traffic controller (TC)

Watchdog timer

Level 1/2 interrupt handlers

Configuration registers

Clock and reset management

Watchdog timer
Level 1/2

Private peripherals

GPIO I/F

USB function I/F

Camera I/F
MPUIO

32-kHz timer
PWT
PWL

M
I
F
S

M
I
F
F

I
M
I
F

MCSI1
MCSI2

Keyboard I/F

requests

E

E

TIPB
switch

UART1
UART2

UART3 IrDA

32

MMC/SD
LPG x2

HDQ / 1-WIRE

DSP private
peripheral bus

peripheral bus

McBSP2

Device identification

RTC

Interrupt handlers

I2C
µ wire

Frame adjustment
counter

32

32

32

32

Camera Interface

7-3MPU Public Peripherals

7.2 Camera Interface

An 8-bit camera interface (32-bit internal bus on the TIPB side) connects a
camera module to the MPU peripheral bus of the OMAP5910 device. The in-
terface handles multiple image formats synchronized on vertical and horizon-
tal synchronization signals. Data transfer between camera and interface can
be done synchronously or asynchronously. The data is stored in a buffer to be
sent over the peripheral bus using DMA mode or CPU mode (bypass mode).

The interface supports 8-bit parallel image data ports and horizontal/vertical
signal ports separately (stand-alone synchronous method). The camera
interface has a DMA port.

7.2.1 Functional Architecture

The architecture consists of four functional blocks:

� Buffer:

A buffer is used to store the data word received from the camera module
and transfer it to the MPU peripheral bridge using the DMA mode or the
CPU mode. It contains a 128-word FIFO.

The 8-bit data received from the camera module is latched and mixed to be
compliant with the 32-bit data format of the MPU TIPB. A 128-bit-deep
FIFO is implemented to provide local buffering of data and to control the
DMA request when the camera interface is enabled in DMA mode. The
main goals of this mode are:

� To discharge CPU of the data transfer
� To reduce real time constraints of DMA read (FIFO’s buffering part)
� To group x DMA accesses in only one time slot (FIFO’s block part)

It is, however, possible to forward a direct transfer to the CPU in bypass
mode by disabling the DMA request line.

� Clock divider:

This function is mainly used to manage clock division and to handle
external clock generation for synchronous/asynchronous mode gating.

� Interrupt generator:

An interrupt is generated to indicate start and end of frame, start and end of
image, and FIFO overflow.

� TIPB registers:

Status, control, and data 32-bit registers connect via the TIPB.

Camera Interface

 7-4

Figure 7-2. Camera Interface Block Diagram

CAM_LCLK

CAM_D

CAM_VS

CAM_HS

Interrupt
generator

Interrupt

CAM_NIRQ

Clock
divider

12 MHz

CAM_EXCLK

Camera I/F

AND
ENABLE

32

8

TIPB
register

FIFO

TIPB

DPLL_REQ

DPLL_CLK

DMA_REQ

status

Camera Interface

7-5MPU Public Peripherals

Figure 7-3. Image Data Transfer

TIPB

32

8
CAM_D

CAM_LCLK
CAM_VS
CAM_HS

Select order

32 FIFO

DMA_REQ

7.2.1.1 Camera Data Validation

The incoming byte on CAM_D can be latched on the rising or falling edge of
CAM.LCLK generated by the camera itself. The POLCLK bit can select the
polarity of CAM.LCLK in the clock control register.

Program the camera interface so that data is always captured opposite the
launch edge. For example, if data is latched by the sensor on the rising edge
of CAM.LCLK, configure the interface to catch the data on the falling edge of
CAM.LCLK.

The high level of the vertical synchronous and horizontal synchronous signals
indicates that the data is valid on CAM_D. This level is registered in VSTATUS
and HSTATUS, which are updated on edge detection of vertical and horizontal
synchronous signals.

It is possible to gate the clock during the VSYNC and/or HSYNC blanking peri-
ods. However it is recommended to let the clock run, because there is a pro-
cess based on LCLK that clears all internal resynchronization registers while
VSYNC or HSYNC is low before starting a new line or a new image. This mech-
anism prevents the FIFO from remaining word, which could corrupt the data
of a new line.

Camera Interface

 7-6

If either CAM_VS or CAM_HS goes inactive before receiving all four bytes, the
data in buffers is cleared by the active CAM.LCLK edge and is not written into
FIFO.

Figure 7-4. Timing Chart of Image Data Transfer (POLCLK = 1)

UYVYU Y V Y U UY Y V Y U

Start of
Image

Start of
Line

End of
Line

CAM_LCLK

CAM_VS

CAM_HS

CAM_D

7.2.1.2 Autostart

Autostart is a protection function that prevents a start of capture during an
image transfer. Autostart is launched after enabling the LCLK and waits for the
next inactive level of CAM_VS to enable the data capture, so that the transfer
starts at the beginning of the image.

Note:

If a reset FIFO occurs (see Section 7.2.1.3) while the interface is latching
data, the capture is automatically disabled and the autostart function is
enabled.

7.2.1.3 Reset FIFO

An active-high reset FIFO is implemented at bit 18, RAZ FIFO, of the camera
mode register. This feature clears any remaining data in the FIFO before start-
ing a new transfer. It also resets all status and control signals around the FIFO
such as the read and write pointers, the FIFO full interrupt, the FIFO peak
counter, and the 32-bit resynchronization registers.

Before the FIFO is reset via the RAZ_FIFO bit, CAM.LCLK needs to be
disabled by setting CTRLCLOCK[7] = 0. Then RAZ_FIFO may be set
(MODE[7] = 1) to reset the FIFO. Then RAZ_FIFO must be set back to inactive
(MODE[7] = 0) before the camera interface is functional.

Camera Interface

7-7MPU Public Peripherals

You should use the RAZ_FIFO bit to clear any remaining data in FIFO before
starting a new transfer. This bit also resets all status and control signals related
to the FIFO, and it disables interrupt generation from the camera interface, so
the RAZ_FIFO bit must be inactive before any camera interface transfers are
started.

7.2.1.4 Set of Order

Each four bytes received from the camera must be packed and can be
swapped to follow the order YUV specified in the camera mode register by
ORDERCAMD:

Figure 7-5. Order of Camera Data on TIPB (Not Swapped)

ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ

Y6V3Y5U3Y4V2Y3U2Y2V1Y1U1

U2, Y3, V2, Y4U1, Y1, V1, Y2

Not swapped

TIPB (32 bits)

CAM.D[8] (8 bits)

U1 = Bits 31:24
Y1 = Bits 23:16
V1 = Bits 15:8
Y2 = Bits 7:0

Figure 7-6. Order of Camera Data on TIPB (Swapped)

ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ

Y6V3Y5U3Y4V2Y3U2Y2V1Y1U1

Y3, U2, Y4, V2Y1, U1, Y2, V1

 Swapped

TIPB (32 bits)

CAM.D[8] (8 bits)

Y1 = Bits 31:24
U1 = Bits 23:16
Y2 = Bits 15:8
V1 = Bits 7:0

Camera Interface

 7-8

7.2.1.5 FIFO Buffer (128 x 32)

A write access is applied to the FIFO for each 32-bit word received. When
the write FIFO counter reaches the trigger level, an interrupt request can be
generated. The trigger level is programmable.

In DMA mode, you can program the threshold between 1 and 128, but the DMA
must be set up to read the threshold amount out of FIFO per the DMA request
issued by the camera interface. Otherwise, the locking mechanism is never
rearmed, thus preventing DMA requests from being issued after every read.

A pulse on the DMA request (see Figure 7-7 and Figure 7-8) occurs when the
number of words in the FIFO is above the threshold. The DMA request occurs
if the number of remaining words is above the threshold and the system DMA
has completed the transfer (number of words read by the DMA = threshold).

The camera FIFO continues to fill (up to its maximum 128 values) when an
interrupt or DMA request has been generated but not yet responded to. When
a data value is read from the camera FIFO, another IRQ or DMA request is
immediately generated as long as the amount of data present in the FIFO is
above the trigger level.

Figure 7-7. DMA Request

Threshold
= n

DMA Req

Fifo Read

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

FIFO Full

n DMA
Read

n DMA
Read

Camera Interface

7-9MPU Public Peripherals

Figure 7-8. FIFO Buffer Parts

CAMERA

32

32

TIPB

DMA_REQ

Buffering Word y

Block Word 1

Buffering Word Q

Buffering Word I

When the threshold value is set to 0, the interrupt is generated immediately.
This is the equivalent of the threshold always being exceeded regardless of
whether any data is present in the FIFO.

7.2.1.6 Clock Divider

The clock divider takes the internal 12-MHz clock source or the 48-MHz source
from DPLL to generate the external clock CAM.EXCLK. The division factor is
programmable in the clock control register through FOSCMOD (see
Table 7-1).

Table 7-1. Clock Ratios

Ratio CAM.EXCLK

From 12 MHz From 48 MHz

1 12 MHz -

1/2 6 MHz 24 MHz

1/5 - 9.6 MHz

1/6 - 8 MHz

A request is automatically generated to wake up the DPLL when 48 MHz is
needed. The switch is performed when the 48-MHz signal is stable.

It is assumed that the switch is made when CAM.EXCLK is disabled (glitch
protection).

Camera Interface

 7-10

The clock divider also allows disabling the external clock by setting the
CAMEXCLK_EN bit.

7.2.1.7 Interrupt Generator

The interrupt generator handles six cases of interrupt:

� Data transfer interrupt. One IRQ is generated per word received.
� HSYNC rising edge (start of frame)
� HSYNC falling edge (end of frame)
� VSYNC rising edge (start of image)
� VSYNC falling edge (end of image)
� FIFO overflow

Each case is registered by activating (high) one of the six interrupt register bits
to indicate the origin of the interrupt. However, the interrupt mask register can
disable the source of the interruption.

Only one line of interrupt is used to ask for a read of the interrupt register. When
the read occurs, the register is automatically reset and the interrupt signal is
released.

Figure 7-9. IRQ Generated on VSYNC Falling Edge

ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ

VSYNC

MCLK

RNW, CS

CAM_NIRQ

7.2.1.8 DMA Procedure

A typical procedure to perform the data transfer by DMA is as follows:

1) Rising edge of VSYNC sends an interrupt to TI925T to alert the system
DMA that a start of image has occurred. The system DMA is programmed
to move one complete image of data then give an interrupt when complete.

2) High level of HSYNC and proper clock edge start the first data transfer
from the camera to the OMAP5910 camera interface. After the first two
pixels of data are received (8 bits x 4 transfers = 32 bits), a DMA request
is made. The system DMA moves the 32-bit data to a predefined SDRAM
location.

Camera Interface

7-11MPU Public Peripherals

3) The camera, the OMAP5910 device camera interface, and the system
DMA continue transfer of data. That is, 352/2 * 288 = 50688 transfers for
a camera interface image format. After the full image is transferred, the
DMA sends an interrupt to the TI925T to signal that the end of frame
occurred.

There are many ways that the camera interface and system DMA can be
configured to move the data, but in the above sequence the interrupt load on
the TI925T is minimal.

7.2.1.9 TIPB Registers

The camera interface contains seven registers for communication between
the TIPB and camera module. They mainly control clock generation, interrupt
request, and status register (see Section 7.2.1.10).

The address of each register is the start address (FFFB:6800) plus the offset
indicated in Table 7-3.

Table 7-2 shows the default configuration of several critical register fields at
reset. See Table 7-4 through Table 7-10 for full descriptions of these register
fields.

Table 7-2. Default Configuration at Reset

Item Function

ORDERCAMD Not swapped

MASK Interrupts on VSYNC and HSYNC disabled

FOSCMOD Division rate for CAM.EXCLK = 1 (12 MHz)

POLCLK Data latched on rising edge of CAM.LCLK

CAMEXCLK_EN CAM.EXCLK disabled

MCLK_EN Internal clock disabled

DPLL_EN DPLL clock source disabled

THRESHOLD Trigger level = 1 word

Camera Interface

 7-12

7.2.1.10 Camera Interface Registers (FFFB:6800)

Because the TIPB register read accesses are resynchronized to the camera
interface clock, the MCLK_EN bit must first be set before any camera interface
register reads are performed. Table 7-3 lists the camera interface registers.
Table 7-4 through Table 7-10 describe the individual registers.

Table 7-3. Camera Interface Registers

Register Description R/W Size
Offset

Address

CTRLCLOCK Clock control R/W 32 bits 0x00

IT_STATUS Interrupt source status R 32 bits 0x04

MODE Camera interface mode configuration R/W 32 bits 0x08

STATUS Status R 32 bits 0x0C

CAMDATA Image data R 32 bits 0x10

GPIO Camera interface GPIO (general-purpose input/
output)

R/W 32 bits 0x14

PEAK_COUNTER FIFO peak counter R/W 32 bits 0x18

The MCLK_EN bit gates the 12-MHz master clock of the camera interface
to disable the clock when switching between two clock domains or to save
power consumption when the camera module is not used. To clear
PEAK_COUNTER, read all data in FIFO then write PEAK_COUNTER with 0.

Table 7-4. Clock Control Register (CTRLCLOCK)

Bit Name Value Function R/W
Reset
Value

31-8 RESERVED This field is reserved (unknown value after
reset).

R/W 0xX

7 LCLK_EN 0 Disables R/W 0x0

1 Enables incoming CAM.LCLK

6 DPLL_EN 0 Disables R/W 0x0

1 Enables DPLL source (48 MHz)

5 MCLK_EN 0 Disables R/W 0x0

1 Enables internal clock of interface

Camera Interface

7-13MPU Public Peripherals

Table 7-4. Clock Control Register (CTRLCLOCK) (Continued)

Bit
Reset
ValueR/WFunctionValueName

4 CAMEXCLK_EN 0 Disables R/W 0x0

1 Enables CAM.EXCLK

3 POLCLK Sets polarity of CAM.LCLK R/W 0x0

0 Data latched on rising edge

1 Data latched on falling edge

2-0 FOSCMOD Sets the frequency of the CAM.EXCLK clock R/W 0x00

000 12 MHz

010 6 MHz

100 9.6 MHz (48 MHz/5)

101 24 MHz (48 MHz/2)

110 8 MHz (48 MHz/6)

Table 7-5. Interrupt Source Status Register (IT_STATUS)

Bit Name Function R/W
Reset
Value

31-6 RESERVED Reserved bits R 0xX

5 DATA_TRANSFER Data transfer status. Set to 1 when trigger is reached.
Reset by reading IT_STATUS if no event in the meantime.

R 0x0

4 FIFO_FULL Detect rising edge on FIFO full flag. Reset by reading
IT_STATUS if no event in the meantime.

R 0x0

3 H_DOWN Flag for horizontal synchronous falling edge occurred.
Reset by reading IT_STATUS if no event in the meantime.

R 0x0

2 H_UP Flag for horizontal synchronous rising edge occurred.
Reset by reading IT_STATUS if no event in the meantime.

R 0x0

1 V_DOWN Flag for vertical synchronous falling edge occurred. Reset
by reading IT_STATUS if no event in the meantime.

R 0x0

0 V_UP Flag for vertical synchronous rising edge occurred. Reset
by reading IT_STATUS if no event in the meantime.

R 0x0

Camera Interface

 7-14

Table 7-6. Camera Interface Mode Configuration Register (MODE)

Bit Name Value Function R/W
Reset
Value

31-19 RESERVED Reserved bits R/W 0xX

18 RAZ_FIFO When 1: Clears data in the FIFO;
reinitializes read and write pointers;
clears FIFO full interrupt, FIFO peak
counter; and resynchronizes.

R/W 0x0

17 EN_FIFO_FULL 0 Disables R/W 0x0

1 Enables interrupt on FIFO_FULL

16 EN_NIRQ 0 Disables R/W 0x0

1 Enables data transfer interrupt
(bypass DMA mode)

15-9 THRESHOLD Programmable DMA request trigger
value; DMA request is made when
FIFO counter is equal to the
threshold value. Currently, set this
field to 1 in DMA mode.

R/W 0x0000001

8 DMA Enables DMA mode when 1 R/W 0x0

7 EN_H_DOWN Enables interrupt on HSYNC falling
edge.
Active when 1.

R/W 0x0

6 EN_H_UP Enables interrupt on HSYNC rising
edge.
Active when 1.

R/W 0x0

5 EN_V_DOWN Enables interrupt on VSYNC falling
edge.
Active when 1.

R/W 0x0

4 EN_V_UP Enables interrupt on VSYNC rising
edge. Active when 1.

R/W 0x0

3 ORDERCAMD Sets order of 2 consecutive bytes
received from camera (YUV format).

R/W 0x0

0 Not swapped

1 Swapped

Camera Interface

7-15MPU Public Peripherals

Table 7-6. Camera Interface Mode Configuration Register (MODE) (Continued)

Bit
Reset
ValueR/WFunctionValueName

2-1 IMGSIZE Sets image size R/W 0x00

00 CIF

01 QCIF

10 VGA

11 QVGA

Currently, these bits have no effect on
the operation of the camera interface.

0 CAMOSC 0 Set synchronous mode R/W 0x0

1 Set asynchronous mode

Currently this has no effect on the
camera interface.

Table 7-7. Status Register (STATUS)

Bit Name Function R/W
Reset
Value

31-2 RESERVED Reserved bits R 0xX

1 HSTATUS CAM_HS status (edge detection) R 0x0

0 VSTATUS CAM_VS status (edge detection) R 0x0

Table 7-8. Camera Interface GPIO Register (GPIO)

Bit Name Function R/W
Reset
Value

31-1 RESERVED Reserved bits R/W 0xX

0 CAM_RST Reset for camera module R/W 0x0

Camera Interface

 7-16

Table 7-9. Image Data Register (CAMDATA)

Bit Name Function R/W
Reset
Value

31-0 CAMDATA Image data from FIFO R 0x0

Table 7-10. FIFO Peak Counter Register (PEAK_COUNTER)

Bit Name Function R/W
Reset
Value

31-7 RESERVED Reserved R/W Unknown

6-0 PEAK_COUNTER Maximum number of words written to FIFO
during the transfer since the last clear to zero

R/W 0x0000000

7.2.2 Clock Switching Procedures

7.2.2.1 CAM.EXCLK Switch Protocol

The CAM.EXCLK switch protocol is required for any change of the
CAM.EXCLK frequency value to first disable both 12-MHz clock source and
the DPLL clock source in clock control registers:

1) Disable MCLK and DPLL_CLK (MCLK_EN = 0, DPLL_EN = 0,
FOSCMOD = FOSCMOD).

2) Change CAM.EXCLK value (FOSCMOD = new FOSCMOD).

3) Enable MCLK and DPLL_CLK (MCLK_EN = 1, DPLL_EN = 1,
FOSCMOD = FOSCMOD).

7.2.2.2 CAM.LCLK Switch Protocol

Bit 3 of the clock control register (POLCLK) sets the polarity of CAM.LCLK. You
must disable CAM.LCLK before selecting the rising or the falling edge.

1) Disable CAM.LCLK (LCLK_EN = 0).

2) Set the new polarity (POLCLK = 1 or 0).

3) Enable CAM.LCLK (LCLK_EN = 1).

MPU I/O

7-17MPU Public Peripherals

7.3 MPU I/O

The MPU I/O module enables direct I/O communications between the MPU
(through the public TIPB) and external devices (see Figure 7-10).

Two types of I/Os can be used:

� Specific I/Os dedicated for 8x8 keyboard connection:

� Eight inputs (KB R[7:0]) for row lines

� Eight outputs (KB.C[7:0]) for column lines

� General-purpose I/Os:

� Five MPU I/O signals (5, 4, 3, 2, and 1) are available in the default
OMAP5910 multiplexing.

� Five additional MPU I/O signals (12, 11, 7, 6, and 0) can be used by
configuring the OMAP5910 multiplexing. For more detail, see
Section 6.8 and Section A.2, I/O Functional Multiplexing.

7.3.1 MPU I/O Interrupts

The MPU I/O module generates two interrupts:

� The keyboard interrupt (KEYBOARD_INT), used to detect a key press,
connected to the MPU interrupt handler level2, line1 (edge-sensitive)

� The GPIO interrupt (GPIOS_INT), used to detect an edge on one
MPUIO input, connected to the MPU interrupt handler level2, line5
(level-sensitive).

7.3.2 MPU I/O Clocks and Reset

The MPU I/O module has two clocks:

� The 32-kHz system clock (CLK_32KHZ), which comes, through the
ULPD, from either the OMAP5910 32-kHz oscillator or the OMAP5910
CLK32K_IN CMOS input. For more detail, see Chapter 15, Clock
Generation and System Reset Management).

� The 12-MHz clock (FREE_RUN_CLK), used to resynchronize the
GPIO_INT register read. Comes from the MPU peripheral fixed clock
(XORCLK). This clock is free running when OMAP5910 is awake.

The MPU TIPB reset (MPU_PER_RESET) resets the MPU I/O module.

M
P

U
 I/O

7-18

F
igure 7-10.

M
P

U
 I/O

 E
nvironm

ent

gpios_intIrq5

free_run_clk

clk_32khz32KHz

WKUP_REQ

12MHz

CLKIN

XORCLK(12Mhz)

Clock Generation &
Management

OMAP5910

reset_inMPU_PER_RST

MPU I/O

Functional Multiplexing

kbr(7)

VSS

kbc(6)

MPU Interrupt
Handler Lev2

ULPD

keyboard_intIrq1

kbc(5:0)

VSS

VSS

kbc(7)

VSS

VDDSHV

kbr(6)

VSS

kbr(5)

VSS

kbr(4:0)

VSS

Functional Multiplexing

mpuio_cntl(5,4,3,2,1)

mpuio_out(5,4,3,2,1)

mpuio_in(5,4,3,2,1)

VSS

mpuio_cntl(12,11,7,6,0)

mpuio_out(12,11,7,6,0)

mpuio_in(12,11,7,6,0)

(1)

(2)

NOTES:
(1): These brackets mean that these
MPU IOs are not present by default

on OMAP5910 pads

(2): These Pull-downs have dotted line
because they don’t exist for allthese

MPU IOs

KEYBOARD

GPIO

WIRE_nSCS3 (KBC(6)

KBC(5:0)

WIRE_SCLK (KBC(7)

GPIO(15) (KBR(7)

GPIO(14) (KBR(6)

GPIO(13) (KBR(5)

MPUIO(5,4,3,2,1)

(MPUIO(12,11,7,6,0)

KBR(4:0)

MPU I/O

7-19MPU Public Peripherals

7.3.3 MPUIO Keyboard Interface

To allow button press detection:

� All the row lines (KB.R) must have an external pullup.

� All the column lines (KB.C) drive a low level (idle state of Table 7-11).

The output drivers of the KBC output pins act as open-drain outputs in that
they only drive low or are 3-state. So external pullup resistors are required
to achieve a high state when these outputs are 3-stated.

The keyboard interrupt (keyboard_int) to the MPU is an AND of the eight row
lines filtering during one 32-kHz clock period (CLK_32KHZ).

As soon as any key of the keyboard matrix is pressed, the corresponding row
and column lines are shorted together and a low level is driven on the
corresponding row line, generating a keyboard interrupt (see Figure 7-11).

Once the keyboard interrupt is received, the MPU scans the column lines in
the sequence described in the Table 7-11 in order to detect the key that has
been pressed.

Table 7-11. Keyboard Scanning Sequence

Idle Keyboard Scanning Idle

KB.C[0] 0 1 0 1 1 1 1 1 1 1 0

KB.C[2] 0 1 1 1 0 1 1 1 1 1 0

KB.C[3] 0 1 1 1 1 0 1 1 1 1 0

KB.C[4] 0 1 1 1 1 1 0 1 1 1 0

KB.C[5] 0 1 1 1 1 1 1 0 1 1 0

KB.C[6] 0 1 1 1 1 1 1 1 0 1 0

KB.C[7] 0 1 1 1 1 1 1 1 1 0 0

KB.C[1] 0 1 1 0 1 1 1 1 1 1 0

For each step of the sequence, the MPU:

� Writes the specific value (with a low level on one column line) in the
KBC_REG register

� Reads the value of the KBR_LATCH register and thus detects if one key
of the concerned column line (this one which drives a low level) is pressed

At the end of the scanning sequence, the MPU is able to establish which keys
have been pressed.

MPU I/O

 7-20

Figure 7-11.Keyboard Process Block Diagram

1/32768
Filter by one

clock

KBR_LATCH
Read status of

keyboard row input on
TIPB read (latch on

TIPB strobe)

If any of the KB.R[0-4]
is low and keyboard
interrupt is enabled

then generate an interrupt.

KBC_REG

KBD_INT

TIPB

Keyboard status
register:

KBD_INT

KBD_MASKIT:
Interrupt mask

register

KB.C[7:0]

KB.R[7:0]

7.3.4 MPUIO General-Purpose I/O Interface

This interface has the following characteristics (see Figure 7-12):

� Every MPUIO can be configured individually either in input or in output
mode.

� Interrupt generation (GPIOS_INT) on edge detection (rising or falling)
after debouncing preprocessing.

� Edge detection can be used to latch all the GPIOs (event capture mode).

� GPIO interface works with the 32-kHz-system clock and consequently can
be used to wake up the OMAP5910 device by generating the GPIO
interrupt.

MPU I/O

7-21MPU Public Peripherals

Figure 7-12. GPIO Process

Debouncing
time (steps of

31 µs)
31 µ-8 ms

CPU read:
INPUT_LATCH

with no debounce
disable of the latch

on the READ of
the

Transition matches
the programmed

edge and not
masked?

Interrupt edge
GPIO_INT_EDGE_REG

Interrupt mask
GPIO_MASKIT

GPIO_DEBOUNCING_REG
and GPIO MASKIT

If yes, then GPIO
interrupt GPIOS_INT

MPUIO_OUT
(15:0)

MPUIO_IN(15:0)

GPIO_INT status
register:

GPIO_INT

TIPBIO_CNTL

OUTPUT_REG

7.3.5 GPIO Interrupt Reset

The GPIO interrupt (gpios_int) is generated when one event occurs on one
MPU I/O input (see Figure 7-13).

The edge detection and the interrupt generation are done synchronously with
the 32-kHz system clock (clk_32khz).

These events (and consequently the GPIO_INT interrupt) are reset on one
GPIO interrupt register (GPIO_INT) read.

Only the bits that are active after masking are reset.

The GPIO_INT reset is synchronously asserted and synchronously released
with the 32-kHz system clock. The GPIO_INT register read and the 32-kHz-
system clock are resynchronized with the MPU TIPB fixed peripheral clock
(12-MHz clock) free_run_clock.

When the GPIO_INT read occurs:

� During a high level of the system clock, the release of the reset is done
immediately.

� During a low level of the system clock, the reset is done on the next high
level of the system clock.

Even the worst case (reset release on the next 32-kHz cycle) supports the
maximum speed of the MPU I/O module (one edge can be detected every two
32-kHz cycles with a debouncing 0).

MPU I/O

 7-22

Figure 7–13. GPIO_INT Register Read Timing

The GPIO_INT read
asynchronously resets the

gpios_int interrupt.

CLK_32KHz

MPUIO_IN(I)

GPIOS_INT

NSTROBE
TIPB access

cycle

GPIO_INT
Reg reset

GPIO_INT read occurs during
the clk_32 kHz low level. The

GPIO_INT reset is released on
the next clk_32 kHz high level.

GPIO_INT read occurs during the
clk_32 kHz high level. The GPIO_INT

reset is released immediately.

7.3.6 GPIO Interrupt Masking

The GPIO interrupt mask register (GPIO_MASKIT) can mask the edge
detection on the MPU I/O inputs.

This mask is applied asynchronously on each detected edge after debounc-
ing. If all the edges detected are masked, then the gpios_int interrupt is
masked.

Masking one MPU I/O input forces its corresponding debouncing value to 0,
which ensures that gpios_int is generated three cycles after the corresponding
detected edge.

To ensure that this force is active from the start of the edge detection, the mask
must be present two cycles before the detected edge. In this case, the interrupt
is generated three cycles after the detected edge (see the corresponding
timing in Figure 7–14). Otherwise, the mask can be activated during the

MPU I/O

7-23MPU Public Peripherals

debouncing period; the debouncing is then forced dynamically to 0 and the
interrupt is generated five cycles after the mask presence. You must decide
whether or not to mask these interrupts by maintaining or releasing the mask
activation.

When one detected edge is masked, the event is not reset when a GPIO_INT
register read occurs. Thus, when the mask becomes inactive, the correspond-
ing detected edge generates the gpios_int interrupt, and this interrupt is reset
on the next GPIO interrupt register (GPIO_INT) read, as shown in
Figure 7–14.

Figure 7–14. MPU I/O Input Masking Timing

The mask is present two cycles before
the active edge on the MPUIO input;

consequently the debouncing is forced to
0 from the start and the IT must be

generated three cycles after the detected
edge.

CLK_32 KHz

MPUIO_IN(I)

GPIO_MASKIT(I)

GPIO_MASKIT_SS(I)
after 32 KHz resync

GPIOS_INT

The IT is masked
during this period.

The GPIO_INT read
asynchronously resets
the gpios_int interrupt.

NSTROBE
TIPB access cycle

When a GPIO interrupt is masked, the GPIO_INT register does not indicate
any active interrupt status if an edge occurs on the masked interrupt. However,
if an edge occurs while the GPIO interrupt is masked, the active interrupt status
is stored and an interrupt is sent to the interrupt handler as soon as that GPIO
interrupt is unmasked (enabled).

MPU I/O

 7-24

7.3.7 Event Capture Module

The GPIO event capture mode allows latching the input value present on
the GPIO ports each time a rising or a falling edge occurs on a selected GPIO
port, here called GPIO_CLK. If not masked, the GPIO_CLK-selected edge
generates an interrupt to the processor, as shown in Figure 7–15.

Figure 7–15. GPIO_CLK Timing

ÎÎÎÎ
ÎÎÎÎ

GPIO_CLK

GPIOs

GPIO_INT

Latched
data

GPIO_CLK can be generated from an external physical module. Consequent-
ly, it may be necessary to insert a debouncing delay on this signal. The
debouncing time is programmable in the GPIO debouncing register
(GPIO_DEBOUNCING_REG) in steps of 31 µs.

The GPIO event mode register (GPIO_EVENT_MODE_REG) enables or
disables the GPIO event mode. It also selects the external pin used as the
GPIO_CLK. The GPIO interrupt edge register (GPIO_INT_EDGE) selects the
GPIO_CLK falling or rising edge to generate the GPIO_INT interrupt.

When the gpios_int interrupt (active low) is generated, the GPIO_INT register
must be read by the MPU to define any active GPIO signal interrupts.

The GPIO interrupt mask register (GPIO_MASKIT) masks GPIO interrupts
individually.

On the GPIO_CLK programmed edge, after the debouncing delay, the internal
MPUIO_IN bus is latched in the GPIO latch register (GPIO_LATCH_REG). Its
value can be read after the detection of the interrupt, even if the external value
has changed.

The event capture process is shown in Figure 7–16.

MPU I/O

7-25MPU Public Peripherals

Figure 7–16. Event Capture Process

Debouncing
time (steps of

31 µs)
31 µ-8 ms

Latch the
MPUIO_IN(15:0)

status on a clock event
GPIO_LATCH_REG

Transition matches
the programmed

edge and not
masked?

Interrupt edge
GPIO_INT_EDGE_REG

Interrupt mask
GPIO_MASKIT

GPIO_DEBOUNCING_REG
and GPIO MASKIT

Enable

If yes, then GPIO
Interrupt

TIPB

Clock event and pin select
GPIO_EVENT_MODE_REG

MPUIO_IN(15:0)

GPIO_INT status
register:

GPIO_INT

7.3.8 MPU I/O Registers

Start address in the MPU I/O range (hex): FFFB:5000

Table 7–12 lists the MPU I/O registers. Table 7–13 through Table 7–25
describe the individual registers.

Table 7–12. MPU Input/Output Registers

Register Description R/W Size Address Offset

INPUT_LATCH General-purpose input R 16 bits FFFB:5000 0x00

OUTPUT_REG Output R/W 16 bits FFFB:5000 0x04

IO_CNTL Input/Output control R/W 16 bits FFFB:5000 0x08

KBR_LATCH Keyboard row inputs R 16 bits FFFB:5000 0x10

KBC_REG Keyboard column outputs R/W 16 bits FFFB:5000 0x14

GPIO_EVENT_MODE_REG GPIO event mode R/W 16 bits FFFB:5000 0x18

GPIO_INT_EDGE_REG GPIO interrupt edge R/W 16 bits FFFB:5000 0x1C

KBD_INT Keyboard interrupt R 16 bits FFFB:5000 0x20

MPU I/O

 7-26

Table 7–12. MPU Input/Output Registers (Continued)

Register OffsetAddressSizeR/WDescription

GPIO_INT GPIO interrupt R 16 bits FFFB:5000 0x24

KBD_MASKIT Keyboard mask interrupt R/W 16 bits FFFB:5000 0x28

GPIO_MASKIT GPIO mask interrupt R/W 16 bits FFFB:5000 0x2C

GPIO_DEBOUNCING_REG GPIO debouncing R/W 16 bits FFFB:5000 0x30

GPIO_LATCH_REG GPIO latch R 16 bits FFFB:5000 0x34

Table 7–13. General-Purpose Input Register (INPUT_LATCH)

Bit Name Function
Reset
Value

15–0 INPUT_LATCH General-purpose inputs Reflects input
pins

Table 7–14. Output Register (OUTPUT_REG)

Bit Name Function
Reset
Value

15–0 OUTPUT_REG General-purpose outputs Undefined

Table 7–15. Input/Output Control Register (IO_CNTL)

Bit Name Value Function
Reset
Value

15–0 IO_CNTL In/out control for general-purpose I/O All bits at 1

0 I/O is configured as output

1 I/O is configured as input

MPU I/O

7-27MPU Public Peripherals

Table 7–16. Keyboard Row Inputs Register (KBR_LATCH)

Bit Name Function
Reset
Value

15–7 Reserved

4–0 KBR_LATCH Keyboard row inputs Reflects input
pins

Table 7–17. Keyboard Column Outputs Register (KBC_REG)

Bit Name Function
Reset
Value

15–8 Reserved

7–0 KBC_REG Keyboard columns outputs 0

Table 7–18. GPIO Event Mode Register (GPIO_EVENT_MODE_REG)

Bit Name Value Function
Reset
Value

15–5 Reserved

4–1 PIN_SELECT Select MPUI/O_IN[15:0] pin to be the
GPIO_CLK event

0000

0000 Pin 0

1111 Pin 15

0 SET_GPIO_EVENT_
MODE

0 GPIO event mode disable 0

1 GPIO event mode enable

Table 7–19. GPIO Interrupt Edge Register (GPIO_INT_EDGE_REG)

Bit Name Value Function
Reset
Value

15–0 EDGE_SELECT[15:0] Set interrupt on falling/rising edge 0

0 Falling edge

1 Rising edge

MPU I/O

 7-28

Table 7–20. Keyboard Interrupt Register (KBD _INT)

Bit Name Function
Reset
Value

15–1 Reserved

0 KBD_INT Keyboard interrupt (active low) 1

Note: KBD_INT is a status bit only (duplication of the level of the corresponding interrupt signal).

Table 7–21. GPIO Interrupt Register (GPIO_INT)

Bit Name Function
Reset
Value

15–0 GPIO_INT GPIO interrupts (active high) 0

Note: GPIO_INT is reset on read access to the GPIO_INT register. The value read is the value after mask application.

Even in emulation mode, the GPIO interrupts are reset by a read in the GPIO
interrupt register (GPIO_INT).

Table 7–22. Keyboard Mask Interrupt Register (KBD_ MASKIT)

Bit Name Function
Reset
Value

15–1 Reserved

0 KBD_MASKIT Mask is active at level 1, inactive at level 0 00

Table 7–23. GPIO Mask Interrupt Register (GPIO_MASKIT)

Bit Name Function
Reset
Value

15–0 GPIO_MASKIT[15:0] Mask is active at level 1, inactive at level 0 00

MPU I/O

7-29MPU Public Peripherals

Table 7–24. GPIO Debouncing Register (GPIO_DEBOUNCING_REG)

Bit Name Function
Reset
Value

15–9 Reserved

8–0 GPIO_
DEBOUNCING_REG

000000000: 0 µσ to 31 µs debouncing time
100000010: 7,97 ms to 8 ms debouncing time

Programming step is 31 µs.

0000

Note: Because GPIO_CLK is an asynchronous signal, loading GPIO_DEBOUNCING_REG with 01 hex minimum value is rec-
ommended to ensure that you have a 31-µs minimum debouncing time. If the value is 00 hex, the interrupt may be gener-
ated immediately when an edge is met.

Table 7–25. GPIO Latch Register (GPIO_LATCH_REG)

Bit Name Function
Reset
Value

15–0 GPIO_LATCH_REG After debouncing time, the ARMI/O_IN bus is latched in
this.

00

MicroWire Interface

 7-30

7.4 MicroWire Interface

This serial synchronous interface can drive two serial external components.
For the external devices, this interface is compatible with the µWire standard
and is seen as the master (see Figure 7–17).

A transmit DMA mode is available.

Figure 7–17. Block Diagram

Clock
divider

Transmit data register UWIRE.SDO

Control
logic

UWIRE.SCLK
TIPB

Receive data register UWIRE.SDIControl and status

Setup registers

UWIRE.CS[3:0]

Clock register

Clock
enable

MPUXOR_CK

register

DMA_REQ to system DMA_REQ[6:0]

Inth lvl2 (2,3) - edge
2

(16 bits)

(16 bits)

7.4.1 MicroWire Registers

Start address in the peripheral range (hex): FFFB:3000

Table 7–26 lists the MicroWire registers. Table 7–27 through Table 7–34
describe the individual registers.

Table 7–26. MicroWire Registers

Register Description R/W Size Address Offset

TDR Transmit data W 16 bits FFFB:3000 0x00

RDR Receive data R 16 bits FFFB:3000 0x00

CSR Control and status R/W 16 bits FFFB:3000 0x04

SR1 Setup 1 R/W 16 bits FFFB:3000 0x08

SR2 Setup 2 R/W 16 bits FFFB:3000 0x0C

MicroWire Interface

7-31MPU Public Peripherals

Table 7–26. MicroWire Registers (Continued)

Register OffsetAddressSizeR/WDescription

SR3 Setup 3 R/W 16 bits FFFB:3000 0x10

SR4 Setup 4 R/W 16 bits FFFB:3000 0x14

SR5 Setup 5 R/W 16 bits FFFB:3000 0x18

Table 7–27. Transmit Data Register (TDR)

Bit Name Function
Reset
Value

15–0 TD Data to transmit Undefined

Note: MSB (bit 15) is the first transmitted bit.

Whatever its size, the word must be aligned on the most significant bit (MSB)
side.

Table 7–28. Receive Data Register (RDR) – Offset address (hex): 0x00

Bit Name Function
Reset
Value

15–0 TD Received data Undefined

Note: LSB (bit 0) is the last received bit.

Whatever its size, the word is aligned on the least significant bit (LSB) side.

MicroWire Interface

 7-32

Table 7–29. Control and Status Register (CSR)

Bit Name Value Function
Reset
Value

15 RDRB RDRB bit at 1 indicates that the receive (RDR)
is full. When the controller reads the content of
the RDR, this bit is cleared.

This bit is read only.

0

14 CSRB CSRB bit at 0 indicates that the control and
status (CSR) is ready to receive new data.

After starting a µWire transfer with the CSR,
this bit is set to 1. When the corresponding
action has been done, CSRB is reset. This bit
is controlled by a µWire internal state machine
running on the F_INT internal clock (12
MHz/N). If the CSR is read just after being
written and the MPU is running at high
frequency (60 MHz or 120 MHz, for instance)
compared to the internal clock, the CSRB
status bit may still be low for the first read
access. The CSRB latency is 0 if the transfer
was initiated by modifying the CS_CMD bit, but
it can be 0–3 cycles if initiated by the START
bit. Suggested workarounds are a) to have a
few NOPs between initiating a µWire transfer
and checking CSRB status or b) to check that
CSRB first has a high value on an initial read
before it goes low on a subsequent read.

This bit is read only.

0

13 START 1 Start a write and/or a read process.
This bit is automatically reset by internal logic
when a write or a read process is activated.

Send NB_BITS_WR bits (contained in TDR) to
the serial output DO. If NB_BITS_WR is equal
to zero, then the write process is not started.

Receive NB_BITS_RD bits from the serial input
DI and store them in RDR.

0

12 CS_CMD 1 Set the chip-select of the selected device to its
active level.

0

MicroWire Interface

7-33MPU Public Peripherals

Table 7–29. Control and Status Register (CSR) (Continued)

Bit
Reset
ValueFunctionValueName

11–10 INDEX Index of the external device Undefined

00 CS0

01 Reserved

10 Reserved

11 CS3

9–5 NB_BITS_WR Number of bits to transmit Undefined

4–0 NB_BITS_RD Number of bits to receive Undefined

This register sets up the serial interface for the first and the second external
components.

Table 7–30. Setup Register 1 (SR1)

Bit Name Value Function
Reset
Value

11–6 Reserved

5 CS0_CHK Before activating a write process, checks if external
device is ready.

Undefined

0 No check is done and the write process is immediately
executed.

1 If DI signal is low, the interface considers the external
component busy; if DI is high, the interface considers
that the first external component is ready and starts the
write process.

Used when CS0 is selected.

MicroWire Interface

 7-34

Table 7–30. Setup Register 1 (SR1) (Continued)

Bit
Reset
ValueFunctionValueName

4–3 CS0_FRQ Defines the frequency of the serial clock SCLK when
CS0 is selected (F_INT is the frequency of the internal
clock to the microwire control logic as defined in register
SR3).

Undefined

00 F_INT/2

01 F_INT/4

10 F_INT/8

11 Undefined

2 CS0CS_LVL Defines the active level of the chip-select by CS0 0

1 CS0_EDGE_WR When CS0 is selected, defines the active edge of the
serial clock SCLK used to write data to the serial input
D0.
(Output data is generated on this edge)

Undefined

0 Falling (serial clock not inverted)

0 Rising (when serial clock inverted)

1 Rising (serial clock not inverted)

1 Falling (when serial clock inverted)

0 CS0_EDGE_RD When CS0 is selected, defines the active edge of the
serial clock SCLK used to read data from the serial input
DI. (Input data is strobed on this edge)

Undefined

0 Falling (serial clock not inverted)

0 Rising (when serial clock inverted)

1 Rising (serial clock not inverted)

1 Falling (when serial clock inverted)

Note: Content of this register must not be changed when a read or write process is running.

MicroWire Interface

7-35MPU Public Peripherals

This register sets up the serial interface for the first and the second external
components.

Table 7–31. Setup Register 2 (SR2)

Bit Name Value Function
Reset
Value

11 CS3_CHK Same as CS0_CHK.
Used when CS3 is selected.

Undefined

10–9 CS3_FRQ Defines the frequency of the serial clock
SCLK when CS3 is selected

Undefined

00 F_INT/2

01 F_INT/4

10 F_INT/8

11 Undefined

8 CS3CS_LVL Defines the active level of the CS3 chip-select 0

7 CS3_EDGE_WR Same as CS0_EDGE_WR when CS3 is
selected

Undefined

6 CS3_EDGE_RD Same as CS0_EDGE_RD when CS3 is
selected

Undefined

5–0 Reserved

Notes: 1) Content of this register must not be changed when a read or write process is running.

MicroWire Interface

 7-36

This register sets up the serial interface for the internal clock.

Table 7–32. Setup Register 3 (SR3)

Bit Name Value Function
Reset
Value

2–1 CK_FREQ Defines the frequency of the internal clock, F_INT, when
CLK_EN = 1. All the internal logic is controlled by F_INT
(F is the frequency of the external input clock).

00

00 ARMOXR_CK/2

01 ARMOXR_CK/4

10 ARMOXR_CK/7

11 ARMOXR_CK/10

0 CLK_EN 0 Switch off the clock if 0. 0

1 Switch on the clock if 1.

Note: Content of this register must not be changed when a read or write process is running.

This register sets up the serial clock polarity.

Table 7–33. Setup Register 4 (SR4) (Read/Write)

Bit Name Function
Reset
Value

0 CLK_IN Serial clock is not inverted if 0.

Serial clock is inverted if 1.

0

Note: Content of this register must not be changed when a read or write process is running.

MicroWire Interface

7-37MPU Public Peripherals

Table 7–34. Setup Register 5 (SR5) (Read/Write)

Bit Name Value Function
Reset
Value

3 CS_TOGGLE_TX_EN CS_TOGGLE_TX_EN is possible only in
autotransmit mode.

When in autotransmit mode with
CS_TOGGLE_TX_EN inactive, the CS does
not go to its active level automatically. Control
the CS with the CS CMD bit of the control and
status register (CSR) in the software.

0

0 CS_toggle transmit mode is disabled if 0.

1 CS_toggle transmit mode is enabled if 1.

2 AUTO_TX_EN In autotransmit mode, the CS_CMD and
START bits of the control and status register
(CSR) are not used. A hardware state machine
detects a TXD write and automatically sets the
programmed CS to its active value, then starts
the transmission.

The CS-CMD and the START bits in the control
and status register (CSR) are not updated
during autotransmit.

0

0 Autotransmit mode is disabled if 0.

1 Autotransmit mode is enabled if 1.

1 IT_EN In IT mode, an interrupt is generated each time
a word has been transferred or a received. This
interrupt is a negative edge-triggered interrupt.
A status register (IST) allows the CPU to know
which interrupt (receive or/and transmit)
occurred.

0

0 IT mode is disabled if 0.

1 IT mode is enabled if 1.

0 DMA_TX_EN 0 DMA transmit mode is disabled if 0. 0

1 DMA transmit mode is enabled if 1.

Note: Content of this register must not be changed when a read or write process is running.

MicroWire Interface

 7-38

Set up the DMA, IT, AUTO_TX, and CS_TOGGLE modes in this register.

In DMA mode, a DMA request is initiated each time a transmission slot is
available.

The maximum word size in DMA mode is 16 bits.

Notes:

You cannot use another CS in normal or DMA mode when a DMA mode is
active on one specific CS.

To use the µWire in DMA transmit mode, DMA_EN and AUTO_TX_EN must
be enabled, and IT_EN is best disabled. The AUTO_TX_EN can be active
when DMA_EN is disabled.

7.4.2 Protocol Description

The serial port must be configured in order to use the setup registers.

This interface can only drive one device at a given time. Therefore, the
chip-select of the selected device must be set to its active level before starting
any read or write process.

After the loading of the transmit data register (TDR), a write process is
activated by setting the START bit to 1 and by writing a value different from zero
to the NB_BITS_WR field.

A read process is always simultaneous with a write process, which means that
at every serial clock (SCLK) cycle data is read. After having finished a write
process (if necessary), a number (defined by NB_BITS_RD) of SCLK cycles
is generated to allow storage of data from the serial input DI.

The transmitted data word is shifted out on the rising or falling edge of the serial
clock (according to the value of the CSx_EDGE_WR bits of the setup regis-
ters). The received data word is shifted in on the falling or rising edge of the
serial clock (according to the value of the CSx_EDGE_RD bits of the setup reg-
isters). When CSx_EDGE_WR and CSx_EDGE_RD bits have the same val-
ue, it is assumed that the device behavior is the one shown in Figure 7–18.
Otherwise, the required behavior of the external device is shown in
Figure 7–19.

MicroWire Interface

7-39MPU Public Peripherals

Figure 7–18. Behavior of a X25C02 EEPROM Read Cycle

0 0 0 0 0 0 A7

D7UWIRE.SDI

UWIRE.SDO

UWIRE.SCLK

WIRE_NCS

1 1 A6 A5 A4 A3 A2 A1 A0

D6 D5 D4 D1 D0

On the DO line, data is generated from the µWire interface on SLCK falling
edge and read by the EEPROM interface on SCLK rising edge.

On the DI line, data is generated from the EEPROM interface on SCLK falling
edge and read by the µWire interface on SCLK falling edge.

Figure 7–19. Behavior of a XL93LC66 EEPROM Read Cycle

 1 1 0

D15UWIRE_SDI

UWIRESDO

UWIRE_SCLK

WIRE_NCS

A7 A6 A5 A4 A3 A2 A1 A0

D14 D13 D1 D0

On the DO line, data is generated from the µWire interface on SLCK falling
edge and read by the EEPROM interface on SCLK rising edge.

On the DI line, data is generated from the EEPROM interface on SCLK rising
edge and read by the µWire interface on SCLK rising edge.

7.4.3 Example of Protocol Using a Serial EEPROM (XL93LC66)

Set up the interface by writing the following values in setup 1 register (SR1):

� CS_EDGE_RD = 1
� CS_EDGE_WR = 0
� CSCS_LVL = 1
� CS_FRQ = 00
� CS_CHK = 1

In this example, only two cycles (read and write) are described.

MicroWire Interface

 7-40

7.4.3.1 Read Cycle

1) Set the following fields of the control and status register (CSR):

� NB_BITS_RD: 0
� NB_BITS_WR: 0
� INDEX: 00
� CS_CMD: 1
� START: 0

2) Load the transmit data register (TDR) with:

� 1 1 0 A7 A6 A5 A4 A3 A2 A1 A0 x x x x x x: Don’t care
� A7 ... A0: Address of the selected memory register

3) Wait for the CSRB bit of CSR to be reset.

4) Set the following fields of the control and status register (CSR):

� NB_BITS_RD: 16 (decimal)
� NB_BITS_WR: 11 (decimal)
� INDEX: 00
� CS_CMD: 1
� START: 1

5) Wait until CSRB = 0 and RDRB = 1 (status bits of CSR).

6) Read the content of receive data register (RDR).

7) To continue reading data external component, the EEPROM, go to 8. Else
go to 9.

8) Set the following fields of the control and status register (CSR):

� NB_BITS_RD: 16 (decimal)
� NB_BITS_WR: 0 (decimal)
� INDEX: 00
� CS_CMD: 1
� START: 1
� Go to 5.

9) Set the following fields of the control and status register (CSR):

� INDEX: 00
� CS_CMD: 0
� START: 0

MicroWire Interface

7-41MPU Public Peripherals

7.4.3.2 Write Cycle

1) Set the following fields of the control and status register (CSR):

� NB_BITS_RD: 0
� NB_BITS_WR: 0
� INDEX: 00
� CS_CMD: 1
� START: 0

2) Load the transmit data register (TDR) with:

� 1 0 1 A7 A6 A5 A4 A3 A2 A1 A0 x x x x x x: Don’t care
� A7 ... A0: Address of the selected memory register

3) Wait for the CSRB bit of the control and status register (CSR) to be reset.

4) Set the following fields of the control and status register (CSR):

� NB_BITS_RD: 0
� NB_BITS_WR: 11 (decimal)
� INDEX: 00
� CS_CMD: 1
� START: 1

5) Wait for the CSRB bit of the control and status register (CSR) to be reset.

6) Load the transmit data register (TDR) with:

� D15 D14 ... D0
� D15 ... D0: Data

7) Set the following fields of the control and status register (CSR):

� NB_BITS_RD: 0
� NB_BITS_WR: 16 (decimal)
� INDEX: 00
� CS_CMD 1
� START: 1

8) Wait for the CSRB bit of CSR to be reset.

9) Set the following fields of the control and status register (CSR):

� INDEX: 00
� CS_CMD: 0
� START: 0

MicroWire Interface

 7-42

7.4.4 Example of Protocol Using an LCD Controller (COP472-3)

Set up the interface by writing in setup 1 register (SR1) the following value:

� CS_EDGE_RD = 1
� CS_EDGE_WR = 0
� CSCS_LVL = 0
� CS_FRQ = 10
� CS_CHK = 0

In this example, a loading sequence to drive a four-digit display is described.

7.4.4.1 Loading Sequence

1) Set the following fields of the control and status register (CSR):

� NB_BITS_RD: 0
� NB_BITS_WR: 0
� INDEX: 01
� CS_CMD: 1
� START: 0

2) Wait for the CSRB bit of the control and status register (CSR) to be reset.

3) Load the transmit data register (TDR) with:
� D7d1...D0d1 D7d2...D0d2 D7d1...D0d1: Data for digit 1
� D7d2...D0d2: Data for digit 2

4) Set the following fields of the control and status register (CSR):

� NB_BITS_RD: 0
� NB_BITS_WR: 16 (decimal)
� INDEX: 01
� CS_CMD: 1
� START: 1

5) Wait for the CSRB bit of the control and status register (CSR) to be reset.

6) Load the transmit data register (TDR) with:

� D7d3...D0d3 D7d4...D0d4 D7d3...D0d3: Data for digit 3
� D7d4...D0d4: Data for digit 4

7) Set the following fields of the control and status register (CSR):

� NB_BITS_RD: 0
� NB_BITS_WR: 16 (decimal)
� INDEX: 01
� CS_CMD: 1
� START: 1

MicroWire Interface

7-43MPU Public Peripherals

8) Wait for the CSRB bit of the control and status register (CSR) to be reset.

9) Load the transmit data register (TDR) with:

� D7...D0 x x x x x x x x x: Don’t care
� D7...D0: Data for special segment and control function

10) Set the following fields of the control and status register (CSR):

� NB_BITS_RD: 0
� NB_BITS_WR: 8 (decimal)
� INDEX: 01
� CS_CMD: 1
� START: 1

11) Wait for CSRB to go low, which indicates the CSR is ready to receive new
data. It is advised that you read the bit before and after every write access
to CSR to check the status.

12) Set the following fields of the control and status register (CSR):

� INDEX: 01
� CS_CMD: 0
� START: 0

7.4.5 Example of Protocol Using Autotransmit Mode

The autotransmit mode is controlled by the setup 5 register (SR5). The follow-
ing example configures µWire for a read access on CS0 with serial clock out
inverted, CS autotoggle enabled, DMA request disabled, and interrupt
enabled:

1) SR5 = DMA_TX_EN: 0

IT_EN: 1

AUTO_TX_EN: 1

CS_TOGGLE_TX_EN: 1

2) SR1 = CS0_EDGE_RD: 0

CS0_EDGE_WR: 1

CS0CS_LVL: 0

CS0_FREQ: 00

CS0_CHK: 1

Note:

Data out is latched on falling edge of the serial clock. Data in is sampled on
rising edge.

MicroWire Interface

 7-44

3) SR3 = CLK_EN: 1

CK_FREQ: 00 (must wait for 1 external clock + 1 F_INT cycle before any
other register access)

4) SR4 = CLK_IN: 1

5) Set the following fields of the control and status register (CSR):

� NB_BITS_RD: 5
� NB_BITS_WR: 7
� INDEX: 00
� CS_CMD: 0
� START: 0

6) Wait for the CSRB = 0 of the control and status register (CSR).

7) Load the transmit data register (TDR) with:

� A6 A5 A4 A3 A2 A1 A0 x x x x x x x x x x: Don’t care
� A6 ... A0: Address of the selected memory register

Transfer is automatically started.

8) Wait until CSRB = 0 and RDRB = 1 (status bits of CSR).

9) Read the content of receive data register (RDR).

10) To continue reading data external component, go to 5 else go to 11.

11) Release auto transmit mode: SR5 = AUTO_TX_EN: 0.

12) END

The corresponding behavior of the serial interface is described in Figure 7–20.

Figure 7–20. Read Cycle in Autotransmit Mode

UWIRE_SCCLK

A6 A5 A4 A3 A2 A1 A0UWIRE_SDO

UWIRE_SDI D4 D3 D2 D1 D0

WIRE_NCS

MicroWire Interface

7-45MPU Public Peripherals

7.4.6 Example of Autotransmit Mode With DMA Support

The autotransmit mode and DMA mode are controlled by the setup 5 register
(SR5). The following example configures µWire for a 16-bit write access on
CS1 with serial clock out not inverted, CS auto toggle enabled, DMA request
enabled, and interrupt disabled:

1) Set up and enable the DMA channel.

2) Program the configuration registers SR1, SR3, and SR4.

3) Check CSRB status to ensure that the peripheral is ready to receive (low).

4) Program the control and status register (CSR) as follows:

� NB_BITS_RD = 0
� NB_BITS_WR = 16
� INDEX = 00
� CS_CMD: = 1
� START = 0

5) Write to the setup register (SR5) to configure and initiate the transfer:

� DMA_TX_EN = 1
� IT_EN = 0
� AUTO_TX_EN = 1
� CS_TOGGLE_TX_EN = 1 (In AUTO TX mode, setting the

DMA_TX_EN bit to 1 starts the transfer)

6) When the DMA transfer is complete, check the status of CSRB to find
whether µWire has finished the serial data transfer.

7) Write to the setup register (SR5) to disable DMA and AUTO TX mode:

� DMA_TX_EN = 0
� IT_EN = 0
� AUTO_TX_EN = 0
� CS_TOGGLE_TX_EN = 0

Using Autostart and Autotoggle CS Mode

You must wait for a minimum of 2 x F_INT clock cycles after the end
of transfer (transition 1 to 0 detected on CSRB) before setting the
SR3 register to turn off the internal clock.

32-kHz Timer

 7-46

7.5 32-kHz Timer

The MPU subsystem operating system (OS) requires interrupts at regular time
intervals for OS scheduling purpose. OS time intervals can be from 1 ms to
30 ms. These time intervals can be generated using the three 32-bit OS/gener-
al-purpose TI925T timers, which use CLKIN or DPLL1; however, they can not
be used when the system clock is not operating. Therefore, a 32-kHz clock-
based timer is needed to provide the required OS timing interval. The clock
period of 32 kHz is 30.60 µs. 32 kHz refers to 32678, not 32000.

7.5.1 Operating System Scalable Clock-Tick Interrupt Function

A programmable interval timer is required to generate a periodic interrupt, also
called system clock tick, to the OS. This is used to keep track of the current
time to control the operation of device drivers.

For example, Microsoft Windows CE OS scheduling requires the following:

� The periodic interrupt occurs every 1-25 ms.

� The timer is expected to run in all modes except when suspended.

32-kHz timer is a 24-bit down-counter that generates CPU interrupts for the
TI925T processor. The following capabilities are available:

� Timer reset

� Timer current value reading

� Timer start and stop

� Interrupt generation as timer down-counts to zero

� Timer autorestart after it counts to zero

� On-the-fly register read and write

� Interrupt disabling the by writing a 1 to the interrupt bit in the control
register

Timer Corresponding Level 2 Interrupt

32-kHz timer IRQ_22

The tick value register (TVR) contains the desired value for the timer to count
down. The tick counter register (TCR) is loaded with this value, then starts to
count down to zero and generates a negative edge sensitive interrupt
(low-level pulse duration = 15 µs) to the interrupt handler. Once the interrupt
is back to the high level, the counter is reloaded from its register and then starts
to count down again.

32-kHz Timer

7-47MPU Public Peripherals

7.5.1.1 Overriding Normal Counting

Normal operation can be overridden by using two bits in the timer control
register (TCR):

� The timer reload bit (TRB) causes the counter to be reloaded on the next
clk32-kHz cycle (whether or not the timer is counting).

� The timer start stop bit (TSS) causes the counter to be stopped on the next
clk32-kHz cycle. When the timer is stopped, the content of the counter is
frozen.

7.5.1.2 Loading/Autorestart of the Timer

Loading the counter in the timer can be done in two fashions:

� Write a 1 to the TRB bit in the timer control register (TCR).

� Wait until the counter reaches zero and is reloaded from its register if the
autorestart bit (ARL) in the timer control register (TCR) is set to 1. If not,
then the timer is stopped.

7.5.1.3 Timer Interrupt Period

The timer interrupt period is defined by the value loaded into the tick value
register (TVR).

The timer interrupt rate is as follows:

IRQ rate =(TVR+1) / 32768

Table 7–35. Timer Interrupt Period

TVR Value Interrupt Period

0x000000 30.5 µs

0x00028F 19.9 ms

0xFFFFFF (Value at reset) 512 s (8 min 32 s)

32-kHz Timer

 7-48

7.5.2 32-kHz Timer Registers

Base address for 32-kHz timer: FFFB:9000

Table 7–36 lists the 32-kHz timer registers. Table 7–38 through Table 7–40
describe the individual registers.

Table 7–36. 32-kHz Timer Registers

Name Description R/W Size Address Offset

CR Timer control R/W 32 bits FFFB:9000 0x08

TVR Tick value R/W 32 bits FFFB:9000 0x00

TCR Tick counter R 32 bits FFFB:9000 0x04

7.5.2.1 Synchronization Issues

Synchronization of reads and writes to the 32-kHz clock is done in different
ways for each register. This leads to slight restrictions concerning register
access (see Table 7–37).

Table 7–37. Read/Write Synchronization

Register Name Read Write

CR Can be read anytime. The value read
is the last value written.

Two consecutive writes must be separated
by at least 1 CLK32 period (31 µs). If this is
not the case, the value written is not
guaranteed

TCR Reads are resynchronized on
MPUXOR_CK clock to prevent
peripheral bus from timing out. Can
be read anytime, providing
MPUXOR_CK is running. If not, the
value is not guaranteed. Software
must wait one 32-kHz period after
turning on the MPUXOR_CK clock
before the TCR register can be read.

Writing to this has no effect.

TVR Can be read anytime. The value read
is the last value written

Two consecutive writes must be separated
by at least 1 CLK32 period (31 µs). If this is
not the case the value written is not
guaranteed

32-kHz Timer

7-49MPU Public Peripherals

Table 7–38. Timer Control Register (CR)

Bit Name Value Function
Reset
Value

31–4 Reserved

3 ARL Autoreload/start 1

0 One-shot mode. When the counter reaches
zero, an interrupt is generated and the timer is
stopped.

1 Sets the timer to autorestart mode

2 IT_ENA Interrupt enable 0

0 Interrupt disabled

1 Interrupt enabled

1 TRB Timer reload bit

TRB = 1 reloads the counter. Once the counter
is reloaded, TRB is set to 0.

0

0 TSS Timer start/stop 0

0 Stop timer

1 Start timer

If one-shot mode is selected (ARL = 0), this bit
is automatically reset by internal logic when
timer is equal to 0.

Table 7–39. Tick Value Register (TVR)

Bit Name Function
Reset
Value

31–24 Reserved

23–0 TICK_VALUE_REG This value is loaded when timer passes through 0 or
when it starts.

0xFFFFFF

Table 7–40. Tick Counter Register (TCR)

Bit Name Function
Reset
Value

31–24 Reserved

23–0 TICK_COUNTER_REG Value of timer 0xFFFFFF

Pseudonoise Pulse-Width Light Modulator

 7-50

7.6 Pseudonoise Pulse-Width Light Modulator

This pulse-width light (PWL) module provides control of LCD backlighting and
keypad by employing a 4096-bit random sequence generator. This voltage-
level control technique decreases the spectral power at the modulator
harmonic frequencies. The module uses a 32-kHz clock from ULPD.

7.6.1 PWL Functional Description

The PWL module is composed of a pseudorandom 8-bit data generator and
a programmable threshold comparator (see Figure 7–21).

The pseudorandom 8-bit data generator is built using an LFSR. It generates
a white normal-law random value between 1 and 255. The LFSR polynomial
generator is P(x) = x[7] + x[3] + x[2] + x[1].

The comparator generates:

� 0 if the random value is greater or equal than the programmable threshold

� 1 if the random value is less than the programmable threshold

Assuming the random sequence is normal, it generates a sequence whose
mean value is proportional to the comparator threshold.

Figure 7–21. PWL Block Diagram

PWL_OUT

CLK32

8-bit PRBS generator

Comparator

PWL_LEVEL
register

RESET

RESET

Output
register
and test

RESET

RESET

A<B

A=B

A

B

TIPB

8

8

8

Pseudonoise Pulse-Width Light Modulator

7-51MPU Public Peripherals

7.6.2 PWL Registers

The PWL is connected to the host with a TIPB. The PWL control is done with
two 8-bit registers. All TIPB accesses are done asynchronously with the
32-kHz clock, meaning there is no TIPB wait-state insertion.

Table 7–41 lists the PWL registers. Table 7–42 and Table 7–43 describe the
individual registers.

Start address (hex): FFFB:5800

Table 7–41. PWL Registers

Name Description R/W Size Address Offset

PWL_LEVEL PWL-level R/W 8 bits FFFB:5800 0x00

PWL_CTRL PWL control R/W 8 bits FFFB:5800 0x04

Table 7–42. PWL Level Register (PWL_LEVEL)

Offset address (hex): 0x00

Bit Name Function
Reset
Value

7–0 PWL_LEVEL Defines the mean value of the PWL output signal. 0
leads to a continuous 0 output. 255 to an almost
continuous 1 output: 255/256 cycles in high level.

0

Table 7–43. PWL Control Register (PWL_CTRL)

Offset address (hex): 0x04

Bit Name Function
Reset
Value

7–1 – Reserved

0 CLK_ENABLE Internal clock is enabled when 1. 0

Pulse-Width Tone

 7-52

7.7 Pulse-Width Tone

This pulse-width tone (PWT) module generates a modulated frequency signal
for the external buzzer. The frequency is programmable between 322 Hz and
4868 Hz with 12 half-tone frequencies per octave. The volume level is also pro-
grammable. All frequencies are generated from the PWT_CLK, which is a
12-MHz clock.

7.7.1 Overview

The PWT module creates the output tone signal for a buzzer. The frequency
and the volume of this signal are programmable.

7.7.2 PWT Features

The PWT module has the following features (see Figure 7–22):

� Divider generating a 1500-kHz frequency clock

� TIPB control interface

� Four dividers with 101/107, 49/55, 50/63, and 80/127 to generate each note
particularity

� Four dividers 1/2 and a mux to select the octave

� 6-bit register to control tone frequency

� 6-bit register to control tone volume

� 2-bit register for testing and clk_en

� 5-bit counter and comparator for creating volume pulse

� Divide by 1/154 to obtain the final right frequency

Pulse-Width Tone

7-53MPU Public Peripherals

Figure 7–22. PWT Block Diagram

MPU peripheral bus

1/2 1/2 1/21/2

1/154

&

TIPB interface

1/8 101/107 49/55 50/63 80/127

FRC VRCParam

Testin

Tone

PWT_CLK

t1 t2 t3 t4

5-bit counter

t128

t64

t32

t16

and
comparator

7.7.3 PWT Registers

Start address (hex): FFFB6000

Table 7–44 lists the PWT registers. Table 7–45 through Table 7–47 describe
the individual registers.

Table 7–44. PWT Registers

Register Description R/W Size Address Offset

FRC PWT frequency control R/W 8 bits FFFB:6000 0x00

VRC PWT volume control R/W 8 bits FFFB:6000 0x04

GCR PWT general control R/W 8 bits FFFB:6000 0x08

Pulse-Width Tone

 7-54

Table 7–45. PWT Frequency Control Register (FRC) – Offset address (hex): 0x00

Bit Name Function R/W
Reset
Value

5–2 FRQ Frequency selection (12 frequencies)
Resynchronized writing, asynchronous reading

R/W 0000

1–0 OCT Octave selection
Resynchronized writing, asynchronous reading

R/W 00

Table 7–46. PWT Volume Control Register (VRC) – Offset address (hex): 0x04

Bit Name Function R/W
Reset
Value

6–1 VOL Volume selection
Resynchronized writing, asynchronous reading

R/W 000000

0 ONOFF Switch ON/OFF tone (on: 1, off: 0).
Resynchronized writing, asynchronous reading

R/W 0

Table 7–47. PWT General Control Register (GCR) – Offset address (hex): 0x08

Bit Name Function R/W
Reset
Value

1 TESTIN Divider 1/154 switched ON/OFF (on: 0, off: 1).
Asynchronous writing and reading

R/W 0

0 CLK_EN PWT clock enable (clock disabled: 0, clock enabled: 1).
Asynchronous writing and reading

R/W 0

7.7.4 PWT Programming

7.7.4.1 Buzzer Frequency

To obtain the required frequencies, the PWT clock is divided in a special way.
Four frequency dividers with the coefficients 101/107, 49/55, 50/63, and 80/127 are
connected in series and can be enabled with the four frequency selection bits
(FRQ) in the frequency register. If a divider is not enabled, the clock passes
through the divider without any change so different frequencies can be
produced. After this a multiplexer can choose between this clock, divided by
2/4/8 or 16. The frequency is always halved (this unit is called an octave). Due
to this, the PWT has a range of four octaves.

Pulse-Width Tone

7-55MPU Public Peripherals

The clock behind the multiplexer is divided by 154 to get the required frequen-
cies on the TONE output. The 12 frequencies in an octave can be programmed
with bits 5 to 2 of the frequency control register (FRC), and the octave can be
programmed with bits 1 to 0 of the FRC. Forty-eight different frequencies can
be programmed subdivided into four octaves with twelve frequencies. The four
frequency dividers with the complex coefficients 101/107, 49/55, 50/63, and 80/127
work with the fade out principle. To get the divider 101/107 from a periodic pulse,
6 pulses every 107 pulses are fade out. Over a long time the resulting frequen-
cy is 101/107. The resulting signal has two different periods, which differ by one
period of the original signal. Because of this difference, the resulting signal has
jitter. To minimize this jitter, the divider works with high frequencies resulting
in short periods producing low jitter (see Table 7–48).

Table 7–48. Buzzer Frequencies

FRC Bits 5-2 1-0 Buzzer Frequency FRC Bits 5-2 1-0 Buzzer Frequency

0000 00 4868 Hz 0000 10 1217 Hz

0001 00 4595 Hz 0001 10 1149 Hz

0010 00 4337 Hz 0010 10 1084 Hz

0011 00 4093 Hz 0011 10 1023 Hz

0100 00 3864 Hz 0100 10 966 Hz

0101 00 3647 Hz 0101 10 912 Hz

0110 00 3442 Hz 0110 10 860 Hz

0111 00 3249 Hz 0111 10 812 Hz

1000 00 3066 Hz 1000 10 767 Hz

1001 00 2894 Hz 1001 10 723 Hz

1010 00 2732 Hz 1010 10 683 Hz

1011 00 2579 Hz 1011 10 644 Hz

0000 01 2434 Hz 0000 11 608 Hz

0001 01 2297 Hz 0001 11 574 Hz

0010 01 2168 Hz 0010 11 541 Hz

0011 01 2046 Hz 0011 11 511 Hz

0100 01 1932 Hz 0100 11 483 Hz

0101 01 1824 Hz 0101 11 456 Hz

Pulse-Width Tone

 7-56

Table 7–48. Buzzer Frequencies (Continued)

FRC Bits 5-2 1-0 Buzzer FrequencyFRC Bits 5-2 1-0Buzzer Frequency

0110 01 1721 Hz 0110 11 430 Hz

0111 01 1624 Hz 0111 11 406 Hz

1000 01 1533 Hz 1000 11 383 Hz

1001 01 1447 Hz 1001 11 361 Hz

1010 01 1366 Hz 1010 11 341 Hz

1011 01 1289 Hz 1011 11 322 Hz

11XX XX Not allowed

Note: The PWT was originally designed for a 13-MHz input clock, but the OMAP5910 device implements PWT with a 12-MHz
clock. Consequently, frequencies shown are not exact tones.

7.7.4.2 Buzzer Volume

The buzzer volume can be programmed (see Table 7–49) with bits 6 to 1 in the
volume control register VRC. The higher the 6 bit value is, the louder is the
buzzer/loudspeaker. To perform this programming, a 6-bit binary counter is
clocked with the PWT clock and rolls over to 0h after reaching its terminal value
(3 Fh). The counter value is compared with the 6-bit value programmed in
VRC. If the count value is less than or equal to VRC, the output has the value
H, else L:

� Y = VOL value: 0 =<y<64
� PWT_CLK = 12 MHz
� Output signal H period = (y+1).PWT_CLK
� Output signal L period = (63-y).PWT_CLK

Table 7–49. Buzzer Volume

VRC Bits 6-1 ; 0 Buzzer/Loudspeaker

111111 1 Loud

000000 1 Quiet

xxxxx 0 Off

Inter-Integrated Circuit Controller

7-57MPU Public Peripherals

7.8 Inter-Integrated Circuit Controller

7.8.1 I2C Protocol Description

This section describes the I2C protocol. Figure 7–23 shows the I2C system
overview. References to a local host in this section refer to the MPU processor.

Figure 7–23. I2C System Overview

Interrupt
handler

Local host
(MPU)

System
DMA P

er
ip

he
ra

l b
us

I2C
controller

I2C_IRQ

I2
C

_D
M

A
_R

X

I2
C

_D
M

A
_T

X

I2C.SCL

I2C.SDA

SCL

SDA

RP RP

Pullup
resisters

I2C
compatible

device

I2C
compatible

device

I2C
compatible

device

I2C
compatible

device

I2C
compatible

device

VDD

I2C I/F
pads

7.8.1.1 Functional Overview

The I2C bus is a multimaster bus. The I2C controller function does support the
multimaster mode, to which more than one device capable of controlling the
bus can be connected. Including the OMAP5910, each I2C device is recog-
nized by a unique address and can operate as either transmitter or receiver
depending on the function of the device. In addition to being a transmitter
or receiver, a device connected to the I2C bus can also be considered as mas-
ter or slave when performing data transfers. A master device is the device
which initiates a data transfer on the bus and generates the clock signals to
permit that transfer. During this transfer, any device addressed by this
master is considered a slave.

Inter-Integrated Circuit Controller

 7-58

7.8.1.2 I2C Controller Signals Pads

Data is communicated to devices interfacing the I2C via the serial data pin
(SDA) and the serial clock pin (SCL). These two wires carry information be-
tween the OMAP5910 device and others connected to the I2C bus. Both SDA
and SCL are bidirectional pins. They must be connected to a positive supply
voltage via a pullup resistor. When the bus is free, both pins are high. The
driver of these two pins has an open-drain to perform the required wired-AND
function. Table 7–50 lists the signal pads. Table 7–51 lists the reset state of the
I2C signals.

Table 7–50. Signal Pads

Name Type Description
Reset
Value

I2C.SCL In/
Out(OD)

I2C serial CLK line.
Open-drain output buffer—requires external pullup resistor (Rp)

Input

I2C.SDA In/
Out(OD)

I2C serial data line.
Open-drain output buffer—requires external pullup resistor (Rp)

Input

Table 7–51. Reset State of I2C Signals

Pin Pads System Reset I2C Reset (I2C_EN =0)

SDA I/O High impedance High impedance

SCL I/O High impedance High impedance

The master device generates one clock pulse for each data bit transferred.
Due to variety of different technology devices (CMOS, NMOS, bipolar) that can
be connected to the I2C bus, the levels of logical 0 (low) and 1 (high) are not
fixed and depend on the associated level of VDD.

Inter-Integrated Circuit Controller

7-59MPU Public Peripherals

7.8.1.3 I2C Bus Base Principal

The data on the SDA line must be stable during the high period of the clock.
The high and low states of the data line can only change when the clock signal
on the SCL line is low (see Figure 7–24).

Figure 7–24. Data Validity on the I2C Bus

SDA

SCL

Data line
stable,

data valid

Change
of data
allowed

The I2C module generates start and stop conditions when it is configured as
a master (see Figure 7–25):

� Start condition is a high-to-low transition on the SDA line while SCL is high.

� Stop condition is a low-to-high transition on the SDA line while SCL is high.

The bus is considered busy after the start condition (BB = 1) and free after the
stop condition (BB = 0).

Figure 7–25. Start and Stop Conditions

SDA

SCL

Start
condition (S)

Stop
condition (P)

Inter-Integrated Circuit Controller

 7-60

7.8.1.4 I2C Operation

Serial Data Formats

Each byte put on the SDA line is 8 bits long. The number of bytes that can be
transmitted or received is unrestricted. The data is transferred with the most
significant bit (MSB) first. Each byte is followed by an acknowledge bit from the
module I2C if it is in receiver mode (see Figure 7–26).

Figure 7–26. I2C Data Transfer

1 2 7 8 9 1 2 8 9

MSB Acknowledgement
signal from receiver

Acknowledgement
signal from receiver

SDA

SCL

Start
condition (S)

Start
condition (S)

ACK ACK

The I2C protocol supports two data formats that are shown in Figure 7–27.

� 7-bit/10-bit addressing format
� 7-bit/10-bit addressing format with repeated start condition

The first byte after a start condition (S) always consists of 8 bits. In the acknowl-
edge mode, an extra bit dedicated for acknowledgement bit is inserted after
each byte.

In the addressing formats with 7-bit addresses, the first byte is composed by
seven MSB slave address bits and one LSB R/W bit. While in the addressing
formats with 10-bit addresses, the first byte is composed by seven MSB slave
address, such as 11110XX, where XX is the two MSB of the 10-bit addresses,
and one LSB R/W bit, which is 0 in this case.

The least significant R/W of the address byte indicates the direction of trans-
mission of the following data bytes. If R/W is 0, the master writes (transmit)
data into the selected slave; if it is 1, the master reads (receive) data out of the
slave.

Inter-Integrated Circuit Controller

7-61MPU Public Peripherals

Figure 7–27. I2C Data Transfer Formats

S

S Slave Address R/W ACK Data ACK Data ACK S

1 7 1 1 8 1 8 1 1

S Slave Address 1st 7-Bit R/W ACK ACK Data ACK S

1 7 1 1 8 1 8 1 1

(a) 7-Bit Addressing Format

Slave Address 2nd 7-Bit

1 1 1 1 0 X X 0
(Write) (b) 10-Bit Addressing Format

S Slave Address R/W ACK Data ACK S

1 7 1 1 8 1 1

ACK

1 1

Slave Address

7

R/W ACK

1 8

Data

Any Number
of Bytes

Any Number
of Bytes

(c) Addressing Format With Repeated Start Condition

Master Transmitter

In this mode, data assembled in one of the previously described data formats
is shifted out on the serial data line SDA in synchronism with the self-generated
clock pulses on the serial clock line SCL. The clock pulses are inhibited and
SCL held low when the intervention of the processor is required after a byte
has been transmitted.

Master Receiver

This mode can only be entered from the master transmitter mode. With either
of the address formats (Figure 7–27 (a), (b), and (c)), the master receiver is
entered after the slave address byte and bit R/W has been transmitted if R/W
is high. Serial data bits received on bus line SDA are shifted in synchronism
with the self-generated clock pulses on SCL. The clock pulses are inhibited
and SCL held low when the intervention of the processor is required after
a byte has been transmitted. At the end of a transfer, it generates the stop
condition.

Slave Transmitter

This mode can only be entered from the slave receiver mode. With either of
the address formats (Figure 7–27 (a), (b), and (c)), the slave transmitter is
entered if the slave address byte is the same as its own address and bit R/W
has been transmitted if R/W is high. The slave transmitter shifts the serial data

Inter-Integrated Circuit Controller

 7-62

out on the data line SDA in synchronism with the clock pulses that are gener-
ated by the master device. It does not generate the clock, but it can hold the
clock line SCL low while intervention of the local host is required.

Slave Receiver

In this mode serial data bits received on the bus line SDA are shifted-in
synchronously with the clock pulses on SCL, which are generated by the
master device. It does not generate the clock, but it can hold the clock line SCL
low while intervention of the local host is required following the reception of a
byte.

Arbitration

If two or more master transmitters start a transmission on the same bus almost
simultaneously, arbitration procedure is invoked. The arbitration procedure
uses the data presented on the serial bus by the competing transmitters. When
a transmitter senses that a high signal it has presented on the bus has been
overruled by a low signal, it switches to the slave receiver mode. Figure 7–28
shows the arbitration procedure between two devices. The arbitration proce-
dure gives priority to the device that transmits the serial data stream with the
lowest binary value. If two or more devices send identical first bytes, arbitration
continues on the subsequent bytes.

Figure 7–28. Arbitration Procedure Between Two Master Transmitters

Device #1 loses arbitration and
switches off.

1 0 1

0 01 01 1

0 01 01 1

Bus line
SCL

Data from
device #1

Data from
device #2

Bus line
SDA

Inter-Integrated Circuit Controller

7-63MPU Public Peripherals

I2C Clock Generation and I2C Clock Synchronization

Under normal conditions, only one master device generates the clock signal,
SCL. During the arbitration procedure, however, there are two or more master
devices and the clock must be synchronized so that the data output can be
compared. The wired-AND property of the clock line means that a device that
first generates a low period of the clock line overrules the other devices. At this
high/low transition, the clock generators of the other devices are forced to start
generation of their own low period. The clock line then is held low by the device
with the longest low period, while the other devices that finish their low periods
must wait for the clock line to be released before starting their high periods.
A synchronized signal on the clock line is thus obtained, where the slowest
device determines the length of the low period and the fastest the length of the
high period.

If a device pulls down the clock line for a longer time, the result is that all clock
generators must enter the wait state. In this way a slave can slow down a fast
master and the slow device can create enough time to store a received byte
or to prepare a byte to be transmitted. Figure 7–29 illustrates the clock
synchronization.

Figure 7–29. Synchronization of Two I2C Clock Generators

Wait
state

Start high
period

SCL from
device1

SCL from
device2

Bus line
SCL

Inter-Integrated Circuit Controller

 7-64

7.8.2 OMAP5910 I2C (Master/Slave I2C Controller)

The multimaster I2C peripheral provides an interface between TIPB bus and
any I2C-bus compatible devices that connect via the I2C serial bus. External
components attached to the I2C bus can serially transmit/receive up to 8-bit
data to/from the local host device through the two-wire I2C interface. All refer-
ences to a local host in this section refer to the MPU processor.

This I2C peripheral supports any slave or master I2C-compatible device.
Figure 7–23 shows an example of a system with multiple I2C-compatible de-
vices in which the I2C serial ports are all connected together for a two-way
transfer from one device to other devices.

7.8.2.1 I2C Controller Features

The main features of the I2C controller are as follows:

� Compliant with Philips I2C specification version 2.1 [1]

� Support standard mode (up to 100 kbit/s) and Fast mode (up to 400 kbit/s)

� 7-bit and 10-bit device addressing modes

� General call

� Start/Restart/Stop

� Multimaster transmitter/slave receiver mode

� Multimaster receiver/slave transmitter mode

� Combined master transmit/receive and receive/transmit mode

� Built-in FIFO for buffered read or write

� Module enable/disable capability

� Programmable clock generation

� 16-bit wide access to maximize bus throughput

� Designed for low power

� Two DMA channels

� Wide interrupt capability

The present I2C does not support:

� High-speed (HS) mode for transfer up to 3.4M bits

� C-bus compatibility mode.

Inter-Integrated Circuit Controller

7-65MPU Public Peripherals

7.8.2.2 Data Format

The I2C controller operates in 16-bit word data format (byte write access
supported for the last access), and it supports endianism.

7.8.2.3 I2C Reset

The I2C_EN bit in the I2C configuration register (I2C_CON) can also reset the
I2C module. When the system bus reset is removed (RESET_ = 1),
I2C_EN = 0 keeps the I2C module in reset state.

7.8.2.4 Prescaler (ICLK)

The I2C module is operated with an internal ~12-MHz clock (ICLK). This clock
is generated via the I2C prescaler block. The prescaler consists of an 8-bit
register; I2C_PSC is used for dividing down the system peripheral clock
(MPUXOR_CK) to obtain a ~12-MHz clock for the I2C module (see
Figure 7–30).

Figure 7–30. Prescale Sampling Clock Divider Value

1
(PSC+1)

MPUXOR_CK ICLK

0x0:
0x1:

↓
0xFF:

Divide by 1
Divide by 2

↓
Divide by 256

Values after reset are low (All 8 bits).

Noise Filter

The noise filter suppresses any noise that is 50 ns or less. It is designed to
suppress noise with one ICLK assuming the lower and upper limits of ICLK are
8 MHz and 16 MHz respectively.

7.8.2.5 I2C Interrupts

The I2C module generates five types of interrupt: arbitration-lost, no-acknowl-
edge, registers-ready-for-access, receive, and transmit. These five interrupts
are accompanied with five interrupt masks and flags defined in the I2C_IE and
I2C_STAT registers respectively.

An arbitration-lost interrupt (AL) is generated when the I2C arbitration
procedure is lost.

Inter-Integrated Circuit Controller

 7-66

A no-acknowledge interrupt (NACK) is generated when the master I2C does
not receive an acknowledge from the receiver.

A registers-ready-for-access interrupt (ARDY) is generated by the I2C when
the previously programmed address, data and command have been per-
formed and the status bits has been updated. This interrupt is used to let the
local host knows that the I2C registers are ready to be accessed.

Receive interrupt/status (RRDY) is generated when there was received data
ready to be read by the local host from the I2C_DATA register. This bit can also
be polled by the local host to read the received data from the I2C_DATA
register.

Transmit interrupt/status (XRDY) is generated when the local host needs to
put another data in the I2C_DATA register after the transmitted data has been
shifted out on the SDA pin. This bit can also polled by the local host to write
the next transmitted data into the I2C_DATA register.

The interrupt vector register, I2C_IVR, contains one of the binary-coded-inter-
rupt-vector to indicate which interrupt has occurred. Reading the I2C_IVR
clears the interrupt flag; if other interrupts are pending, a new interrupt is gen-
erated. If there are more than one interrupt flag, reading the I2C_IVR clears
the highest priority interrupt flag.

The I2C interrupt signal (I2C_IRQ) is one local host pulse clock wide active
high signal. It must be considered an edge-sensitive input by the interrupt
handler.

7.8.2.6 DMA Events

The I2C module can generate two DMA requests events, read (I2C_DMA_RX)
and write (I2C_DMA_TX), that can be used by the DMA controller to synchro-
nously read received data from the I2C_DATA and write transmitted data to the
I2C_DATA register. The DMA read and write requests are generated in a simi-
lar manner as RRDY and XRDY respectively.

The I2C DMA request signals (I2C_DMA_TX and I2C_DMA_RX) are one local
host-pulse-clock-wide, active high signals for every new 16-bit word to be read
or write in the FIFOs. They must be considered as edge sensitive inputs by the
DMA.

Inter-Integrated Circuit Controller

7-67MPU Public Peripherals

7.8.2.7 I2C Registers

Table 7–52 lists the I2C registers. Table 7–53 through Table 7–71 describe the
register bits.

Table 7–52. I2C Registers

Register Description Access
Offset

Address

I2C_REV I2C module version R 0x00

I2C_IE I2C interrupt enable R/W 0x04

I2C_STAT I2C status R 0x08

I2C_IV I2C interrupt vector R 0x0C

Reserved 0x10

I2C_BUF I2C buffer configuration R/W 0x14

I2C_CNT I2C data counter R/W 0x18

I2C_DATA I2C data access R/W 0x1C

Reserved 0x20

I2C_CON I2C configuration R/W 0x24

I2C_OA I2C own address R/W 0x28

I2C_SA I2C slave address R/W 0x2C

I2C_PSC I2C clock prescaler R/W Ox30

I2C_SCLL I2C SCL low time control R/W 0x34

I2C_SCLH I2C SCL high time control R/W 0x38

I2C_SYSTEST I2C system test R/W 0x3C

The read-only I2C module version register (I2C_REV) contains the hard coded
revision number of the module. A write to this register has no effect.

This 8-bit field (7:0) indicates the revision number of the current I2C controller
module. Its value is fixed by hardware and corresponds to the RTL revision of
this module.

The four LSBs indicate a minor revision.

Inter-Integrated Circuit Controller

 7-68

The four MSBs indicate a major revision.

� Ex: 0x10: version 1.0
� 0x11: version 1.1

A reset has no effect on the value returned.

Table 7–53. I2C Module Version Register (I2C_REV)

Bit Name Description

15–8 – Reserved

7-0 REV Module version number

The read/write I2C interrupt enable register (I2C_IE) controls interrupts mask/
unmask function.

Table 7–54. I2C Interrupt Enable Register (I2C_IE)

Bit Name Description

15–5 – Reserved

4 XRDY_IE Transmit data ready interrupt enable

3 RRDY_IE Receive data ready interrupt enable

2 ARDY_IE Register access ready interrupt enable

1 NACK_IE No acknowledgment interrupt enable

0 AL_IE Arbitration lost interrupt enable

Common to all bits:

When a bit location is set to 1 by the local host, an interrupt is signaled to the
local host if the corresponding bit location in the I2C status register (I2C_STAT)
is asserted to 1 by the core.

If set to 0 the interrupt is masked and not signaled to the local host.

� 0: Interrupt disabled
� 1: Interrupt enabled

Values after reset are low (all bits)

Inter-Integrated Circuit Controller

7-69MPU Public Peripherals

The read-only I2C status register (I2C_STAT) provides core status information
for interrupt handling and other I2C control management. This register is
always read before reading the I2C_IV register itself to retain an accurate
status (some bits are cleared following a read into I2C_IV).

Table 7–55. I2C Status Register (I2C_STAT)

Bit Name Description

15 SBD Single byte data

14–13 – Reserved

12 BB Bus busy

11 ROVR Receive overrun

10 XUDF Transmit underflow

9 AAS Address as slave

8 AD0 Address zero

7:5 – Reserved

4 XRDY Transmit data ready

3 RRDY Receive data ready

2 ARDY Register access ready

1 NACK No acknowledgment interrupt enable

0 AL Arbitration lost interrupt enable

Single Byte Data (SBD)

This read-only bit (15) is set to 1 in slave receive or master receive modes
when the last byte that was read from I2C_DATA register contains a single
valid byte.

This bit is cleared to 0 by the core when the local host reads the I2C_IV register
if INTCODE is register access ready.

� When SBD = 1, in little-endian data format (BE = 0) the MS byte reads as
0x00 and in big-endian format (BE = 1) the LS byte reads as 0x00.

� Whenever the number of bytes to be received is unknown (ex: slave re-
ceiver), the local host must poll this bit prior to attempting to read I2C_IV.

� 0: No action
� 1: Single valid byte in last 16-bit data read

Value after reset is low.

Inter-Integrated Circuit Controller

 7-70

Bus Busy (BB)

This read-only bit (12) indicates the state of the serial bus.

� In the slave mode, on reception of a start condition, the device sets BB to
1. BB is clear to 0 after reception of a stop condition.

� In the master mode, the software controls BB. To start a transmission with
a start condition, MST, TRX, and STT must be set to 1. To end a transmis-
sion with a stop condition, STP must be set to 1. When BB = 1 and STT
is set to a 1, a restart condition is generated.

� 0: Bus is free.

� 1: Bus is occupied.

Value after reset is low.

Receive Overrun (ROVR)

Receive mode only.

This read-only bit (11) indicates whether the receiver has experienced over-
run. Overrun occurs when the receive shift register (ICRSR) is full and the
receive FIFO is full. An overrun condition does not result in a data loss, the
peripheral is just holding the bus (low on SCL) and prevent others bytes from
being received.

� ROVR is set to 1 when the I2C has recognized an overrun.

� ROVR is clear when reading the I2C_DATA register or resetting the I2C
(I2C_EN=0).

� 0: Normal operation

� 1: Receiver overrun

Value after reset is low.

Transmit Underflow (XUDF)

This read-only bit (10) indicates whether the transmitter has experienced
underflow.

� In the master transmit mode, underflow occurs when the transmit shift reg-
ister (ICXSR) is empty, the transmit FIFO is empty, and there are still bytes
to transmit (DCOUNT ≠ 0).

� In the slave transmit mode, underflow occurs when the transmit shift regis-
ter (ICXSR) is empty, the transmit FIFO is empty, and there are still bytes
to transmit (read request from external I2C master).

Inter-Integrated Circuit Controller

7-71MPU Public Peripherals

� XUDF is set to 1 when the I2C has recognized an underflow. The core
holds the line till the underflow cause has disappeared.

� XUDF is clear when writing I2C_DATA register or resetting the I2C
(I2C_EN=0).

� 0: Normal operation

� 1: Transmit underflow

Value after reset is low.

Address As Slave (AAS)

This read-only bit (9) is set to 1 by the device when it has recognized its own
slave address or an address of all (8) zeros. The AAS bit is reset to 0 by restart
or stop.

� 0: No action

� 1: Address as slave

Value after reset is low.

Address Zero Status (AD0)/General Call

This read-only bit (8) is set to 1 by the device if it detects the address of all eight
zeros (that is, general call). The AD0 bit is reset to 0 (default value) when a start
or stop condition is detected.

This bit must be checked following a shared NACK/general call Interrupt to
determine the source of the interrupt.

When this bit is set to 1, AAS also reads as set to 1.

� 0: No action

� 1: General call

Value after reset is low.

Inter-Integrated Circuit Controller

 7-72

Transmit Data Ready (XRDY)

Transmit mode only.

XRDY (bit 4) is set to 1 when I2C peripheral is a master or slave transmitter,
the local host is able to write a new data into the I2C_DATA register, and the
transmitter still requires a new data. A master transmitter requests new data
if DCOUNT ≠ 0, and a slave transmitter requests new data if a read request
from external master.

Note:

The transmitter requests 2 bytes to be written even if only a single byte is
needed. In this case, the other byte must be filled with a dummy 0x00 value
that is not transmitted over the I2C line.

XRDY is automatically cleared to 0 by the core when I2C_DATA is written and
the transmit FIFO buffer is full. The local host can also poll this bit to write newly
transmitted data into I2C_DATA register.

� 0: Transmit buffer full (or receiver mode)

� 1: Transmit data ready (for write) and byte is needed.

Value after reset is low.

Receive Data Ready (RRDY)

RRDY (bit 3) is set to 1 when the local host is able to read new data from the
I2C_DATA register. RRDY is automatically cleared to 0 by the core when the
I2C_DATA is read and the receive FIFO buffer is empty. The local host can also
poll this bit to read the received data in the I2C_DATA register.

Interrupt mode, the local host needs to poll this bit after each read to I2C_DATA
to ensure that there is no other data on the FIFO waiting to be read. Indeed,
the RRDY must be cleared to 0 to receive a new RRDY interrupt.

� 0: Receive buffer empty

� 1: Receive data ready (for read)

Value after reset is low.

Inter-Integrated Circuit Controller

7-73MPU Public Peripherals

Register Access Ready (ARDY)

This bit (2) when set to 1 indicates that the previously programmed data and
command (receive or transmit, master or slave) have been performed and the
status bit has been updated. This flag is used by the local host to let it know
that the I2C registers are ready to be accessed again.

Table 7–56. Register Access Ready (ARDY) Set Conditions

Mode Others ARDY Set Conditions

Master transmit STP = 1, RM = 0 DCOUNT=0

Master receive STP = 1, RM = 0 DCOUNT = 0 and receiver FIFO empty

Master transmit or
receive

STP = 0, RM = 0 DCOUNT passed 0

Master transmit or
receive

RM=1 Never

Slave transmit – Stop condition received from master

Slave receive – Stop condition and receiver FIFO empty

This bit is cleared to 0 by the core with a read of the matching interrupt vector
in I2C_IV register.

� 0: No action

� 1: Access ready

Value after reset is low.

No Acknowledgment (NACK)

The no acknowledge flag bit (1) is set when the hardware detects no acknowl-
edge has been received.

This bit is cleared to 0 by the core with a read of the matching interrupt vector
in I2C_IV register.

� 0: Normal/no action required

� 1: NACK

Value after reset is low.

When a NACK occurs, the system has to perform the following actions to
recover:

1) Read the INTCODE in the I2C_IV register to release NACK in I2C_STAT.

Inter-Integrated Circuit Controller

 7-74

2) Write to the STP bit in the I2C_CON register to realse I2C data line.

Do not poll the NACK and AL bits in the I2C_CON register because an up-
date could be missed. These bits require an interrupt process to be han-
dled correctly (also, the INTCODE field in the I2C_IV register should be
read before any action is taken in the subroutine).

Arbitration Lost (AL)

The arbitration lost flag bit is set to 1 when the device in the master transmitter
mode senses it has lost an arbitration when two or more transmitters start a
transmission almost simultaneously or when the I2C attempts to start a trans-
fer while BB (bus busy) is 1.

When this is set to 1 due to arbitration lost, the MST/STP bits are automatically
cleared by the core and the I2C becomes a slave receiver.

This bit is cleared to 0 by the core with a read of the matching interrupt vector
in I2C_IV register.

� 0: Normal/no action required
� 1: Arbitration lost

Value after reset is low.

Table 7–57. I2C Interrupt Vector Register (I2C_IV)

Bit Name Description

15–3 – Reserved

2–0 INTCODE Interrupt code

Interrupt Code (INTCODE)

The binary-coded-interrupt vector (bit 2–> 0) indicates which interrupt has
occurred. Reading the I2C_IV clears the interrupt flag; if other interrupts are
pending, a new interrupt is generated. If there is more than one interrupt flag,
reading the I2C_IV clears the highest priority interrupt flag.

Values after reset are low (all 3 bits).

Inter-Integrated Circuit Controller

7-75MPU Public Peripherals

Table 7–58. Interrupt Code (INTCODE) Conditions

Interrupt Code Interrupt Occurred Priority

000 None –

001 Arbitration lost interrupt Highest

010 No acknowledgement interrupt/general call ↓

011 Register access ready interrupt

100 Receive data ready interrupt

101 Transmit data ready interrupt Lowest

Others Reserved –

The read/write I2C buffer configuration register (I2C_BUF) enables DMA
transfers.

Table 7–59. I2C Buffer Configuration Register (I2C_BUF)

Bit Name Description

15 RDMA_EN Receive DMA channel enable

14–8 – Reserved

7 XDMA_EN Transmit DMA channel enable

6–0 – Reserved

Receive DMA Channel Enable (RDMA_EN)

When this bit (15) is set to 1, the receive DMA channel is enabled and the
receive data ready interrupt is automatically disabled (RRDY_IE bit cleared).

� 0: Receive DMA channel disabled
� 1: Receive DMA channel enabled

Value after reset is low.

Transmit DMA Channel Enable (XDMA_EN)

When this bit is set to 1, the transmit DMA channel is enabled and the transmit
data ready interrupt is automatically disabled (XRDY_IE bit cleared).

� 0: Transmit DMA channel disabled
� 1: Transmit DMA channel enabled

Value after reset is low.

The read/write I2C data counter register (I2C_CNT) controls the numbers of
bytes in the I2C data payload.

Inter-Integrated Circuit Controller

 7-76

Table 7–60. I2C Data Counter Register (I2C_CNT)

Bit Name Description

15–0 DCOUNT Data count

Data Count (DCOUNT)

Master mode only (receive or transmit).

This 16-bit countdown counter decrements by 1 for every byte received or
sent. A write initializes DCOUNT to a saved initial value. A read returns the
number of bytes that are yet to be received or sent. A read into DCOUNT re-
turns the initial value only before a start condition and after a stop condition.

When DCOUNT reaches 0, the core generates a stop condition if a stop condi-
tion was specified (STP = 1) and the ARDY status flag is set to 1.

If STP = 0, then the I2C asserts SCL = 0 when DCOUNT reaches 0. The local
host can then reprogram DCOUNT to a new value and resume sending or
receiving data with a new start condition (restart). This process repeats until
the STP is set to 1 by the LH.

The ARDY flag is set each time DCOUNT reaches 0 and DCOUNT is reloaded
to its initial value.

In slave mode (receive or transmit), DCOUNT is not used.

� 0x0: Reserved value. Do not use this setting.

� 0x1: Data counter = 1 bytes.

� ↓ ↓

� 0xFFFF: Data counter = 65535 bytes (216 -1)

Note that DCOUNT is a don’t care when RM is set to 1.

Values after reset are low (all 16 bits).

Inter-Integrated Circuit Controller

7-77MPU Public Peripherals

The I2C data access register (I2C_DATA) is the entry point for the local host
to read data from, or write data into, the FIFO buffer. The FIFO size is 2x16bits
(4 bytes). Bytes within a word are stored and read in little endian format
(I2C_CON:BE=0) or big endian format (I2C_CON:BE=1).

Table 7–61. I2C Data Access Register (I2C_DATA)

Bit Name Description

15–0 DATA Transmit/Receive FIFO data

When read, this register contains the received I2C data packet (1 or 2 bytes).
This register must be accessed in 16-bit mode by the LH. In case of an odd
number of bytes received to read, the upper byte of the last access always
reads as 0x00. The local host must check the SBD status bit in I2C_STAT
register to flush this null byte.

When written, this register contains the byte(s) value(s) to transmit over the
I2C data line (1or 2 bytes). This register must be accessed in 16-bit mode
except for the last byte in case of an odd number of bytes to transmit. The last
byte of the data packet may be written using a byte write access or a 16-bit
write access.

When transmit FIFO, the last data transfer must be a 16-bit transfer when it
is written by the DMA, and it can either be an 8-bit or 16-bit transfer when it is
written by the MPU. When an odd number of bytes is to be transferred, the
DMA uses all 16-bit transfers and fills the unused byte (upper or lower byte
according to the selected endianism) of the last 16-bit transfers with all 0s.

In SYSTEST loop back mode (I2C_SYSTEST:TMODE=11) this register is also
the entry/receive point for the data.

Values after reset are low (all 16 bits).

A read access when the buffer is empty returns the previous read data value.
A write access when the buffer is full is ignored. In both events, the FIFO point-
ers are not updated and a remote access error (hardware error) is generated
(access qualifier). No remote error is generated if the local host performs a
16-bit access if the buffer contains a single byte.

Inter-Integrated Circuit Controller

 7-78

Table 7–62. I2C Configuration Register (I2C_CON)

Bit Name Description

15 I2C_EN I2C module enable

14 BE Big endian mode

13–12 Reserved

11 STB Start byte mode (master mode only)

10 MST Master/slave mode

9 TRX Transmitter/receiver mode (master mode only)

8 XA Expand address

7–3 Reserved

2 RM Repeat mode (master mode only)

1 STP Stop condition (master mode only)

0 STT Start condition (master mode only)

I2C Module Enable (I2C_EN)

When this bit (15) is set to 0, the I2C controller is not enabled and reset. When
0, the receive and transmit FIFOs are cleared and all status bits are set to their
default values.

The local host must set this bit to 1 for normal operation.

� 0: I2C controller in reset

� 1: I2C module enabled

Value after reset is low.

I2C Big Endian (BE)

When this bit (14) is 0 (default), the FIFO is accessed in little endian format.
In transmit mode, the LS byte (I2C_DATA[7:0]) is transmitted first and the MS
byte (I2C_DATA[15:8]) is transmitted in 2nd position over the I2C line. Con-
versely, in receive mode, the 1st or odd byte received (1, 3, 5…) is stored in
the LS byte position and the 2nd or even byte received in the MS byte position.

When the local host sets this bit to a 1, the FIFO is accessed in big endian for-
mat. In transmit mode, the MS byte (I2C_DATA[15:8]) is transmitted first and
the LS byte (I2C_DATA[7:0]) is transmitted in 2nd position over the I2C line.
Conversely, in receive mode, the 1st or odd byte received (1,3, 5…) is stored
in the MS byte position and the 2nd or even byte received in the LS byte
position.

Inter-Integrated Circuit Controller

7-79MPU Public Peripherals

� 0: Little endian mode

� 1: Big endian mode

Value after reset is low.

Start Byte (STB)

Master mode only.

The start byte mode bit (11) is set to 1 by the local host to configure the I2C in
start byte mode (I2C_SA=00000001). See the Philips I2C specification for
more details.

� 0: Normal mode

� 1: Start byte mode

Value after reset is low.

Master/Slave Mode (MST)

When this bit (10) is cleared, the I2C controller is in the slave mode and the
serial clock (SCL) is received from the master device.

When this bit is set, the I2C controller is in the master mode and it generates
the serial clock.

Once set, this bit is automatically cleared by a stop condition.

� 0: Slave mode

� 1: Master mode

Value after reset is low.

Transmitter/Receiver Mode (TRX)

Master mode only.

When this bit (9) is cleared, the I2C controller is in the receiver mode and data
on data line SDA is shifted into the receiver FIFO and can be read from
I2C_DATA register.

When this bit is set, the I2C controller is in the transmitter mode and the data
written in the transmitter FIFO via I2C_DATA is shifted out on data line SDA.

� 0: Receiver mode

� 1: Transmitter mode

Value after reset is low.

Table 7–63 defines the operating modes.

Inter-Integrated Circuit Controller

 7-80

Table 7–63. Operating Modes

MST TRX Operating Modes

0 x Slave receiver

0 x Slave transmitter

1 0 Master receiver

1 1 Master transmitter

Expand Address (XA)

When set, this bit (8) expands the address to 10-bit.

� 0: 7-bit address mode

� 1: 10-bit address mode

Value after reset is low.

Repeat Mode (RM)

Mater mode only.

This bit (2) is set to a 1 by the local host to put the I2C in the repeat mode. In
this mode, data is continuously transmitted out of the I2C_DATA transmit reg-
ister until the STP bit is set to 1 regardless of DCOUNT value. This bit is don’t
care if the I2C is configured in slave mode.

� 0: Normal mode

� 1: Repeat mode

Value after reset is low.

Table 7–64. Repeat Mode Conditions

RM STT STP Conditions Bus Activities Mode

0 0 0 Idle None NA

0 0 1 Stop P NA

0 1 0 (Re)Start S-A-D..(n)..D Repeat n

0 1 1 (Re)Start-Stop S-A-D..(n)..D-P Repeat n

1 0 0 Idle none NA

1 0 1 Stop P NA

1 1 0 (Re)Start S-A-D-D-D….. Continuous

1 1 1 Reserved None NA

Inter-Integrated Circuit Controller

7-81MPU Public Peripherals

Stop Condition (STP)

Master mode only.

This bit (1) can be set to a 1 by the local host to generate a stop condition. It
is reset to 0 by the hardware after the stop condition has been generated. The
stop condition is generated when DCOUNT passes 0.

� 0: No action or stop condition detected

� 1: Stop condition queried

Value after reset is low.

Start Condition (STT)

Master mode only.

This bit (0) can be set to a 1 by the local host to generate a start condition. It
is reset to 0 by the hardware after the start condition has been generated. The
start/stop bits can be configured to generate different transfer formats. The
STT and STP can be used to terminate the repeat mode.

� 0: No action or start condition generated

� 1: Start

Value after reset is low.

Table 7–65. STT Settings

STT STP Conditions Bus Activities

1 0 Start S-A-D

0 1 Stop P

1 1 Start/stop (COUNT= n) S-A-D..(n)..D-P

1 0 Start (DCOUNT= n) S-A-D..(n)..D

DCOUNT is data count value.

Inter-Integrated Circuit Controller

 7-82

The I2C own address register (I2C_OA) specifies the module I2C 7-bit or 10-bit
address (own address).

Table 7–66. I2C Own Address Register (I2C_OA)

Bit Name Description

15–10 Reserved

9–0 OA Own address

This field (bits 9-0) specifies either:

� A 10-bit address coded on OA[9:0] when XA (expand address,
I2C_MCR[8]) is set to 1.

� A 7-bit address coded on OA[6:0] when XA (expand address,
I2C_MCR[8]) is set to 0. In this case, OA[9:7] bits must be set to 000 by
application software.

Values after reset are low (all 10 bits).

The I2C slave address register (I2C_SA) specifies the addressed I2C module
7-bit or 10-bit address (slave address).

Table 7–67. I2C Slave Address Register (I2C_SA)

Bit Name Description

15–10 Reserved

9–0 SA Slave address

This field (bits 9:0) specifies either:

� A 10-bit address coded on SA[9:0] when XA (expand address, I2C_MCR[8]) is
set to 1.

� A 7-bit address coded on SA[6:0] when XA (expand address, I2C_MCR[8]) is
set to 0. In this case, SA[9:7] bits must be set to 000 by application software.

Values after reset are high (all 10 bits).

Inter-Integrated Circuit Controller

7-83MPU Public Peripherals

This register is used to specify the internal clocking of the I2C peripheral core.

Table 7–68. I2C Clock Prescaler Register (I2C_PSC)

Bit Name Description

15–8 Reserved

7–0 PSC Prescale sampling clock divider value

The core (bits 7-0) uses this 8-bit value to divide the peripheral clock
(MPUXOR_CK) to generate its own internal sampling clock (ICLK). The core
logic is sampled at the clock rate of the system clock for the module divided by
(PSC+1):

� 0x0: Divide by 1

� 0x1: Divide by 2

� All other settings are Reserved.

Values after reset are low (all 8 bits).

This I2C SCL low-time control register (I2C_SCLL) is used to determine the
SCL low-time value when master.

Table 7–69. I2C SCL Low-Time Control Register (I2C_SCLL)

Bit Name Description

15–8 Reserved

7–0 SCLL SCL low0x0: 6 * ICLK time period time

Master mode only.

This 8-bit value (bits 7:0) is used to generate the SCL low-time value (tLOW) when
the peripheral is operated in master mode.

The SCL low-time equals (SCLL+6) * ICLK time period (internal sampling clock
rate).

� 0x0: 6 * ICLK time period

� 0x1: 7 * ICLK time period

� ↓ ↓

� 0xFF: 261 * ICLK time period

Values after reset are low (all 10 bits).

Inter-Integrated Circuit Controller

 7-84

The I2C SCL high-time control register (I2C_SCLL) determines the SCL high-
time value when master.

Table 7–70. I2C SCL High Time Control Register (I2C_SCLH)

Bit Name Description

15–8 Reserved

7–0 SCLH SCL high time

Master mode only.

This 8-bit value (bits 7-0) is used to generate the SCL high time value (tHIGH)
when the peripheral is operated in master mode.

The SCL high time equals (SCLH+6) * ICLK time period (internal sampling clock
rate).

� 0x0: 6 * ICLK time period

� 0x1: 7 * ICLK time period

� ↓ ↓

� 0xFF: 261 * ICLK time period

Values after reset are low (all 10 bits).

The I2C system test register (I2C_SYSTEST) is used to facilitate system level
test by overriding some of the standard functional features of the peripheral.
It can permit the test of SCL counters, control the signals that connect to I/O
pins, or create digital loop-back for self-test when the module is configured in
system test (SYSTEST) mode. It also provides stop/no-stop function in debug
mode. Never set for normal I2C operation.

Table 7–71. I2C System Test Register (I2C_SYSTEST)

Bit Name Description

15 ST_EN System test enable

14 FREE Free running mode (on breakpoint)

13–12 TMODE Test mode select

11–4 Reserved

3 SCL_I SCL line sense input value

2 SCL_O SCL line drive output value

1 SDA_I SDA line sense input value

0 SDA_O SDA line drive output value

Inter-Integrated Circuit Controller

7-85MPU Public Peripherals

System Test Enable (ST_EN)

This bit (15) must be set to 1 to permit other system test registers bits to be set.

� 0: Normal mode

� 1: System test enabled

Value after reset is low.

Free Running Mode After Breakpoint (FREE)

This bit (14) is used to determine the state of the I2C controller when a break-
point is encountered in the HLL debugger. This bit can be set independently
of the ST_EN value.

FREE = 0: Stops immediately if SCL is low and keeps driving SCL low whether
I2C is master transmitter/receiver. If SCL is high, I2C waits until SCL becomes
low and then stops. If the I2C is a slave, it stops when the transmission/
receiving completes.

FREE = 1: The I2C runs free.

� 0: Stop mode (on breakpoint condition)

� 1: Free-running mode

Value after reset is low.

Test Mode Select (TMODE)

In normal functional mode (ST_EN = 0), these bits (13-12) are don’t care. They
read always as 00 and a write is ignored.

In system test mode (ST_EN = 1), these bits can be set according to the follow-
ing table to permit various system tests.

Table 7–72. TMODE Settings

TMODE Mode

00 Functional mode (default)

01 Reserved

10 Test of SCL counters (SCLL, SCLH, PSC)

11 Loop back mode select + SDA/SCL IO mode select

Inter-Integrated Circuit Controller

 7-86

Values after reset are low (2 bits).

In SCL counter test mode, the SCL pin is driven with a permanent clock as
if master with the parameters set in I2C_PSC, I2C_SCLL, and I2C_SCLH
registers.

Loopback mode: In the master transmit mode only, data transmitted out of the
I2C_DATA register (write action) is received in the same I2C_DATA register
via an internal path through the 1-deep FIFO buffers. The DMA and interrupt
requests is normally generated if enabled.

In SDA/SCL I/O mode, the SCL IO and SDA IO are controlled via the
I2C_SYSTEST[3:0] register bits.

SCL Line Sense Input Value (SCL_I)

In normal functional mode (ST_EN = 0), this read-only bit (3) always reads
as 0.

In system test mode (ST_EN = 1 and TMODE = 11), this read only-bit returns
the logical state taken by the SCL line (either 1 or 0).

Value after reset is low.

SCL Line Drive Output Value (SCL_O)

In normal functional mode (ST_EN = 0), this bit (2) is don’t care, and always
reads as 0. Writes are ignored.

In system test mode (ST_EN = 1 and TMODE = 11), a 0 forces a low level on
the SCL line and a 1 puts the I2C output driver in a high-impedance state.

� 0: Force 0 on the SCL data line

� 1: SCL output driver in HI-Z state

Value after reset is low.

SDA Line Sense Input Value (SDA_I)

In normal functional mode (ST_EN = 0), this read-only-bit (1) always reads
as 0.

In system test mode (ST_EN = 1 and TMODE = 11), this read-only bit returns
the logical state taken by the SDA line (either 1 or 0).

Value after reset is low.

Inter-Integrated Circuit Controller

7-87MPU Public Peripherals

SDA Line Drive Output Value (SDA_O)

In normal functional mode (ST_EN = 0), this bit (0) is don’t care, and always
reads as 0. Writes are ignored.

In system test mode (ST_EN = 1 and TMODE = 11), a 0 forces a low level on
the SDA line and a 1 puts the I2C output driver in a high-impedance state.

� 0: Forces 0 on the SDA data line

� 1: SDA output driver in HIZ state

Value after reset is low.

7.8.3 Programming

7.8.3.1 Main Program

State after reset:

1) Program the prescaler to obtain an approximately 12-MHz I2C module
clock (I2C_PSC = x; this value is to be calculated and is dependent on the
CPU frequency).

� If using interrupt for transmit/receive data, enable interrupt masks.

� If using DMA for transmit/receive data, enable the DMA and program
the DMA controller.

2) Take the I2C module out of reset (I2C_EN = 1).

Initialization procedure: Configure the I2C mode register (I2C_CON) bits.

Program clock control registers (I2C_SCLL and I2C_SCLH): Program the I2C
clock to obtain 100K bps or 400K bps (I2C_SCLL = x and I2C_SCLH = x; these
values are to be calculated and are dependent on the CPU frequency).

� Configure address registers:

� Configure its own address (I2C_OA = x).

� Configure the slave address (I2C_SA = x).

� Program transmit data register (I2C_DATA): If in master transmitter mode,
program the data transmit register (I2C_DATA = x).

� Configure status and mode register (I2C_STAT): Poll the bus busy (BB)
bit in the I2C status register (I2C_STAT); if it is cleared to 0 (bus not busy),
configure START/STOP condition to initiate a transfer.

Inter-Integrated Circuit Controller

 7-88

� Poll receive data: Poll the receive data ready interrupt flag bit (RRDY) in
the I2C status register (I2C_STAT), use the RRDY interrupt, or use the
DMA to read the receive data in the data receive register (I2C_DATA).

� Poll transmit data: Poll the transmit data ready interrupt flag bit (XRDY) in
the I2C status register (I2C_STAT), use the XRDY interrupt, or use the
DMA to write data into the data transmit register (I2C_DATA).

Interrupt subroutines:

1) Test for arbitration lost and resolve accordingly.
2) Test for no-acknowledge and resolve accordingly.
3) Test for register access ready and resolve accordingly.
4) Test for receive data and resolve accordingly.
5) Test for transmit data and resolve accordingly.

7.8.4 Flowcharts

Figure 7–31 through Figure 7–42 show the master/slave I2C flowcharts.

Figure 7–31. Setup Procedure

Start

Write I2C_OA.

Write I2C_IE.

Write I2C_SCLL.

Write I2C_SCLH.

Use
repeat mode

(RM=1)
? Write I2C_CNT.

No

Yes

Write I2C_SA.

End

Inter-Integrated Circuit Controller

7-89MPU Public Peripherals

Figure 7–32. Master Transmitter Mode, RM = 1

Bus active

Start

Is
bus free
(BB=0)

?

Write I2C_CON
With 8605h.

End

Read I2C_STAT.

No

Yes

1

n = 0 (data byte counter):
m = Number of data bytes

to be transferred

Read I2C_STAT.

Is
ACK returned

(NACK=0)
?

2

STT and STP are
cleared to 0 by hardware.

No

Yes

Reprogram
the registers.

STT = 1
(new start)

?

Yes

No STP = 1
?

No

3

Can
update

the registers
(XUDF=1)

?

No

Yes

Read I2C_STAT.

Write I2C_DATA.

n = n + 2

Are
m bytes

transferred
(n. = m)

?

Is
send data

being requested
(XUDF=1)

?

Yes

No

Yes

No

Start is
generated.

Start
address
is sent.

New
START is
generated.

STOP is
generated.

DATA is
sent.

Set appropriate values to every
bit of I2C_CON. I2C_EN bit must be set
to 1 to take I2C out of reset condition. Setting
I2C_EN and setting other mode bits can be done
simultaneously.

Because RM=1. hardware counter does not run.
Thus, software counter counts the number of the
required transfer.

The I2C goes into slave receiver mode.

[EXPECTED COMMAND]
At the beginning,
(STT,STP) = (1.0)
in the middle,
(STT, STP) = (0.0)
At the end,
(STT, STP) = (0.1)

[EXPECTED I2C_IE]
I2C_IE = 00000b

3

2

1

Inter-Integrated Circuit Controller

 7-90

Figure 7–33. Master Receiver Mode, RM = 1, Polling 1 (Software Counter, Number of the
Receive Data Fixed)

Start

Is
bus free
(BB=0)

?

Write I2C_CON
with 8405h.

End

Read I2C_STAT.

No

Yes

1

n = 0 (data byte counter):
m = Number of data bytes

to be transferred

Read I2C_STAT.

Is
ACK returned

(NACK=0)
?

2

STT and STP are
cleared to 0 by hardware.

No

Yes

Reprogram
the registers.

STT = 1
(new start)

?

Yes

No STP = 1
?

No

3

Read I2C_DATA.

n = n + 2

Are
m bytes

transferred
(n. = m)

?

Is
send data

being requested
(XUDF=1)

?

Yes

No

Yes

No

Set appropriate values to every
bit of I2C_CON. I2C_EN bit must be set
to 1 to take I2C out of reset condition. Setting
I2C_EN and setting other mode bits can be done
simultaneously.

Because RM=1. hardware counter does not run.
Thus, software counter counts the number of the
required transfer.

The I2C goes into slave receiver mode.

Set STP = 1

[EXPECTED COMMAND]
At the beginning,
(STT,STP) = (1.0)
in the middle,
(STT, STP) = (0.0)
At the end,
(STT, STP) = (0.1)

[EXPECTED I2C_IE]
I2C_IE = 00000b

3

2

1

Reprogram
the registers.

Read I2C_DATA.

Yes

4

4

Inter-Integrated Circuit Controller

7-91MPU Public Peripherals

Figure 7–34. Master Receiver Mode, RM =1 , Polling 2 (Number of the Receive Data is
Variable, Data Contents Dependent)

Start

Is
bus free
(BB=0)

?

Write I2C_CON
with 8405h.

End

Read I2C_STAT.

No

Yes

1

Read I2C_STAT.

Is
ACK returned

(NACK=0)
?

2

STT and STP are
cleared to 0 by hardware.

No

Yes

Reprogram
the registers.

STT = 1
(new start)

?

Yes

No STP = 1
?

No

3

End
code

?

Is
received data
in I2C_DATA
(RRDY=1)

?

No

Yes

Set appropriate values to every
bit of I2C_CON. I2C_EN bit must be set
to 1 to take I2C out of reset condition. Setting
I2C_EN and setting other mode bits can be done
simultaneously.

Dummy read. The contents of this
read data has no meaning.

The I2C goes into slave receiver mode.

[EXPECTED COMMAND]
At the beginning,
(STT,STP) = (1.0)
in the middle,
(STT, STP) = (0.0)
At the end,
(STT, STP) = (0.1)

[EXPECTED I2C_IE]
I2C_IE = 00000b

3

2

1

Read I2C_DATA.

Yes

Reprogram
the registers.

Read I2C_DATA.

Yes

No

Inter-Integrated Circuit Controller

 7-92

Figure 7–35. Master Transmitter Mode, RM = 0, Polling

Start

Is
Bus free
(BB=0)

?

Write I2C_CON
with 8603h.

End

Read I2C_STAT.

No

Yes

Read I2C_STAT.

Is
ACK returned

(NACK=0)
?

STT and STP are
cleared to 0 by hardware.

No

Yes

Reprogram
the registers.

STT = 1
(new start)

?

Yes

No STP = 1
?

No

Can
update the
registers

(ARDY=1)
?

Set appropriate values to every
bit of I2C_CON. I2C_EN bit must be set
to 1 to take I2C out of reset condition. Setting
I2C_EN and setting other mode bits can be done
simultaneously.

Yes

[EXPECTED COMMAND]
At the beginning,
(STT,STP) = (1.0), (1.1), (1.0), (1.1)
in the middle,
(STT, STP) = (0.0), (0.1)
At the end,
(STT, STP) = (0.1)

[EXPECTED I2C_IE]
I2C_IE = 00000b

Yes

Is
send data

being requested
(XRDY=1)

?

No No

Yes

Write I2C_DATA.

The I2C goes into slave receiver mode.

Inter-Integrated Circuit Controller

7-93MPU Public Peripherals

Figure 7–36. Master Receiver Mode, RM = 0, Polling

Start

Is
Bus free
(BB=0)

?

Write I2C_CON
with 8403h.

End

Read I2C_STAT.

No

Yes

Read I2C_STAT.

Is
ACK returned

(NACK=0)
?

STT and STP are
cleared to 0 by hardware.

No

Yes

Reprogram
the registers.

STT = 1
(new start)

?

Yes

No STP = 1
?

No

Can
update the
registers

(ARDY=1)
?

Set appropriate values to every
bit of I2C_CON. I2C_EN bit must be set
to 1 to take I2C out of reset condition. Setting
I2C_EN and setting other mode bits can be done
simultaneously.

Yes

[EXPECTED COMMAND]
At the beginning,
(STT,STP) = (1.0), (1.1), (1.0), (1.1)
in the middle,
(STT, STP) = (0.0), (0.1)
At the end,
(STT, STP) = (0.1)

[EXPECTED I2C_IE]
I2C_IE = 00000b

Yes

Is
received data
in I2C_DATA
(RRDY=1)

?

No No

Yes

Read I2C_DATA.

The I2C goes into slave receiver mode.

Inter-Integrated Circuit Controller

 7-94

Figure 7–37. Master Transmitter Mode, RM = 0, Interrupt

Start

Is
Bus free
(BB=0)

?

Write I2C_CON
with 8603h.

End

Read I2C_STAT.

No

Yes

Is
ACK returned

(NACK=0)
?

STT and STP are
cleared to 0 by hardware.

No

Yes

Reprogram
the registers.

STT = 1
(new start)

?

Yes

No STP = 1
?

No

Are
n bytes

transferred
(ARDY=1)

?

Set appropriate values to every
bit of I2C_CON. I2C_EN bit must be set
to 1 to take I2C out of reset condition. Setting
I2C_EN and setting other mode bits can be done
simultaneously.

Yes

[EXPECTED COMMAND]
At the beginning,
(STT,STP) = (1.0), (1.1), (1.0), (1.1)
in the middle,
(STT, STP) = (0.0), (0.1)
At the end,
(STT, STP) = (0.1)

[EXPECTED I2C_IE]
I2C_IE = 11111b

Yes

Is
send data

being requested
(XRDY=1)

?

No No

Yes

Write I2C_DATA.

The I2C goes into slave receiver mode.

Read I2C_STAT.

Is
interrupt
received

?
No

Inter-Integrated Circuit Controller

7-95MPU Public Peripherals

Figure 7–38. Master Receiver Mode, RM = 0, Interrupt

Start

Is
Bus free
(BB=0)

?

Write I2C_CON
with 8403h.

End

Read I2C_STAT.

No

Yes

Is
ACK returned

(NACK=0)
?

STT and STP are
cleared to 0 by hardware.

No

Yes

Reprogram
the registers.

STT = 1
(new start)

?

Yes

No STP = 1
?

No

Are
n bytes

transferred
(ARDY=1)

?

Set appropriate values to every
bit of I2C_CON. I2C_EN bit must be set
to 1 to take I2C out of reset condition. Setting
I2C_EN and setting other mode bits can be done
simultaneously.

Yes

[EXPECTED COMMAND]
At the beginning,
(STT,STP) = (1.0), (1.1), (1.0), (1.1)
in the middle,
(STT, STP) = (0.0), (0.1)
At the end,
(STT, STP) = (0.1)

[EXPECTED I2C_IE]
I2C_IE = 11111b

Yes

Is
received data
in I2C_DATA
(RRDY=0)

?

No No

Yes

Read I2C_DATA.

The I2C goes into slave receiver mode.

Read I2C_STAT.

Is
interrupt
received

?
No

Inter-Integrated Circuit Controller

 7-96

Figure 7–39. Master Transmitter Mode, RM = 0, DMA

Start

Is
Bus free
(BB=0)

?

Write I2C_CON
with 8603h.

End

Read I2C_STAT.

No

Yes

Is
ACK returned

(NACK=0)
?

STT and STP are
cleared to 0 by hardware.

No

Yes

Reprogram
the registers.

STT = 1
(new start)

?

Yes

No STP = 1
?

No

Are
n bytes

transferred
(ARDY=1)

?

Set appropriate values to every
bit of I2C_CON. I2C_EN bit must be set
to 1 to take I2C out of reset condition. Setting
I2C_EN and setting other mode bits can be done
simultaneously.

Yes

[EXPECTED COMMAND]
At the beginning,
(STT,STP) = (1.0), (1.1), (1.0), (1.1)
in the middle,
(STT, STP) = (0.0), (0.1)
At the end,
(STT, STP) = (0.1)

[EXPECTED I2C_IE]
I2C_IE = 00111b

Yes

Is
DMA

interrupt
received

?

No

No

Yes

The I2C goes into slave receiver mode.

Read I2C_STAT.

Is I2C
interrupt
received

?
No

Take necessary
actions.

Inter-Integrated Circuit Controller

7-97MPU Public Peripherals

Figure 7–40. Master Receiver Mode, RM = 0, DMA

Start

Is
Bus free
(BB=0)

?

Write I2C_CON
with 8403h.

End

Read I2C_STAT.

No

Yes

Is
ACK returned

(NACK=0)
?

STT and STP are
cleared to 0 by hardware.

No

Yes

Reprogram
the registers.

STT = 1
(new start)

?

Yes

No STP = 1
?

No

Are
n bytes

transferred
(ARDY=1)

?

Set appropriate values to every
bit of I2C_CON. I2C_EN bit must be set
to 1 to take I2C out of reset condition. Setting
I2C_EN and setting other mode bits can be done
simultaneously.

Yes

[EXPECTED COMMAND]
At the beginning,
(STT,STP) = (1.0), (1.1), (1.0), (1.1)
in the middle,
(STT, STP) = (0.0), (0.1)
At the end,
(STT, STP) = (0.1)

[EXPECTED I2C_IE]
I2C_IE = 00111b

Yes

Is
DMA

interrupt
received

?

No

No

Yes

The I2C goes into slave receiver mode.

Read I2C_STAT.

Is I2C
interrupt
received

?
No

Take necessary
actions.

Inter-Integrated Circuit Controller

 7-98

Figure 7–41. Slave Transmitter/Receiver Mode, Polling

Write data
(XRDY=1)

?

Read I2C_STAT.

Start

Read I2C_DATA.Write I2C_DATA.

No

Yes

No

Yes

Read data
(RRDY=1)

?

Inter-Integrated Circuit Controller

7-99MPU Public Peripherals

Figure 7–42. Slave Transmitter/Receiver Mode, Interrupt

Read I2C_IV.

Start

Write I2C_DATA. Read I2C_DATA.

No

Yes

No

Yes

Transmit
(I2C_IV=5)

?

Is
interrupt
received

?

Receive
(I2C_IV=4)

?

Yes

No

Yes

LED Pulse Generator

 7-100

7.9 LED Pulse Generator

The LED pulse generator (LPG) module controls an indication LED (see
Figure 7–43). The blinking period is programmable between 152 ms and 4s,
and the LED can be switched on permanently. The OMAP5910 device has two
LPG modules. Each LPG module drives a single output pin on the OMAP5910
device which can be used to switch an LED driver.

Figure 7–43. LED Pulse Generator Block Diagram

LED

Bus

decoders

3 to 10

and

3 to 5

Programmable

Divider

Synchronous

or

nstrobe

CLK32K

Reset

lpgres

perm_on lpg_led

clk_256

perctrl

onctrl
perlpg

onlpg

TIPB

interface
control logic

for

output

and

counter

counter and

comparator

pulse
generator

Two

1

7.9.1 Features

The LPG has the following features:

� Divider generating a 256-Hz frequency clock
� TIPB control interface
� Two 8-bit registers to control the whole LPG block
� Decoder for three blink frequency control bits (LPG2-0)
� Decoder for three pulse width control bits (LPG5-3)
� Programmable counter with integrated comparison for the PWM
� Synchronous control logic for the output and the counter
� Multiplexer to generate a faster clock for testing

LED Pulse Generator

7-101MPU Public Peripherals

7.9.2 LPG Design

LCR bit 6 = 0 resets the whole pulse generator circuit (but not the control regis-
ter) and switches off the LED. It is possible to switch on the LED independently
from the pulse generator circuit with bit 7 of the LCR (1 = permanent light). A
device reset causes a reset to the whole LPG (with the control register) and
the output LPG_LED to zero asynchronously.

Because the TIPB write to the LPG control register is asynchronous, the value
written to the control register may be unstable for one blink period. Conse-
quently, the LED output could, in the worst case, be switched on at maximum
intensity during one additional blink period.

7.9.3 LPG Power Management

The LPG input clock comes from the 32-kHz ULPD clock, because it must work
even when the OMAP5910 system is in deep sleep mode. The internal clock
of the LPG runs with 256 Hz. For this reason the power consumption of this
block can be neglected. Nevertheless, switch the LPG_CLK off if LPG is not
used.

7.9.4 LPG Registers

Both receive and transmit registers are mapped in the MPU address space.

Two instances of LPG are mapped in the OMAP5910 device:

� First LPG: LPG_1 address is FFFB:D000
� Second LPG: LPG_2 address is FFFB:D800

Table 7–73 lists the LPG receive and transmit registers. Table 7–74 and
Table 7–77 describe the register bits.

Table 7–73. LED Pulse Generator Receive and Transmit Registers

Register Description Access Field Size Offset (hex)

LCR LPG control R/W 8 bits 0x00

PMR Power management R/W 8 bits 0x04

LED Pulse Generator

 7-102

Table 7–74. LPG Control Register (LCR)

Bit Name Function R/W
Reset
Value

7 PERM_ON Set high to force permanent light on.
Asynchronous writing and reading.

R/W 0

6 LPGRES LPG counter reset, active low.
Asynchronous writing and reading.

R/W 0

5–3 ONCTRL Time LED is on parameter.
Asynchronous writing and reading.

R/W 000

2–0 PERCTRL LED blink frequency.
Asynchronous writing and reading.

R/W 000

With the LCR bits 2-0, the blinking period of the LED is determined.

Table 7–75. LED Blinking Period

LCR Bit 2 LCR Bit 1 LCR Bit 0 Period of LED Number of Clock Cycles

0 0 0 125 ms 32

0 0 1 250 ms 64

0 1 0 500 ms 128

0 1 1 1 s 256

1 0 0 1.5 s 384

1 0 1 2 s 512

1 1 0 2.5 s 640

1 1 1 3 s 768

LED Pulse Generator

7-103MPU Public Peripherals

With the LCR bits 5-3, the on time of the LED is determined.

Table 7–76. LED On Time

LCR Bit 5 LCR Bit 4 LCR Bit 3 Time LED On Number of Clock Cycles

0 0 0 3.889 ms 1

0 0 1 7.789 ms 2

0 1 0 15.59 ms 4

0 1 1 31.39 ms 8

1 0 0 46.59 ms 12

1 0 1 62.59 ms 16

1 1 0 78.39 ms 20

1 1 1 93.59 ms 24

Table 7–77. Power Management Register (PMR)

Bit Name Value Function R/W
Reset
Value

0 CLK_EN Functional clock enable: R/W 0

0 Clock disabled

1 Clock enabled

Asynchronous writing and reading

McBSP2

 7-104

7.10 McBSP2

Multichannel buffered serial ports (McBSPs) are configurable, high-speed,
full-duplex serial ports that allow direct interfacing to external communication
devices. There are three McBSPs on OMAP5910. McBSP2 is on the MPU
public peripheral bus and is covered briefly in this section. McBSP1 and
McBSP3 are on the DSP public peripheral bus and are covered briefly in
Chapter 9, DSP Public Peripherals. For more detail on the functions of all three
McBSPs, see the TMS320C55x DSP Peripherals Reference Guide (literature
number SPRU317).

Key features of McBSP2 include:

� Full-duplex communication

� DMA support for both RX and TX transfers

� Double-buffered data registers, which allow a continuous data stream

� Independent framing and clocking for receives and transmits

� External shift clock generation or an internal programmable frequency
shift clock

� Multichannel transmits and receives of up to 128 channels.

� A wide selection of data sizes, including 8-, 12-, 16-, 20-, 24-, or 32-bits

� µ-Law and A-Law companding

� Data transfers with LSB or MSB first

� Programmable polarity for both frame synchronization and data clocks

� Highly programmable internal clock and frame generation

� RX and TX interrupts as well as RX data overrun interrupt

The operation of the three OMAP5910 McBSPs is consistent with SPRU317
with the following exceptions and clarifications:

� Only DXENA = 0 setting is supported

� The transmit output (DX) pins don not go to high-impedance state when
the transmitter is not actively sending data. In other words, the OMAP5910
always actively drives the DX pins.

� The CLKS input is only available on McBSP1.

� On McBSP1 and McBSP3, the receiver can only operate in slave mode.

� BIS is not supported.

McBSP2

7-105MPU Public Peripherals

Table 7–78 describes the McBSP2 pins. Table 7–79 lists the McBSP2 regis-
ters. Figure 7–44 shows the McBSP2 interface.

Table 7–78. McBSP2 Pin Descriptions

Pin I/O Direction Description

MCBSP2.CLKR In/out Receive clock

MCBSP2.CLKX In/out Transmit clock

MCBSP2.DR In Data input

MCBSP2.DX Out Data output

MCBSP2.FSR In/out Receive frame synchronization

MCBSP2.FSX In/out Transmit frame synchronization

The McBSP2 base address is FFFB:1000 (MPU memory map).

Table 7–79. McBSP2 Registers

Name Description Offset

DRR2 (15:0) Data receive register 2 0x00

DRR1 (15:0) Data receive register 1 0x02

DXR2 (15:0) Data transmit register 2 0x04

DXR1 (15:0) Data transmit register 1 0x06

SPCR2 (15:0) Serial port control register 2 0x08

SPCR1 (15:0) Serial port control register 1 0x0A

RCR2 (15:0) Receive control register 2 0x0C

RCR1 (15:0) Receive control register 1 0x0E

XCR2 (15:0) Transmit control register 2 0x10

XCR1 (15:0) Transmit control register 1 0x12

SRGR2 (15:0) Sample rate generator register 2 0x14

SRGR1 (15:0) Sample rate generator register 1 0x16

MCR2 (15:0) Multichannel register 2 0x18

MCR1 (15:0) Multichannel register 1 0x1A

McBSP2

 7-106

Table 7–79. McBSP2 Registers (Continued)

Name OffsetDescription

RCERA (15:0) Receive channel enable register partition A 0x1C

RCERB (15:0) Receive channel enable register partition B 0x1E

XCERA (15:0) Transmit channel enable register partition A 0x20

XCERB (15:0) Transmit channel enable register partition B 0x22

PCR0(15:0) Pin control register 0x24

RCERC(15:0) Receive channel enable register partition C 0x26

RCERD(15:0) Receive channel enable register partition D 0x28

XCERC(15:0) Transmit channel enable register partition C 0x2A

XCERD(15:0) Transmit channel enable register partition D 0x2C

RCERE(15:0) Receive channel enable register partition E 0x2E

RCERF(15:0) Receive channel enable register partition F 0x30

XCERE(15:0) Transmit channel enable register partition E 0x32

XCERF(15:0) Transmit channel enable register partition F 0x34

RCERG(15:0) Receive channel enable register partition G 0x36

RCERH(15:0) Receive channel enable register partition H 0x38

XCERG(15:0) Transmit channel enable register partition G 0x3A

XCERH(15:0) Transmit channel enable register partition H 0x3C

McBSP2

7-107MPU Public Peripherals

Figure 7–44. McBSP2 Interface Diagram

MCBSP2.FSX

OMAP5910
McBSP2

CLKS

FSX_OUT

FSX_OE
FSX_IN

CLKX_OUT

CLKX_OE
CLKX_IN

DX_OUT

DX_OE

FSR_OUT

FSR_OE
FSR_IN

CLKR_OUT

CLKR_OE
CLKR_IN

DR_IN

0

MPUPER_CK
System

DMA
DMA
requests

Reset

MPU
I/F

Interrupts

TX (DMA_REQ_16)

MPUPER_CK

MPUPER_nRST

MPU public
peripheral bus

RX overflow (level 2
IRQ_31)

TX interrupt (level 1
IRQ_4)

RX interrupt (level 1
IRQ_5)

RX (DMA_REQ_17)

Clock generation
and management

MPU peripheral
bridge

MPU
interrupt handler

32

MCBSP2.CLKX

MCBSP2.DX

MCBSP2.FSR

MCBSP2.CLKR

MCBSP2.DR

Note: You can use the AUXON feature to gate the functional clock to the McBSP2 module by setting MOD_CONF_CTRL_0[19]
to 1.

McBSP2

 7-108

7.10.1 McBSP2 Application Example: Communication Interface

Figure 7–45 illustrates the use of McBSP2 as a communication processor
data interface that is the master of TX and slave for RX communications. The
actual implementation is generic: FSX, CLKX, FSR, and CLKR are bidirection-
al. The direction of these signals is configured by registers in the McBSP
module. The CLKS signal is the active input clock for the McBSP modem
block. The active input clock can be changed in a McBSP register, but register
activity on CLKS is required to perform the set up and write to the McBSP.

Figure 7–45. Communication Processor Data Interface

OMAP5910

MPU peripheral
programmable
clock

Configreg

McBSP2

CLKS

FSX_OUT
FSX_OE
FSX_IN

CLKX_OUT
CLKX_OE
CLKX_IN

DX_OUT

DX_OE

FSR_OUT
FSR_OE
FSR_IN

CLKR_OUT
CLKR_OE

CLK]R_IN

DR_IN

0

MCBSP2.FSX

MCBSP2.CLKX

MCBSP2.DX

MCBSP2.FSR

MCBSP2.CLKR

MCBSP2.DR

Communication
processor

Configreg

(MPUPER_CK)

McBSP2

7-109MPU Public Peripherals

Section 7.10.1.1 through Section 7.10.1.9 explain how to set up the McBSP
registers for TX master and RX slave mode with 16-bit transfers using
interrupts.

7.10.1.1 Serial Port Control Register Configuration

ARM_Write(0x0000) => SPCR1; set up SPCR1 as initial configuration.

This setup is not needed after reset.

ARM_Write(0x0000) => SPCR2; set up SPCR2 as initial configuration.

This setup is not needed after reset.

7.10.1.2 Pin Control Register Configuration

ARM_Write(0x0a00) => PCR; set up PCR per the following configuration.

Table 7–80. Pin Control Register Configuration

Bit Configuration Value Description

15–14 00b Reserved

13 0b Set serial port mode for DX, FSX and CLKX pins

12 0b Set serial port mode for DR, FSR and CLKR pins

11 1b TX frame-synchronization signal driven by internal generator

10 0b RX frame-synchronization signal derived by external source

9 1b CLKX set output pin and driven by internal generator

8 0b CLKR set input pin and derived by external source

7 0b Sample rate generator input clock mode bit

6 0b CLKS pin status (no meaning in the OMAP5910 device)

5 0b DX pin status

4 0b DR pin status

3 0b Set FSX polarity as active high

2 0b Set FSR polarity as active high

1 0b Set CLKX polarity as data driven on rising edge

0 0b Set CLKR polarity as data sampled on falling edge

McBSP2

 7-110

7.10.1.3 Receive Control Register Configuration

ARM_Write(0x0040) => RCR1; set up RCR1 per below configuration.

Table 7–81. Receive Control Register 1 Configuration

Bit Configuration Value Description

15 0b Reserved

14–8 000 0000b Set receive frame length as one word per frame

7–5 010b Set receive word length as 16 bit per frame

4–0 0 0000b Reserved

Table 7–82. Receive Control Register 2 Configuration (ARM_Write(0x0001) = > RCR2)

Bit Configuration Value Description

15 0b Set single-phase frame

14–8 000 0000b Don’t care for single-phase frame

7–5 000b Don’t care for single-phase frame

4–3 00b Set no companding data and transfer start with MSB first

2 0b Set FSR not ignore after the first resets the transfer

1–0 01b Set data delay as 1 bit

7.10.1.4 Transmit Control Register Configuration

ARM_Write(0x0040) => XCR1; set up XCR1 per below configuration.

Table 7–83. Transmit Control Register 1 Configuration

Bit Configuration Value Description

15 0b Reserved

14–8 000 0000b Set transmit frame length as one word per frame

7–5 010b Set transmit word length as 16 bit per frame

4–0 0 0000b Reserved

McBSP2

7-111MPU Public Peripherals

ARM_Write(0x0001) => XCR2; set up XCR2 per below configuration.

Table 7–84. Transmit Control Register 2 Configuration (ARM_Write(0x0001) => XCR2)

Bit Configuration Value Description

15 0b Set single-phase frame

14–8 000 0000b Don’t care for single-phase frame

7–5 000b Don’t care for single-phase frame

4–3 00b Set no companding data and transfer start with MSB first

2 0b Set FSX not ignore after the first resets the transfer

1–0 01b Set data delay as 1 bit

7.10.1.5 Sample Rate Generator Configuration (SRGR[1,2])

1) Configure the sample rate generator appropriately for CLKX and FSX. For
details, see TMS320C54x DSP Enhanced Peripherals Reference Set,
vol. 5, SPRA302.

2) Wait for two CLKSRG clocks.

3) ARM_Write SPCR2 or (0x0000 0040) → SPCR2;CLKG enable

4) Wait two CLKG clocks.

7.10.1.6 Interrupt Flag Configuration and Clear (ILR, ITR, MIR)

1) ARM_Write → ILR; set ILR appropriately for the interrupt handling priority.

2) ARM_Write ITR and (0xFFFF FFCF) → ITR; clear remained TX and RX
interrupt.

Note:

This setup is not needed after reset.

3) ARM_Write MIR and (0xFFFF FFCF) → MIR; enabled SPI TX and RX
interrupt

7.10.1.7 Take out of Reset for Transmit and Receive Starting (SPCR[1,2])

1) ARM_write SPCR1 or (0x0001) → SPCR1; enabled receive port

2) ARM_write SPCR2 or (0x0001) → SPCR2; enabled transmit port

McBSP2

 7-112

7.10.1.8 Transmit Data Loading (TX_INT Handling in Interrupt Survive Routine)

ARM_Write → DXR

Note:

Clear interrupts flag on ITR, when taken the interrupt handle.

7.10.1.9 Received Data Loading (RX_INT Handling in Interrupt Survive Routine)

ARM_Read ← DRR

Note:

Clear interrupts flag on ITR, when taken the interrupt handle.

Waveform Example

Figure 7–46. Waveform Example

CLK(R/X)

FS(R/X)

D(R/X) A15 A14 A13 A3 A2 A1 A0 B13B14B15 B3 B2 B1 B0

McBSP2

7-113MPU Public Peripherals

Section 7.10.1.10 through Section 7.10.1.18 explain how to set up the McBSP
registers for TX master and RX slave mode with 16-bit transfers using DMA
support.

7.10.1.10 Serial Port Control Register Configuration

ARM_Write(0x0000) => SPCR1; set up SPCR1 as initial configuration.

This setup is not needed after reset.

ARM_Write(0x0000) => SPCR2; set up SPCR2 as initial configuration.

This setup is not needed after reset.

7.10.1.11 Pin Control Register Configuration

ARM_Write(0x0a00) => PCR; set up PCR per below configuration.

Table 7–85. Pin Control Register Configuration

Bit Configuration Value Description

15–14 00b Reserved

13 0b Set serial port mode for DX, FSX and CLKX pins

12 0b Set serial port mode for DR, FSR and CLKR pins

11 1b TX frame-synchronization signal driven by internal generator

10 0b RX frame-synchronization signal derived by external source

9 1b CLKX set output pin and driven by internal generator

8 0b CLKR set input pin and derived by external source

7 0b Sample rate generator input clock mode bit

6 0b CLKS pin status (no meaning in OMAP5910)

5 0b DX pin status

4 0b DR pin status

3 0b Set FSX polarity as active high

2 0b Set FSR polarity as active high

1 0b Set CLKX polarity as data driven on rising edge

0 0b Set CLKR polarity as data sampled on falling edge

McBSP2

 7-114

7.10.1.12 Receive Control Register Configuration

ARM_Write(0x0040) => RCR1; set up RCR1 per below configuration.

Table 7–86. Receive Control Register 1 Configuration

Bit
Configuration

Value Description

15 0b Reserved

14–8 000 0000b Set receive frame length as one word per frame

7–5 010b Set receive word length as 16 bits per frame

4–0 0 0000b Reserved

ARM_Write(0x0001) => RCR2; set up RCR2 per below configuration.

Table 7–87. Receive Control Register 2 Configuration

Bit
Configuration

Value Description

15 0b Set single-phase frame

14–8 000 0000b Set receive frame length as one word per frame

7–5 000b Don’t care for single-phase frame

4–3 00b Don’t care for single-phase frame

2 0b Set FSR not ignore after the first resets the transfer

1–0 01b Set data delay as 1 bit

7.10.1.13 Transmit Control Register Configuration

ARM_Write(0x0040) => XCR1; set up XCR1 per below configuration.

Table 7–88. Transmit Control Register 1 Configuration

Bit
Configuration

Value Description

15 0b Reserved

14–8 000 0000b Set transmit frame length as one word per frame

7–5 010b Set transmit word length as 16 bits per frame

4–0 0 0000b Reserved

McBSP2

7-115MPU Public Peripherals

ARM_Write(0x0001) => XCR2; set up XCR2 per below configuration.

Table 7–89. Transmit Control Register 2 Configuration

Bit
Configuration

Value Description

15 0b Set single-phase frame

14–8 000 0000b Don’t care for single-phase frame

7–5 000b Don’t care for single-phase frame

4–3 00b Set no companding data and transfer start with MSB first

2 0b Set FSX not ignore after the first resets the transfer

1–0 01b Set data delay as 1 bit

7.10.1.14 Sample Rate Generator Configuration (SRGR[1,2])

1) Configure the sample rate generator appropriately for CLKX and FSX. For
details, see TMS320C54x DSP Enhanced Peripherals Reference Set,
vol. 5, SPRA302.

2) Wait two CLKSRG clocks.

3) ARM_Write SPCR2 or (0x0000 0040)=>SPCR2;CLKG enable.

4) Wait two CLKG clocks.

7.10.1.15 DMA Configuration

Configure the REVT and XEVT bit for the DMA receive and transmit
synchronized invent.

7.10.1.16 Interrupt Flag Configuration and Clear (ILR, MIR)

1) ARM_Write => ILR; set ILR appropriately for the interrupt handling priority.

2) ARM_Write MIR and (0x0000 0030) => MIR ; disabled SPI TX and RX
interrupt

Note:

Enable the appropriate DMA channel interrupts.

7.10.1.17 Take out of Reset for Transmit and Receive Starting (SPCR[1,2])

1) ARM_write SPCR1 or (0x0001) => SPCR1; enabled receive port.

2) ARM_write SPCR2 or (0x0001) => SPCR2; enabled transmit port.

McBSP2

 7-116

7.10.1.18 Data Transfer (DMA Channel)

The DMA channel transfers the received data to appropriate data buffer and
transfer the new transmit data to appropriate TX buffer. Clear interrupts flag
on ITR, when taking the interrupt handle.

Note:

Clear interrupts flag on ITR, when taken the interrupt handle.

Waveform Example

Figure 7–47. Waveform Example

CLK(R/X)

FS(R/X)

D(R/X) A15 A14 A13 A3 A2 A1 A0 B13B14B15 B3 B2 B1 B0

USB Function Overview

7-117MPU Public Peripherals

7.11 USB Function Overview

The universal serial bus (USB) function module supports the implementation
of a full-speed device fully compliant with the USB 1.1 standard (see
Figure 13–2). It provides an interface between the MPU core (TI925T) and the
USB wire and handles USB transactions with minimal TI925T intervention.

The module supports one control endpoint (EP0), up to 15 IN endpoints, and
up to 15 OUT endpoints. The exact endpoint configuration is software
programmable. The specific items of a configuration are for each endpoint, the
size in bytes, the direction (IN, OUT), the type (bulk/interrupt or ISO), and the
associated number.

The module also supports three DMA channels for IN endpoints and three
DMA channels for OUT endpoints for either bulk/interrupt or ISO transactions.
For more detail, see Chapter 13, USB Function Module.

The MPU base address is FFFB:4000.

Table 7–90. USB Function Registers

Name Description
Offset

Address

REV Revision number read 0x00

Endpoint

EP_NUM Selects and enables the endpoint that can be accessed by the TI925T 0x04

DATA The entry point to write into a selected TX endpoint, to read data from a
selected RX endpoint, or to read data from setup FIFO

0x08

CTRL Controls the FIFO and status of the selected endpoint 0x0C

STAT_FLG Provides a status of the FIFO and the results of the transactions
handshakes for the selected endpoint

0x10

RXFSTAT The number of bytes which are in the receive FIFO for the selected
endpoint

0x14

SYSCON1 Control functions for power management and miscellaneous control for the
core

0x18

SYSCON2 Miscellaneous controls for the function 0x1C

DEVSTAT Status reflecting the visible device states as defined in Section 13.6.6,
Device States Changed Handler

0x20

SOF Provides a frame timer status for use in ISO communications 0x24

IRQ_EN Enables all non-DMA interrupts 0x28

USB Function Overview

 7-118

Table 7–90. USB Function Registers (Continued)

Name
Offset

AddressDescription

DMA_IRQ_EN Enables all DMA interrupts 0x2C

IRQ_SRC Identify and clear the source of the interrupt signaled by a set flag 0x30

EPN_STAT Identify the non-ISO endpoint causing an EPn interrupt 0x34

DMAN_STAT Identify the endpoint causing a DMA interrupt 0x38

RESERVED 0x3C

DMA Configuration

RXDMA_CFG Enables the three possible DMA receive channels and selects the endpoint
number that is assigned to each of these DMA channels

0x40

TXDMA_CFG Enables the three possible DMA transmit channels and selects the
endpoint number that is assigned to each of these DMA channels

0x44

DMA

DATA_DMA Entry point to write or to read data into/from an endpoint used in a DMA
transfer through DMA channel 0, 1, or 2

0x48

Reserved 0x4C

TXDMA0 Controls the operation of the transmit DMA channel 0 0x50

TXDMA1 Controls the operation of the transmit DMA channel 1 0x54

TXDMA2 Controls the operation of the transmit DMA channel 2 0x58

Reserved 0x5C

RXDMA0 Permits monitoring of incoming OUT transactions during DMA transfer on
channel 0

0x60

RXDMA1 Permits monitoring of incoming OUT transactions during DMA transfer on
channel 1

0x64

RXDMA2 Permits monitoring of incoming OUT transactions during DMA transfer on
channel 2

0x68

Reserved 0x7C

USB Function Overview

7-119MPU Public Peripherals

Table 7–90. USB Function Registers (Continued)

Name
Offset

AddressDescription

Endpoint Configuration

EP0 Gives the device configuration for control endpoint 0

EP1_RX Gives the device configuration for non-control receive endpoint 1 0x84

EP2_RX Gives the device configuration for non-control receive endpoint 2 0x88

… … …

EP15_RX Gives the device configuration for non-control receive endpoint 15 0xBC

Reserved 0xC0

EP1_TX Gives the device configuration for non-control transmit endpoint 1 0xC4

EP2_TX Gives the device configuration for non-control transmit endpoint 2 0xC8

… … …

EP15_TX Gives the device configuration for non-control transmit endpoint 15 0xFC

MMC/SD Host Controller

 7-120

7.12 MMC/SD Host Controller

The MMC/SD host controller provides an interface between the TI925T and
either MMC or SD memory card plus up to three serial flash cards and handles
MMC/SD or SPI transactions with minimal TI925T intervention. All references
to a local host in this section refer to the TI925T MPU processor.

The following combination of external devices is supported:

� One or more MMC memory cards sharing the same bus plus up to three
devices with 8-bit SPI protocol interface (flash serial memory).

� One single-SD memory card plus up to three devices with 8-bit SPI proto-
col interface.

Other combinations like two SD cards, one MMC card + one SD card are not
supported.

The application interface is responsible for managing transaction semantics.
The MMC/SD host controller handles MMC/SD protocol at transmission level,
packing data, adding cyclic redundancy check (CRC), start/end bit, and check-
ing for syntactical correctness. SD mode wide bus width is also supported.

The application interface can send every MMC/SD command and either poll
for the status of the adapter or wait for an interrupt request, which is sent back
in case of exceptions or to warn for end of operations. The application interface
can read card responses or flag registers. It can also mask individually inter-
rupt sources. All these operations can be performed by reading and writing
control registers.

M
M

C
/S

D
 H

ost C
ontroller

7-121
M

P
U

 P
ublic P

eripherals

F
igure 7–48.

M
M

C
/S

D
 H

ost C
ontroller E

nvironm
ent

dma_rd_req_oqn

dma_wr_req_oqn

irq_oqn

DMA_REQ[21]

DMA_REQ[20]

Irq23

clock_i

adp_clk_I

 DPLL4

48 MHz

ULPD_nIrq

WKUP_REQ

12 MHz

CLKIN

PERCLK

MOD_CONF_CTRL_0(32)

OMAP5910 CONFIGURATION

Clock generation

OMAP5910

reset_inMPU_PER_RST

MMC/SD

CONF_MOD_MMC_SD_

adp_clk_o

CONF_MMC

LATCH
static_valid

Nrespwron

adp_clock_i

Functional

MMC_CLK

0

MMC_CMD

adp_rcmd_o
adp_cmd_dir_oq

adp_cmd_oq
adp_cmd_i

MMC_DATA[3:0]

adp_rdat_o
adp_dat_dir_oq
adp_dat_oq[3:0]

adp_dat_i[3:0]

GPIO(2) (SPI_CLK)
adp_spi_clk_o

VDDSHV6

VDDSHV6

VSS

GPIO(3/4/6) (SPI_C/Sn[3:1])adp_spi_cs_oqn[3:1]

GPIO(0) (SPI_RDY)

adp_spi_fl_rdy_i

VSS

System DMA

MPU Interrupt Handler Lev2

ULPD

MMC card MMC card

Serial flash card

Dat[0] Dat[0]Cmd CmdClk Clk

SISO

MMC_DATA[0]

SPI_C/Sn[1]

CKCS
Rdy

and management

multiplexing

VSS

(SPI_SO)

(SPI_SI)

CLK_REQ

MMC/SD Host Controller

 7-122

7.12.1 MMC/SD Host Controller Features

Main features of the controller are:

� Full compliance with MMC command/response sets as defined in the
MMC standard specification [1]

� Full compliance with SD command/response sets as defined in the SD
Physical Layer specification [2]

� Flexible architecture allowing support for new command structure

� Separate SPI interface with 3 C/S. Provides supports for up to three serial
devices such as serial flash

� Built-in 64-byte FIFO for buffered read or write

� 16-bit-wide accesses bus to maximize bus throughput

� Designed for low power

� Wide interrupt capability

� Programmable clock generation

� Two DMA channels

Known limitations:

� No built-in hardware support for error correction codes (ECC)

� No built-in support for card detection

� No full compliance to SDIO specification.

7.12.2 MMC/SD Host Controller Signals Pads

The signal pads, listed in Table 7–91, describe the physical interface between
OMAP5910—the transceiver—and the target MMC/SD memory card(s) or
serial flash memories.

The transceiver provides dc-level adaptation functions between OMAP5910
and the target devices.

The state of the OMAP5910 static_valid input during power on, determines the
functional multiplexing on the OMAP5910 MMC/SD pads.

The OMAP5910 static_valid pad must be held to 1 during power on so that the
MMC/SD host controller signals are usable from the power-on reset on the
OMAP5910 MMC/SD pads (described in Table 7–91).

This functional multiplexing, which is configured in static, does not concern the
SPI signals, which are multiplexed on the GPIO pads. For these pads, the
functional multiplexing is done classically by programming an OMAP5910
configuration register.

MMC/SD Host Controller

7-123MPU Public Peripherals

Table 7–91. MMC/SD Signal Pads

Pad Name Type
Pullup/

Pulldown
Reset
Value Description

MMC.CLK Out - 0 MMC/SD card CLK signal.

Only active during active command to a MMC/SD card
using MMC or SPI protocols.

MMC.CMD_SPI.
DO/SPI_SO

In-Out Pullup
(*3)

Input MMC/SD card CMD signal in MMC/SD mode.

SPI serial out signal in SPI mode (output—goes to serial
In of target device(s)).

MMC.DAT[0]
/SPI_SI

In-Out Pullup
(*3)

Input MMC card DAT or SD card DAT[0] signal in MMC/SD
mode.

SPI serial in signal in SPI mode (input—comes from serial
out of target device(s)).

MMC.DAT[3-1]
(*1)

In-Out Pullup
(*3)

Input SD card DAT[3-1] signals in MMC/SD mode.

Reserved signals for MMC card or in SPI mode.

GPIO2
(SPI.CLK)
(*2)

In- Out
(Out)

Pulldown
(disabled)

Input

(0)

By default, pad used by the GPIO2. The SPI_CLK output
signal can be multiplexed.

SPI_CLK only active during SPI transfers to serial flash or
other SPI devices (except MMC/SD cards).

GPIO3
(SPI.C/Sn[3])
(*2)

In-Out
(Out)

Pulldown
(disabled)

Input
(1)

By default, pad used by the GPIO3. The SPI CSn(3)
output signal can be multiplexed. SPI CSn(3) is active
low, only active in SPI mode during SPI transfers.
Reserved in MMC/SD mode.

GPIO4
(SPI.C/Sn[2])
(*2)

In-Out
(Out)

Pulldown
(disabled)

Input
(1)

By default, pad used by the GPIO4. The SPI CSn(2)
output signal can be multiplexed. SPI CSn(2) is active
low, only active in SPI mode during SPI transfers.
Reserved in MMC/SD mode.

GPIO6
(SPI.C/Sn[1])
(*2)

In-Out
(Out)

Pulldown
(disabled)

Input
(1)

By default, pad used by the GPIO6. The SPI CSn(1)
output signal can be multiplexed. SPI CSn(1) is active
low, only active in SPI mode during SPI transfers.
Reserved in MMC/SD mode.

GPIO0
(SPI.RDY)
(*2)

In-Out
(In)

Pulldown
(disabled)

Input
(Input)

By default, pad used by the GPIO0. The SPI ready/busy
input can be multiplexed. When SPI_RDY is low, it
denotes busy condition. Only active in SPI mode during
SPI transfers. Reserved signal in MMC/SD mode

Notes: 1) Optional signals. Only needed for SD cards.

2) Optional signals. Only needed for devices with SPI interfaces (serial flash, etc.).

3) This pullup is enabled/disabled dynamically by the MMC/SD host controller.

MMC/SD Host Controller

 7-124

7.12.3 MMC/SD Host Controller Clocks and Reset

The MMC/SD host controller has two clocks:

� An interface clock (clock_i) used between the MPU TIPB and the MMC/SD
host controller and connected to the MPU peripheral programmable clock
(PERCLK), is determined dividing CK_GEN1 (the output of DPLL1) by the
value associated with the PERDIV field of the ARM_CKCTL register
(0xFFFECE00).

This clock is a free-running clock when the system is awake.

� A 48-MHz functional clock (ADP_CLK_I), which is generated by the ULPD
DPLL.

This clock is requested by setting to 1 the CONF_MOD_MMC_SD_CLK_REQ
bit(23) of the MOD_CONF_CTRL_0 register.

The MPU TIPB reset (MPU_PER_RST) resets the MMC/SD host controller.

7.12.4 MMC/SD Host Controller DMA Request

The MMC/SD host controller can use:

� Receive DMA channel (DMA_RD_REQ_OQN), which is connected to the
SYSTEM DMA request [21].

� Transmit DMA channel (DMA_WR_REQ_OQN), which is connected to
the SYSTEM DMA request [20].

See Section 13.1.4 DMA for more details.

7.12.5 MMC/SD Host Controller Interrupt

The MMC/SD controller can generate one interrupt (IRQ_OQN), which is
connected to the MPU level 2 interrupt handler, line 23 (level-sensitive).

MMC/SD Host Controller

7-125MPU Public Peripherals

7.12.6 MMC/SD Internal Pullups

There are internal pullups on the following pins:

� MMC.CMD I/O pin
� MMC.DAT[3:0] I/O pins

MMC cards work in open drain mode on the MMC.CMD line during the identifi-
cation phase, and more generally for broadcast MMC commands; con-
sequently, a pullup on the MMC.CMD line is needed.

When MMC.CMD and MMC.DAT[3:0] line work in push/pull mode, it is impor-
tant to prevent bus floating conditions. Consequently, pullups are needed.

These pullups are directly controlled by the MMC/SD host controller
(adp_rcmd_o and adp_rdat_o) and are only active when required, which
saves power.

Table 7–92 and Table 7–93 show activation conditions for the MMC.CMD and
MMC.DAT pullups.

Table 7–92. MMC_CMD Pullups

MMC_SD Host
Controller Status MMC CARD Status

MMC_CMD Pullup
(Open Drain Mode)

MMC_CMD Pullup
(Push/Pull Mode)

Input Input Active Active

Input Output Active Disabled

Output Input Disabled Disabled

Table 7–93. MMC_DAT Pullups

MMC_SD Host Controller Status MMC CARD Status MMC_DAT Pullup (Both Modes)

Input Input Active

Input Output Disabled

Output Input Disabled

In flash-SPI mode, when no data is on the MMC.CMD and MMC.DAT lines
(input and output of the flash), the pullups are disabled.

MMC/SD Host Controller

 7-126

7.12.7 MMC/SD Registers

Table 7–94 lists the MMC/SD controller registers. Table 7–95 through
Table 7–122 describe the register bits.

Table 7–94. MMC/SD Registers

Register Description Access Address

MMC_CMD MMC command R/W FFFB:7800

MMC_ARGL MMC argument low R/W FFFB:7804

MMC_ARGH MMC argument high R/W FFFB:7808

MMC_CON MMC system configuration R/W FFFB:780C

MMC_STAT MMC status R/W FFFB:7810

MMC_IE MMC system interrupt enable R/W FFFB:7814

MMC_CTO MMC command time-out R/W FFFB:7818

MMC_DTO MMC data time-out R/W FFFB:781C

MMC_DATA MMC TX/RX FIFO data R/W FFFB:7820

MMC_BLEN MMC block length R/W FFFB:7824

MMC_NBLK MMC number of blocks R/W FFFB:7828

MMC_BUF MMC buffer configuration R/W FFFB:782C

MMC_SPI MMC serial port interface R/W FFFB:7830

MMC_SDIO MMC SDIO mode configuration R/W FFFB:7834

MMC_SYST MMC system test R/W FFFB:7838

MMC_REV MMC module version R FFFB:783C

MMC_RSP0 MMC command response 0 R FFFB:7840

MMC_RSP1 MMC command response 1 R FFFB:7844

MMC_RSP2 MMC command response 2 R FFFB:7848

MMC_RSP3 MMC command response 3 R FFFB:784C

MMC_RSP4 MMC command response 4 R FFFB:7850

MMC_RSP5 MMC command response 5 R FFFB:7854

MMC_RSP6 MMC command response 6 R FFFB:7858

MMC_RSP7 MMC command response 7 R FFFB:785C

Reserved FFFB:7860-
FFFB:787C

MMC/SD Host Controller

7-127MPU Public Peripherals

Table 7–95. MMC Command Register (MMC_CMD)

Bit Name Description

15 DDir Data direction [read/write]

14 SHR Stream command or broadcast host response

13–12 Type Command types [bc,bcr,ac,adtc]

11 Busy Command with busy response [R1b]

10–8 Response Command responses [no response, R1/R1b, R2, R3, R4, R5,R6]

7 Init Send initialization stream

6 OD Card open drain mode

5–0 Cmd_Index Command index [63:0]

A write to the MMC command register (MMC_CMD) sends a command to the
card. If the local host accesses this register byte-wise, the command is sent
to the card only after a write access to the least significant LSB (bits 7:0).
Hence, the MSB must always be written first in a byte-accessed situation.

A read has no effect except to return the last command that was previously
sent.

Note:

A write into this register with Type = adtc resets the FIFO pointers and pre-
fetch register. Writes with other type values (bc, bcr, ac) do not affect the
FIFO contents. Hence, data must be written inside the FIFO after sending
a single or multiple block write command.

A write into this register also clears the MMC_RSP[07] registers.

Data Direction (DDir)

This bit (15) specifies if the data transfer is a read or a write. This bit is only valid
if the command type is adtc.

This bit has the same polarity as RD/WR argument bit 0 for a GEN_CMD
command (CMD56).

� 0: Data write

� 1: Data read

Value after reset is low.

MMC/SD Host Controller

 7-128

Stream Command or Broadcast Host Response (SHR)

MMC card only. SD card does not support stream operation or host generated
response.

This bit (14) must be set to 1 in two cases:

� Associated with adtc type, if the command is a stream data transfer
(read or write). Stream read is a class 1 command (CMD11:
READ_DAT_UNTIL_STOP). Stream write is a class 3 command (CMD20:
WRITE_DAT_UNTIL_STOP).

� Associated with bc type, the host generates a 48-bit response instead of
a command. It can be used to terminate the interrupt mode by generating
a CMD40 response by the core (see Interrupt Mode section 4.3 in MMC
[1] specification).

This bit is only valid if the command type is adtc or bc.

� 0: Normal mode

� 1: Stream mode (type = adtc), host response (type = bc)

Value after reset is low.

Command Type (Type)

Encoded bits (13-12) that define the type of the command that is passed by
the core to the MMC/SD memory card (see command types Section 4.7.1 in
MMC [1] or SD [2] specifications).

� 00: bc (broadcast—no response)

� 01: bcr (broadcast with response)

� 10: ac (addressed—no data transfer)

� 11: adtc (addressed with data transfer)

Note:

Also resets the FIFO.

Values after reset are low (two bits).

MMC/SD Host Controller

7-129MPU Public Peripherals

Command With Busy Response (Busy)

This bit (11) must be set to 1 if the response to the command sent is of type
R1b (R1 + busy).

� 0: Response without busy (R1, R2, R3, R4, R5, R6)

� 1: Response with busy (R1b)

Value after reset is low.

Command Response (Response)

Encoded bits (10-8) that define the response for the command passed by the
core to the MMC/SD memory card (see Responses section 4.9 in MMC [1] or
SD [2] specifications).

� 000: No response

� 001: R1/R1b (normal response command)

� 010: R2 (CID, CSD registers)

� 011: R3 (OCR register)

� 100: R4 (Fast I/O—MMC card only)

� 101: R5 (Interrupt request—MMC card only)

� 110: R6 (Published RCA response—SD card only)

� 111: Reserved

Values after reset are low (three bits).

Send Initialization Stream (Init)

When this bit (7) is set, an initialization sequence is sent prior to the command.
This option can simplify acquisition of new cards. An initialization sequence
consists of setting CMD line to 1 during 80 CLK cycles (see Power-Up
Description Section 6.3—MMC spec [1], or Section 6.4—SD spec [2]).

� 0: No initialization sequence (normal procedure)

� 1: Initialization sequence send prior to command

Value after reset is low.

MMC/SD Host Controller

 7-130

Card Open Drain Mode (OD)

This bit (6) must be set to 1 if the MMC card bus is operating in open-drain
mode during the response phase to the command sent. Typically, during card
identification mode, the card is either in idle, ready or identification state. This
bit must be set for MMC card commands 1, 2, 3, and 40.

For SD card, this bit must always be kept low, because SD cards do not have
open drain capability.

� 0: Push/pull

� 1: Open drain

Value after reset is low.

Command Index (Cmd_index)

Binary encoded value (bits 5-0) from 0 to 63 specifying the command number
sent to the card.

� 000000: CMD0
� 000001: CMD1
� …
� 111111: CMD63

Values after reset are low (all 6 bits).

The MMC argument low and high registers specify the 32-bit argument value
that is passed with the command. These registers must be initialized prior to
sending the command itself to the card (write action into the MMC_CMD regis-
ter). The only exception is for a command index specifying stuff bits in
arguments, which makes a write unnecessary.

Table 7–96. MMC Argument Low Register (MMC_ARGL)

Bit Name Description

15–0 ARG_low Command argument bits [15:0]

Values after reset are low (all 16 bits).

Table 7–97. MMC Argument High Register (MMC_ARGH)

Bit Name Description

15–0 ARG_high Command argument bits [31:16]

Values after reset are low (all 16 bits).

MMC/SD Host Controller

7-131MPU Public Peripherals

Table 7–98. MMC System Configuration Register (MMC_CON)

Bit Name Description

15 DW Data bus width

14 Reserved

13–12 Mode Operating mode select (MMC/SD, SPI, SYSTEST, or MMC SPI protocol).

11 Power-up Power-up control

10–8 Reserved

7–0 Clk_div Clock divider [No clock, 1:255]

Bus Width During Data Phase (DW)

SD card only.

This bit (15) must be set following a valid SET_BUS_WIDTH command
(ACMD6) with the value written in bit [1] of the argument. Prior to this
command, the SD card configuration register (SCR) must be verified for the
supported bus width by the SD card.

� 0: 1-bit data width (DAT[0] used)

� 1: 4-bit data width (DAT[3:0] used—SD card only).

Value after reset is low.

This bit must always be set to 0 for MMC cards or during SPI transfer. Not set-
ting this bit correctly can result in an unpredictable behavior.

Mode Select (Mode)

These bits (13-12) select between MMC/SD mode, SPI mode 1, SYSTEST
mode and SPI mode 2.

In MMC/SD mode, transfers to the MMC/SD card follow the MMC protocol.
MMC clock is enabled and the SPI clock is disabled.

In SPI mode1, transfers to up to three SPI controlled devices (serial flash, etc.)
are supported. In this mode, SPI clock is enabled and MMC clock is disabled.

In SYSTEST mode, the signal pins are configured as general-purpose input/
output and the 64-byte FIFO is configured as a stack memory accessible only
by the local host. The pins retain their default type (input, output or in/out).

MMC/SD Host Controller

 7-132

In SPI mode 2, transfers to the MMC/SD card follow the SPI protocol. MMC
clock is enabled and the SPI clock is disabled. MMC protocol must be imple-
mented in software when using this mode since the MMC interface acts as a
generic SPI port and does not utilize the MMC-specific features available in
MMC/SD mode.

� 00: MMC/SD mode (MMC/SD cards using MMC protocol)

� 01: SPI mode 1 (for serial flash or others SPI slave devices)

� 10: SYSTEST mode

� 11: SPI mode 2 (MMC/SD cards using SPI protocol)

Values after reset are low (2 bits).

Power Up-Control (Power_Up)

This bit (11) must be set to 1 prior to any valid transaction to either MMC/SD
or SPI memory cards.

� When 1, the card is considered powered up and the controller core is
enabled.

� When 0, the card is considered powered down (system dependant) and
the controller core logic in pseudoreset state. That is, the MMC_STAT
register flags are reset, the FIFO pointers are reset, any access to DATA
register has no effect, a write into MMC_CMD register is ignored, and
setting of MMC_SPI:start to 1 is ignored.

� 0: Powered-down/pseudoreset state

� 1: Powered-up/normal operation mode

Value after reset is low.

MMC/SD Host Controller

7-133MPU Public Peripherals

Clock Divider (Clk_div)

These bits (7-0) define the ratio between a reference clock frequency (48 MHz)
and the output clock frequency on the CLK pin of either the memory card (MMC
or SD) or other 8-bit mode SPI controlled device.

The division factor is exactly the binary encoded decimal value for values
between 1 and 255.

A value of 0 disables the clock.

� 0x00: Clock disabled

� 0x01: Ref clk/1

�

� 0xFF: Ref clk/255

Values after reset are low (all 8 bits).

Figure 7–49. Clock Control

MMC or SPI
protocol select

clk_div
Module
reference
clock

MMC_CLK
(only active during a valid
command to a MMC/SD
card using MMC or SPI

protocol when MMC_CONN:
Mode=00 or11)

SPI_CLK
(only active during a valid

SPI transfer to a non-MMC
card when MMC_CON:

Mode=01)

POL
(MMC_SPI[0])

MMC card w/SPI protocol select
(MMC_CON:Mode=11)

0

1 S

Notes: 1) During the identification phase, the maximal frequency on the MMC CLK line is 400 kHz (reference: bus timing speci-
fications Chapter 6 of the MultiMediaCard System Specification Version 3.1 – June, 2001. MMCA Technical Com-
mittee or the SD Memory Card Specifications – Part 1 Physical Layer Specification, Version 1.0 – March 2000 +
Supplementary Notes Part 1 June 2000. SD Group). That is, you must set a value of 120 into the frequency ratio
register because the reference clock frequency is 48 MHz.

Notes: 2) During data transfer phase the maximum frequency is 16 MHz for MMC cards, 24 MHz for SD cards, and 12 MHz
for SPI serial flash cards.

Notes: 3) The duty cycles of the generated MMC_CLK and SPI_CLK clock signals depend on the Clk_div value and on the
polarity setting (MMC_SPI:POL) for SPI_CLK signal only. The low- and high-time approximate values can be
computed using set-in rules.

MMC/SD Host Controller

 7-134

Table 7–99. MMC_CLK/SPI_CLK High-/Low-Time Computation

Clk_Div MMC_CLK/SPI_CLK High-Time MMC_CLK/SPI_CLK Low-Time

1 ref_clk_high_time ref_clk_low_time

Even ≥ 2 ref_clk_per (Clk_div/2) ref_clk_per (Clk_div/2)

Odd ≥ 3
(POL=PHA)

ref_clk_per (TRUNC[Clk_div/2] + 1) ref_clk_per (TRUNC[Clk_div/2])

Odd ≥ 3
(POL≠PHA)

ref_clk_per (TRUNC[Clk_div/2]) ref_clk_per (TRUNC[Clk_div/2] + 1)

ref_clk_per is reference clock period (in ns) to the module (end-system
dependant).

TRUNC is the truncate to an integer number function (round down).

Example 1: Module reference clock = 48 MHz (20.83 ns), target is MMC card.

� clk_div = 3 (MMC card is 20 MHz max).

� MMC_CLK period = 62.5 ns (> 50 ns OK)

� Ideal MMC_CLK high time = 41.66 ns (>>10 ns)

� Ideal MMC_CLK low time = 20.83 ns (>>10 ns)

MMC/SD Host Controller

7-135MPU Public Peripherals

Table 7–100. MMC System Status Register (MMC_STAT)

Bit Name Description

15 Reserved

14 Card_Err Card status error in response

13 Card_IRQ Card IRQ received (following CMD40)

12 OCR_busy OCR busy (following CMD1 or ACMD41)

11 A_Empty Buffer almost empty

10 A_Full Buffer almost full

9 Reserved

8 Cmd_CRC Command CRC error

7 Cmd_timeout Command response time-out (no response)

6 Data_CRC Data CRC error

5 Data_timeout Data response time-out (no response)

4 EOF_Busy Card exit busy state

3 Block_RS Block received/sent

2 Card_Busy Card enter busy state

1 Reserved

0 End_of_Cmd End of command phase

Common to all bits:

� The local host can only clear a set bit location by writing a 1 into the bit
location. A write 0 has no effect.

� When a bit location is set to 1 by the core, an interrupt is signaled to the
local host if the interrupt was enabled.

Card Status Error (Card_Err)

MMC/SD mode only.

The core automatically sets this bit (14) when there is at least one error in a
response of type R1, R1b or R6. Only bits referenced as type E (error) can set
a card status error (see Table 7–101).

MMC/SD Host Controller

 7-136

Table 7–101. Response Types

Response
Type

Card Status
Bits With
Error

Response Register
Significant Bits Comments

R1 (MMC,
SD)

31-26, 24-16,

3* (opt)

MMC_RSP7[15:10,8-0]

MMC_RSP6[3]

These 15 bits can all generates errors.

This bit can also generate an error if enabled (bit 3
if MMC_SDIO[13]=1) per the SD application
specification

R6 (SD) 15:13, 3 MMC_RSP6[15:13,3] Correspond to 23, 22, 19, 3 card status errors

The error handler must parse the response registers to understand the source
of the error.

Others responses (type R2/R3/R4/R5) do not trigger a card status error.

In SPI or SYSTEST modes, this bit has no meaning and always reads as 0.

� 0: No action or no error

� 1: Error occurred

Value after reset is low.

Card IRQ (Card_IRQ)

MMC mode only.

The core automatically sets this bit (13) when a card is in interrupt mode and
exits Wait_IRQ state (irq) by asserting a 0 on the CMD line (cards are in open-
drain mode). Only Class 9 MMC cards can be put into interrupt mode when in
stand-by state using a GO_IRQ_STATE (CMD40) command (see Interrupt
Mode Description, Section 4.3 of the MultiMediaCard System Specification
Version 3.1 – June, 2001. MMCA Technical Committee. [1]). SD cards do not
support interrupt mode.

In SPI or SYSTEST modes, this bit has no meaning and always reads as 0.

� 0: No action or idle

� 1: Card exits IRQ state

Value after reset is low.

MMC/SD Host Controller

7-137MPU Public Peripherals

OCR Busy (OCR_busy)

MMC/SD mode only.

The core automatically sets this bit (12) after a SEND_OP_COND (CMD1) or
a SD_APP_OP_COND (ACMD41) command when one or more cards have
not yet completed power up. When this bit is set, the CMD1/ACMD41 com-
mand must be repeated until the card stops responding with a busy condition.
A low value on bit 31 of OCR register indicates a busy condition. (See
Power-Up Description—Section 6.3 of MultiMediaCard System Specification
Version 3.1 – June, 2001. MMCA Technical Committee or section 6.4 of the
SD Memory Card Specifications – Part 1 Physical Layer Specification, Version
1.0 – March 2000 + Supplementary Notes Part 1 June 2000. SD Group [2]).

In SPI or SYSTEST modes, this bit has no meaning and always reads as 0.

� 0: No action or card powered-up

� 1: OCR busy

Value after reset is low.

Buffer Almost Empty (A_Empty)

The core automatically sets this bit (11) during a write operation to the card
when the level is below the threshold value set in MMC_BUFF:AE_Level regis-
ter bits. It indicates that the memory card has emptied the buffer to the speci-
fied level and that the local host is able to write more data into the buffer.

If the DMA transmit mode is enabled, this bit is never set; instead a DMA TX
request to the main DMA controller of the system is generated.

The A_Empty status bit and DMA TX request are generated under the same
conditions. This bit is set initially when a new block write command is send to
the card. Also, once set, the core internally masks a new set condition till the
local host has performed [AE_Level+ 1] write access(es) to the FIFO.

AE_Level is the decimal equivalent set binary value (0–31).

� 0: No action or buffer is equal or above almost empty level.

� 1: Buffer almost empty

Value after reset is low.

MMC/SD Host Controller

 7-138

Buffer Almost Full (A_Full)

The core automatically sets this bit (10) during a read operation to the card
when the level is above the threshold value set in MMC_BUFF:AF_Level reg-
ister bits. This bit indicates that the memory card has filled out the buffer to the
specified level and that the local host needs to empty the buffer by reading it.

If the DMA receive mode is enabled, this bit is never set; instead a DMA RX
request to the main DMA controller of the system is generated.

The A_Full status bit and DMA RX request are generated under the same
conditions. Once set, the core internally masks a new set condition till the local
host has performed [AF_Level +1] read access(es) from the FIFO.

AF_Level is the decimal equivalent set binary value (0–31).

� 0: No action or buffer is below or equal almost full level.

� 1: Buffer almost full

Value after reset is low.

Command CRC Error (Cmd_CRC)

MMC/SD mode only.

The core automatically sets this bit (8) if there is a CRC7 error in the command
response (bits 7:1 of all response types except type R3). A CMD1 (MMC) or
ACDM41 (SD) cannot trigger a CRC 7 error.

In SPI or SYSTEST modes, this bit has no meaning and always reads as 0

� 0: No action or no CRC7 error

� 1: CRC7 error

Value after reset is low.

Command Time-out Error (Cmd_timeout)

MMC/SD mode only.

The core automatically sets this bit (7) if the card does not respond within the
specified number of command time-out clock cycles (CTO) that is set in
MMC_CTO register (see NCR timing requirements) to any command requiring
a response.

If this bit is set after a command time-out, clearing this bit automatically stops
the MMC clock and force the controller state to idle.

MMC/SD Host Controller

7-139MPU Public Peripherals

In SPI or SYSTEST modes, this bit has no meaning and always reads as 0.

� 0: No action or no command time-out

� 1: Command time-out

Value after reset is low.

Data CRC Error (Dat_CRC)

MMC/SD mode only.

The core automatically sets this bit (6) if there is CRC16 error in the data phase
response following a block read command (single or multiple) or if there is a
3-bit CRC status token error 101 to signal for data transmission error during
a block write command (single or multiple). For a multiple block transfer, the
CRC is checked for every block.

In SPI or SYSTEST modes, this bit has no meaning and always reads as 0.

� 0: No action or no CRC error

� 1: CRC16 error (read), 3-bit CRC token error (write)

Value after reset is low.

Data Time-out Error (Dat_timeout)

The core automatically sets this bit (5) if the card does not respond within the
specified number of data time-out clock cycles (DTO) that is set in MMC_DTO
register.

In SPI mode, this bit also is set if the RDY/BUSY signal remains asserted in
busy condition for DTO consecutive clock cycles.

If this bit is set after a data time-out, a clear of this bit automatically stops the
MMC or SPI clock and forces the controller state to idle.

In SYSTEST mode, this bit has no meaning and always reads as 0.

� 0: No action or no data time-out.

� 1: Data time-out

Value after reset is low.

MMC/SD Host Controller

 7-140

Card Exit Busy State (EOF_Busy)

MMC/SD mode only.

The core automatically sets this bit (4) when the addressed card releases the
DAT line from its busy state (low level = busy). This bit can only get set during
a programming phase (write operation) to a MMC or SD memory card.

In SPI or SYSTEST modes, this bit has no meaning and always reads as 0.

� 0: No action

� 1: Data line released/exit busy state

Value after reset is low.

Block Received/Sent (Block_RS)

The core automatically sets this bit (3) at the end of a block transfer (read or
write).

In MMC or SD mode, this bit is set when the block transfer completes with no
error. If a CRC error occurs, this bit is not set; instead a data CRC error is set
to 1. For either multiple block or stream transfer, this bit is set only once after
last successful block transfer (when MMC_NBLK:NBLK decrements down to
0) or until interrupted by a stop command.

In SPI mode, this bit is set when either the read or write command completes
(MMC_BLEN:BLEN decrements down-to 0).

There is a distinction to be made between DMA and non-DMA receive
operation.

In non-DMA RX mode, this bit is set after the very last byte has been received
in the FIFO. At this stage, the FIFO is not empty and must be read by the local
host till it gets empty before sending a new command.

In DMA RX mode, this bit is set after both the last byte has been received and
the FIFO is empty.

In SYSTEST mode, this bit has no meaning and always reads as 0.

� 0: No action

� 1: Block received/sent

Value after reset is low.

MMC/SD Host Controller

7-141MPU Public Peripherals

Card Enter Busy State (Card_Busy)

MMC/SD mode only.

The core automatically sets this bit (2) when the addressed card asserts the
DAT line to a low level during a programming phase (write operation) to a MMC
or SD memory card. For the MMC card only, the user can optionally use this
interrupt to deselect the card (which continues to program) and select another
card.

In SPI or SYSTEST modes, this bit has no meaning and always reads as 0.

� 0: No action

� 1: Data line asserted low/card busy

Value after reset is low.

End of Command (End_of_Cmd)

MMC/SD mode only.

The core automatically sets this bit (0) at the end of a successful command/
response sequence or at the end of a command without response. This bit is
not set in case of a card status error.

In SPI or SYSTEST modes, this bit has no meaning and always reads as 0.

� 0: No action

� 1: End of command/response sequence

Value after reset is low.

When a CMD12 command is transferred after a multiple block read, the
End_of_Cmd bit [0] is not set. Alternatively, the Card_Busy bit [2] is set. After
this, the EOF_Busy bit [4] cannot be set. Avoid this condition with software by
using the following sequence:

1) Mask the busy interrupt before the CMD12 command is sent, because it
is possible that the unexpected busy interrupt to the MPU is generated.

2) Clear the Card_Busy [2] after the response for CMD12 is returned,
because it is possible that this flag is set.

3) Enable the busy interrupt if it is to be used (write 0xFFFF to the MMC_IE
register).

MMC/SD Host Controller

 7-142

Table 7–102. MMC System Interrupt Register (MMC_IE)

Bit Name Description

15 Reserved

14 Card_Err_IE Card status error interrupt enable

13 Card_IRQ_IE Card IRQ interrupt enable

12 OCR_busy_IE OCR busy interrupt enable

11 A_Empty_IE Buffer almost empty interrupt enable

10 A_Full_IE Buffer almost full interrupt enable

9 Reserved

8 Cmd_CRC_IE Command CRC error interrupt enable

7 Cmd_timeout_IE Command response time-out Interrupt enable

6 Data_CRC_IE Data CRC error interrupt enable

5 Data_timeout_IE Data response time-out interrupt enable

4 EOF_Busy_IE Card exit busy state interrupt enable

3 Block_RS_IE Block received/sent interrupt enable

2 Card_Busy_IE Card enter busy state interrupt enable

1 Reserved

0 End_of_Cmd_IE End of command interrupt enable

Common to all bits:

� When a bit location is set to 1 by the local host, an interrupt is signaled to
the local host if the corresponding bit location in MMC_STAT register is
asserted to 1 by the core.

� If set to 0, the interrupt is masked and not signaled to the local host.

� 0: Interrupt disabled
� 1: Interrupt enabled

� Values after reset are low (all bits).

MMC/SD Host Controller

7-143MPU Public Peripherals

The 16-bit MMC command time-out register (MMC_CTO) specifies the
maximum number of clock cycles before a command time-out condition
occurs.

Table 7–103. MMC Command Time-out Register (MMC_CTO)

Bit Name Description

15–8 Reserved

7–0 CTO MMC command time-out value.

Command Time-out Value (CTO)

MMC/SD mode only.

The local host sets this field (bits 7:0) based on NCR clock cycles. MMC and
SD card specifies NCR to be between 2 and 64 clock cycles.

If the card does not respond within the specified number of cycles, command
time-out gets set to 1 in MMC_STAT[7] register bit.

For MMC card interrupt mode support, this time-out is disabled when the
command passes with an R5 response (CMD40).

� 0x00: Command time-out disabled

� 0x01: One clock cycle

� 0xFD: 253 clocks cycles (28 – 3)

The 0xFF and 0xFE cannot be used.

Values after reset are low (all 8 bits).

MMC/SD Host Controller

 7-144

This 16-bit register specifies the maximum number of clock cycles before a
data time-out condition occurs.

Table 7–104. MMC Data Time-out Register (MMC_DTO)

Bit Name Description

15–0 DTO Data read time-out

Data Time-out Value (DTO)

In MMC/SD mode, the local host sets this field (bits 15-0) based on NAC clock
cycles. NAC is computed from the parameters TAAC and NSAC and the
operating clock frequency.

TAAC and NSAC are CSD card parameters and can be obtained by reading
the response register after a successful execution of a SEND_CSD command
(CMD9).

If the card does not respond within the specified number of cycles, data time-
out gets set to 1 in MMC_STAT[5] register bit.

The effective number of clock cycles for time-out value are to be multiplied by
1024 if MMC_SDIO:DTO_PS_En=1 and by 1 if DTO_PS_En=0.

In SPI mode, a data time-out condition is also generated if the RDY/BUSY
signal is asserted low (BUSY) for DTO consecutive clocks cycles (see
Table 7–105).

Table 7–105. Data Time-out Conditions

DTO DTO_PS_En=0 DTO_PS_En=1

0x0000 No time-out No time-out

0x0001 1 1024 MMC clock cycles

0x0002 2 2048

… … …

0xFFFF 65535 (216-1) 67107840 (226-210)

Values after reset are low (all 16 bits).

MMC/SD Host Controller

7-145MPU Public Peripherals

The MMC data access register (MMC_DATA) is the entry point for the local
host to read data from, or write data into, the FIFO buffer. The FIFO size is
32x16bits (64 bytes). Bytes within a word are stored and read in little endian
format.

If the local host accesses this register byte-wise, the MSB (bits [15:8]) must
be always written/read first. A byte access to the LSB without a prior write into
the MSB results in having the MSB filled with 0x00.

Table 7–106. MMC Data Access Register (MMC_DATA)

Bit Name Description

15–0 DATA Transmit/receive FIFO data

Transmit/Receive FIFO Data Value (DATA)

In MMC/SD mode, this register field (bits 15-0) contains either the data packet
associated with block transfer (read or write), the CID contents for a
PROGRAM_CID (CMD26) command, or the CSD contents for a
PROGRAM_CSD (CMD27) command.

Since the block length is passed as an argument, it is legal for the local host
to perform only 16-bit accesses (read or write) to the buffer, even if the block
length is not an even number. In case of an odd number of bytes to read, the
upper byte of the last access always reads as 0x00. Conversely, for an odd
number of bytes to write, the upper byte must be filled with 0x00 for the last
data value.

In SPI mode, the register contains both the command (op-code and address
for a serial flash) and the data.

In SYSTEST mode, the FIFO behaves as a stack accessible only by the local
host (push and pop operations). In this mode, the set FIFO threshold values
are active, as are the associated interrupts and DMA, if enabled. This special
mode can be used for system test purpose.

Values after reset are low (all 16 bits).

A read access when the buffer is empty returns the previous read data value.
A write access when the buffer is full is ignored. In both events, the FIFO point-
ers are not updated and a remote access error (hardware error) is generated
(access qualifier). No remote error is generated if the local host performs a
16-bit access if the buffer contains a single byte.

MMC/SD Host Controller

 7-146

This register configures the core for the number of bytes to read or write. It
must be initialized at least once prior to starting an MMC, SD, or SPI block data
transfer (read or write).

Table 7–107. MMC Block Length Register (MMC_BLEN)

Bit Name Description

15–11 Reserved

10–0 BLEN Block length value

Block Length (BLEN)

General operation: A write into this register (bits 10-0) initializes an 11-bit
counter that decrements by 1 after each byte transferred. A read into this regis-
ter returns the number of bytes remaining to be transferred. When the counter
reaches 0 and after the last byte transfer completes, BLEN is automatically
reloaded to its programmed value by the core.

In MMC/SD mode, this 11-bit value specifies the data block length. This value
must be set respectively with max 2READ_BL_LEN-1 for a block read or
max 2WRITE_BL_LEN-1 for a block write.

READ_BL_LEN and WRITE_BL_LEN are CSD register settings of the card
returned in a response, R2, following a SEND_CSD command (CMD9).

In SPI modes and for a read transaction, BLEN must be initialized with the
exact byte count to read negative 1, excluding the op-code and address
arguments.

Op-code and address arguments that are passed to the SPI device must be
written into the FIFO buffer prior to starting the SPI transfer. BLEN starts to
decrement as soon as the buffer contents have been shifted out to the SPI
device. The buffer then starts to be filled with the received data from the SPI
device.

In SPI modes and for a write transaction, BLEN must be initialized with the
exact byte count to write negative 1, including the number of bytes needed to
pass the op-code and address arguments.

It is recommended to have op-code and addresses that are passed to the SPI
module written into the FIFO buffer prior to starting the SPI transfer. This allows
in DMA write operation to access only the data portion. BLEN starts to
decrement for every byte shifted out to the SPI device.

� 0x000: 1 byte

� 0x7FF: 2048 bytes

Values after reset are low (all 11 bits).

MMC/SD Host Controller

7-147MPU Public Peripherals

This register configures the number of blocks for a multiple block data transfer
(read or write) operation for MMC/SD cards. This register is not used for SPI
transfers.

Table 7–108. MMC Number of Blocks Register (MMC_NBLK)

Bit Name Description

15–11 Reserved

10–0 NBLK Number of blocks value

Number of Blocks (NBLK)

MMC/SD mode only.

In MMC/SD mode, this 11-bit value (bits 10-0) specifies the number of blocks
for a multiple block data transfer (read or write). Each block is of size
MMC_BLEN:BLEN (block length value). This value must be set with the num-
ber of blocks – 1.

This register must be programmed prior to any multiple block data transfer. A
write into this register initializes an 11-bit counter that decrements by one after
each block transfer. A read into this register returns the number of blocks
remaining to be transferred to the card.

When the counter reaches 0, the transfer stops after the last transfer
completes.

For stream or multiple block transfer, a Block_RS interrupt is generated only
once after the last successful transfer when NBLK reaches 0.

In stream mode, the minimum allowable number of blocks is two blocks.

Note:

This value must be 0x000 for a single block transfer. In stream mode, the
minimum allowable number of blocks is two blocks. If the transfer is inter-
rupted by a STOP_TRANSMISSION command (CMD12) before the counter
reached 0, you must reprogram this register prior to starting any new single
or multiple block data transfers.

� 0x000: 1 block

� 0x7FF: 2048 blocks

Values after reset are low (all 11 bits).

MMC/SD Host Controller

 7-148

This register configures the buffer threshold level of the thirty two 16-bit-word
FIFO and enables DMA transfers.

Table 7–109. MMC Buffer Configuration Register (MMC_BUF)

Bit Name Description

15 RX_DMA_En Receive DMA channel enable

14–13 Reserved

12–8 AF_Level Buffer almost full level

7 TX_DMA_En Transmit DMA channel enable

6–5 Reserved

4–0 AE_Level Buffer almost empty level

Receive DMA Channel Enable (RX_DMA_En)

When this bit (15) is set to 1, the receive DMA channel is enabled and the
A_Full status bit is forced to 0 by the core irrespectively of AF_level setting (see
Table 7–109).

� 0: Receive DMA channel disabled

� 1: Receive DMA channel enabled

Value after reset is low.

Buffer Almost Full Level (AF_Level)

This register (bits 12-8) holds the programmable almost full level value used
to determine almost full buffer condition. If you want an interrupt or a DMA read
request to be issued during a read operation when the data buffer holds
n words of 16 bits, then AF_Level must be set with n-1.

� 0x00 1 16-bit word (2 bytes)

� 0x1E: 31 16-bit word (62 bytes)

� 0x1F: 32 16-bit word (64 bytes)

Values after reset are 0x1F.

MMC/SD Host Controller

7-149MPU Public Peripherals

Transmit DMA Channel Enable (TX_DMA_En)

When this bit (7) is set to 1, the transmit DMA channel is enabled and the
A_Empty status bit is forced to 0 by the core irrespectively of AE_level setting
(see Table 7–109).

More information regarding DMA operation can be found in Chapter 5, System
DMA Controller.

� 0: Receive DMA channel disabled

� 1: Receive DMA channel enabled

Value after reset is low.

Buffer Almost Empty Level (AE_Level)

This register (bits 4-0) holds the programmable almost empty level value used
to determine almost empty buffer condition. If you want an interrupt or a DMA
write request to be issued during a write operation when the data buffer holds
n words of 16 bits, then AE_Level must be set with n.

� 0x00: 0 16-bit word (0 bytes)

� 0x1E: 30 16-bit word (60 bytes)

� 0x1F: 31 16-bit word (62 bytes)

Value after reset is low.

MMC/SD Host Controller

 7-150

This register is used to configure the SPI interface and start an SPI transfer
if SPI mode has been enabled.

Table 7–110. MMC SPI Configuration Register (MMC_SPI)

Bit Name Description

15 Start Start SPI transfer

14 WnR Write/not read

13–12 Reserved

11–10 TCSH Chip-select hold time control

9–8 TCSS Chip-select setup time control

7–6 Reserved

5–4 CS Chip-select control

3 CSM Chip-select mode

2 CSD Chip-select disable

1 PHA Phase control

0 POL Polarity control

Start SPI Transfer (Start)

This set-only bit (15) always reads as 0. A write to 0 has no effect.

When set to 1 by the local host, a SPI transfer is automatically started.

Note:

The user must take care to initialize MMC_BLEN:BLEN before starting an
SPI transfer.

SPI transfer automatically stops when the size programmed in
MMC_BLEN:BLEN decrements down to 0 (in read and in write).

� 0: No action

� 1: SPI transfer started

Value after reset is low.

MMC/SD Host Controller

7-151MPU Public Peripherals

Write/Not Read (WnR)

This bit (14) instructs the 11-bit block length counter in MMC_BLEN:BLEN to
decrement either on byte read when WnR = 0 or on byte write when
WnR = 1.

� 0: Decrement on byte received

� 1: Decrement on byte sent

Value after reset is low.

Chip-Select Hold Time Control (TCSH)

This field (bits 11-10) defines the number of interface clock cycles that the core
waits after last SPI_CLK clock edge before asserting the chip-select signals
to their inactive-high level.

� 00: Minimum 0.5 clock cycle

� 01: Minimum 1.5 clock cycles

� 10: Minimum 2.5 clock cycles

� 11: Minimum 3.5 clock cycles

Values after reset are low (2 bits).

Chip-Select Setup Time Control (TCSS)

This field (bits 9-8) defines the number of interface clock cycles that the core
waits after asserting the chip-select signals to their active-low level before
asserting first SPI_CLK clock edge.

� 00: Minimum 1 clock cycle

� 01: Minimum 2 clock cycles

� 10: Minimum 3 clock cycles

� 11: Minimum 4 clock cycles

Values after reset are low (2 bits).

MMC/SD Host Controller

 7-152

Figure 7–50. SPI Mode C/S Timings Controls (POL = 0)

TCSH = 3.5
TCSH = 2.5
TCSH = 1.5
TCSH = 0.5

TCSS = 3
TCSS = 4

TCSS = 2
TCSS = 1

SPI_CLK
(POL=0)

SPI_CSn[3:0]

SPI shift clock
(module generated

Internal clock)

Figure 7–51. SPI Mode C/S Timings Controls (POL = 1)

TCSH = 3.5
TCSH = 2.5
TCSH = 1.5
TCSH = 0.5

TCSS = 3
TCSS = 4

TCSS = 2
TCSS = 1

SPI_CLK
(POL=1)

SPI_CSn[3:0]

SPI shift clock
(module generated

Internal clock)

Chip-Select Control (CS)

Encoded value (bits 5-4) that selects the device being targeted for SPI transfer.

� 00: Reserved (no device is selected)

� 01: C/S 1

� 10: C/S 2

� 11:C/S 3

Values after reset are low (2 bits).

MMC/SD Host Controller

7-153MPU Public Peripherals

Chip-Select Mode (CSM)

When this bit (3) is set to 0 and enabled (CSD=0), the selected CS signal pin
goes active (low) only when SPI transfer is started and brought back automati-
cally to its inactive state (high), when the SPI transfer completes.

When set to 1, the automatic control of the CS signal is disabled. Instead, the
selected CS signal pin is manually controlled by the chip-select disable regis-
ter bit (CSD). This mode provides support for complex SPI transfer scheme
that requires CS to be kept active during the entire transfer (ex: MMC card write
with busy condition).

� 0: Automatic mode

� 1: Manual mode (controlled by CSD)

Value after reset is low.

Chip-Select Disable (CSD)

When this bit (2) is set to 0, the selected CS signal is asserted to its active (low)
state either automatically when CSM = 0, or manually when CSM = 1.

When set to 1, the selected CS signal is forced to its inactive (high) state. It can
be used to send dummy clocks with CS inactive to a MMC or SD card.

� 0: Selected CS is conditionally asserted (low).

� 1: Selected CS is deasserted (high).

Value after reset is low.

Table 7–111. Chip-Select Control (SPI Mode)

CSM CSD Selected CS Comment

0 0 High-low-high Automatic mode: CS asserted active (low) during SPI
transfer.

0 1 High Automatic mode: CS forced inactive (high)

1 0 Low Manual mode: CS asserted active (low)

1 1 High Manual mode: CS asserted inactive (high)

MMC/SD Host Controller

 7-154

Clock Phase (PHA)

The clock polarity and clock phase bits select four different clocking schemes
for the SPICLK pin.

The clock phase bit (1) selects a half cycle delay for clock.

When clock phase = 0:

� MSB data is ready one half cycle of SPICLK before the SPI clock starts.

� Data is shifted-in in reception on the first edge transition of SPICLK.

� Data is shifted-out in transmission on the second edge transition of
SPICLK.

When clock phase = 1:

� Data is shifted-out in transmission on the first edge transition of SPICLK.

Data is shifted-in in reception on the second edge transition of SPICLK:

� 0: Phase 0

� 1: Phase 1

Value after reset is low.

Clock Polarity (POL)

The clock polarity bit (0) selects the active edge of the clock, either rising or
falling.

When 0, the idle value of the SPI clock signal is low and the rising edge is
active.

When 1, the idle value of the SPI clock signal is high and the falling edge is
active.

� 0: Rising edge active

� 1: Falling edge active

Value after reset is low.

MMC/SD Host Controller

7-155MPU Public Peripherals

Figure 7–52. SPI Master Configuration Bits

0

0

1

1

POL

0

1

0

1

PHA

0

1

2

3

SPI Mode S
h

if
t

In

S
h

if
t

O
u

t

SPI_CLK

SPI_CLK

SPI_CLK

SPI_CLK

SPI MASTER Configuration

This register provides additional controls for the MMC/SD interface. It is also
reserved for future SDIO operation (not supported in present version).

Table 7–112. MMC SDIO Mode Configuration Register (MMC_SDIO)

Bit Name Description

15–14 Reserved

13 CER1_3_En Card status error on bit 3 of response 1 enable

12–6 Reserved

5 DTO_PS_En Data time-out prescaler enable

4–0 Reserved

Card Status Error on Bit 3 of Response R1 Enable (CER1_3_En)

This bit (13) must be set to 1 for SD cards only or application-specific com-
mands that generates an error.

If set to 1, a card status error is generated if bit 3 of the status is 1 for a R1 or
R1b response.

� 0: Error on bit 3 masked

� 1: Card status errors on bit 3 of response 1 enabled (SD card or application
specific only)

Value after reset is low.

MMC/SD Host Controller

 7-156

Data Time-out Prescaler Enable (DTO_PS_En)

When this bit (5) is set to 1 by the LH, the data time-out set in MMC_DTO regis-
ter is x1024 the number of MMC_CLK cycles.

� 0: x1 (Prescaler off)

� 1: x1024 (Prescaler on)

Value after reset is low.

The MMC system test register (MMC_SYST) is used to control the signals that
connect to I/O pins when the module is configured in system test (SYSTEST)
mode (see Table 7–113).

Table 7–113. MMC System Test Register (MMC_SYST)

Bit Name Description

15–14 Reserved

13 RDY_dat Ready/busy input signal data value

12 DAT-dir DAT[3–0] signals direction

11 DAT3_dat DAT3 input/output signal data value

10 DAT2_dat DAT2 input/output signal data value

9 DAT1_dat DAT1 input/output signal data value

8 DAT0_dat DAT0/SI input/output signal data value

7 CMD-dir CMD/SO signal direction

6 CMD_dat CMD/SO input/output signal data value

5 MMC_CK_dat MMC clock output signal data value

4 SPI_CK_dat SPI clock output signal data value

3 CS3_dat C/S3 output signal data value

2 CS2_dat C/S2 output signal data value

1 CS1_dat C/S1 output signal data value

0 Reserved

MMC/SD Host Controller

7-157MPU Public Peripherals

Ready/Busy Data (RDY_dat)

This read-only bit (13) returns the value of the signal on the input pad (high or
low).

� 0: Ready/busy low

� 1: Ready/busy high

Value after reset is high.

DAT[3:0] Direction (DAT_dir)

When set, this bit (12) places all the in/out DAT[3:0] pins in output mode.

� 0: Input

� 1: Output

Value after reset is low.

DAT[3:0] Data (DATn_dat)

If DAT_dir = 0 (input mode direction), these bits (11-8) return the value on the
corresponding DAT pins (high or low). A write into these bits has no effect.

If DAT_dir =1 (output mode direction), the DAT pins is driven high or low
according to the value written into these register bits.

Values after reset are low (all 4 bits).

CMD Direction (CMD_dir)

When set, this bit (7) places the in/out CMD pin in output mode.

� 0: Input

� 1: Output

Value after reset is low.

CMD Data (CMD_dat)

If CMD_dir=0 (input mode direction), this bit (6) returns the value on the CMD
pin (high or low). A write into this bit has no effect.

If CMD_dir =1 (output mode direction), the CMD pin is driven high or low
according to the value written into this register bit.

Value after reset is low.

MMC/SD Host Controller

 7-158

MMC_CLK Data (MMC_CK_dat)

The MMC_CK pin is driven high or low according to the value written into this
register bit (5).

Value after reset is low.

SPI_CLK Data (SPI_CK_dat)

The SPI_CK pin is driven high or low according to the value written into this
register bit (4).

Value after reset is low.

CS[3:1] Data (CSn_dat)

The CS[3:1] pins are driven high or low according to the values written into
these register bits (3-1).

Values after reset are low (all 3 bits).

The read-only MMC module version register (MMC_REV) contains the
revision number of the module. A write to this register has no effect.

Table 7–114. MMC Module Version Register (MMC_REV)

Bit Name Description

15–8 – Reserved

7–0 REV Module version number

Module Version Number (REV)

This 8-bit field (bits 7-0) indicates the revision number of the RTL for this
module. This value is fixed by hardware.

The four LSBs indicate a minor revision.

The four MSBs indicate a major revision.

� 0x14: Version 1.4

� 0x20: Version 2.0

A reset has no effect on the value returned.

MMC/SD Host Controller

7-159MPU Public Peripherals

Table 7–115 through Table 7–122 describe 16-bit registers that hold specified
bits positions for a 128-bit response of type R2.

Table 7–115. MMC/SD Command Response Register 0 (MMC_RSP0)

Bit Name Description

15–0 RESP0 CMD response (R2[15:0])

Table 7–116. MMC/SD Command Response Register 1 (MMC_RSP1)

Bit Name Description

15–0 RESP0 CMD response (R2[31:16])

Table 7–117. MMC/SD Command Response Register 2 (MMC_RSP2)

Bit Name Description

15–0 RESP0 CMD response (R2[47:32])

Table 7–118. MMC/SD Command Response Register 3 (MMC_RSP3)

Bit Name Description

15–0 RESP0 CMD response (R2[63:48])

Table 7–119. MMC/SD Command Response Register 4 (MMC_RSP4)

Bit Name Description

15–0 RESP0 CMD response (R2[79:64])

Table 7–120. MMC/SD Command Response Register 5 (MMC_RSP5)

Bit Name Description

15–0 RESP0 CMD response (R2[95:80])

MMC/SD Host Controller

 7-160

Table 7–121 and Table 7–122 describe registers that also hold specified bit
positions for a 32-bit response of type R1/R1b/R3/R4/R5/R6.

Table 7–121. MMC/SD Command Response Register 6 (MMC_RSP6)

Bit Name Description

15–0 RESP6 CMD response (R2[111:96], R1/R1b/R3/R4/R5/R6[23:8])

Table 7–122. MMC/SD Command Response Register 7 (MMC_RSP7)

Bit Name Description

15–0 RESP6 CMD response (R2[111:96], R1/R1b/R3/R4/R5/R6[39:24])

MMC/SD Host Controller

7-161MPU Public Peripherals

7.12.8 Command Flow

To correctly drive the MMC/SD adapter for a command execution, the host
must follow the process shown in Figure 7–53 and Figure 7–54.

Figure 7–53. Command Flow

Operation without data

Initialization
(set system configuration)

Send command
(with type response direction)

Write data buffer

Read data buffer

Set transfer parameters

Response from card

Blocks sent to cardBlocks received from card

End of the operation

WriteRead

Operation with data

Send command
(with type response direction)

Send command
(with type response direction)

MMC/SD Host Controller

 7-162

Figure 7–54. Initialization Phase

Host activity
The user must set several registers

Description

IRQ name

Description

Adapter activity

Waiting IRQ by the host unit

In all modes (MMC, SD, SPI) a initialization phase is necessary at the begin-
ning. After the MMCSD adapter woks differently depending if the host sends
a command without data, with data, and, depending the type, the index of the
response and the direction.

Figure 7–55. Detail of Basic Operation

Initialization
(set system configuration)

Next operation

Write MMC_CON
Choose the mode and frequency

Write MMC_IE
Enable interrupts

Write MMC_CTO
Command time-out value

Write MMC_DTO
Data time-out value

MMC/SD Host Controller

7-163MPU Public Peripherals

Figure 7–56. Command Transfer

Write MMC_ARG1.

Write MMC_ARG2IE.

Write MMC_CMD.

Command
time-out

End of
command

Next operation
No

No

Yes

Yes

Send command
(with type response direction)

When a command that has no response is used (that is, CMD0, CMD4,
CMD15), the command timeout condition can never occur, since there is no
response expected. In this case, the NO path from the command timeout clock
is taken, and the timeout interrupt is not valid.

MMC/SD Host Controller

 7-164

Figure 7–57. Data Transfer

Set transfer parameters

Next operation

Write MMC_BUF.
Almost full/empty level and Rx/Tx DMA

(if needed).

Write or read MMC_DATA

Write MMC_BLEN.
If the value does not change it is not

useful to set it again.

Write MMC_NBLK.
– In single mode, NBLK must be = 0.

– In multiblock or stream NBLK must be > 0.

Next operation

Write or read data buffer

For the example shown in Figure 7–58, the mode selected is MMC/SD
(MMC_CON[13:12] = 00).

MMC/SD Host Controller

7-165MPU Public Peripherals

Figure 7–58. Data Transfer in MMC/SD Mode Example

Others
cases

Yes

Read operation

Initialization
(set system configuration)

Read data buffer

Calculation of CRC

Blocks sent to cardBlocks received from card

Write operation

Set transfer parameters

Calculation of CRC

Almost full Almost

Block R/S

Stop transmission
send command

Error

Write data buffer

In multi-block the
MMC_NBLK(/=0) must be

set for every new
operation.

No No Yes

Stream

Single block Stream and multiple

Yes

No

Others
casesStream

Send command
(with type response direction)

Send command
(with type response direction)

MMC/SD Host Controller

 7-166

7.12.9 DMA Operation

7.12.9.1 MMC DMA Receive Mode

In a DMA block read operation (single or multiple):

� The DMA RX request signal is asserted to its active level when the FIFO
level becomes equal or greater than the threshold set in AF_level.

� The DMA RX request is deasserted to its inactive level when the system
DMA has read one word from the FIFO.

Because the request lasts one 16-bit word read cycle, it is recommended that
the threshold level (AF_level) equal the DMA burst size (n) minus 1. For
instance, if the system DMA is programmed to support one word read access,
AF_level must be set to 0.

The MMC/SD host controller does not generate a new DMA request until the
system DMA has read the N words corresponding to the previous DMA
request, even if the FIFO level is equal to or greater than the programmed
threshold.

Since each DMA transfer has equal size, it is necessary to have the total data
size of the transfer be a multiple of the DMA read access size (max 32 words).

Summary:

DMA transfer size = n ≤ FIFO size
(max 32 16-bit words)

AF_level = n -1 (FIFO threshold level)

n = submultiple of total transfer size

Example: Multiple block read of 10 blocks of 512 bytes each.

The DMA transfer size n can be set to 20 words (40 bytes) and AF_
level= 0x13 (0x14-1). Then the read transfer operation completes
after 128 system DMA read requests.

The receive FIFO does not overflow. If the FIFO gets full, the MMC_clk clock
signal is momentarily stopped until the system DMA or the TI925T performs
a read access, which starts emptying the FIFO.

When using the MMC DMA receive mode, the MPU software must enforce that
the MPU never access the MMC_DAT register at the same time the DMA
is accessing the register. Failure to enforce this restriction may cause
unexpected results.

MMC/SD Host Controller

7-167MPU Public Peripherals

7.12.9.2 MMC DMA Transmit Mode

In a DMA block write operation (single or multiple):

� The DMA TX request signal is asserted to its active level when the FIFO
level becomes less than the threshold set in AE_level after the block write
command has been set (write action into MMC_CMD).

� The DMA TX request is deasserted to its inactive level when the system
DMA has written one single word into the FIFO.

Because the request lasts one 16-bit word write cycle, it is recommended that
the threshold level (AE_level) equal DMA burst size (n) minus 1. For instance,
if the system DMA is programmed to transfer one word write access, AE_level
must be set to 0.

In DMA mode, because a new DMA TX request can be generated after the first
read from the FIFO by the core, it is possible for the FIFO to hold a maximum
of two DMA transfers of n words minus one. Hence the maximum permitted
DMA transfer size is half the FIFO size.

The MMC/SD host controller does not generate a new DMA request until the
system DMA has written the N words corresponding to the previous DMA
request, even if the FIFO level is equal to or greater than the programmed
threshold.

Because each DMA transfer has equal size, it is necessary to have the total
data size of the transfer be a multiple of the DMA write access size
(max 16 words).

Summary:

DMA transfer size = n ≤ FIFO size/2
(max 16 16-bit words)

AE_level = n -1 (FIFO threshold level)

n = submultiple of total transfer size

Example: Multiple block write of 10 blocks of 512 bytes each. The DMA trans-
fer size n can be set to 10 words (20 bytes) and AE_level= 0x9. Then the write
transfer operation completes after 256 system DMA write requests.

The transmit FIFO does not underflow. If the FIFO gets empty, the MMC_clk
clock signal is momentarily stopped till the system DMA or the local host
performs a write access, which starts filling the FIFO.

MMC/SD Host Controller

 7-168

7.12.10 Local Host (IRQ/Polling) Mode

7.12.10.1 MMC Local Host (IRQ/Polling) Receive Mode

During a local host block read operation (single or multiple) using inerrupt/poll-
ing mode, the A_Full status bit is set active (high level) when the FIFO level
becomes equal or greater than the threshold set in AF_level. The local host
can only clear the A_Full set bit by writing a ’1’ into the A_Full status bit location.

The threshold level (AF_level) equals LH (local host) transfer size (n) minus
1. If the threshold is set to 0 (AF_level=0x00), the local host has to read one
word by one word. If the threshold is set to 31 (AF_level=0x1F), the local host
has to read 32 words by 32 words.

New A_Full status bit assertion (high level) is internally masked until the LH
has not performed exactly n reads.

Unlike DMA mode, it is not needed to have the total data size of the transfer
be a multiple of the LH read access size (maximum 32 words). The last LH read
access can be down to the LH transfer size when ending any total data size
transfer, as follows:

� LH transfer size = n =FIFO size (max 32 16–bit words)
� AF_level = n –1 (FIFO threshold level)

An example is a multiple block read of 10 blocks of 512 bytes each.

The LH transfer size n can be set to 20 words (40 bytes) and AF_level= 0x13
(0x14–1). Then the LH read transfer operation completes after 128 A_Full sta-
tus bit assertions.

The LH transfer size n can also be set to 15 words (30 bytes) and AF_level =
0x0E (0x0F–1). Then the LH read transfer operation completes after 170
system A_Full status bit assertion/deassertions, plus a last assertion for the
last transfer of 10 words (20bytes).

The receive FIFO never overflows. If the FIFO gets full, the MMC_clk clock
signal is momentarily stopped untll the system DMA or the LH performs a read
access, which starts emptying the FIFO.

Real-Time Clock

7-169MPU Public Peripherals

7.13 Real-Time Clock

The real time clock (RTC) is an embedded module (see Figure 7–59). Its basic
features are:

� Time information (seconds/minutes/hours) directly in BCD code

� Calendar information (day/month/year/day of the week) directly in BCD
code up to year 2099

� Interrupt generation, periodically (1s/1m/1h/1d period) or at a precise time
of the day (alarm function)

� 30 s time correction

� Oscillator drift compensation

Figure 7–59. RTC Clock Diagram

32 kHz

IRQ_ALARM

Compensation

NIRQ_ALARM

NIRQ_TIMER

32-kHz
counter

Seconds Minutes Hours Days Months Years

AlarmInterrupt

Week days Control

Real-Time Clock

 7-170

7.13.1 Register Descriptions

All the time and calendar information is available in dedicated registers, which
are called time and calendar registers. Time and calendar register values are
written in binary coded decimal (BCD) code (see Table 7–123).

Table 7–123. Time and Calendar Register Values

Time Unit Range Remarks

Year 00 to 99 Leap year: year divisible by 4

Common year: other year

Month 01 to 12

Day 01 to 31 01 to 31 for months 1, 3, 5, 7, 8, 10, 12

01 to 30 for months 4, 6, 9 ,11

01 to 29 for month 2 (leap year)

01 to 28 for month 2 (common year)

Week 00 to 06 Weekday

Hour 00 to 23 00 to 23 in 24-hour mode

01 to 12 in AM/PM mode

Minutes 00 to 59

Seconds 00 to 59

7.13.2 Register Access

There are three types of registers:

� Time and calendar registers/alarm
� General
� Compensation

These three types have their own access constraints.

Access Period Violation

Disable all incoming interrupts during the register read processs
to prevent process interruption and possible violation of the
authorized 15-µs access period.

Real-Time Clock

7-171MPU Public Peripherals

7.13.2.1 Time and Calendar Registers/Alarm Registers

To read or write correct data to and from the time and calendar registers/alarm
registers, the MPU must first poll the BUSY bit of the STATUS register until
BUSY is equal to zero. From this time, and for a time of 15 µs (the available
access period), the MPU can safely access the time and calendar registers/
alarm registers. At the end of the access period, the MPU must restart the
previous sequence. If the MPU accesses the time and calendar registers
outside of the access period, the access is not ensured (see Figure 7–60).

Figure 7–60. Time and Calendar Registers and Alarm Register Access
Read BUSY bit

CLK_32 KHz

BUSY

TIPB
NSTROBE

Timer counter

Available TC
registers access

15 µs 15 µs

Available TC
registers access

15 µs

Available TC
registers access

RTC update

32766 32767 0 1

Any read/write TC registers access

Forbidden TC
registers access

7.13.2.2 General Registers

The MPU can access the STATUS_REG and the CTRL_REG at any time
(except the CTRL_REG[5] bit, which must be changed only when the RTC is
stopped).

For the INTERRUPTS_REG, the MPU must respect the available access
period to prevent spurious interrupt.

Real-Time Clock

 7-172

The RTC_DISABLE bit of the CTRL register must only be used to completely
disable the RTC function. When this bit is set, the 32-kHz clock is gated, and
the RTC is frozen. From this point, resetting this bit to zero can lead to unex-
pected behavior. To save power, this bit must only be used if the RTC function
is not wanted in the application.

7.13.2.3 Compensation Registers

Access to the COMP_MSB_REG and COMP_LSB_REG registers must
respect the available access period. These registers must not be updated
during compensation (first second of each hour), but it is acceptable to update
them during the second preceding a compensation event (see Figure 7–61).

For example, the MPU can load the compensation value into these registers
after each hour event during an available access period.

7.13.2.4 Modify Time and Calendar Registers

To modify the current time, the MPU writes the new time into time and calendar
registers to fix the time and calendar information. The MPU can write into time
and calendar registers without stopping the RTC; but in this case, the MPU
must read the status register to ensure that the RTC updating takes place in
more than 15 µs (bit BUSY should be 0). Then the MPU must perform all
changes in less than 15 µs to prevent partial updating between the beginning
and the end of the writing sequence into time and calendar registers.

Also, the MPU can stop the RTC by clearing STOP_RTC bit of the control reg-
ister (owing to internal resynchronization, the RUN bit of the status must be
checked to ensure that the RTC is frozen), update time and calendar values,
and restart the RTC by resetting the STOP_RTC bit.

7.13.2.5 Rounding Seconds

Time can be rounded to the closest minute, by setting ROUND_30S bit of the
control register. When this bit is set, time and calendar values are set to the
closest minute value at the next second. ROUND_30S bit is automatically
cleared when rounding time is performed.

Example:

� If current time is 10H59M45S, round operation changes time to
11H00M00S.

� If current time is 10H59M29S, round operation changes time to
10H59M00S.

Real-Time Clock

7-173MPU Public Peripherals

Figure 7–61. Compensation Scheduling

Hours

Busy

Seconds

COMP_EN

Hours

Seconds

Compensation event

Load
Comp

registers

58 59 0 1 2

Compensation event

Load
Comp

registers

58 59 0 1 2

3 4 5

3 4

59 0 1

Compensation event

Load comps

Hour event
Compensation scheduling

Real-Time Clock

 7-174

7.13.2.6 Interrupts Management

RTC can generate two interrupts:

� Timer interrupt (IRQ_TIMER)
� Alarm interrupt (IRQ_ALARM_CHIP)

7.13.2.7 Timer Interrupt

IRQ_TIMER interrupt can be generated periodically every second, every
minute, every hour, or every day (RTC_INTERRUPTS_REG[1:0]).

The IT_TIMER bit of the interrupt register enables this interrupt.

The timer interrupt is a negative-edge-sensitive interrupt (low-level pulse
duration = 15 µs).

RTC_STATUS_REG [5:2] are only updated at each new interrupt and show
what events have happened, as shown in Table 7–124.

Table 7–124. Timer Interrupts

RTC_INTERRUPTS_REG[1:0] 11 10 01 00

RTC_STATUS_REG[5] (day) 1 0/1† 0/1† 0/1†

RTC_STATUS_REG[4] (hour) 1 1 0/1† 0/1†

RTC_STATUS_REG[3] (min) 1 1 1 0/1†

RTC_STATUS_REG[2] (sec) 1 1 1 1

† 1 when this event is concurrent to programmed periodical period

Figure 7–62 shows IRQ generation waveform.

Figure 7–62. IRQ Generation Waveform

32766

CLK_32KHZ

NIRQ_TIMER

Busy

Timer counter 21032767

Real-Time Clock

7-175MPU Public Peripherals

7.13.2.8 Alarm Interrupt

IRQ_ALARM_CHIP interrupt can be generated when the time set into time
and calendar alarm registers is exactly the same as in the time and calendar
registers (see Figure 7–63).

This interrupt is then generated if the IT_ALARM bit of the interrupts register
is set.

This interrupt is low-level sensitive; RTC_STATUS_REG[6] indicates that
IRQ_ALARM_CHIP occurred.

This interrupt is disabled by writing 1 into the RTC_STATUS_REG[6].

Figure 7–63. IRQ Alarm Interrupt Waveform

Alarm TCregisters = TCs

CLK_32KHZ

NIRQ_ALARM

Busy

Timer counter 31032767 2

Write 1 into STATUS[6]

7.13.2.9 Oscillator Drift Compensation

To compensate for any inaccuracy of the 32-kHz oscillator, the MPU can per-
form a calibration of the oscillator frequency, calculate the drift compensation
versus one-hour period, and load the compensation registers with the drift
compensation value (see Figure 7–64).

Autocompensation is enabled by the AUTO_COMP_EN bit in the RTC_CTRL
register.

If the COMP_REG value is positive, compensation occurs after the second
change event. COMP_REG cycles are removed from the next second.

If the COMP_REG value is negative, compensation occurs before the second
change event. COMP_REG cycles are added to the current second.

This enables compensation with one 32-kHz period accuracy each hour.

Real-Time Clock

 7-176

Figure 7–64 summarizes positive and negative compensation effect.

Figure 7–64. Positive and Negative Compensation Effect

32-kHz clock

Second update

Timer counter

32-kHz clock

Second update

Timer counter

32-kHz clock

Second update

Timer counter

7FFA 7FFB 7FFC 7FFD 7FFE 7FFF 0000 0001

0000

No compensation

7FFA 7FFB 7FFC 7FFD 7FFE 7FFF 0002 0003

7FFA 7FFB 7FFC 7FFD 7FFE 7FFF 7FFE 7FFF

Negative compensation: comp_reg = +2

Positive compensation: comp_reg = –2 (0xFFFE)

Two cycles are
removed from next
second.

Two cycles are added
to current second.

Real-Time Clock

7-177MPU Public Peripherals

7.13.3 Register Descriptions and Mapping

Table 7–125 lists the RTC registers. Table 7–126 through Table 7–143
describe the register bits.

Table 7–125. RTC Registers

Register Description Size Access
Base

Address
Offset

Address

SECONDS_REG Seconds 8 bits R/W FFFB:4800 0x00

MINUTES_REG Minutes 8 bits R/W FFFB:4800 0x04

HOURS_REG Hours 8 bits R/W FFFB:4800 0x08

DAYS_REG Days 8 bits R/W FFFB:4800 0x0C

MONTHS_REG Months 8 bits R/W FFFB:4800 0x10

YEARS_REG Years 8 bits R/W FFFB:4800 0x14

WEEK_REG Weeks 8 bits R/W FFFB:4800 0x18

Reserved 8 bits FFFB:4800 0x1C

ALARM_SECOND_REG Alarm seconds 8 bits R/W FFFB:4800 0x20

ALARM_MINUTES_REG Alarm minutes 8 bits R/W FFFB:4800 0x24

ALARM_HOURS_REG Alarm hours 8 bits R/W FFFB:4800 0x28

ALARM_DAYS_REG Alarm days 8 bits R/W FFFB:4800 0x2C

ALARM_MONTHS_REG Alarm months 8 bits R/W FFFB:4800 0x30

ALARM_YEARS_REG Alarm years 8 bits R/W FFFB:4800 0x34

Reserved 8 bits R/W FFFB:4800 0x38

Reserved 8 bits R/W FFFB:4800 0x3C

RTC_CTRL_REG RTC control 8 bits R/W FFFB:4800 0x40

RTC_STATUS_REG RTC status 8 bits R/W FFFB:4800 0x44

RTC_INTERRUPTS_REG RTC interrupts 8 bits R/W FFFB:4800 0x48

RTC_COMP_LSB_REG RTC compensation LSB 8 bits R/W FFFB:4800 0x4C

RTC_COMP_MSB_REG RTC compensation MSB 8 bits R/W FFFB:4800 0x50

Real-Time Clock

 7-178

Table 7–126. Seconds Register (SECONDS_REG)

Bit Name Function R/W
Reset
Value

7 Reserved R 0

6–4 SEC1 2nd digit of seconds
Range is 0 to 5

R/W 000

3–0 SEC0 1st digit of seconds
Range is 0 to 9

R/W 0000

Table 7–127. Minutes Register (MINUTES_REG)

Bit Name Function R/W
Reset
Value

7 Reserved R 0

6–4 MIN1 2nd digit of minutes
Range is 0 to 5

R/W 000

3–0 MIN0 1st digit of minutes
Range is 0 to 9

R/W 0000

Table 7–128. Hours Register (HOURS_REG)

Bit Name Value Function R/W
Reset
Value

7 PM_nAM Only used in PM_AM mode (otherwise 0) R 0

0 AM

1 PM

6 Reserved R 0

5–4 HOUR1 2nd digit of hours
Range is 0 to 2

R/W 00

3–0 HOUR0 1st digit of hours
Range is 0 to 9

R/W 0000

Real-Time Clock

7-179MPU Public Peripherals

Table 7–129. Days Register (DAYS_REG)

Bit Name Function R/W
Reset
Value

7–6 Reserved R 0

5–4 DAY1 2nd digit of days
Range from 0 to 3

R/W 00

3–0 DAY0 1st digit of days
Range from 0 to 9

R/W 0001

Table 7–130. Months Register (MONTHS_REG)

Bit Name Function R/W
Reset
Value

7–5 Reserved R 000

4 MONTH1 2nd digit of months
Range from 0 to 1

R/W 0

3–0 MONTH0 1st digit of months
Range from 0 to 9

R/W 0001

Note: Usual notation for month value: 01: January, 02: February, ... 12: December

Table 7–131. Years Register (YEARS_REG)

Bit Name Function R/W
Reset
Value

7–4 YEAR1 2nd digit of years
Range from 0 to 9

R/W 0000

3–0 YEAR0 1st digit of years
Range from 0 to 9

R/W 0000

Table 7–132. Weeks Register (WEEKS_REG)

Bit Name Function R/W
Reset
Value

7–3 Reserved R 00000

2–0 WEEK 1st digit of days in a week
Range from 0 to 6

R/W 000

Real-Time Clock

 7-180

Table 7–133. Alarm Seconds Register (ALARM_SECONDS_REG)

Bit Name Function R/W
Reset
Value

7 Reserved R 0

6–4 ALARM_SEC1 2nd digit of seconds
Range from 0 to 5

R/W 000

3–0 ALARM_SEC0 1st digit of seconds
Range from 0 to 9

R/W 0000

Table 7–134. Alarm Minutes Register (ALARM_MINUTES_REG)

Bit Name Function R/W
Reset
Value

7 Reserved R 0

6–4 ALARM_MIN1 2nd digit of minutes
Range from 0 to 5

R/W 000

3–0 ALARM_MIN0 1st digit of minutes
Range from 0 to 9

R/W 0000

Table 7–135. Alarm Hours Register (ALARM_HOURS_REG)

Bit Name Value Function R/W
Reset
Value

7 ALARM_PM_nAM Only used in PM_AM mode (otherwise 0) R 0

0 AM

1 PM

6 Reserved R 0

5–4 ALARM_HOUR1 2nd digit of hours
Range from 0 to 2

R/W 00

3–0 ALARM_HOUR0 1st digit of hours
Range from 0 to 9

R/W 0000

Real-Time Clock

7-181MPU Public Peripherals

Table 7–136. Alarm Days Register (ALARM_DAYS_REG)

Bit Name Function R/W
Reset
Value

7–6 Reserved R 00

5–4 ALARM_DAY1 2nd digit for days
Range from 0 to 3

R/W 00

3–0 ALARM_DAY0 1st digit for days
Range from 0 to 9

R/W 0001

Table 7–137. Alarm Months Register (ALARM_MONTHS_REG)

Bit Name Function R/W
Reset
Value

7–5 Reserved R 000

4 ALARM_MONTH1 2nd digit of months
Range from 0 to 1

R/W 0

3–0 ALARM_MONTH0 1st digit of months
Range from 0 to 9

R/W 0001

Table 7–138. Alarm Years Register (ALARM_YEARS_REG)

Bit Name Function R/W
Reset
Value

7–4 ALARM_YEAR1 2nd digit of years
Range from 0 to 9

R/W 0000

3–0 ALARM_YEAR0 1st digit of years
Range from 0 to 9

R/W 0000

Real-Time Clock

 7-182

Table 7–139. RTC Control Register (RTC_CTRL_REG)

Bit Name
Reset
Value Function R/W

7 Reserved R

6 RTC_DISABLE† 0 RTC enabled R/W

1 RTC disabled (no 32-kHz clock)

5 SET_32_COUNTER‡ 0 No action R/W

1 Sets the 32-kHz counter with COMP_REG (14:0) val-
ue

4 TEST_MODE 0 Functional mode R/W

1 Test mode (autocompensation is enabled when
32-kHz counter reaches its end)

3 MODE_12_24§ 0 24-hour mode R/W

1 12-hour mode (PM/AM mode)

2 AUTO_COMP 0 Autocompensation disabled R/W

1 Autocompensation enabled

1 ROUND_30S¶ 0 No update R/W

1 Rounding enabled

0 STOP_RTC 0 RTC is frozen R/W

1 RTC is running

† RTC_DISABLE can be written to 1 to disable RTC clock. Behavior is unpredictable if this bit is reset to 0 after having been
set to 1.

‡ SET_32_COUNTER must only be used when the RTC is frozen. The set operation is asynchronous, which means the RTC
counter is frozen to the compensation value as long as this bit is set. The correct sequence: reset STOP_RTC (freezes RTC),
set SET_32_COUNTER bit, set STOP_RTC (launches RTC), then reset SET_32_COUNTER bit (3 register writes).

§ You can switch between the two modes at any time without disturbing the RTC. Read or write is always performed using the
current mode.

¶ ROUND_30S is a toggle bit: MPU can only write 1, RTC clears it. If the MPU sets this bit and then reads it, the MPU reads
1 until the rounding to the closet minute is performed at the next second.

Real-Time Clock

7-183MPU Public Peripherals

Table 7–140. RTC Status Register (RTC_STATUS_REG)

Bit Name Value Function R/W
Reset
Value

7 POWER_UP† Indicates that a reset occurred R/W 1

6 ALARM‡ Indicates that an alarm interrupt has been
generated

R/W 0

5 1D_EVENT One day has occurred R 0

4 1H_EVENT One hour has occurred R 0

3 1M_EVENT One minute has occurred R 0

2 1S_EVENT One second has occurred R 0

1 RUN§ 0 RTC is frozen R 0

1 RTC is running

0 BUSY 0 Updating event in more than 15 µs R 0

1 Updating event

† POWER_UP is set by a reset and cleared by writing 1 to this bit.
‡ The alarm interrupt keeps its low level until the MPU writes 1 in the ALARM bit of this register. The timer interrupt is a low-level

pulse (15 µs duration).
§ The STOP_RTC signal is synchronized on the 32-kHz clock, so only 1 clock period can elapse between the write to STOP_RTC

and the RTC actually being stopped. The RUN bit shows the actual state of the RTC.

Table 7–141. RTC Interrupts Register (RTC_INTERRUPTS_REG)

Bit Name Value Function R/W
Reset
Value

7–4 Reserved R 0000

3 IT_ALARM Enable one interrupt when the alarm value is
reached (time and calendar alarms) by the time
and calendars.

R/W 0

2 IT_TIMER Enable periodic interrupt R/W 0

0 Interrupt disabled

1 Interrupt enabled

Note: The MPU must respect the busy period to prevent spurious interrupt.

Real-Time Clock

 7-184

Table 7–141. RTC Interrupts Register (RTC_INTERRUPTS_REG) (Continued)

Bit
Reset
ValueR/WFunctionValueName

1–0 EVERY Interrupt period R/W 00

0 Every second

1 Every minute

2 Every hour

3 Every day

Note: The MPU must respect the busy period to prevent spurious interrupt.

Table 7–142. RTC Compensation LSB Register (RTC_COMP_LSB_REG)

Bit Name Function R/W
Reset
Value

7–0 RTC_COMP_LSB Indicates number of 32-kHz periods to be added
into the 32-kHz counter every hour.

R/W 0x00

Note: This register must be written in twos complement. That means that to add one 32-kHz oscillator period every hour, MPU
must write FFFF into RTC_COMP_MSB_REG and RTC_COMP_LSB_REG. To remove one 32-kHz oscillator period
every hour, MPU must write 0001 into RTC_COMP_MSB_REG and RTC_COMP_LSB_REG. The 7FFF value is forbid-
den.

Table 7–143. RTC Compensation MSB Register (RTC_COMP_MSB_REG)

Bit Name Function R/W
Reset
Value

7–0 RTC_COMP_MSB Indicates number of 32-kHz periods to be added
into the 32-kHz counter every hour.

R/W 0x00

Note: This register must be written in twos complement. That means that to add one 32-kHz oscillator period every hour, MPU
must write FFFF into RTC_COMP_MSB_REG and RTC_COMP_LSB_REG. To remove one 32-kHz oscillator period
every hour, MPU must write 0001 into RTC_COMP_MSB_REG and RTC_COMP_LSB_REG. The 7FFF value is forbid-
den.

USB Host Controller Overview

7-185MPU Public Peripherals

7.14 USB Host Controller Overview

The OMAP5910 device implements a three-port USB host controller that is
compatible with the USB Revision 1.1 specification and the Open Host
Controller Interface Specification for USB (OHCI) Revision 1.0a. It provides
USB host connectivity for USB low-speed (1.5M bit/sec maximum) and full-
speed (12M bit/sec maximum) devices.

For details, see Chapter 14, Universal Serial Bus Host.

7.15 HDQ and 1-Wire Protocols

This module implements the hardware protocol of the master function of the
HDQ and the 1-Wire protocol.

This module works off a command structure that is programmed into transmit
command registers. The received data is in the receive data register. The
firmware is responsible for performing correct sequencing in the command
registers. The module only implements the hardware interface layer of the
protocols.

The HDQ and the 1-Wire modes are selectable in software, and this must be
done before any transmit and receive from the module is performed. The mode
is assumed static during operation of the device. From a timing perspective,
both the 1-Wire and the HDQ protocols use HDQ timing.

7.15.1 Functional Description

The module is intended to work with both the HDQ and the 1-Wire protocols.
The protocols use a single wire to communicate between the master and the
slave. The protocols employ a return-to-1 mechanism, where after any
command the line is pulled up to a high. This necessitates an external pullup.

An open-drain configuration is used on the wire. Therefore, the HDQ pin only
actively drives low and goes to the high-impedance state otherwise, allowing
an external pullup resistor to pull the wire high.

A control bit selects whether the HDQ or the 1-Wire protocol is to be used. This
bit should not be modified during active data cycles on the interface. There-
fore, it is recommended that the bit be only modified as part of boot up configu-
ration. For the design, the bit is assumed static. By default, the configuration
complies with the HDQ spec.

USB Host Controller Overview / HDQ and 1-Wire Protocol

HDQ and 1-Wire Protocols

 7-186

7.15.1.1 Receive and Transmit Operation

The receive and the transmit operations are performed with respect to the tim-
ing that is specified in the HDQ protocol. This is done to keep the hardware
interface section compatible between the two devices. In essence the 1-Wire
mode runs at slower speeds than the capabilities of the mode. The differences
between the protocol at the hardware layer are described in the following
subsections.

HDQ Mode (Default)

In HDQ mode, the firmware does not require the host to create an initialization
pulse to the slave. However, the slave can be reset using an initialization pulse
(also referred to as a break pulse). The pulse is created by setting the appropri-
ate bit in the control and status register. The slave does not respond with a
presence pulse, as it does in the 1-Wire protocol.

In a typical write to the slave, two bytes of data are sent to the slave. This is
the command/address byte followed by the data that must be written. In a
typical read, one command/address byte is sent to the slave, and the slave
returns a byte of data.

The master implementation is a byte engine. The sending of the ID, command/
address, and data is the responsibility of the firmware. The master engine
provides for only one data TX register.

HDQ is a return-to-1 protocol. This means that after a data byte (either
command/address + write data for writes, or just command/address for reads)
is sent to the slave, the host pulls the line high. This is accomplished in the
OMAP5910 device by setting the line to high (with an external pullup). The
slave pulls the line low to initiate a transaction. This is the case when a read
happens and the slave must send the read data back to the host.

If the host initiates a read and data is not received in a specified interval (the
slave does not pull the line low within this time), a time-out status bit is set. This
indicates that a read was not successfully completed. On successful comple-
tion, the time-out bit is cleared. The bit remains set or cleared until the next
transaction by the host.

An interrupt condition indicates either a TX complete, RX complete, or time-out
condition. The read of the interrupt status register clears all the interrupt condi-
tions. Only one interrupt signal is sent to the microcontroller and only an overall
mask bit exists for the enabling and disabling of the interrupt. Each of the inter-
rupt conditions cannot be individually masked.

The following sequence must be performed by the programmer for the reads
and writes to the slave:

HDQ and 1-Wire Protocols

7-187MPU Public Peripherals

Write operation:

1) Write the command or data value to the TX write register.

2) Write 0 to the R/W bit of the control and status register to indicate a write.

3) Write 1 to the go bit of the control and status register to start the actual
transmit. This step and the above step can be done at the same time.

a) The hardware sends the byte from the TX data register.

b) The time-out bit always is cleared in a write, because the hardware
has no acknowledge mechanism from the slave.

c) The completion of the operation sets the TX complete flag in the inter-
rupt status register. If interrupts are masked, no interrupt is generated.
The interrupt status register is always cleared at the beginning of any
read or write operation.

d) At the end of the write, the go bit is cleared.

4) Software must read the interrupt status register to clear the interrupt.

5) Repeat for each successive byte.

Read operation:

1) Write the command value to the TX write register.

2) Write 0 to R/W bit, 1 to the go bit, and wait for TX complete interrupt.

3) Write 1 to the R/W bit of the control and status register to indicate a read.

4) Write 1 to the go bit of the control and status register to start the actual
read. This step and the above step can be done at the same time.

a) The hardware detects a low-going edge of the line (created by the
slave) and receives 8 bits of data in the RX receive buffer register. The
first bit that is received from the slave is the LSB and the last bit is the
MSB of the byte. The master performs this step as soon as the slave
sends the data irrespective of the state of the go bit. However, an RX
complete interrupt is generated only when the go bit is written by the
software.

b) If a time-out occurs, a time-out bit is set in the control and status register.

c) The completion of the operation sets the RX complete flag in the inter-
rupt status register. If interrupts are masked, no interrupt is generated.
The interrupt status register is always cleared at the beginning of
either a read or a write operation.

d) At the end of the read, the go bit is cleared. It is also cleared if a time-
out is detected.

HDQ and 1-Wire Protocols

 7-188

5) Software must read the interrupt status register, to determine if RX was
complete or whether there was a time-out.

6) Software does a read of the RX buffer register to retrieve the read data
from slave.

7) Repeat for each successive byte.

In HDQ mode, the address/command is only written once to the slave. Howev-
er, after the first byte is received, if an RX complete interrupt is received, the
software must initiate the read of the second byte by writing the go bit of the
control and status register. The first byte that was received is shadowed and
provided to the software, while the hardware is fetching the second byte of
data.

1-Wire Mode

This section highlights the primary differences between the HDQ and the
1-Wire protocols.

In the 1-Wire mode, the firmware must send an initialization pulse to the multi-
ple slaves that can be connected on the interface. If any slave is present, the
slave responds with a presence pulse.

The initialization pulse is sent by setting the INIT bit and the GO bit in the con-
trol and status register. A presence detect is indicated in the appropriate bit of
the register. If no presence is received, then a time-out bit is set in the status
register. The initialization bit is cleared at the end of the initialization pulse.
Also, the presence detect and the time-out bits are cleared at the end of the
initialization pulse, if a presence detect is received. The time-out bit has no
other significance in this mode; that is, unlike in HDQ mode, it is always cleared
during a read operation.

1-Wire mode is a bit-by-bit protocol for a read. Unlike HDQ, which sends eight
bits of data on a read, the slave must be clocked by the host in 1-Wire protocol
for each bit. At the end of the command/address byte, the line is pulled high
and the host creates a low-going edge to initiate a bit read from the slave. The
host then pulls the line high, and the slave either pulls the line low to indicate
a 0 or does not drive the line to indicate a 1. The host repeats the operation
for the next bit that need to be read.

The first bit that is received is the LSB and the last bit is the MSB in the RX data
register.

HDQ and 1-Wire Protocols

7-189MPU Public Peripherals

An interrupt condition indicates either a TX complete, RX complete, or time-out
condition. The read of the interrupt status register clears all the interrupt condi-
tions. Only one interrupt signal is sent to the microcontroller and only an overall
mask bit exists for the enabling and disabling of the interrupt. Each of the inter-
rupt conditions cannot be individually masked.

The following sequence must be performed by the programmer for the reads
and writes to the slave:

Write operation:

1) Write the ID, command, or data value to the TX write register.

2) Write 0 to the R/W bit of the control and status register to indicate a write.

3) Write 1 to the go bit of the control and status register to start the actual
transmit. This step and the above step can be done at the same time.

a) The hardware sends the one byte of the TX write data register.

b) The time-out bit is always cleared in a write.

c) The completion of the operation sets the TX complete flag in the inter-
rupt status register. If interrupts are masked, no interrupt is generated.
The interrupt status register is always cleared at the beginning of any
read or write operation.

d) At the end of the write the go bit is cleared.

4) If interrupt is enabled, software must read the interrupt status register to
clear the interrupt.

5) Repeat for each successive byte.

Read operation:

1) Write the ID value to the TX write register.

2) Write 0 to R/W bit and 1 to the go bit and wait for TX complete interrupt.

3) Write the command value to the TX write register.

4) Write 0 to R/W bit and 1 to the GO bit and wait for TX complete interrupt.

5) Write 1 to the R/W bit of the control and status register to indicate a read.

6) Write 1 to the go bit of the control and status register to start the actual
read. This step and the above step can be done at the same time.

a) The hardware creates a low-going edge of the line (created by the
slave), and clocks 8 bits of data into the RX receive buffer register. The
first bit that is received from the slave is the LSB and the last bit is the
MSB of the byte.

HDQ and 1-Wire Protocols

 7-190

b) The time-out bit is always cleared in a read.

c) The completion of the operation sets the RX complete flag in the inter-
rupt status register. If interrupts are masked, no interrupt is generated.
The interrupt status register is always cleared at the beginning of any
read or write operation.

d) At the end of the read, the go bit is cleared. It is also cleared if a time-
out is detected.

7) If interrupt is enabled, software must read the interrupt status register to
determine if RX was completed or whether there was a time-out.

8) Software does a read of the RX buffer register to retrieve the read data
from slave.

9) Repeat for each successive byte.

1-Wire Bit Mode Operation

A single-bit mode can be entered by writing to the appropriate bit in the control
and status register. In this mode, only one bit of data is received each time from
the slave. After the bit is received, an RX complete interrupt is generated. Bit
0 of the receive buffer is updated each time a bit is received.

The mode has no effect in HDQ mode, as HDQ does not support single-bit
protocol.

HDQ and 1-Wire Protocols

7-191MPU Public Peripherals

7.15.1.2 Timing Diagrams

Figure 7–65 through Figure 7–67 show the timing diagram for the read, reset,
and write. In HDQ, the reset pulse only contains the initialization and not the
presence pulse. The timing required for the various signals are specified in the
BQ2023.

The master works at the timing of the HDQ interface, which encompasses the
HDQ and the 1-Wire timing. Therefore, in 1-Wire mode, the master runs slower
than the full performance capability of the protocol.

Figure 7–65. Read Timing Diagram

Must be driven low by host for DS,
driven low by slave on HDQ

tCYC

tODHO

tODD

Read 0

Read 1

tRECtRSTRB

Figure 7–66. Reset Timing Diagram

Sent by host

tRSTREC

tPPtPDtRST

Sent by host

Figure 7–67. Write Timing Diagram

tCYC

tWDH

tWDSU

Write 0

Write 1

tRECtWSTRB

HDQ and 1-Wire Protocols

 7-192

7.15.1.3 Write State Diagram

Figure 7–68. Write State Machine #1

Reset

Time out = 0
Go = 0

IDLE

TX
Write data

TX complete

Bits sent < 8

Rnw = 0, Go = 1

TX complete = 1
Time out = 0

TX complete = 0
Time out = 0

7.15.1.4 Read State Diagram

Figure 7–69. Read State Machine #1

Reset

Time out = 1
Go = 1

IDLE

Time out
Receiving

 < 8 bits

Rnw = 0, Go = 1

Go = 0

Time out, HDQ = 1

HDQ and 1-Wire Protocols

7-193MPU Public Peripherals

7.15.1.5 Status Flags

The status flags are provided in the status register, which contains status flags
from the transmitter, the receiver, and the presence detect logic.

The presence condition detected status flag is contained in the status register.
This is valid only in 1-Wire mode. It is cleared when the host sends an initializa-
tion pulse and then is set to 1 if a pulse is received; otherwise it stays cleared
at 0.

7.15.1.6 Interrupts

The following interrupt status is provided by the module:

� Transmitter complete

A write of one byte was completed. Successful or unsuccessful comple-
tion is not indicated, because there is no acknowledge from the slave in
either HDQ or 1-Wire mode. Cleared at beginning of write command.

� Read complete

Indicates successful completion of a byte read in both modes. Cleared at
beginning of read command.

� Presence detect/time-out

� In 1-Wire mode, it indicates that it is now valid to check the presence
detect received bit. Cleared at beginning of initialization sequence.

� In HDQ mode, it indicates that after a read command was issued by
the host, the slave did not pull the line low within specified time. In HDQ
mode, bit is cleared at beginning of read command.

Only one interrupt is generated to the MPU, based on any of the above inter-
rupt status conditions. A read to the interrupt status register clears all the status
bits that have been set.

The interrupt can be masked by setting the appropriate bit in the control and
status register.

A read of the interrupt status register clears the interrupt. If there is a pending
interrupt the interrupt line stays low and no low-high-low transition is created.
The interrupt therefore must be handled as a level interrupt (where a low-going
edge is not needed) in an upstream interrupt handler (or processor).

HDQ and 1-Wire Protocols

 7-194

7.15.2 Power-Down Mode

Writing to the appropriate bit in the control and status register shuts the clock
to the state machine. The state machines are reset when the clock is disabled,
and if any transaction is being performed it is aborted into the reset state. The
register values are not affected by disabling the clock. No register access must
be performed to the module registers after the software puts the module in
power-down mode (by setting bit 5 of the control and status register to 0) other
than a write to the power-down bit to take it out of power-down mode.

7.15.3 HDQ and 1-Wire Battery Monitoring Serial Interface

The HDQ and 1-Wire battery monitoring serial interface module implements
the hardware protocol of the master function of the TI/Benchmarq HDQ and
the Dallas Semiconductor 1-Wire protocol. The module works off a command
structure that is programmed into transmit command registers. The received
data is in the received data register. The firmware is responsible for doing the
correct sequencing in the command registers. The module only implements
the hardware interface layer of the protocols.

The HDQ and the 1-Wire mode are selectable in software, which must be done
before any transmit and receive from the module is performed. The mode is
assumed static during operation of the device.

Figure 7–70. HDQ and 1-Wire Overview

Interrupt

MPU TIPB
(public)

HDQ / 1-wire

OMAP5910

0
TI

BQxxxx
device

Pin multiplexing for
OMAP5910

GPIO11 device pin

HDQ and 1-Wire Protocols

7-195MPU Public Peripherals

7.15.4 Software Interface

The mapping of registers to the TI peripheral bus (TIPB) address signals is
shown in Table 7–144 and Table 7–145. The base address for the HDQ regis-
ters is FFFB:C000.

No synchronization is provided by the hardware between the register clock
domain and the state machine domain. This means that during a read the
hardware has the capability to modify the receive buffer and it is also possible
that any access to the transmit write data register corrupts the data that is
being sent if a TX is being performed.

However, these hazards can be avoided in software by observing the following
limitations:

� A read is not performed from the interrupt status register or receive buffer
register unless the processor has been interrupted by the peripheral.

� After the release of the go bit in the control and status register, no access
to the TX write data buffer or the control and status registers is performed
until the processor has been interrupted by the peripheral.

� Polling of the interrupt status register is not allowed by software to
determine if an interrupt was generated.

� No register access can be done to the module registers after the software
puts the module in power-down mode (by setting bit 5 of the control and
status register to 0), except to reenable the clock.

Table 7–144. Memory Map Summary

Address Name Type

8h00 TX write data R/W

8h04 RX receive buffer R

8h08 Control and status R/W

8h0C Interrupt status, read to clear R/W

Other Writes ignored; reads return 0 Reserved

HDQ and 1-Wire Protocols

 7-196

Table 7–145. Registers Accessible From TIPB

Bit Name Value Description
Access Type
at Address

Reset
Value

31–24 TX write
data

Reserved—read aliased to bits 7:0,
writes ignored

Read/Write
at 8h00

0000h

23–16 Reserved—read aliased to bits 7:0,
writes ignored

15–8 Reserved—read aliased to bits 7:0,
writes ignored

7–0 Write data

(Used in both HDQ and 1-Wire
modes)

31–24 RX buffer
register

Reserved—read aliased to bits 7:0,
writes ignored

Read only
at 8h04

Unknown (read
only when data is

ready)
23–16 Reserved—read aliased to bits 7:0,

writes ignored

ready)

15–8 Reserved—read aliased to bits 7:0,
writes ignored

7–0 Next received character.

31–24 Interrupt
status
register

Bit is set to 1 if cause of interrupt.

Read of the clears all interrupts that
have been set.

Reserved—read aliased to bits 7:0,
writes ignored

Read only/
read to clear

at 8h0C

23–16 Reserved—read aliased to bits 7:0,
writes ignored

15–8 Reserved—read aliased to bits 7:0,
writes ignored

7–3 Reserved—read 0s, writes ignored 0

2 TX completed 0

1 Read complete 0

0 Presence detect/time-out: In 1-Wire
mode this is due to presence detect,
and in HDQ mode this is due to
time-out on read.

0

HDQ and 1-Wire Protocols

7-197MPU Public Peripherals

Table 7–145. Registers Accessible From TIPB (Continued)

Bit
Reset
Value

Access Type
at AddressDescriptionValueName

31–24 Control and
status

i t

Reserved—read aliased to bits 7:0,
writes ignored

at 8h08

23–16
register

Reserved—read aliased to bits 7:0,
writes ignored

15–8 Reserved—read aliased to bits 7:0,
writes ignored

7 Single-bit mode for 1-Wire R/W 0

6 Interrupt mask R/W 0

0 Disable interrupts

1 Enable interrupts

5 Power-down mode R/W 0

0 Disable clocks

1 Enable clocks

4 Go bit

Write 1 to send the appropriate
commands.

Bit returns to 0 after the command is
complete.

R/W 0

3 Presence detect received, 1-Wire
mode only.

R 0

0 Not detected

1 Detected

2 Write 1 to this bit, and set the GO bit,
to send Initialization pulse.

Bit returns to 0 after pulse is sent.

R/W 0

1 R/W bit (determines if next command
is read or write)

R/W 0

0 Write

1 Read

0 Mode R/W 0

0 HDQ

1 1-Wire

Frame Adjustment Counter

 7-198

7.16 Frame Adjustment Counter

The frame adjustment counter counts the number of rising edges of one signal
(start of frame interrupt of the USB function) during a programmable number
of rising edges of a second signal (transit frame synchronization of McBSP2).
This count value can then be used by system-level software to adjust the dura-
tion of the two time domains with respect to each other to reduce overflow and
underflow. If the data being transferred is audio data, this module can be part
of a solution that reduces pops and clicks.

7.16.1 Features

The frame adjustment counter (FAC) is a module that consists of a
frame-synchronization capture pin and a frame-start capture pin. The respec-
tive count values can then be used by system software to adjust the duration
of the two time domains with respect to each other to reduce the overflow and
underflow.

A frame-adjustment reference count register (FARC) is programmed with the
number of frame-synchronization pulses over which the frame-start pulses are
to be counted. A frame-start count register (FSC) is updated with the number
of frame-start rising edges that occur during the programmable FARC period.
A control and configuration register (CTRL) allows you to put the module into
either continuous or halt mode. In continuous mode, the FSC register is
periodically updated with a new value each time the FARC register value is
met, and a new count is automatically initiated. In halt mode, the FSC register
is updated with a new value when the FARC register value is met, counting
halts, and an interrupt is generated. In halt mode, a new count is initiated upon
software servicing the interrupt by reading the FSC register. The RUN bit in the
control and configuration register can enable and disable the counters. If the
RUN bit is set to zero, the counters are reset immediately even though the
count is not finished. The software can use this bit as a software reset. Addi-
tionally, there is a status register (STATUS) containing a FSC_FULL bit that
indicates to system software if FSC has been read subsequent to the last FSC
update.

The main FAC features are:

� Frame-synchronization capture pin (SYNC)
� Frame-start capture pin (START)
� Programmable frame-adjustment reference count register (FARC)
� Read-only frame-start count register (FSC)
� Interrupt generation logic
� Configuration and control register (CTRL)
� Status register (STATUS)

Frame Adjustment Counter

7-199MPU Public Peripherals

Figure 7–71. FAC Top-Level Diagram

USB function

 MPU interrupt handler level 2

Irq0

 ULPD

DS_WAKE_REQ_ON

ULPD_nIrq

Irq24

WKUP_REQ

12 MHz

CLKINPERCLK

Clock generation and management

OMAP5910

MPU_PER_RST

Gating
Reset

Reset

FAC_IRQ

PCLK

FAC

Registers

FARC

FSC

CTRL

STATUS

SYNC

Start

Frame

Frame

McBSP2

FSX

IRQ_ISO_ON

Start
counter

SYNC
counter

7.16.2 Synchronization and Counter Control

Because frame-start and frame-synchronization signals are from different
time domains, the FAC module synchronizes these two signals to the system
clock domain and uses the synchronized signals as the count enables. The
actual counters for frame synchronization and frame start are clocked by the
system clock.

The synchronization mechanism is based on the assumption that the system
clock is running at least eight times faster than frame synchronization and
frame start. Figure 7–72 and Figure 7–73 show the synchronization logic and
the counter hookup.

Frame Adjustment Counter

 7-200

Figure 7–72. FAC Module Counters and Clock Synchronization

FARC
REG

FSC Frame start

Sync circuit

EN
Sync circuit

FSM

EN Frame sync

Frame start

System clock

REG counter

Frame sync
counter

Frame Adjustment Counter

7-201MPU Public Peripherals

Figure 7–73. Synchronization Circuit for Frame Synchronization and Frame Start Signals

DFF3Frame sync/ DFF2DFF1TFFframe start

System clock

XOR Synced
signal

Figure 7–74 shows the actual waveforms of at the output of each flip-flop and
the XOR output.

Figure 7–74. Synchronization Circuit Waveforms

DFF1 output

TFF output

Frame start/sync

DFF2 output

DFF3 output

XOR output

System clock

Frame Adjustment Counter

 7-202

7.16.3 FAC Interrupt

The FAC generates 1 interrupt, FAC_IRQ (in halt mode when the FARC value
is met), connected to the MPU level 2 interrupt handler, line 0 (level-sensitive)

7.16.4 FAC Clocks and Reset

The FAC works with a clock (PCLK), which is provided by the ULPD from a
request generated by the USB function (DS_WAKE_REQ_ON).

The DS_WAKE_REQ_ON request does not wake-up the system itself.

The ULPD module uses this request to generate an interrupt (ULPD_nIrq) to
the MPU, which wakes up the system via its wake-up request (WKUP_REQ).

Once the system is awakened (12-MHz provided to the MPU), the MPU
programmable peripheral clock (PERCLK) is used as the source clock for the
FAC clock (for more detail, see Chapter 15, Clock Generation and System
Reset Management).

The MPU TIPB reset (MPU_PER_RST) resets the FAC.

7.16.5 Software Interface

Table 7–146 lists the FAC registers. Table 7–147 through Table 7–150
describe the register bits.

Table 7–146. FAC Registers

Register Description Type Address

FARC Frame adjustment reference count R/W FFFB:A800

FSC Frame start count R FFFB:A804

CTRL Control and configuration R/W FFFB:A808

STATUS Status R FFFB:A80C

SYNC CNT Frame synchronization counter R FFFB:A810

START CNT Frame start counter R FFFB:A814

The FAC module is a word16 module with 32-bit aligned addresses.

Frame Adjustment Counter

7-203MPU Public Peripherals

The frame-adjustment counter register (FARC) is programmed with the
number of frame synchronization counts over which the frame start pulses are
counted. This is a 16-bit programmable fixed reference in the range of
0-65536. A value of zero disables the count operation.

Table 7–147. Frame Adjustment Reference Count Register (FARC)

Bit Name Function
Reset
Value

15–0 FARC 16-bit value in the range 0-65536: 0 = disable counting 0

The frame-start count register (FSC) is a 16-bit read-only register that contains
the number of frame-start rising edges that occur during the programmable
FARC period. The frame start counting can be in two modes. When the CNT
bit in the control and configuration register (CTRL) is set to one, the counting
is in continuous mode and this register is periodically updated (every time the
frame adjustment reference count is met) with the new count value. If CNT is
zero, the counting is in halt mode. The frame-start count register is updated
when the frame adjustment reference count is met, and the counting halts until
the software reads the FSC register.

A level-sensitive interrupt can be generated to indicate that the frame-start
counting is finished, and the FSC register is loaded with a new count value.
The interrupt is controlled by the INT_ENABLE bit in the control and configura-
tion register (CTRL). If this bit is set to one, an interrupt is generated when the
FSC register is updated. Since the interrupt is level-sensitive, the interrupt sig-
nal is kept low until the software reads the FSC register or the RUN bit in the
control register is set to zero. When the FSC is read or RUN bit in control regis-
ter is set to zero, the interrupt signal is reset to one. When in IN_ENABLE bit
is set to zero, no interrupt is generated. The interrupt can be enabled or
disabled for both continuous mode and halt mode.

Table 7–148. Frame Start Count Register (FSC)

Bit Name Function
Reset
Value

15–0 FS 16-bit value 0

Frame Adjustment Counter

 7-204

The control and configuration register (CTRL) is a read/write register used to
configure the module. The RUN bit is used to enable the frame-start counter.
If this bit is set to 0, the frame-start counting is disabled immediately. The soft-
ware can use this bit as a software reset for the FAC module by setting the RUN
bit to zero. When the RUN bit is set to zero, the frame-start counter, the
frame-synchronization counter, and the FSC register are reset to zero. The
software reset also clears the status register FSC_FULL bit to zero. If an inter-
rupt has been generated and the FAC module is waiting for an FSC register
read, a software reset puts the counter control back to idle state. This means
that after the software reset the counter starts counting again, regardless of
whether the FSC register has been read or not.

Table 7–149. FAC Control and Configuration Register (CTRL)

Bit Name Function
Reset
Value

15–3 Reserved 0

2 INT_ENABLE When this bit is set to a 1, an interrupt is generated when FSC is
updated. If this bit is set to a 0, no interrupt is generated. The
INT_ENABLE bit is independent of the CNT bit. The interrupt
can be enabled or disabled in either continuous mode or halt
mode.

0

1 RUN Enables operation of the counter. When this bit is set to zero,
the frame start counter, the frame-synchronization counter, and
the FSC are reset to zero. Any pending interrupt also is cleared
when RUN is set to zero.

0

0 CNT 1: Continuous mode: Periodically updates FSC value each time
the frame-adjustment reference count is met.
0: Halt mode: Updates FSC value when the frame-adjustment
reference count is met and halts operation until FSC is read.

0

The status register (STATUS) is a read/write register that contains an interrupt
status bit.

Table 7–150. FAC Status Register (STATUS)

Bit Name Function
Reset
Value

15–1 Reserved 0

0 FSC_FULL This bit is set to a 1 when FSC is updated. This bit is set back to
a 0 when the FSC has been read or RUN bit in control is zero.

0

8-1

DSP Private Peripherals

This chapter describes the following DSP private peripherals and their
associated memory and mapping:

� Timers
� Watchdog timer
� Interrupt handlers

Topic Page

8.1 DSP Private Peripherals 8-2.

8.2 Timers 8-3.

8.3 Watchdog Timer 8-10.

8.4 Interrupt Handlers 8-15.

8.5 DSP Interrupt Interface 8-26.

Chapter 8

DSP Private Peripherals

 8-2

8.1 DSP Private Peripherals

Figure 8–1 shows the OMAP5910 device with the DSP private peripherals
highlighted.

Figure 8–1. Highlight of DSP Peripherals

MPU core
(TI925T)

(instruction
cache, data

cache, MMU)

System
DMA

controller

TMS320C55x DSP
(Instruction cache, SARAM

 DARAM, DMA,
 H/W accelerators)

MPU
peripheral

bridge

LCD
I/F

MPU
Interface

SRAM

SDRAM
memories

Flash and
SRAM

memories

DSP
MMU

16

16

32

16

32

32

32

32

32

32

16

MPU privatePeripherals bus

DSP public (shared) pheripheral bus

32
MPU public

16

DSP

DSP public peripherals

McBSP1

McBSP3

MPU public peripherals

USB Host I/F

JTAG/
emulation

I/F
OSC

12 MHz Clock

OSC

OMAP5910

ETM9

Timers (3)

MPU/DSP shared peripherals

Mailbox

MPU private peripherals

Timers (3)

16

Memory interface

Reset External clock

MPU Bus

32 kHz

1.5M bits

traffic controller (TC)

Watchdog timer

Level 1/2 interrupt handlers

Configuration registers

Clock and reset management

Watchdog timer
Level 1/2

Private peripherals

GPIO I/F

USB Function I/F

Camera I/F
MPUIO

32-kHz timer
PWT
PWL

M
I
F
S

M
I
F
F

I
M
I
F

MCSI1
MCSI2

Keyboard I/F

request

E

E

TIPB
switch

UART1
UART2

UART3 IrDA

32

MMC/SD
LPG x2

HDQ / 1-WIRE

DSP private
peripheral bus

peripherals bus

McBSP2

Device identification

RTC

interrupt handlers

I2C
µWire

Frame adjstument
counter

32

32

32

32

Timers

8-3DSP Private Peripherals

8.2 Timers

Figure 8–2 shows the DSP timers in detail.

Three 32-bit timers are available for general-purpose housekeeping functions.
The counters/timers are configurable either in autoreload or in one-shot mode
with on-the-fly read capability. Each timer generates a corresponding level 1
interrupt to the DSP when equal to zero, as shown in Table 8–1, Timer Interrupt
Levels.

Figure 8–2. DSP Timers

Divide clock down by

2^ (PTV+1)
READ_TIM_HI
READ_TIM_LO

LOAD_TIM_HI
LOAD_TIM_LO

CLK CLK / 2^ (PTV+1)

If autoreload, then
load when timer
underflows.

Interrupt when timer
underflows.

32-bit timer

Timer 1: INT23
Timer 2: INT22
Timer 3: INT8

DSPTIM_CK
12 MHz

Load when timer starts.

Divide clock down by

2 (PTV+1) READ_TIM

LOAD_TIM

CLK CLK / 2 (PTV+1)

If autoreload, then
load when timer
underflows.

Reset or interrupt
when timer underflows

Watchdog timer (16 bit)

Watchdog mode: DSP reset
Timer mode: INT13

DSPWD_CK
0.86 MHz(12 MHz/14)

Load when timer starts.

Timers

 8-4

8.2.1 Timer Interrupt Levels

Table 8–1. Timer Interrupts Levels

Timer Corresponding Level 1 Interrupt Required Sensitivity Setup

1 INT23 Edge

2 INT22 Edge

3 INT8 Edge

The timers are counters that receive a dedicated clock from clock generator
module #2 (either CK_REF or CK_GEN2 output divided by 2). This clock can
be prescaled (divided down) as controlled by the prescale clock timer value
(PTV) field of the control timer register (shown in Table 8–2, PTV Divisors:
32-Bit Timers).

Table 8–2. PTV Divisors: 32-Bit Timers

PTV Divisor

0 2

1 4

2 8

3 16

4 32

5 64

6 128

7 256

The timer interrupt period is calculated as follows:

tint = tclk x (LOAD_TIM + 1) x 2(PTV+1)

where:

tclk is the clock period of the input clock.

The load timer register (LOAD_TIM) holds the value loaded when the
timer passes through 0 or when it starts.

PTV is the prescaler field located in the control timer register.

Table 8–3 shows the characteristics for all three timers for different input
frequencies.

Timers

8-5DSP Private Peripherals

8.2.2 Timer Characteristics

Table 8–3. Timer Characteristics

Input Clock
tclk, Clock

Period LOAD_TIM
tint, Timer Interrupt
Period for PTV = 0

tint, Timer Interrupt Period
for PTV = 7

12 MHz 83.3 ns 0001 333 ns 42.67 µs

12 MHz 83.3 ns FFFF (max interrupt
period)

10.92 ms 1398.1 ms

If LOAD_TIM = 0 and AR (auto-reload mode) = 1, the timer is always 0 and can
never decrement. Here the timer interrupt is asserted and stays asserted all
the time. Since the timer interrupts are edge-senditive, only one interrupt is
recognized because there is one initial edge, and then the interrupt is asserted
constantly.

8.2.3 Programming the Timer

To start a timer, set the start timer bit (ST) of the control timer to 1. Reset the
bit to 0 to stop the timer. When the timer stops, the decrementer content is
frozen.

Set the autoreload bit (AR) of the control timer to 0 to have the timer decrement
from the loaded value down to zero and then stop. Set the AR to 1 to have the
timer continue.

� A new value from the load register is loaded into the timer when it passes
though zero or when it starts.

� An interrupt is produced when the corresponding timer is equal to zero.

To avoid undefined results, do not program the PTV, AR, or load register while
the timer is running.

The timer value is held in the value timer register (VALUE_TIM) and can be
read while the timer is running or stopped.

The load timer and read timer registers are actually split into two 16-bit por-
tions; therefore, two 16-bit accesses from the DSP are required. To properly
read the read timer register, access the upper 16 bits first, then the lower
16 bits. The DSP can access them through a single 32-bit access.

Timers

 8-6

8.2.4 Timer Registers

Table 8–4 lists the timer registers. Table 8–5 through Table 8–12 describe the
register bits.

Table 8–4. Timer Registers

Register Name Description R/W Size (Bits) Offset Reset Value

CNTL_TIMER Control timer R/W 16 0x00 0x0002

LOAD_TIM_HI Load timer—high W 16 0x02 0xFFFF

LOAD_TIM_LO Load timer—low W 16 0x03 0xFFFF

READ_TIM Read timer R 16 0x02 0xFFFF

TIMER_MODE Timer mode R/W 16 0x04 0x8000

Table 8–5. Control Timer Register (CNTL_TIMER)

Bit Name Value Descriptions
Reset
Value

15–8 Unused

7 SOFT This bit is used with the FREE bit to determine peripheral
state when a breakpoint is encountered. Used in emulation
mode.

0

0 Peripheral halts immediately, either retaining or discarding
current state.

1 Peripheral stops after completion of current task.

6 FREE This bit is used with the SOFT bit to determine peripheral
state when a breakpoint is encountered. Used in emulation
mode.

0

0 SOFT bit selects emulation mode.

1 Peripheral clock runs free regardless of the SOFT bit.

5 CLOCK_ENABLE External timer clock enable 0

4–2 PTV Prescale clock timer value 0

1 AR 0 0: One-shot timer 0

1 Autoreload timer

Timers

8-7DSP Private Peripherals

Table 8–5. Control Timer Register (CNTL_TIMER) (Continued)

Bit
Reset
ValueDescriptionsValueName

0 ST 0 0: Stop timer 0

1 Start timer

With one-shot mode selected (AR = 0), bit is automatically
reset by internal logic when timer equals 0.

The load timer register (LOAD_TIM) is a 32-bit register (see Table 8–6 and
Table 8–7). The data width of the TIPB connected to this peripheral is only 16
bits. Therefore, two 16-bit TIPB write transactions are needed to load the load
timer register (LOAD_TIM).

If the DSP is ready to load the load timer register (LOAD_TIM), it can send a
32-bit write request (with offset address of 04) to the DSPI. The DSPI has the
capability of converting this 32-bit request into two 16-bit TIPB writes on the
DSP TIPB.

Table 8–6. Load Timer High Register (LOAD_TIM_HI)

Bit Name Description
Reset
Value

15–0 LOAD_TIM_HI This value is loaded when the timer passes through 0 or when it
starts. LOAD_TIM_HI is the same as LOAD_TIM[31:16].

Undefined

Table 8–7. Load Timer Low Register (LOAD_TIM_LO)

Bit Name Description
Reset
Value

15–0 LOAD_TIM_LO This value is loaded when the timer passes through 0 or when it
starts. LOAD_TIM_LO is the same as LOAD_TIM[15:0].

Undefined

The read timer register (READ_TIM) is a 32-bit register (see Table 8–8 and
Table 8–9). The data width of the TIPB connected to this peripheral is only 16
bits. So two 16-bit TIPB read transactions are required to read the value of the
read timer register (READ_TIM). Also, note that since the TIPB strobe is com-
pletely asynchronous with the timer_clk, synchronization is done to make sure
that the read timer register (READ_TIM) value is not read while it is being
incremented.

Timers

 8-8

Table 8–8. Read Timer High Register (VALUE_TIM_HI)

Bit Name Description
Reset
Value

15–0 VALUE_TIM_HI Value of timer. This is the same as READ_TIM[31:16], Undefined

Table 8–9. Read Timer Low Register (VALUE_TIM_LO)

Bit Name Description
Reset
Value

15–0 VALUE_TIM_LO Value of timer. This is the same as READ_TIM[15:0] at the time
of the last TIPB read to READ_TIM_HI.

Undefined

The following sequence must be followed to read the READ_TIM register
properly:

1) Perform a TIPB read transaction to read the upper 16 bits of the read timer
register (READ_TIM) (offset = 8). When the read timer register
(READ_TIM) is read and synchronized, the upper 16 bits are driven onto
the data bus of the TIPB and the lower 16 bits of the read timer register
(READ_TIM) are stored in a temporary register.

2) Perform a TIPB read transaction to read the lower 16 bits of the read timer
register (READ_TIM) (offset = 10). During this read, the value of the tem-
porary register is forwarded onto the TIPB bus instead of reading the read
timer register (READ_TIM) again. This is done because the TIMER can
change value between the two TIPB read transactions.

Therefore, to read the value of the read timer register (READ_TIM) correctly,
the first TIPB read access must be to the upper 16 bits (that is, offset = 8),
followed by TIPB read access to the lower 16 bits (that is, offset = 10 (decimal)).

Note:

If the DSP is ready to read the read timer register (READ_TIM), it can send
a 32-bit read request (with offset address of 08) to the DSPI. The DSPI can
convert this 32-bit request into two 16-bit TIPB writes on the DSP TIPB, thus
resolving all the above sequencing issues.

Timers

8-9DSP Private Peripherals

Table 8–10. DSP Timer 1 Registers

Register Name Description R/W
Size
(Bits)

Word
Address

Reset
Value

CNTL_TIMER1 Timer control register R/W 16 0x2800 0x0000

LOAD_TIM1 Value that must be loaded into timer
when timer passes through 0

W 32 0x2802 U

READ_TIM1 Timer counter R 32 0x2804 U

Table 8–11. DSP Timer 2 Registers

Register Name Description R/W
Size
(Bits)

Word
Address

Reset
Value

CNTL_TIMER2 Timer control register R/W 16 0x02C00 0x0000

LOAD_TIM2 Value that must be loaded into timer
when it passes through 0

W 32 0x02C02 U

READ_TIM2 Timer counter R 32 0x02C04 U

Table 8–12. DSP Timer 3 Registers

Register Name Description R/W
Size
(Bits)

Word
Address

Reset
Value

CNTL_TIMER3 Timer control register R/W 16 0x03000 0x0000

LOAD_TIM3 Value that must be loaded into timer
when it passes through 0

W 32 0x03002 U

READ_TIM3 Timer counter R 32 0x03004 U

Watchdog Timer

 8-10

8.3 Watchdog Timer

When powered up, the timer defaults to the watchdog timer for the DSP. This
configuration requires that the user program or the OS periodically write to the
count register before the counter underflows to prevent the timer from generat-
ing a reset to the DSP. This function detects user programs stuck in infinite
loops, which can result in program control loss or runaway programs.

Table 8–13. Watchdog Timer Interrupt

Timer Corresponding Level 1 Interrupt

WD INT13

Note:

By default, this timer is configured as a watchdog timer and, unless disabled
or updated properly, generates a reset of the DSP approximately every
19 seconds. If, during system development, you encounter an unexpected
reset every 19 seconds or so, this is probably the reason.

Be certain to disable the watchdog timer before placing the DSP
processor in deep sleep mode. It must not be left configured as a
watchdog timer.

The watchdog timer underflow resets the DSP. If the input clock is 12 MHz and
the watchdog timer values are left at their power-up state (the value loaded into
the load timer register (LOAD_TIM) is set to the maximum value of 0xFFFF),
reset occurs in approximately 19 seconds.

The watchdog timer uses the clock derived from the clock frequency genera-
tion module for synchronization. This clock is [input clock]/14. When config-
ured as a watchdog timer, the prescaler field (PTV) of the control timer register
(CNTL_TIMER) is fixed to 7. When configured as a general-purpose timer, the
prescaler field can range from 0 to 7. The time from writing a new value to
counter underflow is:

between 256*tclk to 16,777,216*tclk

where tclk = [input clock]/14 for a clock frequency of 12 MHz

and the reset time is: 298 µs < t > 19 s).

Watchdog Timer

8-11DSP Private Peripherals

Table 8–14. PTV Divisors: Watchdog Timer

PTV Divisor

0 2

1 4

2 8

3 16

4 32

5 64

6 128

7 256

The timer period is defined by:

� The value of the PTV, which is forced to 7 if the timer is in watchdog mode

� The value of the load register

The timer interrupts period is:

tint =tclk X (LOAD_TIM + 1) x 2(PTV+1)

where tclk is the clock period of the input clock.

Table 8–15 shows the characteristics of the watchdog timer for different input
frequencies:

Table 8–15. Watchdog Timer Characteristics

Input Clock tclk, Clock Period† LOAD_TIM tint, Timer Interrupt Period, PTV = 7

12 MHz 1167 ns 0001 597.34 µs

12 MHz 1167 ns FFFF (max interrupt period) 19.57 s

† The 12-MHz clock is divided by 14.

If LOAD_TIM = 0 and AR (auto-reload mode) = 1, the timer is always 0 and can
never decrement. Here the timer interrupt is asserted and stays asserted all
the time. Since the timer interrupts are edge-senditive, only one interrupt is
recognized because there is one initial edge, and then the interrupt is asserted
constantly.

Watchdog Timer

 8-12

8.3.1 Programming the Watchdog Timer in Watchdog Mode

On power up, the watchdog timer is enabled in the watchdog mode and the
value loaded into the load timer register is set to the maximum value (0xFFFF).
This gives the user a duration of 16,777,216 * tclk to change the timer mode
or write a new value (different from 0xFFFF) into the load timer register.

The user program or the OS must write periodically to the load timer register
(LOAD_TIM) before the counter underflows. The new loaded value must be
different from the previous because the write is taken into account only if the
newly loaded value is different from the previous one. Due to internal sequenc-
ing, the user must wait for three timer clock periods before writing a new value
into the load timer register. If the input clock is 12 MHz, three timer clock
periods are approximately 3.5 µs.

You can not disable the watchdog timer by only clearing bit 15 (WATCHDOG)
of the timer mode register (TIMER_MODE). Once the timer has been config-
ured as a general-purpose timer, it can be switched back to watchdog mode
by writing a 1 to bit 15 (WATCHDOG) of the timer mode register (TIM-
ER_MODE). In this case, the value loaded into the load timer register
(LOAD_TIM) is set to the maximum value (0xFFFF) as on power-up.

In watchdog mode, the control timer register (CNTL_TIMER) must not be
used. The watchdog timer can not be stopped by clearing bit 7 (ST), and the
prescale value is 7 regardless of the PTV field. Autoreload and one-shot do
not apply, because if the counter underflows the processor is reset and the
watchdog registers are reinitialized.

8.3.2 Programming the Watchdog Timer in Timer Mode

To start a timer, set the start timer (ST) bit of the control timer register to 1.
Reset the bit to 0 to stop the timer. When the timer stops, the decrementer
content is frozen.

Set the autoreload (AR) bit of the control timer register to 0 to decrement from
the loaded value down to zero and then stop. Set the AR bit to 1 to continue.
A new value from the load register is loaded into the timer when it passes
though zero or when it starts. An interrupt is produced when the corresponding
timer is equal to zero.

To avoid undefined results, do not program the PTV and AR bits or the load
register while the timer is running. You can set the PTV bits to values other than
7 when the watchdog timer is in timer mode.

The timer value is held in the read timer register and can be read while the timer
is running or stopped.

The base word address for watchdog timer is 0x003400.

Watchdog Timer

8-13DSP Private Peripherals

8.3.3 Watchdog Timer Registers

Table 8–16 shows the DSP watchdog timer registers. Table 8–17 through
Table 8–20 describe the register bits.

Table 8–16. DSP Watchdog Timer Registers

Register Name Description R/W Size (Bits) Address
Reset
Value

CNTL_TIMER Control timer R/W 16 x003400 0x0002

LOAD_TIM Load timer W 16 x003402 0xFFFF

READ_TIM Read timer R 16 x003402 0xFFFF

TIMER_MODE Timer mode R/W 16 x003404 0x8000

Table 8–17. Control Timer Register (CNTL_TIMER)

Bit Name Value Description
Reset
Value

15–12 Reserved

11–9 PTV Prescale clock timer value 0

8 AR 0 One-shot timer 0

1 Autoreload timer

If one-shot mode is selected (AR = 0), this bit is automatically
reset by internal logic when timer is equal to 0.

7 ST 0 Stop timer 0

1 Start timer

6–2 Reserved

1 FREE 0 Enables emulation suspend function; timer can be frozen during
emulation halt on the DSP.

1

1 Timer runs free, regardless of emulation halt condition.

0 Reserved

Watchdog Timer

 8-14

Table 8–18. Load Timer Register (LOAD_TIM)

Bit Name Description
Reset
Value

15–0 LOAD_TIM General-purpose timer. This value is loaded when timer passes through
0 or when it starts.

Watchdog timer. Reload timer with this value.

FFFF

Table 8–19. Read Timer Register (READ_TIM)

Bit Name Description
Reset
Value

15–0 VALUE_TIM Value of timer FFFF

Table 8–20. Timer Mode (TIMER_MODE)

Bit Name Value Description
Reset
Value

15 WATCHDOG Write access:

1: Switch back from timer mode to watchdog

Writing a 0 in this bit has no effect.

1

Read access:
Status of timer mode:

0 Timer is used as a general-purpose counter.

1 Timer is used as a watchdog timer.

14–8 Reserved

7–0 WATCHDOG_DIS Write access only:

Writing a predefined sequence (0xF5 followed by 0xA0) in
this field disables watchdog functionality. After having
received 0xF5, if the second write access is different from
0xA0, the DSP core is reset.

1

Interrupt Handlers

8-15DSP Private Peripherals

8.4 Interrupt Handlers

The interrupt handler handles interrupts generated by modules and peripher-
als (DMA controller, MMU, watchdog timer, timers, software interrupt, etc.).
The interrupt handler processes, on a programmable basis, edge-triggered or
level-sensitive interrupts. All interrupts are maskable (that is, individually
enabled and disabled) with internal registers except for reset and NMI. The
interrupt sources information can be read back. Interrupt priority is program-
mable to provide flexibility for different applications. All of these interrupts are
routed to the DSP core interrupt inputs.

Interrupts are handled through two cascaded interrupt controllers. One is the
level 1 handler and is inside the DSP core. The second is the level 2 handler
and is external to the DSP and functions similarly to the MPU interrupt handler.

� The 22 level 1 interrupts are handled by the DSP internal interrupt
controller provided by the DSP core (see Table 8–21, DSP Level 1
Interrupt Mapping).

� The 16 level 2 interrupts are handled by the external interrupt controller,
cascaded into INT3 of the DSP internal interrupt controller.

Figure 8–3. DSP Interrupt Handler Cascade

OMAP5910

DSP
RESET

NMI

INT2

FIQ IRQ_0

IRQ_15

...

IRQ_3

IRQ_2

IRQ_14

IRQ_1

INTH
(Level1)

INTH
(Level-2)

...

OMAP Gigacell

IRQ

INT3

INT4

INT22

INT23

Interrupt Handlers

 8-16

8.4.1 Level 1 Interrupts

The DSP level 1 interrupt controller receives interrupts from peripherals and
sends them to the DSP core (see Table 8–21). The TI peripheral bus is respon-
sible for prioritizing, capturing, and synchronizing interrupts, before sending
them to the DSP. The level 1 interrupt controller has a nonmaskable interrupt
(NMI) and 22 maskable interrupts. Of the 22 maskable interrupts, 21 are
peripheral interrupts and the remaining one is an MPU interrupt.

Level 1 DSP interrupts must be at least two DSP_CLK cycles long in order for
the DSP to recognize it. To ensure that this requirement is met, the DSP is pro-
vided with and internal hardware module called the DSP interrupt interface
(described in Section 8.5).

Table 8–21. Level 1 Interrupt Mapping

Level 1 Interrupt Priority
DSP

Interrupt
Vector

Location
DSP

IFR_bit/IMT_bit (26:0)

RESET 0 FFFF00

NMI 1 FFFF08

Emulator/Test 3 INT2 FFFF10 2

Level-2 INTH FIQ 5 INT3 FFFF18 3

TC_ABORT 6 INT4 FFFF20 4

MAILBOX 1 7 INT5 FFFF28 5

Reserved 9 INT6 FFFF30 6

GPIO 10 INT7 FFFF38 7

TIMER3 11 INT8 FFFF40 8

DMA_channel_1 13 INT9 FFFF48 9

MPU 14 INT10 FFFF50 10

Reserved 15 INT11 FFFF58 11

UART 17 INT12 FFFF60 12

WDGTIMER 18 INT13 FFFF68 13

DMA_channel_4 21 INT14 FFFF70 14

DMA_channel_5 22 INT15 FFFF78 15

EMIF 4 INT16 FFFF80 16

Local Bus 8 INT17 FFFF88 17

Interrupt Handlers

8-17DSP Private Peripherals

Table 8–21. Level 1 Interrupt Mapping (Continued)

Level 1 Interrupt
DSP

IFR_bit/IMT_bit (26:0)
Vector

Location
DSP

InterruptPriority

DMA_channel_0 12 INT18 FFFF90 18

Mailbox 2 16 INT19 FFFF98 19

DMA_channel_2 19 INT20 FFFFA0 20

DMA_channel_3 20 INT21 FFFFA8 21

TIMER2 23 INT22 FFFFB0 22

TIMER1 24 INT23 FFFFB8 23

8.4.2 Level 2 Interrupts

The level 2 interrupt controller provides up to 16 prioritized and maskable inter-
rupts to the DSP core.

The level 2 interrupt controller resides on the 16-bit TI peripheral bus. This
module is clocked by the DSP_INTH_CK clock, which is fixed at half the
CK_GEN2 frequency (see Chapter 15 for details). Configuration registers
configure incoming interrupts as level-sensitive or edge-sensitive interrupts.

One interrupt-level register (ILR) is associated with each incoming interrupt.
It assigns a priority to the corresponding interrupt,determines whether it is to
be level- or edge-sensitive, and determines to which DSP interrupt (fast inter-
rupt request (FIQ) or low priority interrupt request (IRQ)) the incoming interrupt
goes. If several interrupts have the same priority level assigned, they are
serviced in a predefined order.

All level 2 interrupts are routed to FIQ. IRQ output is unconnected.

The interrupt controller also provides a 16-bit software interrupt register. This
16-bit register corresponds to the same 16-bit external interrupt lines. By writ-
ing a 1 to the targeted bit, an interrupt is generated if the corresponding ILR
is set to edge sensitive; otherwise, no interrupt is generated. External interrupt
request and internal software request are ORed together first before being
sent to the interrupt controller to be serviced. The software interrupt register
is always read back with a zero. This allows simulation of external interrupts
to test the corresponding interrupt driver by using the software interrupt
mechanism at any time.

The FIQ outputs from the interrupt controller are reset by writing a 1 to the
corresponding bit of the control register.

Interrupt Handlers

 8-18

Figure 8–4. Level 2 Interrupt Control Flow

Mask interrupt register (MIR)

OR

Interrupt input register (IIR)

Interrupt set register (ISR)

Edge dectection flip_flops

Edge or level direction

Process next pending IRQ

Process next pending FIQ

Generate IRQ

Generate FIQ

FIQ
To DSP level 1

16 incoming interrupts

Interrupt level register 0 (ILR0)

Interrupt level register 1 (ILR1)

Interrupt level register 16 (ILR16)

SIR_IRQ
Binary coded source IRQ reigster

SIR_FIQ
Binary coded source RIQ register

Interrupt handler

T
I
P
B

Interrupt Handlers

8-19DSP Private Peripherals

8.4.2.1 Interrupt Sequence

1) One or several incoming interrupts go down, setting the corresponding
ITR bits.

2) At this time, two possibilities exist:

� If there is only one active incoming interrupt and FIQ is not already
active, the interrupt controller sends an FIQ.

� When several incoming interrupts are active, the interrupt controller
must determine which is the new interrupt to be serviced. It does so by
comparing the priority level of an interrupt with the one held in a dedi-
cated register N_FIQ and stores the interrupt with the highest priority
in the dedicated register N_FIQ. It performs this comparison until all
the active interrupts have been processed. If FIQ is not already active,
the interrupt controller sends an FIQ.

3) When an FIQ is sent, the source interrupt encoded register (SIR_FIQ) is
updated (indicating the interrupt contained in N_FIQ) and the priority
resolver is reset (and restarted if necessary).

4) To determine which incoming interrupt has requested a DSP action, the
source interrupt encoded register (SIR_FIQ) must be read. The register
contains an encoded number that tells which interrupt lines are being
serviced. After that, it runs the corresponding subroutine.

5) To finish the interrupt sequence, DSP software must first clear the interrupt
bit in the interrupt input register (ITR) that is being serviced. This is done
by writing a 0 to the corresponding bit in the interrupt input register (ITR)
directly or by reading the source interrupt encoded register (SIR_FIQ). For
a level-sensitive interrupt, the level must also be removed for the next
interrupt to occur. Then set a dedicated bit (NEW_FIQ_AGR bit of the
control register) in order to reset the FIQ output and the source encoded
register (SIR_FIQ), thus allowing a new FIQ generation.

8.4.2.2 DSP Accessible Registers

DSP start word address (hex): 0x004800

Bus width: 16 bits

DSP address of a register = Start address + offset TIPB address

Table 8–22 lists the interrupt handler level 2 registers. Table 8–23 through
Table 8–29 describe the register bits.

Interrupt Handlers

 8-20

Table 8–22. Interrupt Handler Level 2 Registers

Register Name Description
Default
Value

Read/
Write Size

DSP
Address

ITR Interrupt 00000000 R/W 16 bits 0x004800

MIR Interrupt mask FFFFFFFF R/W 16 bits 0x004802

SIR_IRQ Interrupt encoded source (IRQ) 00 R 4 bits 0x004804

SIR_FIQ Interrupt encoded source (FIQ) 00 R 4 bits 0x004806

CONTROL_REG Interrupt control 0 R/W 2 bits 0x004808

ISR Software interrupt set 00000000 R/W 16 bits 0x00480A

ILR0 Interrupt priority level bit 0 00 R/W 6 bits 0x00480C

ILR1 Interrupt priority level bit 1 00 R/W 6 bits 0x00480E

ILR2 Interrupt priority level bit 2 00 R/W 6 bits 0x004810

ILR3 Interrupt priority level bit 3 00 R/W 6 bits 0x004812

ILR4 Interrupt priority level bit 4 00 R/W 6 bits 0x004814

ILR5 Interrupt priority level bit 5 00 R/W 6 bits 0x004816

ILR6 Interrupt priority level bit 6 00 R/W 6 bits 0x004818

ILR7 Interrupt priority level bit 7 00 R/W 6 bits 0x00481A

ILR8 Interrupt priority level bit 8 00 R/W 6 bits 0x00481C

ILR9 Interrupt priority level bit 9 00 R/W 6 bits 0x00481E

ILR10 Interrupt priority level bit 10 00 R/W 6 bits 0x004820

ILR11 Interrupt priority level bit 11 00 R/W 6 bits 0x004822

ILR12 Interrupt priority level bit 12 00 R/W 6 bits 0x004824

ILR13 Interrupt priority level bit 13 00 R/W 6 bits 0x004826

ILR14 Interrupt priority level bit 14 00 R/W 6 bits 0x004828

ILR15 Interrupt priority level bit 15 00 R/W 6 bits 0x00482A

Interrupt Handlers

8-21DSP Private Peripherals

Table 8–23. Interrupt Input Register (ITR)

Bit Name Type
Reset
Value

15 IRQ_15 R/W 0

::: ::: ::: :::

0 IRQ_0 R/W 0

In the event of an edge-sensitive interrupt, ITR stores an incoming interrupt.
When the DSP accesses the SIR_FIQ register, the bit corresponding to the
interrupt that has requested the DSP action is reset.

The DSP can also clear each bit individually by writing a 0 to the corresponding
bits at the ITR address. A 1 bit keeps its previous value. If the individual bit is
cleared just before the DSP unmasks the interrupts, the interrupt is not
processed.

The DSP reads this register. If an incoming interrupt is edge sensitive, the read
value corresponds to the value held in the storage element.

IRQ (FIQ) output and SIR_IRQ (SIR_FIQ) registers are reset only if the
bit of ITR register corresponding to the interrupt that requested DSP
action is already cleared or masked.

The time when this ITR bit is reset depends on the sensitivity of the
incoming interrupt. In case of an edge-sensitive interrupt, the IT register
bit is cleared when reading SIR_IRQ (SIR_FIQ) register. Otherwise, it is
reset when the corresponding interrupt line becomes inactive (low).

For a level-sensitive interrupt, the level must be removed before the write
to the control register. Otherwise, the interrupt controller is not reset for
a new interrupt.

Table 8–24. Mask Interrupt Register (MIR)

Bit Name Description Type
Reset
Value

15 IRQ_15_MSK Disable IRQ_15 interrupt R/W 1

::: ::: ::: ::: :::

0 IRQ_0_MSK Disable IRQ_0 interrupt R/W 1

Each incoming interrupt can be masked individually by this register by setting
the corresponding bit to 1.

Interrupt Handlers

 8-22

The mask interrupt register (MIR) operates after interrupt input register (ITR);
this means that occurrences of incoming interrupts are always stored in
interrupt input register (ITR).

Table 8–25. IRQ Binary-Coded Source Register (SIR_IRQ)

Bit Name Type
Reset
Value

3–0 IRQ_NUM R 0

This register saves software processing time by recognizing the interrupt
number as being either an IRQ or FIQ request. Reading this register clears the
corresponding bit in the interrupt input register (ITR) if the interrupt is set as
edge-sensitive. This register will not normally be used since all level 2 DSP
interrupts must be configured as FIQ to generate DSP interrupts because IRQ
is not connected.

Table 8–26. FIQ Binary-Coded Source Register (SIR_FIQ)

Bit Name Type
Reset
Value

3–0 FIQ_NUM R 0

In order to save software processing time, this register indicates the interrupt
number that has an IRQ or FIQ request. Reading this register clears the corre-
sponding bit in the interrupt input register (ITR) if the interrupt is set as
edge-sensitive.

Interrupt Handlers

8-23DSP Private Peripherals

Table 8–27. Interrupt Control Register (CONTROL_REG)

Bit Name Description Type
Reset
Value

1 NEW_FIQ_AGR New FIQ agreement

Writing a 1 resets FIQ output and clears source FIQ register.
Enables a new FIQ generation, reset by internal logic.
Corresponding bit of ITR must be cleared first.

R/W 0

0 NEW_IRQ_AGR New IRQ agreement

Writing a 1 resets IRQ output and clears source IRQ register.
Enables a new IRQ generation, reset by internal logic.
Corresponding bit of ITR must be cleared first.

Note: All level 2 DSP interrupts must be configured as FIQ to
generate DSP interrupts because IRQ is not connected.

R/W 0

The software interrupt set register is a 16-bit, read/write register. Writing a 1
to any bit generates an interrupt to the DSP if the corresponding ILR register
is set as edge-triggered; otherwise, no interrupt is generated. A 0 is always
returned from a read to this register. External interrupts are ORed with the
software interrupts before they are sent to the mask interrupt register for
interrupt masking.

Table 8–28. Interrupt Level Registers (ILR0...ILR15)

DSP Word Offset Address (hex) Name Corresponding Interrupt

0x0C ILR_IRQ_0 IRQ_0

0x0E ILR_IRQ_1 IRQ_1

::: ::: :::

0x0C + (N–1)*2 ILR_IRQ_N–1 IRQ_N–1

::: ::: :::

0x2A ILR_IRQ_15 IRQ_15

Interrupt Handlers

 8-24

Table 8–29. Interrupt Level Registers (ILR0...ILR15)

Bit Name Value Description Type
Reset
Value

5–2 PRIORITY Define the priority level when the corresponding
interrupt is routed to IRQ or FIQ.

0 is the highest priority level.
15 is the lowest priority level.

R/W 0

1 SENS_EDGE 0 The corresponding interrupt is falling-edge-sensitive. R/W 0

1 The corresponding interrupt is low-level-sensitive.

0 FIQ 0 0: The corresponding interrupt is routed to IRQ. R/W 0

1 The corresponding interrupt is routed to FIQ.

Note: Since IRQ is not connected, only the FIQ setting
is useful. This bit must be set to 1 for the
corresponding level 2 interrupt to cause a DSP
interrupt.

Note:

Assuming that all interrupts have the same priority level and they are active
at the same at the same moment, the order of servicing is as follows: IRQ_15,
IRQ_N–1, IRQ_N–2, …, IRQ_0.

Interrupt Handlers

8-25DSP Private Peripherals

8.4.2.3 Level 2 Interrupt Mapping

Table 8–30 shows the DSP level 2 interrupt mapping.

Table 8–30. DSP Level 2 Interrupt Mapping

Incoming Interrupts Required Sensitivity Setup Level 2 Interrupt

McBSP3 TX Edge IRQ_00

McBSP3 RX Edge IRQ_01

McBSP1 TX Edge IRQ_02

McBSP1 RX Edge IRQ_03

UART2 Level IRQ_04

UART1 Level IRQ_05

MCSI1 TX Level IRQ_06

MCSI1 RX Level IRQ_07

MSCI2 TX Level IRQ_08

MCSI2 RX Level IRQ_09

MCSI1 frame error Level IRQ_10

MCSI2 frame error Level IRQ_11

Reserved IRQ_12

Reserved IRQ_13

Reserved IRQ_14

Reserved IRQ_15

Level-sensitive interrupts are level-active; the interrupt line must remain
asserted until it has been acknowledged.

Edge-triggered interrupts are edge-triggered; just an edge is required for gen-
erating the interrupt. The interrupt to the DSP is cleared upon reading of the
interrupt registers or writing a 0 to the interrupt mask registers in the interrupt
handler.

DSP Interrupt Interface

 8-26

8.5 DSP Interrupt Interface

The DSP interrupt interface (DSP_INT_IF) augments the capability of the
DSP interrupt processing by providing user-definable edge-triggered and
level-sensitive implementations for each of the interrupt lines. This is neces-
sary to allow edge-triggered interrupts, since the DSP level 1 interrupts must
be active for greater than two DSP_CLK cycles to be recognized as being
active. The DSP_INT_IF module is clocked by the DSP_INTH_CK clock,
which which is fixed at half the CK_GEN2 frequency (see Chapter 15).

8.5.1 Functional Description

The implementation of each of the interrupt channels to the DSP interrupt
handler is shown in Figure 8–5.

Each interrupt channel processes the incoming interrupt as both an edge-
triggered interrupt and a level-sensitive interrupt. The decision of which
process to use is made by the interrupt (N) edge-triggered enable input, which
is bit 2N of the edge-enable control register. If this bit is 1, the edge-triggered
process path is chosen. If 0, the level-sensitive process path is chosen.

8.5.2 Edge-Triggered Interrupts

The edge-triggered interrupt process consists of an edge-registration flip-flop
and a chain of four positive-edge triggered timing flip-flops. A negative transi-
tion (falling edge) on the incoming nXIRQ(N) interrupt line sets the edge-regis-
tration flip-flop to 1, and the output of this flip-flop is the edge-triggered inter-
rupt. In addition to activating the output interrupt line nIRQ(N), this output also
propagates through the four timing flip-flops. When the 1 output of the edge-
registration flip-flop has propagated to the fourth flip-flop, an asynchronous
reset is generated, clearing the edge-registration flip-flop and deactivating
nIRQ(N).

nIRQ(N) then lasts between three and four DSP_INTH_CK clock periods,
depending on when the asynchronous falling edge of nXIRQ(N) occurs with
respect to the rising edge of DSP_INTH_CK clock. In OMAP, the frequency of
DSP_INTH_CK clock is set to half the DSP_CLK frequency. The DSP requires
the nIRQ(N) to transition from high to low and to be low for at least two
DSP_CLK cycles, so that nIRQ(N) can be recognized. Also the DSP requires
between two back-to-back interrupts on nIRQ(N), nIRQ(N) be high for at least
one DSP_CLK cycle. nIRQ(N) is generated by the rising edge of
DSP_INTH_CK clock and lasts for a minimum of three DSP_INTH_CK clock
periods (which is actually six DSP_CLK cycles). The requirements on nIRQ(N)
are clearly met.

DSP Interrupt Interface

8-27DSP Private Peripherals

When the edge-registration flip-flop is cleared by the asynchronous reset, two
DSP_INTH_CK clock periods must expire before another negative edge tran-
sition can be registered. Thus successive negative transitions must be a mini-
mum of six DSP_INTH_CK clock periods apart in time to be ensured of being
recognized as two separate incidents. This minimal time does not take into
account the processing time of the interrupts once recognized by the DSP
processor, and this time must be taken into account to derive the minimum time
between interrupts from a system perspective.

Figure 8–5. Interrupt Channel Implementation

Interrupt
channel

XIRQ(N)

SCL

D

Q SCL

D

Q SCL

D

Q SCL

D

Q
Q

ACL

D

Q

D

Q

D

Q

D

Q

D

Q

XIRQOUT
(N)

CLKOUT

Asynchronous
clear

Level-
sensitive
interrupt

Edge-triggered interrupt

Interrupt(N) software-executed
Clear command

Synchronous clear

Interrupt(N) edge-triggered
enable

DSP Interrupt Interface

 8-28

8.5.3 Level-Sensitive Interrupts

The level-sensitive interrupt process is, in many ways, identical to the edge-
triggered interrupt process. This process also uses a chain of four positive-
edge triggered timing flip-flops, but this chain is driven by the inverted repre-
sentation of the incoming interrupt nXIRQ(N). A negative transition (falling
edge) on the incoming nXIRQ(N) line activates the output interrupt nIRQ(N)
and must be held low for one DSP_INTH_CK cycle (which is equivalent to two
DSP_CLK cycles) to be recognized by the DSP. Even when nXIRQ(N) remains
at 0 for a time period exceeding three to four DSP_INTH_CK periods (depend-
ing on when the asynchronous falling edge of nXIRQ(N) occurs with respect
to the rising edge of DSP_INTH_CK), the interrupt nIRQ(N) remains activated
until the nXIRQ(N) is deactivated. However, the DSP recognizes this as only
one interrupt, because there was only one falling edge of nIRQ(N).

8.5.4 Internal Registers

DSP word start address: 0x003800

Bit width: 16 bits

DSP word address of a register = start word address + offset address

The DSP_INT_IF has two control registers (one 16-bit and one 7-bit) and two
clear command registers (one 16-bit and one 7-bit). The control registers are
used exclusively for assigning edge-triggered/level-sensitive status to each of
the 23 interrupt channels. The clear command registers are not actual physical
registers, but rather a block of decoding logic that issues clear commands to
the level-sensitive logic in each interrupt channel upon detecting a TIPB write
transaction to an address that falls within the required address range.

The bit-alignment of interrupt channel assignments within the control register,
the definition of the assignments, the default values at power turn-on, the
address used to write to the control register, and the address used to read the
content of the register are all presented in Table 8–31 through Table 8–34.

DSP Interrupt Interface

8-29DSP Private Peripherals

Table 8–31. Edge-Triggered/Level-Sensitive Control Register Low

Bit Name Value Description Type
Reset
Value

15–0 CHx Trig/Level This bit defines whether channel CHx is edge- or level-
sensitive where CHx corresponds to interrupt channels
nXIRQ[15:0]. Channels nXIRQ[15:0] correspond to the
DSP level 1 interrupts IRQ17:2, respectively.

R/W 0

0 CHx is level-sensitive.

1 CHx is edge-sensitive.

Table 8–32. Edge-Triggered/Level-Sensitive Control Register High

Bit Name Value Description Type
Reset
Value

15–8 Reserved 0

7 Host Interrupt
Trig/Level

This bit defines whether the host interrupt is edge or
level-sensitive.

R/W

0 NHOSTINT is level-sensitive.

1 NHOSTINT is edge-sensitive.

6 NMI Trig/Level This bit defines whether the nonmaskable interrupt is
edge or level-sensitive. The NMI channel corresponds to
the DSP NMI interrupt.

R/W 0

0 NMI is level-sensitive.

1 NMI is edge-sensitive.

5–0 CHx Trig/Level This bit defines whether channel CHx is edge or
level-sensitive, where CHx corresponds to interrupt
channels nXIRQ[21:16]. Channels nXIRQ[21:16]
correspond to the DSP level 1 interrupts IRQ23:18,
respectively.

R/W 0

0 CHx is level-sensitive.

1 CHx is edge-sensitive.

DSP Interrupt Interface

 8-30

8.5.4.1 Level-Sensitive Clear Commands (Write Only)

A write transaction issues a clear to those interrupt channels whose assigned
bit in the 16-bit word being written is 1. Commands to clear interrupt channels
are necessary for those channels assigned as level-sensitive interrupt chan-
nels. Figure 8–6 illustrates the alignment of the channel clear assignments
within the 16-bit word written to the XIO interrupt processor and gives the
permissible range of addresses over which the write can take place.

A write to the level-sensitive clear low register (RST_LVL_LO), whose offset
address is 02, clears interrupts corresponding to nXIRQ[15:0].

Table 8–33. Level-Sensitive Clear Low Register (RST_LVL_LO)

Bit Name Value Description Type
Reset
Value

15–0 Reset_CHx Reset CHx if a 1 is written into RST_LVL_LO[x] and CHx
is configured as level-sensitive interrupt, where CHx
corresponds to interrupt channels nXIRQ[15:0]

0 0

0 Do not reset CHx.

1 Reset interrupt channel CHx if level is configured as level
sensitive.

A write to the level-sensitive clear high register (RST_LVL_HI), whose offset
address is 03, clears interrupts from interrupt channels [20:16], NMI, and
HOSTINT.

Table 8–34. Level-Sensitive Clear High Register (RST_LVL_HI)

Bit Name Value Description Type
Reset
Value

7 Reset_NHOSTINT Reset NHOSTINT channel if a 1 is written into this
bit and NHOSTINT is configured as level-sensitive
interrupt.

0 Do not reset NHOSTINT.

1 Reset NHOSTINT interrupt channel, if configured
as level-sensitive interrupt.

6 Reset_NMI Reset NMI channel if a 1 is written into this bit and
NMI is configured as level-sensitive interrupt.

0 Do not reset CHx.

1 Reset NMI interrupt channel if configured as
level-sensitive interrupt.

DSP Interrupt Interface

8-31DSP Private Peripherals

Table 8–34. Level-Sensitive Clear High Register (RST_LVL_HI) (Continued)

Bit
Reset
ValueTypeDescriptionValueName

5–0 Reset_CHx Reset CHx if a 1 is written into RST_LVL_LO[x] and
CHx is configured as level-sensitive interrupt, where
CHx corresponds to interrupt channels
nXIRQ[20:16].

0

0 Do not reset CHx.

1 Reset interrupt channel CHx if level is configured as
level-sensitive.

Figure 8–6. Level-Sensitive Interrupt Clear Commands

Clear
assignments

15

11

14

10

9

8

7

6

5

4

3

2

1

0 Clear interrupt channel 0

Clear interrupt channel 1

Clear interrupt channel 2

Clear interrupt channel 3

Clear interrupt channel 4

Clear interrupt channel 5

Clear interrupt channel 6

Clear interrupt channel 7

Clear interrupt channel 8

Clear interrupt channel 9

Clear interrupt channel 10

Clear interrupt channel 11

Clear interrupt channel 14

Clear interrupt nmi

TIPB Write
transaction

Address = 1

A[15:0]

DO[15:0]

9-1

DSP Public Peripherals

This chapter describes the DSP public peripherals for the OMAP5910
multimedia processor.

Topic Page

9.1 Introduction 9-2.

9.2 McBSPs 9-3.

9.3 McBSP1 9-4.

9.4 McBSP3 9-11.

9.5 Multichannel Serial Interfaces 9-27.

9.6 MCSI1 9-52.

9.7 MCSI2 9-54.

9.8 McBSP and MCSI Memory and Peripheral Mapping 9-56.

Chapter 9

Introduction

 9-2

9.1 Introduction

The four DSP public peripherals for the OMAP5910 processor include two
multichannel buffered serial ports (McBSPs) and two multichannel serial
interfaces (MCSIs):

� McBSP1
� McBSP3
� MCSI1
� MSCI2

Figure 9–1 shows the OMAP5910 device with the DSP public peripherals
highlighted.

Figure 9–1. Highlight of Public Peripherals Area

MPU core
(TI925T)

(instruction
cache, data

cache, MMU)

System
DMA

controller

TMS320C55x DSP
(Instruction cache, SARAM

 DARAM, DMA,
 H/W accelerators)

MPU
peripheral

bridge

LCD
I/F

MPU
Interface

SRAM

SDRAM
memories

Flash and
SRAM

memories

DSP
MMU

16

16

32

16

32

32

32

32

32

32

16

MPU privatePeripherals bus

DSP public (shared) pheripheral bus

32
MPU public

16

DSP

DSP public peripherals

McBSP1

McBSP3

MPU public peripherals

USB Host I/F

JTAG/
emulation

I/F
OSC

12 MHz Clock

OSC

OMAP5910

ETM9

Timers (3)

MPU/DSP shared peripherals

Mailbox

MPU private peripherals

Timers (3)

16

Memory interface

Reset External clock

MPU Bus

32 kHz

1.5M bits

traffic controller (TC)

Watchdog timer

Level 1/2 interrupt handlers

Configuration registers

Clock and reset management

Watchdog timer
Level 1/2

Private peripherals

GPIO I/F

USB Function I/F

Camera I/F
MPUIO

32-kHz timer
PWT
PWL

M
I
F
S

M
I
F
F

I
M
I
F

MCSI1
MCSI2

Keyboard I/F

request

E

E

TIPB
switch

UART1
UART2

UART3 IrDA

32

MMC/SD
LPG x2

HDQ / 1-WIRE

DSP private
peripheral bus

peripherals bus

McBSP2

Device identification

RTC

interrupt handlers

I2C
µWire

Frame adjstument
counter

32

32

32

32

McBSPs

9-3DSP Public Peripherals

9.2 McBSPs

Multichannel buffered serial ports (McBSPs) are configurable, high-speed,
full-duplex serial ports that allow direct interface to external communications
devices. There are three McBSPs on the OMAP5910 device.

� McBSP1 and McBSP3 are on the DSP public peripheral bus and are
covered briefly in this chapter.

� McBSP2 is on the MPU public peripheral bus and is covered briefly in
Chapter 7, MPU Public Peripherals.

For a detailed description of the functionality of all three McBSPs, see the
TMS320C55x DSP Peripherals Reference Guide (literature number
SPRU317).

Key features of the McBSPs include:

� Full-duplex communication

� DMA support for both RX and TX transfers

� Double-buffered data registers, which allow a continuous data stream

� Independent framing and clocking for receives and transmits

� External shift clock generation or an internal programmable frequency
shift clock

� Multichannel transmits and receives of up to 128 channels

� A wide selection of data sizes, including 8-, 12-, 16-, 20-, 24-, or 32-bits

� µ-Law and A-Law companding

� Data transfers with LSB or MSB first

� Programmable polarity for both frame synchronization and data clocks

� Highly programmable internal clock and frame generation

� Supports bit rates up to 25M bits/second

� RX and TX interrupts as well as RX data overrun interrupt

McBSP1

 9-4

The operation of the OMAP5910 McBSPs is consistent with the SPRU317,
with the following exceptions and clarifications:

� Only DXENA = 0 setting is supported.

� The transmit output (DX) pins don not go to high impedance when the
transmitter in not actively sending data. In other words, the OMAP5910
always actively drives the DX pins.

� The CLKS input is only available on McBSP1.

� The receiver can only operate in slave mode on McBSP1 and McBSP3.

9.3 McBSP1

This section provides information specific to McBSP1 of the OMAP5910
device. For a full description of McBSP functionality and register descriptions,
see the TMS320C55x DSP Peripherals Reference Guide (literature number
SPRU317).

9.3.1 McBSP1 Pin Descriptions

Table 9–1 identifies the McBSP1 I/O pins.

Table 9–1. McBSP1 Pin Descriptions

Pin I/O Direction Description

MCBSP1.CLKS In Clock input

MCBSP1.DR In Data input

MCBSP1.DX Out Data output

MCBSP1.CLKX In/out Bit clock

MCBSP1.FSX In/out Frame synchronization

McBSPs / McBSP1

McBSP1

9-5DSP Public Peripherals

Figure 9–2. McBSP1 Interface Diagram

MCBSP1.FSX

OMAP5910

McBSP1

CLKS

FSX_OUT

FSX_OE
FSX_IN

CLKX_OUT

CLKX_OE
CLKX_IN

DX_OUT

DX_OE

FSR_OUT

FSR_OE
FSR_IN

CLKR_OUT

CLKR_OE
CLKR_IN

DR_IN

0

MCBSP1.CLKX

MCBSP1.DX

MCBSP1.DR

MCBSP1.CLKS

Reset

MPU

Interrupts

DMA
requests

I/F
16

RX (DMA_REQ_9)
TX (DMA_REQ_8)

RX interrupt (IRQ_3)
TX interrupt (IRQ_2)

DSP public
peripheral bus

DSPPER_nRST

DSPXOR_CK

RX interrupt (IRQ_13)
TX interrupt (IRQ_12)

RX (DMA_REQ_9)
TX (DMA_REQ_8)

(12 MHz)

DSP
DMA

DSP level 2
interrupt handler

System
DMA

MPU level 2
interrupt handler

DSP peripheral
bridge

Clock generation
and management

Note: You can use the AUXON feature to gate the functional clock to the McBSP1 module by setting MOD_CONF_CTRL_0[18]
to 1.

McBSP1

 9-6

The McBSP1 is half duplex, master/slave for transmission, slave for reception.
Table 9–2 lists the McBSP1 signals are available at the OMAP5910 level

Table 9–2. Available McBSP1 Signals

Generic McBSP Signal Name Description McBSP1 Signal Name

FSX2 Transmission frame (bidirectional) McBSP1.FSX

CLKX Transmission clock (bidirectional) McBSP1.CLKX

DX Transmit data (output only) McBSP1.DX

FSR Receive frame (input only) Not available (internal
feedback from CLXX)

DR Receive data McBSP1.DR

CLKS Clock input McBSP1.CLKS

9.3.2 McBSP1 Interrupt Mapping

Table 9–3 identifies the McBSP1 interrupts. McBSP1 generates level 2
interrupts for both the DSP and the MPU.

Table 9–3. McBSP1 Interrupt Mapping

Incoming Interrupts Level 2 DSP Interrupt Level 2 MPU Interrupt

McBSP1 TX interrupt IRQ_02 IRQ_12

McBSP1 RX interrupt IRQ_03 IRQ_13

9.3.3 McBSP1 DMA Request Mapping

Table 9–4 identifies McBSP1 DMA request lines.

Table 9–4. DMA Request Mapping—McBSP1

DMA Request
Source DMA Request Line—DSP DMA Request Line—MPU

McBSP1 TX DMA_REQ_08 DMA_REQ_08

McBSP1 RX DMA_REQ_09 DMA_REQ_09

McBSP1

9-7DSP Public Peripherals

9.3.4 McBSP1 Application Example: I2S Interface

This application uses McBSP1 as an I2S audio codec interface (see
Figure 9–3). The OMAP5910 is intended to be either the master or slave
device; that is, it either receives or provides the frame synchronization and bit
clock.

Section 9.3.4.1 through Section 9.3.4.9 explain how to set up the McBSP
registers for I2S slave mode with 16-bit transfers using DMA support.

Figure 9–3. I2S Audio Codec Interface

mcbsp1_sync

OMAP5910

McBSP1

CLKS

FSX_OUT
FSX_OE
FSX_IN

CLKX_OUT
CLKX_OE
CLKX_IN

DX_OUT
DX_OE

FSR_OUT
FSR_OE
FSR_IN

CLKR_OUT
CLKR_OE
CLKR_IN

DR_IN

0

mcbsp1_bclk

mcbsp1_dout

mcbsp1_din

mcbsp1_clks

Audio Codec
supporting I2S

standard interface
protocol

McBSP1

 9-8

9.3.4.1 Serial Port Control Register Configuration

DSP_Write(0x0000) => SPCR1; set up SPCR1 as initial configuration.

This setup is not needed after reset.

DSP_Write(0x0000) => SPCR2; set up SPCR2 as initial configuration.

This set up is not needed after reset.

9.3.4.2 Pin Control Register Configuration

DSP_Write(0x0000) => PCR; set up PCR as shown in Table 9–5.

Table 9–5. Pin Control Register Configuration (DSP_Write(0x0000) => PCR)

Bit Config Value Description

15–14 00b Reserved

13 0b Set serial port mode for DX, FSX and CLKX pins

12 0b Set serial port mode for DR, FSR and CLKR pins

11 0b TX frame-synchronization signal derived by external source

10 0b RX frame-synchronization signal derived by external source

9 0b CLKX set input pin and derived by external source

8 0b CLKR set input pin and derived by external source

7 0b Sample rate generator input clock mode bit

6 0b CLKS pin status (no meaning in the OMAP5910 device)

5 0b DX pin status

4 0b DR pin status

3 0b Set FSX polarity as active high

2 0b Set FSR polarity as active high

1 0b Set CLKX polarity as data driven on rising edge

0 0b Set CLKR polarity as data sampled on falling edge

McBSP1

9-9DSP Public Peripherals

9.3.4.3 Receive Control Register Configuration

DSP_Write(0x00a0) => RCR1; set up RCR1 as shown in Table 9–6.

Table 9–6. Receive Control Register 1 Configuration (DSP_Write(0x00a0) => RCR1)

Bit Config Value Description

15 0b Reserved

14–8 000 0000b Set receive frame length as one word per frame

7–5 101b Set receive word length as 32 bits per frame

4–0 0 0000b Reserved

DSP_Write(0x80a1) => RCR2; set up RCR2 as shown in Table 9–7.

Table 9–7. Receive Control Register 2 Configuration (DSP_Write(0x80a1) => RCR2)

Bit Config Value Description

15 1b Set dual-phase frame

14–8 000 0000b Set receive frame length as one word per frame

7–5 101b Set receive word length as 32 bits per frame

4–3 00b Don’t care for single-phase frame

2 0b Set FSR not ignore after the first resets the transfer

1–0 01b Set data delay as 1 bit

9.3.4.4 Transmit Control Register Configuration

DSP_Write(0x00a0) => XCR1; set up XCR1 as shown in Table 9–8.

Table 9–8. Transmit Control Register 1 Configuration (DSP_Write(0x00a0) => XCR1)

Bit Config Value Description

15 0b Reserved

14–8 000 0000b Set transmit frame length as one word per frame

7–5 101b Set receive word length as 32 bits per frame

4–0 0 0000b Reserved

McBSP1

 9-10

DSP_Write(0x80a1) => XCR2; set up XCR2 as shown in Table 9–9.

Table 9–9. Transmit Control Register 2 Configuration (DSP_Write(0x80a1) => XCR2)

Bit Config Value Description

15 1b Set dual-phase frame

14–8 000 0000b Don’t care for single-phase frame

7–5 101b Set receive word length as 32 bits per frame

4:3 00b Set no companding data and transfer start with MSB first

2 0b Set FSX not ignore after the first resets the transfer

1:0 01b Set data delay as 1 bit

9.3.4.5 Sample Rate Generator Configuration (SRGR[1,2])

It is not necessary to configure the sample rate generator, because external
clocks and frames are provided appropriately for CLKX and FSX.

9.3.4.6 DMA Configuration

It is necessary to configure the REVT and XEVT bit for the DMA receive and
transmit synchronized invent.

9.3.4.7 Interrupt Flag Configuration and Clear (ILR, MIR)

1) DSP_Write => ILR; set ILR appropriately for the interrupt handling priority.

2) DSP_Write MIR and (0x0000 0030) => MIR; disabled SPI TX and RX
interrupt

Note:

Enable the appropriate DMA channel interrupts.

9.3.4.8 Take out of Reset for Transmit and Receive Starting (SPCR[1,2])

1) DSP_write SPCR1 or (0x0001) => SPCR1; enabled receive port

2) DSP_write SPCR2 or (0x0001) => SPCR2; enabled transmit port

McBSP3

9-11DSP Public Peripherals

9.3.4.9 Data Transfer (DMA channel)

The DMA channel transfers the received data to the appropriate data buffer
and transfers the new transmit data to appropriate TX buffer. Clear the
interrupt flag on ITR when the interrupt handle is taken.

Figure 9–4. Waveform Example

CLK(R/X)

FS(R/X)

D(R/X) A31 A30 A29 A3 A2 A1 A0 B29B30B31 B1 B0

9.4 McBSP3

This section provides information specific to McBSP3 on the OMAP5910
device. For a full description of McBSP functionality and register definitions,
see the TMS320C55x DSP Peripherals Reference Guide (literature number
SPRU317).

9.4.1 McBSP3 Pin Descriptions

Table 9–10 identifies the McBSP3 I/O pins.

Table 9–10. McBSP3 Pin Descriptions

Pin I/O Direction Description

MCBSP3.DR In Data input

MCBSP3.DX Out Data output

MCBSP3.CLKX In/out Bit clock

MCBSP3.FSX In/out Frame synchronization

McBSP1 / McBSP3

McBSP3

 9-12

Figure 9–5. McBSP3 Interface Diagram

MCBSP3.FSX

OMAP5910

McBSP3

CLKS

FSX_OUT

FSX_OE
FSX_IN

CLKX_OUT

CLKX_OE

CLKX_IN

DX_OUT

DX_OE

FSR_OUT

FSR_OE

FSR_IN

CLKR_OUT

CLKR_OE

CLKR_IN

DR_IN

0

MCBSP3.CLKX

MCBSP3.DX

MCBSP3.DR

Reset

MPU

Interrupts

DMA
requests

I/F

16

RX (DMA_REQ_11)
TX (DMA_REQ_10)

RX Interrupt (IRQ_1)
TX Interrupt (IRQ_0)

DSP public
peripheral bus

DSPPER_nRST

DSPXOR_CK

RX Interrupt (IRQ_11)
TX Interrupt (IRQ_10)

RX (DMA_REQ_11)
TX (DMA_REQ_10)

(12 MHz)

DSP
DMA

DSP level 2
interrupt handler

System
DMA

MPU level 2
interrupt handler

DSP peripheral
bridge

Clock generation
and management

DSP peripheral
fixed clock
(12 MHz)

0

0

0

Configuration
register

Configuration

register

Note: You can use the AUXON feature to gate the functional clock to the McBSP3 module by setting MOD_CONF_CTRL_0[20]
to 1.

McBSP3

9-13DSP Public Peripherals

There are two modes for the McBSP3, which are selected by the bit 28,
MOD_MCBSP3_MODE_R, of the MOD_CONF_CTRL_0 register:

� MOD_MCBSP3_MODE_R = 0 (default). In this case, the McBSP3 is half
duplex, master for transmission, slave for reception. The paths shown as
dashed lines in Figure 9–5 are not available in this mode. Table 9–11 lists
the McBSP3 signals available in this mode at the OMAP5910 level.

Table 9–11. Available McBSP3 Signals in R = 0 Mode

Generic McBSP Signal Name Description McBSP3 Signal Name

FSX Transmission frame (output only) Not available

CLKX Transmission clock (output only) McBSP3.CLKX

DX Transmit data (output only) McBSP3.DX

FSR Receive frame (input only) Not available (internal
feedback from FSX)

CLKR Receive clock (input only) Not available (internal
feedback from FSX)

DR Receive data McBSP3.DR

� MOD_MCBSP3_MODE_R = 1. In this case, the McBSP3 is half duplex,
master/slave for transmission, slave for reception. This mode utilizes the
paths shown as dashed lines in Figure 9–5. Table 9–12 lists the McBSP3
signals available in this mode at the OMAP5910 level.

Table 9–12. Available McBSP3 Signals in R = 1 Mode

Generic McBSP Signal Name Description McBSP3 Signal Name

FSX Transmission frame (bidirectional) McBSP3.FSX
(multiplexed on another
pad)

CLKX Transmission clock (bidirectional) McBSP3.CLKX

DX Transmit data (output only) McBSP3.DX

FSR Receive frame (input only) Not available (internal
feedback from FSX)

CLKR Receive clock (input only) Not available (internal
feedback from CLXX)

DR Receive data McBSP3.DR

McBSP3

 9-14

9.4.2 McBSP3 Interrupt Mapping

Table 9–13 identifies the McBSP3 interrupts. McBSP3 generates level 2
interrupts for both the DSP and the MPU.

Table 9–13. McBSP3 Interrupt Mapping

Incoming Interrupts Level 2 DSP Interrupt Level 2 MPU Interrupt

McBSP3 TX interrupt IRQ_00 IRQ_10

McBSP3 RX interrupt IRQ_01 IRQ_11

9.4.3 McBSP3 DMA Request Mapping

Table 9–14 identifies McBSP3 DMA request lines.

Table 9–14. DMA Request Mapping—McBSP3

DMA Request Source DMA Request Line—DSP
DMA Request Line—

MPU

McBSP3 TX DMA_REQ_10 DMA_REQ_10

McBSP3 RX DMA_REQ_11 DMA_REQ_11

9.4.4 McBSP3 Application Example: Optical Interface

With the assistance of two GPIOs, McBSP3 is configured to connect to an
external optical audio interface (see Figure 9–6) device such as the Sanyo
LC89051V. The CLKS signal is the active input clock for the McBSP modem
block. The active input clock can be changed in a McBSP register, but activity
on CLKS is required to perform the set up and write to the McBSP register.

Section 9.4.4.1 through Section 9.4.4.12 explain the McBSP register setup for
optical interface with 8-bit transfer per frame in SPI master mode and GPIO
mode.

McBSP3

9-15DSP Public Peripherals

Figure 9–6. Optical Audio Interface

OMAP5910

Tie-off
0

McBSP3

CLKS

FSX_OUT
FSX_OE
FSX_IN

CLKX_OUT
CLKX_OE
CLKX_IN

DX_OUT

DX_OE

FSR_OUT
FSR_OE
FSR_IN

CLKR_OUT
CLKR_OE
CLKR_IN

DR_IN

0

mcbsp3_clk

mcbsp3_dout

mcbsp3_din

Optical audio
Interface device

DAU_CLK / DAU_SCLK

DAU_DOUT / DAU_SWDT

DAU_DIN / DAU_SRDT

DAU_DQSY (output)

DAU_XLAT (input)

DSP peripheral
programmable
clock (DSPXOR_CK)

Tie–off

Config reg

OMAP5910 GPIOs

Config reg

McBSP3

 9-16

9.4.4.1 Serial Port Control Register Configuration

DSP_Write(0x1000) => SPCR; set up SPCR1 per below configuration.

Table 9–15. Serial Port Control Register Configuration (DSP_Write(0x1000) => SPCR)

Bit Config Value Description

15 0b Disable digital loopback mode

14–13 00b Right-justify and zero-fill MSBs in DRR

12–11 10b Enabled clock stop mode

10–8 000b Reserved

7 0b Turn off the DX enabler

6 0b Reserved

5–4 00b Set RINT driven by RRDY mode

3 0b No synchronization error

2 0b RBR is not in overrun condition

1 0b Receiver is not ready

0 0b Disabled the serial port receiver and in reset state

DSP_Write(0x0000) => SPCR2; set up SPCR2 as initial configuration.

Note:

This set up is not needed after reset.

McBSP3

9-17DSP Public Peripherals

9.4.4.2 Pin Control Register Configuration

DSP_Write(0x0a0b) => PCR; set up PCR per below configuration.

Table 9–16. Pin Control Register Configuration (DSP_Write(0x0a0b) => PCR)

Bit Config Value Description

15–4 00b Reserved

13 0b Set serial port mode for DX, FSX and CLKX pins

12 0b Set serial port mode for DR, FSR and CLKR pins

11 1b TX frame-synchronization signal driven by internal generator

10 0b RX frame-synchronization signal derived by external source

9 1b McBSP is set master and generate clock by internal source

8 0b CLKR set input pin and derived by external source

7 0b Sample rate generator input clock mode bit

6 0b CLKS pin status (no meaning in OMAP5910)

5 0b DX pin status

4 0b DR pin status

3 1b Set FSX polarity as active low

2 0b Set FSR polarity as active high

1 1b Set CLKX polarity as data driven on falling edge

0 1b Set CLKR polarity as data sampled on rising edge

McBSP3

 9-18

9.4.4.3 Receive Control Register Configuration

The values of RWDLEN1, 2 and XWDLEN1, 2 must be set to the same value
in SPI mode.

DSP_Write(0x0000) => RCR1; set up RCR1 per below configuration.

Table 9–17. Receive Control Register 1 Configuration (DSP_Write(0x0000) => RCR1)

Bit Config Value Description

15 0b Reserved

14–8 000 0000b Set receive frame length as one word per frame

7–5 000b Set receive word length as 8 bits per frame

4–0 0 0000b Reserved

DSP_Write(0x0000) => RCR2; set up RCR2 per below configuration.

Table 9–18. Receive Control Register 2 Configuration (DSP_Write(0x0000) => RCR2)

Bit Config Value Description

15 0b Set single-phase frame

14–8 000 0000b Don’t care for single phase frame

7–5 000b Don’t care for single phase frame

4–3 00b Set no companding data and transfer start with MSB first

2 0b Set FSR not ignore after the first resets the transfer

1–0 00b Set data delay as 0 bit

McBSP3

9-19DSP Public Peripherals

9.4.4.4 Transmit Control Register Configuration

The values of RWDLEN1, 2 and XWDLEN1, 2 must be set to the same value
in SPI mode.

DSP_Write(0x0000) => XCR1; set up XCR1 per below configuration.

Table 9–19. Transmit Control Register 1 Configuration (DSP_Write(0x0000) => XCR1)

Bit Config Value Description

15 0b Reserved

14–8 000 0000b Set transmit frame length as one word per frame

7–5 000b Set transmit word length as 8 bits per frame

4–0 0 0000b Reserved

DSP_Write(0x0000) => XCR2; set up XCR2 per below configuration.

Table 9–20. Transmit Control Register 2 Configuration (DSP_Write(0x0000) => XCR2)

Bit Config Value Description

15 0b Set single-phase frame

14–8 000 0000b Don’t care for single phase frame

7–5 000b Don’t care for single phase frame

4–3 00b Set no companding data and transfer start with MSB first

2 0b Set FSX not ignore after the first resets the transfer

1–0 00b Set data delay as 0 bit

McBSP3

 9-20

9.4.4.5 Sample Rate Generator Configuration (SRGR[1,2])

DSP_Write (0x00FF) => SRGR1; set up SRGR1 per below configuration.

Table 9–21. Sample Rate Generator 1 Configuration (SRGR[1,2])
(DSP_Write (0x00FF) => SRGR1)

Bit Config Value Description

15–8 0000 0000b These bits ignored by the FSGM=0 (SRGR2[12:12])

7–0 1111 1111b Set sample rate generator clock divider

DSP_Write (0x2000) => SRGR2; set up SRGR2 per below configuration.

Table 9–22. Sample Rate Generator 2 Configuration (SRGR[1,2])
(DSP_Write (0x2000) => SRGR2)

Bit Config Value Description

15 0b Set sample rate generator clock synchronization

14 0b Set clock polarity

13 1b Sample rate generator clock derived from DSP clock

12 0b Set frame-synchronization

11–0 0000 0000
0000b

These bit ignored by the FSGM=0 (SRGR2[12:12])

Wait two CLKSRG clock cycles.

9.4.4.6 Start Sample Rate Generator (SPCR2)

DSP_Write SPCR2 or (0x0040) => SPCR2; bring sample rate generator out
of reset.

Note:

Wait two sample rate clock for McBSP stability.

McBSP3

9-21DSP Public Peripherals

9.4.4.7 Interrupt Flag Configuration and Clear (ILR, ITR, MIR) on Level 2 Handler

1) DSP_Write => ILR; set ILR appropriately for the interrupt handling priority.

2) DSP_Write ITR and (0xFFFF F3FF)=> ITR; clear remaining TX and RX
interrupts.

Note:

This set up is not needed after reset.

3) DSP_Write MIR and (0xFFFF F3FF) => MIR; enabled SPI TX and RX
interrupt

9.4.4.8 Interrupt Flag Configuration MASK Release on Level 2 Handler

DSP_Write MIR and (0xFFFF FFFB) => MIR0; enabled INT4 (level 2 interrupt
FIR)

9.4.4.9 Take Out of Reset for Transmit and Receive Starting (SPCR[1,2])

1) DSP_write SPCR1 or (0x0001) => SPCR1; enabled receive port

2) DSP_write SPCR2 or (0x0001) => SPCR2; enabled transmit port

Note:

Wait two sample rate clock cycles for McBSP stability.

9.4.4.10 Transmit and Received Data Loading (TX_INT Handling in Interrupt Survive Routine)

For data transmit:

1) DSP_Write => DXR; transmit data loading to DXR

2) DSP_Read <= DRR; wait for data read after the RINT

For two data received:

1) DSP_Write => DXR; dummy write 0xFFFF for data receive after the TINT

2) DSP_Read <= DRR; first data read after the RINT

3) DSP_Write => DXR; dummy write 0xFFFF for data receive after the TINT

4) DSP_Read <= DRR; second data read after the RINT

9.4.4.11 Register Setup GPIO Mode

1) DSP_Write SPCR1 and (0xFFFE) => SPCR1; disabled receive port

2) DSP_Write PCR or (0x1000) => PCR; DR pin set as GPI

McBSP3

 9-22

9.4.4.12 Read From GPI

DSP_Read <= PCR; read DR_STAT bit

Figure 9–7. Waveform Example

A7 A6 A5 A4 A3 A2 A1 A0 B7 B6 B5 B4 B3 B2 B1 B0 C7 C6 C5 C4 C3 C2 C1 C0

2 CLK

BCLKX

BFSX

BDR/X

Section 9.4.4.13 through Section 9.4.4.21 explain the McBSP register setup
for TX master and RX slave with 8-bit data transfer using DMA support.

9.4.4.13 Serial Port Control Register Configuration

DSP_Write(0x1000) => SPCR1; set up SPCR1 per below configuration.

Table 9–23. Serial Port Control Register Configuration (DSP_Write(0x1000) => SPCR1)

Bit Config Value Description

15 0b Disables digital loopback mode

14–13 00b Right-justify and zero-fill MSBs in DRR

12–11 10b Enables clock stop mode

10–8 000b Reserved

7 0b Turns off the DX enabler

6 0b Reserved

5–4 00b Set RINT driven by RRDY mode

3 0b No synchronization error

2 0b RBR is not in overrun condition.

1 0b Receiver is not ready.

0 0b Disables the serial port receiver and in reset state

McBSP3

9-23DSP Public Peripherals

DSP_Write(0x0000) => SPCR2; set up SPCR2 as initial configuration.

Note:

This setup is not needed after reset.

9.4.4.14 Pin Control Register Configuration

DSP_Write(0x0a0b) => PCR; set up PCR per below configuration.

Table 9–24. Pin Control Register Configuration (DSP_Write(0x0a0b) => PCR)

Bit Config Value Description

15–14 00b Reserved

13 0b Set serial port mode for DX, FSX and CLKX pins

12 0b Set serial port mode for DR, FSR and CLKR pins

11 1b TX frame-synchronization signal driven by internal generator

10 0b RX frame-synchronization signal derived by external source

9 1b McBSP is set master and generate clock by internal source

8 0b CLKR set input pin and derived by external source

7 0b Sample rate generator input clock mode bit

6 0b CLKS pin status (no meaning in OMAP5910)

5 0b DX pin status

4 0b DR pin status

3 1b Set FSX polarity as active high

2 0b Set FSR polarity as active high

1 1b Set CLKX polarity as data driven on falling edge

0 1b Set CLKR polarity as data sampled on rising edge

McBSP3

 9-24

9.4.4.15 Receive Control Register Configuration

The values of RWDLEN1, 2 and XWDLEN1, 2 must be set to same value in
SPI mode.

DSP_Write(0x0000) => RCR1; set up RCR1 per below configuration.

Table 9–25. Receive Control Register 1 Configuration (DSP_Write(0x0000) => RCR1)

Bit Config Value Description

15 0b Reserved

14–8 000 0000b Set receive frame length as one word per frame

7–5 000b Set receive word length as 8 bits per frame

4–0 0 0000b Reserved

DSP_Write(0x0000) => RCR2; set up RCR2 per below configuration.

Table 9–26. Receive Control Register 2 Configuration (DSP_Write(0x0000) => RCR2)

Bit Config Value Description

15 0b Set single-phase frame

14–8 000 0000b Set receive frame length as one word per frame

7–5 000b Set receive word length as 8 bits per frame

4–3 00b Set no companding data and transfer start with MSB first

2 0b Set FSR ignore after the first resets the transfer

1–0 00b Set data delay as 0 bit

McBSP3

9-25DSP Public Peripherals

9.4.4.16 Transmit Control Register Configuration

The values of RWDLEN1, 2 and XWDLEN1, 2 must be set to the same value
in SPI mode.

DSP_Write(0x0000) => XCR1; set up XCR1 per below configuration.

Table 9–27. Transmit Control Register 1 Configuration (DSP_Write(0x0000) => XCR1)

Bit Config Value Description

15 0b Reserved

14–8 000 0000b Set transmit frame length as one word per frame

7–5 000b Set transmit word length as 8 bits per frame

4–0 0 0000b Reserved

DSP_Write(0x0000) => XCR2; set up XCR2 per below configuration.

Table 9–28. Transmit Control Register 2 Configuration (DSP_Write(0x0000) => XCR2)

Bit Config Value Description

15 0b Set single-phase frame

14–8 000 0000b Set transmit frame length as one word per frame

7–5 000b Set transmit word length as 8 bits per frame

4–3 00b Set no companding data and transfer start with MSB first

2 0b Set FSX ignore after the first resets the transfer

1–0 00b Set data delay as 0 bit

9.4.4.17 Sample Rate Generator Configuration (SRGR[1,2])

1) Configure the sample rate generator appropriately for CLKX and FSX. For
details, see TMS320C54x DSP Enhanced Peripherals Reference Set,
vol. 5, SPRA302.

2) Wait two CLKSRG clocks.

3) ARM_Write SPCR2 or (0x0000 0040)=>SPCR2;CLKG enable

4) Wait two CLKG clocks.

McBSP3

 9-26

9.4.4.18 DMA Configuration

Configure the REVT and XEVT bit for the DMA receive and transmit
synchronized invent.

9.4.4.19 Interrupt Flag Configuration and Clear (ILR, MIR)

1) ARM_Write => ILR; set ILR appropriately for the interrupt handling priority.

2) ARM_Write MIR and (0x0000 0D00) => MIR; disabled SPI TX and RX
interrupt

Note:

Enable the appropriate DMA channel interrupts.

9.4.4.20 Take out of Reset for Transmit and Receive Starting (SPCR[1,2])

1) ARM_write SPCR1 or (0x0001) => SPCR1; enabled receive port

2) ARM_write SPCR2 or (0x0001) => SPCR2; enabled transmit port

9.4.4.21 Data Transfer (DMA Channel)

The DMA channel transfers the received data to the appropriate data buffer
and transfers the new transmit data to the appropriate TX buffer. Clear
interrupts flag on ITR when taking the interrupt handle.

Note:

Clear interrupts flag on ITR, when taken the interrupt handle.

Figure 9–8. Waveform Example

A7 A6 A5 A4 A3 A2 A1 A0 B7 B6 B5 B4 B3 B2 B1 B0 C7 C6 C5 C4 C3 C2 C1 C0

2 CLK

BCLKX

BFSX

BDR/X

Multichannel Serial Interfaces

9-27DSP Public Peripherals

9.5 Multichannel Serial Interfaces

Multichannel serial interfaces (MCSIs) have multichannel transmission capa-
bility. MCSIs expand the parallel interface of a DSP to connect to external
devices such as codecs and GSM system simulators.

The two public MCSIs on the OMAP5910 device provide full duplex transmis-
sion and master or slave clock control. All transmission parameters are
configurable to cover the maximum number of operating conditions:

� Master or slave clock control (transmission clock and frame synchroniza-
tion pulse)

� Programmable transmission clock frequency

� Single-channel or multichannel (x16) frame structure

� Programmable word length: 3 to 16 bits

� Full-duplex transmission

� Programmable frame configuration

� Continuous or burst transmission
� Normal or alternate framing
� Normal or inverted frame polarity
� Short or long frame pulse
� Programmable oversize frame length
� Programmable frame length

� Programmable interrupt occurrence time (TX and RX)

� Error detection with interrupt generation on wrong frame length

� DMA support for both TX and RX data transfers

Multichannel Serial Interfaces

 9-28

9.5.1 Communication Protocol

9.5.1.1 Configuration Parameters

The configuration parameters can be modified only if the MCSI is disabled
(control_reg[0] = 0).

Slave/Master Control

Using the control bit, the interface can be configured in one of two ways:

� In master mode with the transmission clock and the frame synchronization
pulse generated by the interface

� In slave mode with the transmission clock and the frame synchronization
pulse generated from an external device

Control bit:
MAIN_ PARAMETERS _REG(6) = MCSI_MODE
1: Master
0: Slave

Single-Channel/Multichannel

The frame structure can be either single-channel-based (one channel per
frame) or multichannel-based with the number of channels fixed at 16.

Control bit:
MAIN_ PARAMETERS _REG(7) = MULTI
1: Multichannel
0: Single-channel

Short/Long Framing

The frame-synchronization pulse duration can be either short with a pulse
duration equal to the bit duration or long with a pulse duration equal to the
channel duration.

The long frame is active only during transmission on channel 0.

Control bit:
MAIN_ PARAMETERS _REG(8) = FRAME_SIZE
1: Long
0: Short

Multichannel Serial Interfaces

9-29DSP Public Peripherals

Normal/Alternate Frame Synchronization

The frame-synchronization pulse position either is normal with the
frame-synchronization pulse starting one bit before channel 0 or alternates
with the frame-synchronization pulse starting with the first bit of channel 0.

Control bit:
MAIN_ PARAMETERS _REG(9) = FRAME_POSITION
1: Alternate
0: Normal

Continuous/Burst Mode

The frame mode either is continuous with one frame-synchronization pulse at
the first frame or bursts with one frame-synchronization pulse at each frame.

Control bit:
MAIN_ PARAMETERS _REG(5) = FRAME_MODE
1: Continuous
0: Burst

Normal/Inverted Clock

The polarity of the clock can be either normal with writing on positive edge
clock and reading on negative edge clock or inverted with writing on negative
edge clock and reading on positive edge clock.

Control bit:
MAIN_ PARAMETERS _REG(4) = CLOCK_POLARITY
1: Inverted
0: Normal

Normal/Inverted Frame Synchronization

The polarity of the frame-synchronization pulse can be either normal with a
positive pulse or inverted with a negative pulse.

Control bit:
MAIN_ PARAMETERS _REG(10) = FRAME_POLARITY
1: Inverted
0: Normal

Channel Used

To enable a channel in multimode, set bit n for the desired channel n.

Multichannel Serial Interfaces

 9-30

Word Size

To choose the size of the word, set its size minus one into the main parameters
registers.

Control bit:
MAIN_PARAMETERS_REG(3:0) = WORD_ SIZE
(2 <= WORD_ SIZE <= 15)

The MCSI transmits and receives the most significant bit first. For example,
if the word_size equals 11, the upper 12 bits of the TX registers are transmitted,
the upper 12 bits of the RX registers contain the received data, and the lower
4 bits are zeros.

Frame Size

To add any overhead bits at the end of each frame, set the number of desired
overhead bits in the over_size_register.

Control bit:
OVER_CLOCK_REG(9:0) = OVER_CLK (0<=OVER_CLK <=1023)

Transmission Clock Frequency

In master mode, the clock frequency is derived from the 12-MHz master clock
and can be programmed from 5.8 kHz to 6 MHz in increments of 83 ns.

Control bit:
CLOCK_FREQUENCY_REG(10:0) = CLK_FREQ
(2<=CLK_FREQ <= 2047)

with
(tCLK = t12MHz * CLK_FREQ)

9.5.1.2 Sample Setup for Communication µ-Law Interface Using Interrupts

MCSI Configuration

An example of communication µ-law interface setup using interrupts follows.

� DSP_Write(0x0000) = CONTROL_REG (disable MCSI for setup)

Multichannel Serial Interfaces

9-31DSP Public Peripherals

� DSP_Write(0x0007) = MAIN_PARAMETERS_REG (set up MCSI per
configuration below)

� Bit 15-14 (00b): No DMA
� Bit 10 (0b): Positive polarity for frame
� Bit 9 (0b): Normal synchronization mode
� Bit 8 (0b): Short framing
� Bit 7 (0b): Single channel
� Bit 6 (0b): Slave mode
� Bit 5 (0b): Burst mode
� Bit 4 (0b): Positive edge for clock
� Bit 3-0 (0111b): 8-bit data

� DSP_Write(0x0700) = INTERRUPTS_REG (all interrupts are enabled)

� DSP_Write(0x0000) = OVER_CLOCK_REG

� DSP_Write(0x0001) = CONTROL_REG (start MCSI)

Transmit Data Loading (TX_INT ISR)

� DSP_Write = TX_REG

Received Data Loading (RX_INT ISR)

� DSP_Read = RX_REG

Stop MCSI

� DSP_Write(0x0000) = CONTROL_REG (disable MCSI clock)

� DSP_Write(0x0002) = CONTROL_REG (reset MCSI registers)

Figure 9–9. Communication µ-Law Interface Interrupts Waveform Example

CLK

FRM

TXD

RXD

R7 R6 R5 R4 R3 R2 R1 R0 R7 R6 R5 R4 R3 R2 R1 R0

T7 T5 T4 T3 T2 T1 T0 T7 T6 T5 T4 T3 T2 T1 T0T6

Multichannel Serial Interfaces

 9-32

9.5.1.3 Interface Management

Interrupts Generation

Three physical interrupts are available for real-time management of the MCSI
by the DSP:

� RX_INT (data receive interrupt)
� TX_INT (data transmit interrupt)
� FERR_INT (frame duration error interrupt)

RX_INT, TX_INT, and FERR_INT are maskable with dedicated programmable
control bits of the interrupt register INTERRUPTS_REG.

� RX_INT is masked when MASK_IT_RX = 0.
� TX_INT is masked when MASK_IT_TX = 0.
� FERR_INT is masked when MASK_IT_ERROR = 0.

Each interrupt is associated with a flag bit in the STATUS_REG register that
is set to 1 when the interrupt is generated. To acknowledge the interrupt and
release the corresponding physical signal, the DSP must write a 1 at the bit
location in the status register. The following list provides interrupt/flag bit
associations:

� RX_INT (RX_READY flag and acknowledge bit)
� TX_INT (TX_READY flag and acknowledge bit)
� FERR_INT (FRAME _ERROR flag and acknowledge bit)

Receive Interrupt

The receive interrupt is generated every frame after the completion of the
reception of a data word:

� In single-channel mode, the interrupt is generated one half-clock period
(plus a synchronization delay) after the reception of the word.

� In multichannel mode, the interrupt is generated one half-clock period
(plus a synchronization delay) after the reception of the word of the
channel whose number is defined by the NB_CHAN_IT_RX parameter of
INTERRUPTS_REG register.

Note:

If MCSI is in slave mode, the clock must be driven after valid data reception
until the interrupt is generated and must not be gated before then, because
the interrupt is generated on the MCSI interface clock.

Multichannel Serial Interfaces

9-33DSP Public Peripherals

Figure 9–10. Receive Interrupt Timing Diagram

CLK

RXD

IT_RX

DSP_WRITE(1) => STATUS_REG(2)
INTERRUPT_REG(3:0) = N–1

T7 T6 T5 T4 T3 T2 T1 T0 T7 T6 T5 T4 T3 T2 T1 T0 T7 T6 T5 T4 T3 T2 T1 T0

Channel N+1

t(syn) t(syn)

Channel N

Channel N-1

t(syn) < 2 x DSPXOR_CK (12 MHz)

Transmit Interrupt

The transmit interrupt is generated every frame after the start of the transmis-
sion of a data word.

� In single-channel mode, the interrupt is generated one clock period after
the beginning of the transmission of the word.

� In multichannel mode, the interrupt is generated one clock period after the
transmission of the word of the channel whose number is defined by the
NB_CHAN_IT_RX parameter of INTERRUPTS_REG register.

Figure 9–11.Transmit Interrupt Timing Diagram

CLK

TXD

IT_TX

DSP_WRITE(1) => STATUS_REG(4)
INTERRUPT_REG(7:4) = N

T7 T6 T5 T4 T3 T2 T1 T0 T7 T6 T5 T4 T3 T2 T1 T0 T7 T6 T5 T4 T3 T2 T1 T0

Channel N+1

t(syn) t(syn)

Channel N

Channel N-1

t(syn) < 2 x DSPXOR_CK (MHz)

Multichannel Serial Interfaces

 9-34

Frame Duration Error Interrupt

The frame duration error interrupt is only generated when:

� The interface is configured in burst mode (CONTINUOUS = 0).
� The frame duration is smaller or longer than the expected value.

Namely, expected frame duration = [(channels number) * (word size)] + (over-
size number) in clock periods units with over-size number defined in
OVER_SIZE_REG register.

If the frame duration is longer than the expected value, then the interrupt is
generated one clock period after the number of the over_size clock periods,
as defined in OVER_CLOCK parameter.

If the frame duration is smaller than the expected value, then the interrupt is
generated one clock period after the occurrence of the next frame pulse (first
active edge).

Figure 9–12. Frame Duration Error—Too Many (Long)

FSYNCH received FSYNCH expected

CLK

TXD

IT_FERR

DSP_WRITE(1) => STATUS_REG(0)

T4 T3 T2 T1 T0 T7 T6 T5 T4 T3 T2 T1 T0

Channel 0

t(syn) t(syn)

Extra clock duration

Channel 15

Over clock duration

t(syn) < 2 T13 MHz

Multichannel Serial Interfaces

9-35DSP Public Peripherals

Figure 9–13. Frame Duration Error—Too Few (Short)

T7 T6 T5 T4 T3 T2 T1 T0 T7 T6 T5 T4 T3 T2 T1

FSYNCH received FSYNCH expected

CLK

TXD

IT_FERR

DSP_WRITE(1) => STATUS_REG(0)

T4 T3 T2 T1 T0

Channel 0

t(syn) t(syn)

t(syn) < 2 T13 MHz

Channel 15

Over clock duration

9.5.1.4 Interrupt Programming

At module reset, RX_INT, TX_INT, and FERR_INT are masked.

To validate an interrupt:

If in multichannel mode, the RX and TX interrupts can be configured to occur
in a dedicated channel of the frame [1-16].

� DSP_WRITE(channel_nb) = INTERRUPTS_REG(3:0) for RX_INT
� INTERRUPTS_REG(7:4) for TX_INT

Unmask the interrupt:

� DSP_WRITE(1) =

� INTERRUPTS_REG(8) for RX_INT
� INTERRUPTS_REG(9) for TX_INT
� INTERRUPTS_REG(10) for FERR_INT

On interrupt occurrence:

� DSP_READ =

� STATUS_REG(1) for FERR_INT occurrence
� STATUS_REG(2) for RX_INT occurrence
� STATUS_REG(3) for RX character overflow
� STATUS_REG(4) for TX_INT occurrence
� STATUS_REG(5) for TX character underflow

Multichannel Serial Interfaces

 9-36

Then, to release the interrupt signal and reset the corresponding status bits:

� DSP_WRITE(1) =

� STATUS_REG(1) for FERR_INT release
� STATUS_REG(2) for RX_INT release
� STATUS_REG(4) for TX_INT release

9.5.1.5 DMA Channel Operation

Both transmit and receive operations can be supported by DMA. DMA support
is enabled by control bits in the MAIN_PARAMETERS_REG:

� MAIN_PARAMETERS_REG(15:14) = DMA_ENABLE(1:0)

� TX_DMA_REQ enabled when DMA_ENABLE(0) = 1
� TX_DMA_REQ disabled when DMA_ENABLE(0) = 0
� RX_DMA_REQ enabled when DMA_ENABLE(1) = 1
� RX_DMA_REQ disabled when DMA_ENABLE(1) = 0

Transmit DMA Transfers

A new transmit DMA transfer is initiated during the transmission of the last
channel of a frame, at which time all data in the transmit registers (TX_REGs)
has been moved to shift registers; the TX_REGs are now ready to be rewritten.
If N channels are used, the DMA controller successively accesses all consecu-
tive registers between TX_REG(0) and TX_REG(N-1). If some channels
between TX_REG(0) and TX_REG(N-1) are not used, the DMA controller
writes dummy values when addressing these unused registers (see
Figure 9–14).

Figure 9–14. Transmit DMA Transfers
MCSI

dma add

Val0

Ad0

Valndum

Adn

TI peripheral bus

ad
n-1

Ad1

dum

Value 0

Empty N

Empty n+1

Value n

Dummy n-1

Dummy 1

Value 0

Empty N

Empty n+1

Value n

Empty n-1

Empty 1

MCSI Tx
registers

MCSI Tx
shift

registers Serial output

Value 0 Value n

Multichannel Serial Interfaces

9-37DSP Public Peripherals

Receive DMA Transfers

A receive DMA transfer is initiated after the reception of the last channel of a
frame, at which time all receive registers RX_REG have been updated and are
ready to be read. If N channels are used, the DMA controller successively
accesses all consecutive registers between RX_REG(0) and RX_REG(N-1).
If some channels between RX_REG(0) and RX_REG(N-1) are not used, the
DMA controller reads dummy values when addressing these unused registers
(see Figure 9–15).

Figure 9–15. Receive DMA Transfers

MCSI

dma add

dma data Val0

Ad0

Valndum

Adn

TI peripheral bus

ad
n-1

Ad1

dum

Value 0

Empty N

Empty n+1

Value n

Dummy n-1

Dummy 1

Value 0

Empty N

Empty n+1

Value n

Empty n-1

Empty 1

MCSI Rx
registers

MCSI Rx
shift

registers Serial input

Value 0 Value n

A multichannel application cannot use DMA for some channels and interrupt
servicing for others. RX/TX interrupts are not generated when DMA RX/TX
transfers are enabled.

Multichannel Serial Interfaces

 9-38

9.5.1.6 Interface Activation

Start Sequence

A typical sequence to start the interface is:

1) MCSI configuration:

a) DSP_WRITE(0x0000)= CONTROL_REG in order to remove the write
protection on the control registers

b) DSP_WRITE(0x….)= MAIN_PARAMETERS_REG

c) DSP_WRITE(0x….)= INTERRUPTS_REG

d) DSP_WRITE(0x….)= CHANNEL_USED_REG

e) DSP_WRITE(0x….)= CLOCK_FREQUENCY_REG

f) DSP_WRITE(0x….)= OVER_CLOCK_REG

2) Transmit data loading for selected channels:

a) DSP_WRITE(0x….)= TX_REG[channel index]

3) Enable MCSI clock:

a) DSP_WRITE(0x0001)= CONTROL_REG

Stop Sequence

A typical sequence to stop the interface is:

1) Disable MCSI clock: DSP_WRITE(0x0000) = CONTROL_REG

The status register keeps its content even after the stop of the
transmission. The control registers can now be modified.

2) Software reset: DSP_WRITE(0x0002) = CONTROL_REG

The software reset initializes the status register.

Software Reset

The MCSI software reset is activated with the SW_RESET bit of the control
register (CONTROL_REG) (see Table 9–34, Activity Control Register).

This reset is limited to the control and status registers, the internal state
machine, and the PISO and SIPO logic. The parameters registers are not
affected by this software reset.

On the software reset, the MCSI reference clock is disabled, thus halting the
execution of any current operating mode.

Multichannel Serial Interfaces

9-39DSP Public Peripherals

9.5.1.7 Functional Mode Timing Diagrams

The following timing diagrams are based on a positive clock polarity with
parameter CLOCK_POL = 0.

(Transmit on rising edge/receive on falling edge)

Single-Channel/Alternate Long Framing

Figure 9–16. Single-Channel/Alternate Long Framing

T7 T6 T5 T4 T3 T2 T1 T0 T7 T6 T5 T4 T3 T2 T0T1

First frame

Last frame

CLK

TXD

RXD

FSYNCH

R7 R6 R5 R4 R3 R2 R1 R0 R7 R6 R5 R4 R3 R2 R1 R0

Single-Channel/Alternate Long Framing/Burst

Figure 9–17. Single-Channel/Alternate Long Framing/Burst

T7 T6 T5 T4 T3 T2 T1 T0 T7 T6 T5 T4 T3 T2

CLK

TXD

RXD

FSYNCH

R7 R6 R5 R4 R3 R2 R1 R0 R7 R6 R5 R4 R3 R2

OVER_CLOCK_REG = 0x0003

Multichannel Serial Interfaces

 9-40

Single-Channel/Alternate Short Framing/Continuous/Burst

Figure 9–18. Single-Channel/Alternate Short Framing/Continuous/Burst

T7 T6 T5 T4 T3 T2 T1 T0 T7 T6 T5 T4 T3 T2

CLK

TXD

RXD

FSYNCH

R7 R6 R5 R4 R3 R2 R1 R0 R7 R6 R5 R4 R3 R2

OVER_CLOCK_REG = 0x0003

Multichannel/Normal Short Framing/Channel4 Disable

Figure 9–19. Multichannel/Normal Short Framing/Channel4 Disable

Channel0

CLK

TXD

FSYNCH

Channel1 Channel2 Channel3 Channel5 Channel6 Channel14 Channel15 Channel0

Multichannel/Alternate Long Framing/Continuous/Burst

Figure 9–20. Multichannel/Alternate Long Framing/Continuous/Burst

Channel0

CLK

TXD

FSYNCH

Channel1 Channel14 Channel15 Channel1 Channel2Channel0

OVER_CLOCK_REG = 0x0013

Multichannel Serial Interfaces

9-41DSP Public Peripherals

Multichannel/Normal Short Framing/Burst

Figure 9–21. Multichannel/Normal Short Framing/Burst

Channel0

CLK

TXD

FSYNCH

Channel1 Channel14 Channel15 Channel1 Channel2Channel0

OVER_CLOCK_REG = 0x0013

Single-Channel/Normal Short Framing

Figure 9–22. Single-Channel/Normal Short Framing

T7 T6 T5 T4 T3 T2 T1 T0 T7 T6 T5 T4 T3 T2 T0T1

First frame

Last frame

CLK

TXD

RXD

FSYNCH

R7 R6 R5 R4 R3 R2 R1 R0 R7 R6 R5 R4 R3 R2 R1 R0

Single-Channel/Normal Short Framing/Burst

Figure 9–23. Single-Channel/Normal Short Framing/Burst

T7 T6 T5 T4 T3 T2 T1 T0 T7 T6 T5 T4 T3 T2

CLK

TXD

RXD

FSYNCH

R7 R6 R5 R4 R3 R2 R1 R0 R7 R6 R5 R4 R3 R2

Multichannel Serial Interfaces

 9-42

OVER_CLOCK_REG = 0x0003

Single-Channel/Normal Long Framing

Figure 9–24. Single-Channel/Normal Long Framing

T7 T6 T5 T4 T3 T2 T1 T0 T7 T6 T5 T4 T3 T2 T0T1

First frame

Last frame

CLK

TXD

RXD

FSYNCH

R7 R6 R5 R4 R3 R2 R1 R0 R7 R6 R5 R4 R3 R2 R1 R0

Single-Channel/Normal Long Framing/Burst

Figure 9–25. Single-Channel/Normal Long Framing/Burst

T7 T6 T5 T4 T3 T2 T1 T0 T7 T6 T5 T4 T3 T2

CLK

TXD

RXD

FSYNCH

R7 R6 R5 R4 R3 R2 R1 R0 R7 R6 R5 R4 R3 R2

OVER_CLOCK_REG = 0x0003

Multichannel Serial Interfaces

9-43DSP Public Peripherals

Single-Channel/Normal Long Framing/Continuous

Figure 9–26. Single-Channel/Normal Long/Continuous

T7 T6 T5 T4 T3 T2 T1 T0

CLK

TXD

RXD

FSYNCH

R7 R6 R5 R4 R3 R2 R1 R0

T7 T6 T5 T4 T3 T2 T1 T0 T7

R7 R6 R5 R4 R3 R2 R1 R0 R7

Single-Channel/Alternate Short Framing

Figure 9–27. Single-Channel/Alternate Short Framing

T7 T6 T5 T4 T3 T2 T1 T0 T7 T6 T5 T4 T3 T2 T0T1

First frame

Last frame

CLK

TXD

RXD

FSYNCH

R7 R6 R5 R4 R3 R2 R1 R0 R7 R6 R5 R4 R3 R2 R1 R0

Single-Channel/Alternate Short Framing/Burst

Figure 9–28. Single-Channel/Alternate Short Framing/Burst

T7 T6 T5 T4 T3 T2 T1 T0

CLK

TXD

RXD

FSYNCH

R7 R6 R5 R4 R3 R2 R1 R0

T7 T6 T5 T4 T3 T2 T1

R7 R6 R5 R4 R3 R2 R1

OVER_CLOCK_REG = 0x0003

Multichannel Serial Interfaces

 9-44

9.5.2 MCSI Register Descriptions

Table 9–29 through Table 9–37 describe the MCSI registers. The
CHANNEL_USED_REG, CLOCK_FREQUENCY_REG, OVER_CLOCK_REG,
INTERRUPTS_REG, and MAIN_PARAMETERS_REG are write protected if the
MCSI is enabled (control_reg[0] = 1).

The channel selection register is only used in multichannel mode (see
Table 9–29).

Table 9–29. Channel Selection Register (CHANNEL_USED_REG)

Bit Name Access
Hardware

Reset

15 use_ch15 R/W 0

14 use_ch14 R/W 0

13 use_ch13 R/W 0

12 use_ch12 R/W 0

11 use_ch11 R/W 0

10 use_ch10 R/W 0

9 use_ch9 R/W 0

8 use_ch8 R/W 0

7 use_ch7 R/W 0

6 use_ch6 R/W 0

5 use_ch5 R/W 0

4 use_ch4 R/W 0

3 use_ch3 R/W 0

2 use_ch2 R/W 0

1 use_ch1 R/W 0

0 use_ch0 R/W 0

USE_CH[i] selects channel [i] for data transmission (active high).

Multichannel Serial Interfaces

9-45DSP Public Peripherals

The clock frequency register is used only in master mode when the interface
generates the serial clock (see Table 9–30).

Table 9–30. Clock Frequency Register (CLOCK_FREQUENCY_REG)

Bit Name Description Access
Hardware

Reset

15–11 Unused R 0000 0

10–0 clk_freq Division factor of 12-MHz reference clock
(2<=clk_freq<= 2047)

In master mode, this register defines the transmission
baud rate from a frequency ratio based on a 12-MHz
reference clock. The transmission clock frequency can
be programmed from 5.8 kHz to 6 MHz in steps or
increments of 83 ns.

Clock frequency = 12 MHz / clk_freq with 2 <= clk_freq
<= 2047.

R/W 000 0000 0000

CLK_FREQ: division factor of 12-MHz reference clock (2<=clk_freq<= 2047)

In master mode, this register defines the transmission baud rate from a
frequency ratio based on a 12-MHz reference clock. The transmission clock
frequency can be programmed from 5.8 kHz to 6 MHz in steps or increments
of 83 ns.

Clock frequency = 12 MHz / clk_freq with 2 <= clk_freq <= 2047.

Table 9–31. Oversized Frame Dimension Register (OVER_CLOCK_REG)

Bit Name Description Access
Hardware

Reset

15–10 Unused R 0000 00

9–0 over_clock Overhead clock periods in frame duration
(0 = OVER_CLOCK = 1023)

R/W 00 0000 0000

Multichannel Serial Interfaces

 9-46

Table 9–32. Interrupt Masks Register (INTERRUPTS_REG)

Bit Name Description Access
Hardware

Reset

15–11 Unused R 0000 0

10 mask_it_error Mask of frame duration error interrupt (active
at 0)

R/W 0

9 mask_it_tx Mask of transmit interrupt (active at 0) R/W 0

8 mask_it_rx Mask of receive interrupt (active at 0) R/W 0

7–4 Number channel for it_tx Channel number for transmit interrupt
generation
(0 <=Nb_chan <= 15)

R/W 0000

3–0 Number channel for it_rx Channel number for receive interrupt
generation
(0 <= Nb_chan <=15)

R/W 0000

Table 9–33. Main Parameters Register (MAIN_PARAMETERS__REG)

Bit Name Value Description Access
Hardware

Reset

15–14 DMA enable Enable bits for DMA: R/W 00

00 Normal mode (No DMA)

01 DMA transmit mode, normal receive mode

10 Normal transmit mode, DMA receive mode

11 DMA transmit and receive mode

13–11 Reserved Reserved bits. These bits should always be
written as 0.

R/W 000

10 fsynch_polarity Frame-synchronization pulse polarity R/W 0

0 Positive

1 Negative

9 fsynch_mode Frame-synchronization pulse position R/W 0

0 Normal

1 Alternate

Multichannel Serial Interfaces

9-47DSP Public Peripherals

Table 9–33. Main Parameters Register (MAIN_PARAMETERS__REG) (Continued)

Bit
Hardware

ResetAccessDescriptionValueName

8 fsynch_size Frame-synchronization pulse shape R/W 0

0 Short

1 Long

7 Multi/single Frame structure R/W 0

0 Single

1 Multi

6 MCSI mode Interface transmission mode R/W 0

0 Slave

1 Master

5 Continuous/
burst

Frame mode R/W 0

0 Burst

1 Continuous

4 clock_polarity Clock edge selection R/W 0

0 Positive

1 Negative

3–0 Word size Word size in bits number (2 <= size <= 15) with
2 for 3 bits and 15 for 16 bits.

R/W 0000

Multichannel Serial Interfaces

 9-48

Table 9–34. Activity Control Register (CONTROL_REG)

Bit Name Value Description Access
Hardware

Reset
Software

Reset

15–3 Reserved Reserved bits. These bits
should always be written
as 0.

R 0000 0000
0000 0

0000 0000
0000 0

2 Reserved Reserved bits. These bits
should always be written
as 0.

R/W 0 0

1 MCSI software reset Asynchronous reset of
MCSI module

R/W 0 1

0 Disable

1 Enable

0 MCSI clk enable Enable clock of MCSI
module

R/W 0 0

0 Disable

1 Enable

Note:

The software reset is applied as long as the MCSI software reset bit is set
to 1. A software reset disables the MSCI (the MCSI clk enable bit is cleared)
and initializes the status register. It does not modify the other registers.

To clear an interrupt on the MCSI, the DSP must write to the MCSI status regis-
ter with the bit corresponding to the interrupt set to 1. The MCSI status register
has a two-cycle latency when writing into it, so the interrupt line is cleared two
cycles after a write. In order to prevent clearing the interrupt
handler before the interrupt line is cleared, the interrupt routine must be at least
two cycles long.

Multichannel Serial Interfaces

9-49DSP Public Peripherals

Table 9–35. Interface Status Register (STATUS_REG)

Bit Name Value Description Access
Hardware

Reset
Software

Reset

15–7 Reserved Reserved bits. These bits
should always be written as 0.

R 0000 0000 0 0000 0000 0

6 Reserved Reserved bits. These bits
should always be written as 0.

R/W 0 0

5 TX underflow Transmit underflow R 0 0

0 No under

1 Under

4 TX ready Flag for transmit interrupt
occurrence

R/W 0 0

0 No int

1 Int

3 RX overflow Receive overflow R 0 0

0 No over

1 Over

2 RX ready Flag for receive interrupt
occurrence

R/W 0 0

0 No int

1 Int

1 Error type few/
many

Too short (few) or too long
frame (many) status

R 0 0

0 Short

1 Long

0 Frame error Error flag when wrong frame
duration

R/W 0 0

0 Correct

1 Bad

This register is cleared by a software reset.

Multichannel Serial Interfaces

 9-50

Table 9–36. Receive Word Register (RX_REG[15:0])

Bit Name Access Hardware Reset

15 b15 R U

14 b14 R U

13 b13 R U

12 b12 R U

11 b11 R U

10 b10 R U

9 b9 R U

8 b8 R U

7 b7 R U

6 b6 R U

5 b5 R U

4 b4 R U

3 b3 R U

2 b2 R U

1 b1 R U

0 b0 R U

Note: The MCSI receives the most significant bit first. For example, if the word_size equals 11, the upper 12 bits of the RX
registers contain the received data, and the lower 4 bits are zeroes.

Multichannel Serial Interfaces

9-51DSP Public Peripherals

Table 9–37. Transmit Word Register (TX_REG[15:0])

Bit Name Access Hardware Reset

15 b15 R/W U

14 b14 R/W U

13 b13 R/W U

12 b12 R/W U

11 b11 R/W U

10 b10 R/W U

9 b9 R/W U

8 b8 R/W U

7 b7 R/W U

6 b6 R/W U

5 b5 R/W U

4 b4 R/W U

3 b3 R/W U

2 b2 R/W U

1 b1 R/W U

0 b0 R/W U

Note: The MCSI transmits the most significant bit first. For example, if the word_size equals 11, the upper 12 bits of the TX
registers are transmitted.

MCSI1

 9-52

9.6 MCSI1

This section provides information specific to MCSI1 (Figure 9–29) on the
OMAP5910 device.

9.6.1 MCSI1 Pin Description

Table 9–38 identifies the MCSI1 I/O pins.

Table 9–38. MCSI1 Pin Descriptions

Pin I/O Direction Description

MCSI1.DIN In Data input

MCSI1.DOUT Out Data output

MCSI1.CLK In/out Bit clock

MCSI1.SYNC In/out Frame synchronization

9.6.2 MCSI1 Interrupt Mapping

Table 9–39 identifies the MCSI1 interrupt mappings. MCSI1 generates level
2 interrupts for both the DSP and the MPU. Only one MPU MCSI1 interrupt
covers TX, RX, and frame error conditions; software must check the MCSI1
status register to determine the interrupt source.

Table 9–39. MCSI1 Interrupt Mapping

Incoming Interrupts Level 2 DSP Interrupt Level 2 MPU Interrupt

MCSI1 TX interrupt IRQ_06 IRQ_16

MCSI1 RX interrupt IRQ_07 IRQ_16

MCSI1 Frame Error IRQ_10 IRQ_16

9.6.3 MCSI1 DMA Request Mapping

Table 9–40 identifies MCSI1 DMA request lines.

Table 9–40. TDMA Request Mapping—MCSI1

DMA Request Source DMA Request Line—DSP DMA Request Line—MPU

MCSI1 TX DMA_REQ_01 DMA_REQ_01

MCSI1 RX DMA_REQ_02 DMA_REQ_02

MCSI1

9-53DSP Public Peripherals

Figure 9–29. MCSI1 Interface Diagram

MCSI1.CLK

OMAP5910

MCSI1

clk_out

Clk_out_z
clk_in

Fsynch_out

Fsynch_out_z
Fsynch_in

txd

0

MCSI1.SYNC

MCSI1.DOUT

MCSI1.DIN

txd_z

Rxd

Reset

MPU

Interrupts

DMA
requests

I/F
16

RX (DMA_REQ_2)
TX (DMA_REQ_1)

RX interrupt (IRQ_7)
TX interrupt (IRQ_6)

DSP public
Peripheral bus

DSPPER_nRST

DSPXOR_CK

TX/RX/frame error

RX (DMA_REQ_2)
TX (DMA_REQ_1)

DSP
DMA

DSP level 2
interrupt handler

System
DMA

MPU level 2
interrupt handler

DSP peripheral
bridge

Clock generation
and management

Power-on reset

Frame error (IRQ_10)

Interrupt (IRQ_16)

MCSI2

 9-54

9.7 MCSI2
This section provides information specific to MCSI2 (Figure 9–30) on the
OMAP5910 device.

9.7.1 MCSI2 Pin Description

Table 9–41 identifies the MCSI2 I/O pins.

Table 9–41. MCSI2 Pin Descriptions

Pin I/O Direction Description

MCSI2.DIN In Data input

MCSI2.DOUT Out Data output

MCSI2.CLK In/out Bit clock

MCSI2.SYNC In/out Frame synchronization

9.7.2 MCSI2 Interrupt Mapping

Table 9–42 identifies the MCSI2 interrupts. MCSI2 generates level 2 interrupts
for both the DSP and the MPU. Only one MPU MCSI2 interrupt covers TX, RX,
and frame error conditions; software must check the MCSI2 status register to
determine the interrupt source.

Table 9–42. MCSI2 Interrupt Mapping

Incoming Interrupts Level 2 DSP Interrupt Level 2 MPU Interrupt

MCSI2 TX interrupt IRQ_08 IRQ_17

MCSI2 RX interrupt IRQ_09 IRQ_17

MCSI2 Frame Error IRQ_11 IRQ_17

9.7.3 MCSI2 DMA Request Mapping

Table 9–43 identifies MCSI2 DMA request lines. Only the DSP DMA controller
can transfer MCSI2 data; there is no MPU DMA capability.

Table 9–43. DMA Request Mapping—MCSI2

DMA Request Source DMA Request Line—DSP DMA Request Line—MPU

MCSI2 TX DMA_REQ_03 –

MCSI2 RX DMA_REQ_04 –

MCSI2

9-55DSP Public Peripherals

Figure 9–30. MCSI2 Interface Diagram

MCSI2.CLK

OMAP5910

MCSI2

clk_out

Clk_out_z
clk_in

Fsynch_out

Fsynch_out_z
Fsynch_in

txd

0

MCSI2.SYNC

MCSI2.DOUT

MCSI2.DIN

txd_z

Rxd

Reset

MPU

Interrupts

DMA
requests

I/F

16

RX (DMA_REQ_4)
TX (DMA_REQ_3)

RX interrupt (IRQ_9)
TX interrupt (IRQ_8)

DSP public
peripheral bus

DSPPER_nRST

DSPXOR_CK

TX/RX/frame error

DSP
DMA

DSP level 2
interrupt handler

MPU level2
interrupt handler

DSP peripheral
bridge

Clock generation
and management

Power-on reset

interrupt (IRQ_16)

Frame error (IRQ_10)

McBSP and MCSI Memory and Peripheral Mapping

 9-56

9.8 McBSP and MCSI Memory and Peripheral Mapping

The base address for each McBSP register map is as follows:

� McBSP1 (I2S audio):

� 0x08C00 (DSP memory map)
� E101:1800 (MPU memory map)

� McBSP2 (modem interface): FFFB:1000 (MPU memory map)

� McBSP3 (optical interface):

� 0x0B800 (DSP memory map)
� E101:7000 (MPU memory map)

Table 9–44 shows the 19 registers accessible on each McBSP. Table 9–44
through Table 9–45 describe register bits.

Table 9–44. McBSP Registers

Name Description Offset In Bytes

DRR2(15:0) Data receive register 2 0x00

DRR1(15:0) Data receive register 1 0x02

DXR2(15:0) Data transmit register 2 0x04

DXR1(15:0) Data transmit register 1 0x06

SPCR2(15:0) Serial port control register 2 0x08

SPCR1(15:0) Serial port control register 1 0x0A

RCR2(15:0) Receive control register 2 0x0C

RCR1(15:0) Receive control register 1 0x0E

XCR2(15:0) Transmit control register 2 0x10

XCR1(15:0) Transmit control register 1 0x12

SRGR2(15:0) Sample rate generator register 2 0x14

SRGR1(15:0) Sample rate generator register 1 0x16

MCR2(15:0) Multichannel register 2 0x18

MCR1(15:0) Multichannel register 1 0x1A

RCERA(15:0) Receive channel enable register partition A 0x1C

RCERB(15:0) Receive channel enable register partition B 0x1E

McBSP and MCSI Memory and Peripheral Mapping

9-57DSP Public Peripherals

Table 9–44. McBSP Registers (Continued)

Name Offset In BytesDescription

XCERA(15:0) Transmit channel enable register partition A 0x20

XCERB(15:0) Transmit channel enable register partition B 0x22

PCR0(15:0) Pin control register 0x24

RCERC(15:0) Receive channel enable register partition C 0x26

RCERD(15:0) Receive channel enable register partition D 0x28

XCERC(15:0) Transmit channel enable register partition C 0x2A

XCERD(15:0) Transmit channel enable register partition D 0x2C

RCERE(15:0) Receive channel enable register partition E 0x2E

RCERF(15:0) Receive channel enable register partition F 0x30

XCERE(15:0) Transmit channel enable register partition E 0x32

XCERF(15:0) Transmit channel enable register partition F 0x34

RCERG(15:0) Receive channel enable register partition G 0x36

RCERH(15:0) Receive channel enable register partition H 0x38

XCERG(15:0) Transmit channel enable register partition G 0x3A

XCERH(15:0) Transmit channel enable register partition H 0x3C

9.8.1 MCSI Addresses and Mapping

The base address for each MCSI register map is:

� MCSI1 (Bluetooth MCSI):

� 0x09400 (DSP memory map word address)
� E101:2800 (MPU memory map byte address)

� MCSI2 (Modem MCSI):

� 0x09000 (DSP memory map word address)
� E101:2000 (MPU memory map byte address)

Table 9–45 shows the MCSI registers and their offset addresses.

McBSP and MCSI Memory and Peripheral Mapping

 9-58

Table 9–45. MCSI Register Mapping

Register Name Offset In Bytes Register Name Offset In Bytes

RX15 0x7E TX10 0x54

RX14 0x7C TX9 0x52

RX13 0x7A TX8 0x50

RX12 0x78 TX7 0x4E

RX11 0x76 TX6 0x4C

RX10 0x74 TX5 0x4A

RX9 0x72 TX4 0x48

RX8 0x70 TX3 0x46

RX7 0x6E TX2 0x44

RX6 0x6C TX1 0x42

RX5 0x6A TX0 0x40

RX4 0x68 Unused 0x3F

RX3 0x66 / /

RX2 0x64 Unused 0x0E

RX1 0x62 Status 0x0C

RX0 0x60 Clock frequency 0x0A

TX15 0x5E Over-clock 0x08

TX14 0x5C Channel used 0x06

TX13 0x5A Interrupts 0x04

TX12 0x58 Main parameters 0x02

TX11 0x56 Control 0x00

10-1

MPU/DSP Shared Peripherals

This chapter describes the MPU/DSP shared peripherals for the OMAP5910
multimedia processor.

Topic Page

10.1 Introduction 10-2.

10.2 Interprocessor Communication 10-3.

10.3 General-Purpose I/O 10-7.

10.4 UART1, UART2, and UART3/IrDA 10-11.

Chapter 10

Introduction

 10-2

10.1 Introduction

The OMAP5910 device has five peripherals that appear on both MPU and
DSP public peripheral buses:

� Mailbox registers for interprocessor communication
� General-purpose I/O (GPIO)
� UART1
� UART2
� UART/IrDA

Figure 10–1 shows the OMAP5910 device with the MPU/DSP peripherals
highlighted.

Figure 10–1. Highlight of MPU/DSP Peripherals

MPU core
(TI925T)

(instruction
cache, data

cache, MMU)

System
DMA

controller

TMS320C55x DSP
(Instruction cache, SARAM

 DARAM, DMA,
 H/W accelerators)

MPU
peripheral

bridge

LCD
I/F

MPU
Interface

SRAM

SDRAM
memories

Flash and
SRAM

memories

DSP
MMU

16

16

32

16

32

32

32

32

32

32

16

MPU privatePeripherals bus

DSP public (shared) pheripheral bus

32
MPU public

16

DSP

DSP public peripherals

McBSP1

McBSP3

MPU public peripherals

USB Host I/F

JTAG/
emulation

I/F
OSC

12 MHz Clock

OSC

OMAP5910

ETM9

Timers (3)

MPU/DSP shared peripherals

Mailbox

MPU private peripherals

Timers (3)

16

Memory interface

Reset External clock

MPU Bus

32 kHz

1.5M bits

traffic controller (TC)

Watchdog timer

Level 1/2 interrupt handlers

Configuration registers

Clock and reset management

Watchdog timer
Level 1/2

Private peripherals

GPIO I/F

USB Function I/F

Camera I/F
MPUIO

32-kHz timer
PWT
PWL

M
I
F
S

M
I
F
F

I
M
I
F

MCSI1
MCSI2

Keyboard I/F

request

E

E

TIPB
switch

UART1
UART2

UART3 IrDA

32

MMC/SD
LPG x2

HDQ / 1-WIRE

DSP private
peripheral bus

peripherals bus

McBSP2

Device identification

RTC

interrupt handlers

I2C
µWire

Frame adjstument
counter

32

32

32

32

Interprocessor Communication

10-3MPU/DSP Shared Peripherals

10.2 Interprocessor Communication

The MPU and DSP processors communicate with each other via a
mailbox-interrupt mechanism. This mechanism provides a very flexible
software protocol between the processors. The mailboxes are located in the
shared memory space (byte address 0xFFFC:E000 for MPU; word address
0x0F800 for DSP).

10.2.1 Mailbox Register Data Structure

There are four sets of mailbox registers: two for the MPU to send messages
and issue an interrupt to the DSP, the other two for the DSP to send messages
and issue an interrupt to the MPU. Each set of mailbox registers consists of
two 16-bit registers and a 1-bit flag register. The interrupting processor can use
one 16-bit register to pass a data word to the interrupted processor and the
other 16-bit register to pass a command word.

Table 10–1 shows the mailbox registers, and Figure 10–2 shows the interrupt
generating mechanism for the DSP-to-MPU scenario. The mechanism for
MPU-to-DSP interrupt generation uses identical hardware.

The data word from the interrupting processor is user-defined but can be an
address pointer or status information.

Upon writing to the command word processor, an interrupt is generated to the
other processor and the 1-bit flag register is set. Use of the data word is option-
al and at the discretion of the software, but the data word must always be writ-
ten before the command field. The ARM2DSP1 and ARMDSP2 interrupts are
registered as INT5 and INT19, respectively, in the DSP. The DSP2ARM1 and
DSP2ARM2 interrupts are mapped to the MPU level 1 interrupt handler as
IRQ10 and IRQ11, respectively.

The interrupted processor must acknowledge the interrupt by reading the data
word (if necessary) and the command word for the associated interrupt. The
interrupt is reset and the 1-bit flag register is cleared when the command word
is read by the interrupted processor. If software uses the data word, it must al-
ways read the data field prior to the command field.

The interrupts that are generated are level sensitive, and writing to the com-
mand register of any mailbox generates an interrupt. If the interrupt is masked
in the interrupt handler when the command register is written, no interrupt is
generated to the processor. However, the command flag for the particular mail-
box is set. If the interrupt is unmasked at a later time, an interrupt is generated
to the processor. Only the interrupting processor can read the corresponding
flag bit (that is, only MPU can read ARM2DSP1_FLAG. So if polling is used

Interprocessor Communication

 10-4

instead of interrupts, the command or data registers must be polled, not the
flag register. The flag registers are only useful for the interrupting processor
to see if the interrupted processor has responded to the interrupt by reading
the command register.

By default, these interrupts are masked by the respective processor interrupt
handler and must be unmasked for the mailbox mechanism to be used.

The following software setup procedures are provided as an example.

1) System software initializes all four of the mailboxes (during powerup or
when the system must put the mailboxes in a known state).

2) System software enables the interrupt mask in the respective interrupt
handler associated with each processor.

3) The interrupting processor writes to the mailbox data location with the data
word information when it must alert to the word for the other processor (at
this point, the associated word command for the other processor should
not have been set yet).

4) The interrupting processor writes to the mailbox command word a prede-
fined command (predefined and understood by both processors). This
write issues the interrupt to the other processor.

5) In response to the interrupt, the interrupted processor acknowledges the
interrupt by reading the mailbox registers. Reading the two locations is
performed by the software protocol; the system software must read the
data first and then read the command register (the associated interrupt
and 1-bit flag register are cleared upon read).

6) System software examines the data and command words to determine
what to do.

7) System software calls an interrupt service routine (ISR), to do whatever
processing is necessary. System software returns to normal processing.

Note:

For the mailbox interrupt procedure, the use of the data word is optional and
can be omitted. This eliminates step 3 and the first portion of step 5.

Base Address: 0xFFFC:E000 (byte) for MPU; 0x0F800 (word) for DSP

Interprocessor Communication

10-5MPU/DSP Shared Peripherals

Table 10–1. Mailbox Registers

Bits Name Function
Byte

Offset
Reset
Value

15–0 ARM2DSP1 Writing to this location stores a software-defined data
value to be used in conjunction with the ARM2DSP1
interrupt. Can be written only by the MPU.

0x00 0000

15–0 ARM2DSP1b Writing to this location stores a software-defined
command value in this register, issues the ARM2DSP1
interrupt, and sets the ARM2DSP1_Flag. When the DSP
reads this register, the interrupt and the
ARM2DSP1_Flag are cleared. This register must always
be written, or read, after ARM2DSP1. Can be written
only by the MPU.

0x04 0000

15–0 ARM2DSP2 Writing to this location stores a software-defined data
value to be used in conjunction with the ARM2DSP2
interrupt. Can be written only by the MPU.

0x24 0000

15–0 ARM2DSP2b Writing to this location stores a software-defined data
value, issues the ARM2DSP1 interrupt, and sets the
ARM2DSP2_Flag. When the DSP reads this register, the
interrupt and the ARM2DSP2_Flag are cleared. This
register must always be written, or read, after
ARM2DSP2. Can be written only by the MPU.

0x28 0000

15–0 DSP2ARM1 Writing to this location stores a software-defined data
value to be used in conjunction with the DSP2ARM1
interrupt. Can be written only by the DSP.

0x08 0000

15–0 DSP2ARM1b Writing to this location stores a software-defined
command value in this register, issues the DSP2ARM1
interrupt, and sets the DSP2ARM1_Flag. When the MPU
reads this register, the interrupt and the
DSP2ARM1_Flag are cleared. This register must always
be written, or read, after DSP2ARM1. Can be written
only by the DSP.

0x0C 0000

15–0 DSP2ARM2 Writing to this location stores a software-defined data
value to be used in conjunction with the DSP2ARM2
interrupt. Can be written only by the DSP.

0x10 0000

15–0 DSP2ARM2b Writing to this location stores a software-defined
command value in this register, issues the DSP2ARM2
interrupt, and sets the DSP2ARM2_Flag. When the MPU
reads this register, the interrupt and the
DSP2ARM2_Flag are cleared. This register must always
be written, or read, after DSP2ARM2. Can be written
only by the DSP.

0x14 0000

Interprocessor Communication

 10-6

Table 10–1. Mailbox Registers (Continued)

Bits
Reset
Value

Byte
OffsetFunctionName

15–1 ARM2DSP1_Flag Reserved 0x18 xxxx

0 Flag indicating that the ARM2DSP1 interrupt has been
generated. Set by MPU write to ARM2DSP1b; cleared by
DSP read of ARM2DSP2b. This bit can only be read by
the MPU.

15–1 ARM2DSP2_Flag Reserved 0x2c xxxx

0 Flag indicating that the ARM2DSP2 interrupt has been
generated. Set by MPU write to ARM2DSP2b; cleared by
DSP read of ARM2DSP1b. This bit can only be read by
the MPU.

15–1 DSP2MPU1_Flag Reserved 0x1C xxxx

0 Flag indicating that the DSP2ARM1 interrupt has been
generated. Set by DSP write to DSP2ARM1b; cleared by
MPU read of DSP2ARM1b. This bit can only be read by
the DSP.

15–1 DSP2MPU2_Flag Reserved 0x20 xxxx

0 Flag indicating that the DSP2ARM2 interrupt has been
generated. Set by DSP write to DSP2ARM2b; cleared by
MPU read of DSP2ARM2b. This bit can only be read by
the DSP.

Figure 10–2. Interrupt Generating Mechanism

To MPU interrupt handlerD Q

R

Reset by MPU

Interrupt register

Interrupts are disabled during reset.

Address decoder

Address
decode

Address

Address

Set by DSP

(read)

(write)

General-Purpose I/O

10-7MPU/DSP Shared Peripherals

10.3 General-Purpose I/O

The GPIOs (see Figure 10–3) are programmable inputs or outputs. They gen-
erate a level interrupt, and the sources of this interrupt can be masked from
within the GPIO module. Under software control, the GPIOs can be individually
dedicated to either the DSP or the MPU.

GPIOs are general-purpose input and output external pins available to the
user for system-level control and general-purpose functions. The signals are
user-defined as either input or output. The output state can be controlled. And
inputs can be configured to provide an interrupt.

The MPU and the DSP have separate instances of the GPIO registers, but
share the same device pins. The determination of whether MPU or DSP has
control of the device pin is controlled by a single shared register, the pin control
register (at offset 0x18). In Figure 10–3 this register is shown as the configura-
tion and control register. This register is read/write from the MPU, but read-
only from the DSP. The MPU is responsible for writing to this register to assign
any necessary GPIO signals to the DSP. By default, all GPIO are assigned to
the MPU.

GPIO interrupts are routed to both the MPU and DSP interrupt handlers, but
a GPIO can only signal an interrupt to the processor to which it is assigned in
the pin control register. By default, GPIO interrupts are disabled at both of the
interrupt handlers.

There are no I/O signals associated with GPIO.5 and GPIO.10 interrupts.

10.3.1 Input/Outputs of the GPIO Module

Some GPIO signals are multiplexed with other peripheral functions. See
Appendix A, Input/Output Descriptions, for pin multiplexing information.

10.3.2 GPIO Port Registers

Table 10–2 lists the GPIO port registers. Table 10–3 through Table 10–10
describe the individual registers.

Each register exists both in the DSP GPIO and the MPU GPIO, except for the
pin control/pin status register.

Base Address: 0xFFFC:E000 (byte) for MPU; 0x0F000 (word) for DSP

General-Purpose I/O

 10-8

Figure 10–3. GPIO Module Architecture

DSP TI DSP GPIO
instance

MPU GPIO
instance

Config and
control
register

Steering
logic

MPU TI

DSP TI

Control

Read by DSP

Read/write by
MPU

GPIO

14

16

16

32

16

GPIO module architecture

DSP interrupt handler

MPU interrupt handler

MPU_GPIO_CLKACK

MPU_GPIO_CLKREQ

DSP_GPIO_CLKREQ

DSP_GPIO_CLKACK

peripheral
bus

peripheral
bus

peripheral
bus I/F

MPU TI
peripheral

bus I/F

Table 10–2. GPIO Port Registers

Name R/W Size Offset Description

DATA_INPUT_REG R 16 bits 0x00 Data input register

DATA_OUTPUT_REG R/W 16 bits 0x04 Data output register

DIRECTION_CONTROL_REG R/W 16 bits 0x08 Direction control register

INTERRUPT_CONTROL_REG R/W 16 bits 0x0C Interrupt control register

INTERRUPT_MASK_REG R/W 16 bits 0x10 Interrupt mask register

INTERRUPT_STATUS_REG R/W 16 bits 0x14 Interrupt status register

PIN_CONTROL_REG R/W 16 bits 0x18 Pin control register (MPU only)

PIN_CONTROL_STATUS_REG R 16 bits 0x18 Pin control status register (DSP only)

General-Purpose I/O

10-9MPU/DSP Shared Peripherals

The data input register is used to register the data that is read from the GPIO
input pins. The input data is captured synchronously and clocked by an internal
peripheral clock. The data input register is a read-only register. The GPIO input
data is captured into this register three clock cycles after the GPIO input pin(s)
change for synchronization and debouncing used to remove any input
glitches. Bits not configured as input are undefined during read back. Both the
MPU and DSP have read access to this register, but each processor only has
read access to the individual bits controlled by that processor.

In the registers described in Table 10–4 through Table 10–8, both the MPU
and the DSP have read/write access to only the bits they control within a regis-
ter (bits associated with GPIO they control). The MPU (DSP) can write values
to the bits not controlled by the MPU (DSP), but the written value is not valid
and does not affect the configuration of the associated GPIO.

Table 10–3. Data Input Register (DATA_INPUT_REG)

Bit Function
Access
(R/W)

Reset
Value

15–0 Receive data R 0x0000

The data output register is used for setting the state on the GPIO output pins.

Table 10–4. Data Output Register (DATA_OUTPUT_REG)

Bit Function
Access
(R/W)

Reset
Value

15–0 Data to transmit R/W 0xFFFF

The direction control register is used to configure the GPIO pins for either input
or output. At reset, all of the GPIO pins are configured as inputs.

Table 10–5. Direction Control Register (DIRECTION_CONTROL_REG)

Bit Value Function
Access
(R/W)

Reset
Value

15–0 0 Output R/W 0xFFFF

1 Input

General-Purpose I/O

 10-10

The interrupt control register allows the user to define when an interrupt
request occurs. The interrupt can either be generated from a high-to-low tran-
sition (function 0) or a low-to-high transition (function 1).

Table 10–6. Interrupt Control Register (INTERRUPT_CONTROL_REG)

Bit Value Function
Access
(R/W)

Reset
Value

15–0 0 Selects high to low transition R/W 0xFFFF

1 Selects low to high transition

The interrupt mask register allows the user to mask(disable) certain input pins
from generating an interrupt request.

Table 10–7. Interrupt Mask Register (INTERRUPT_MASK_REG)

Bit Value Function
Access
(R/W)

Reset
Value

15–0 0 Enables interrupt R/W 0xFFFF

1 Disables interrupt

The interrupt status register is used to determine which of the input pins
requested an interrupt. Bit 0 corresponds to GPIO0 and so forth. If the value
is a 1, then that pin is requesting the interrupt. The processor services the inter-
rupt and resets the appropriate bit in the status register. If the user wants to
reset the status bit, then a 1 must be written to the appropriate bit. However,
the user can not generate an interrupt by writing a 1 to the interrupt status
register. If the user writes a 0 to a bit in the status register, the value remains
unchanged.

Table 10–8. Interrupt Status Register (INTERRUPT_STATUS_REG)

Bit Value Function
Access
(R/W)

Reset
Value

15–0 0 0: No interrupt request R/W 0x0000

1 An interrupt has been requested

UART1, UART2, and UART3/IrDA

10-11MPU/DSP Shared Peripherals

The pin control register is only in the MPU. MPU is the master and is responsi-
ble for assigning the top-level GPIO I/O pins to either the MPU GPIO or the
DSP GPIO. At reset, all pins are configured for MPU GPIO.

Table 10–9. MPU GPIO Pin Control Register (PIN_CONTROL_REG)

Bit Value Function
Access
(R/W)

Reset
Value

15–0 0 DSP GPIO pin R/W 0xFFFF

1 MPU GPIO pin

The pin control status register is only in the DSP. This is a read-only register.
The status register allows the DSP to find out how the MPU has configured the
top-level GPIO pins.

Table 10–10. DSP GPIO Pin Control Status Register (PIN_CONTROL_STATUS_REG)

Bit Value Function
Access
(R/W)

Reset
Value

15–0 0 DSP GPIO pin R 0xFFFF

1 MPU GPIO pin

10.4 UART1, UART2, and UART3/IrDA

The MPU and DSP share UART port 1, UART port 2, and the IrDA-capable
UART3. For more details on the UARTs, see Chapter 12, UART Devices.

General-Purpose I/O / UART1, UART2, and UART3/IrDA

11-1

LCD Controller

This chapter describes the LCD controller module of the OMAP5910 device.

Topic Page

11.1 Module Overview 11-2.

11.2 Display Specifications 11-7.

11.3 LCD Controller Operation 11-9.

11.4 Lookup Palette 11-14.

11.5 Color/Grayscale Dithering 11-15.

11.6 Output FIFO 11-16.

11.7 LCD Controller Pins 11-17.

11.8 LCD Controller Registers 11-23.

11.9 Interface to LCD Panel Signal Reset Values 11-49.

Chapter 11

Module Overview

 11-2

11.1 Module Overview

The OMAP5910 device includes an LCD controller that interfaces with most
industry-standard LCD displays. The LCD controller operates only in single-
panel mode (dual-panel mode is not supported). The module is designed to
work with a separate RAM block to provide data to the FIFO at the front end
of the LCD controller data path at a rate sufficient to support the chosen display
mode and resolution.

The panel size is programmable, and can be any width (line length) from
16 to 1024 pixels in 16-pixel increments. The number of lines is set by
programming the total number of pixels in the LCD. The total frame size is
programmable up to 1024 × 1024.

The screen is intended to be mapped to the frame buffer as one contiguous
block where each horizontal line of pixels is mapped to a set of consecutive
bytes of words in the frame memory.

Frame sizes and frame rates supported in specific applications depend upon
the available memory bandwidth allowed by the application.

Figure 11–1 shows the OMAP5910 device with the LCD controller highlighted.
Figure 11–2 shows the LCD controller in more detail.

The principal features of the LCD controller are:

� Dedicated 64-entry x 16-bit FIFO

� Dedicated LCD DMA channel for LCD display

� Programmable display including support for 2-, 4-, 8-, 12-, and 16-bit
graphics modes.

� Programmable display resolutions up to 1024 pixels by 1024 lines

� Support for passive monochrome (STN) displays

� Support for passive color (STN) displays

� Support for active color (TFT) displays

� Patented dithering algorithm, providing:

� 15 grayscale levels for monochrome passive displays
� 3375 colors for color passive displays

� 65536 colors for active color displays

� 256-entry x 12-bit palette

Module Overview

11-3LCD Controller

� Programmable pixel rate

� Pixel clock plus horizontal and vertical synchronization signals

� ac-bias drive signal

� Active display enable signal

Figure 11–1.LCD Controller on Board the OMAP5910 Device

MPU core
(TI925T)

(instruction
cache, data

cache, MMU)

System
DMA

controller

TMS320C55x DSP
(Instruction cache, SARAM

 DARAM, DMA,
 H/W accelerators)

MPU
peripheral

bridge

LCD
I/F

MPU
Interface

SRAM

SDRAM
memories

Flash and
SRAM

memories

DSP
MMU

16

16

32

16

32

32

32

32

32

32

16

MPU privatePeripherals bus

DSP public (shared) pheripheral bus

32
MPU public

16

DSP

DSP public peripherals

McBSP1

McBSP3

MPU public peripherals

USB Host I/F

JTAG/
emulation

I/F
OSC

12 MHz Clock

OSC

OMAP5910

ETM9

Timers (3)

MPU/DSP shared peripherals

Mailbox

MPU private peripherals

Timers (3)

16

Memory interface

Reset External clock

MPU Bus

32 kHz

1.5M bits

traffic controller (TC)

Watchdog timer

Level 1/2 interrupt handlers

Configuration registers

Clock and reset management

Watchdog timer
Level 1/2

Private peripherals

GPIO I/F

USB Function I/F

Camera I/F
MPUIO

32-kHz timer
PWT
PWL

M
I
F
S

M
I
F
F

I
M
I
F

MCSI1
MCSI2

Keyboard I/F

request

E

E

TIPB
switch

UART1
UART2

UART3 IrDA

32

MMC/SD
LPG x2

HDQ / 1-WIRE

DSP private
peripheral bus

peripherals bus

McBSP2

Device identification

RTC

interrupt handlers

I2C
µWire

Frame adjstument
counter

32

32

32

32

Module Overview

 11-4

Figure 11–2.LCD Controller Block Diagram

16-Bit TFT

LCD controller

LCD.AC

LCD.HS

LCD.VS

LCD.PCLK

M
u
x

Palette
RAM

Gray-scaler
/serializer

Output
FIFO

Registers Control

LCD.P
[15:0]

LCD panel
timings

generator

Frame buffer

MPU private
peripheral bus

LCD_CK
(from clock

and reset
management

block)

DMA request
LCD interrupt

(level 1 IRQ_31)

12/16 bpp
STN

Frame buffer data can be formatted for 2, 4, 8, 12, or 16-bit pixel sizes. A
16-entry x 12-bit palette supports the 2 and 4-bit pixel sizes, while a larger
256-entry x 12-bit palette supports the 8-bit pixel size. 12-bit and 16-bit pixel
sizes provide data that bypasses the palettes. The data is then processed
according to the desired type of display.

For passive monochrome panels, the 4-bit value indexed from the palette is
passed to the patented dither logic, where the desired brightness is created
using spatial and temporal dithering. The pixels are passed to the panel via a
4-wire interface, 4 pixels in parallel per pixel clock.

For passive color panels showing 8-bit color or lower, an entry from the palette
is transferred simultaneously into three parallel dither engines, one for each
of the red, green, and blue colors. These values are converted by the three
patented spatial and temporal dithering logic blocks to provide up to 256 colors
out of a possible 3375 colors (15 x 15 x 15). The pixels are passed to the panel
via an 8-wire interface, 2 2/3 pixels per clock.

Module Overview

11-5LCD Controller

For passive color panels showing 12- or 16-bit color, the data from the frame
buffer is passed directly into the dither logic, bypassing the palette. The three
parallel dither engines then provide up to 3375 colors. The 16-bit color mode
utilizes only the most significant four bits of each color channel. The pixels are
also passed to the panel via an 8-wire interface, 2 2/3 pixels per clock.

For active color panels showing 8-bit color or lower, an entry from the palette
is expanded from 12 bits to 16 bits and passed to the display, providing up to
256 colors out of a possible 4096 (16 x 16 x 16) colors. The pixels are passed
to the panel via a 16-wire interface, 1 pixel per clock.

For active color panels showing 12-bit color, the data is also expanded from
12 bits to 16 bits to provide up to 4096 colors. The pixels are also passed to
the panel via a 16-wire interface, 1 pixel per clock.

For active color panels showing 16-bit color, the data is passed directly to the
display(bypassing palette and dither logic), providing up to 65536 colors. The
pixels are again passed to the panel via a 16-wire interface, 1 pixel per clock.

The active color modes can also be used with an external DAC to drive a video
monitor. The LCD line clock pin functions as a horizontal synchronization
(HSYNC) signal and the frame clock pin functions as a vertical synchronization
(VSYNC) signal.

The pixel clock frequency is derived from the clock provided to the LCD
controller (LCD_CK) from the OMAP5910 clock management logic and is
programmable from LCD_CK/2 to LCD_CK/255 (see Chapter 15, Clock
Generation and System Reset Management). Each time new data is supplied
to the LCD data pins, the pixel clock is toggled to latch the data into the LCD
display serial shifter. The line clock toggles after all pixels in a line have been
transmitted to the LCD driver and a programmable number of pixel clock wait
states have elapsed both at the beginning and end of each line. In passive
mode, the frame clock toggles during the first line of the screen and the begin-
ning and end of each frame are separated by a programmable number of line
clock wait states. Program horizontal front porch (HFP) and horizontal back
porch (HBP) to zero in passive mode.

In active mode, the frame clock is asserted at the end of a frame after a pro-
grammable number of line clock wait states occur. In passive display mode,
the pixel clock does not transition during wait state insertion or when the line
clock is asserted. Finally, the ac-bias (LCD.AC) can be configured to transition
each time a programmable number of line clocks occurs.

Table 11–1 shows details relating to the LCD controller signals.

Module Overview

 11-6

Table 11–1. Interface to LCD Panel Signal Descriptions

Name Type Destination Description

LCD.P[15:0] Out LCD panel
display

I/O pins used to transfer either four, eight, or sixteen data
values at a time to the LCD display. For monochrome displays,
each signal represents a pixel; for passive color displays,
groupings of three signals represent one pixel (red, green, and
blue). LCD.P[3:0] are used for monochrome displays of 2, 4,
and 8 BPP; LCD.P[7:0] is used for color STN displays and
LCD.P[15:0] is used for active (TFT) mode.

LCD.PCLK Out LCD panel
display

Pixel clock used by the LCD display to clock the pixel data into
the line shift register. In passive mode, pixel clock only
transitions when valid data is available on the data lines. In
active mode, the pixel clock transitions continuously and the
ac-bias pin is used as an output enable to signal when data is
available on the LCD pins.

LCD.HS Out LCD panel
display

Line clock used by the LCD display to signal the end of a line of
pixels that transfers line data from the shift register to the
screen and to increment the line pointer(s). Also used by TFT
displays as the horizontal synchronization signal.

LCD.VS Out LCD panel
display

Frame clock used by the LCD displays to signal the start of a
new frame of pixels. Also used by TFT displays as the vertical
synchronization signal.

LCD.AC Out LCD panel
display

ac-bias used to signal the LCD display to switch the polarity of
the power supplies to the row and column axis of the screen to
counteract DC offset. Used in TFT mode as the output enable
to signal when data is latched from the data pins using the pixel
clock.

Display Specifications

11-7LCD Controller

11.2 Display Specifications

The following information shows the number of palette entries and thus the
number of possible screen colors per frame that can be displayed in each
mode with the corresponding number of bits-per-pixel (BPP).

Mono passive: 1 BPP, 2 BPP, 4 BPP, and 8 BPP

� 1 BPP: Two palette entries selecting one of 15 grayscale
� 2 BPP: Four palette entries selecting one of 15 grayscale
� 4 BPP: 16 palette entries selecting one of 15 grayscale
� 8 BPP: 256 palette entries selecting one of 15 grayscale

Color passive: 2 BPP, 4 BPP, 8 BPP, 12, and 16 BPP

� 2 BPP: Four palette entries from 3375 possible colors
� 4 BPP: 16 palette entries from 3375 possible colors
� 8 BPP: 256 palette entries from 3375 possible colors
� 12 BPP: 3375 possible on-screen colors
� 16 BPP: 3375 possible on-screen colors

Active: 2 BPP, 4BPP, 8BPP, 12 BPP, and 16BPP

� 2 BPP: Four palette entries selecting from 4096 colors
� 4 BPP: 16 palette entries selecting from 4096 colors
� 8 BPP: 256 palette entries selecting from 4096 colors
� 12 BPP: Maximum 64K colors
� 16 BPP: Maximum 64K colors, depending on LCD panel

Palette entries are 16 bits wide (2 bytes) and therefore 2 and 4 BPP require
32 bytes of storage. 8 BPP modes require 512 bytes. 12 or 16 BPP modes do
not use palette data but need the bits-per-pixel information to be loaded, so
these modes use 32 bytes similar to that of the 2 and 4 BPP modes.

Mono passive mode supports two different interfaces: 4-bit panel and 8-bit
panel. All modes (color/mono, 2, 4, 8, 12, or 16 bits-per-pixel) operate
independently of each other.

Display Specifications

 11-8

The vertical synchronization signal (VSYNC) width must be programmed to be
as small as possible on passive screen modes, but long enough to load the
palette without stealing all the memory bandwidth from the MPU. To satisfy the
system requirement, the following equation must be met:

�256 � (15 * FDD)� � ��HBP � HFP �
(PPL � 1)

d
� HSW � 3� * VSW * PCD�

d Display

1 TFT

2 2/3 STN color

4 Mono 4 bits

Note: If the condition is not true, the LCD controller displays a black screen every other frame.

Pixels-per-line (PPL) must be in multiples of 16. Most LCD panels ignore data
at the end of the line that is not needed—that is, they ignore data at the right
hand side of the screen.

LCD Controller Operation

11-9LCD Controller

11.3 LCD Controller Operation

The LCD controller supports a variety of user-programmable options, includ-
ing display type and size, frame buffer pixel size, and output data width.
Although all programmable combinations are possible, the selection of
displays available within the market dictate which combinations of these
programmable options are practical. In addition, the type of external memory
system implemented by the user limits the bandwidth of the LCD DMA control-
ler, which in turn limits the size and type of screen that can be controlled.

The following sections describe individual functional blocks within the LCD
controller, the frame buffer and palette memory organization, and the LCD
DMA controller. The sections are arranged in order of data flow, starting with
the off-chip frame buffer and ending with the pins that interface to the LCD
display.

11.3.1 Frame Buffer

The frame buffer is an area within on-chip SRAM or off-chip memory that is
used to supply enough encoded pixel values to fill the entire screen one time.
The first 32 bytes of the buffer (for 2-, 4-, 12-, and 16-bit mode operation, 512
bytes for 8 BPP mode of operation) are used to store the look-up palette data
for each frame. Not all of the 16 entries of the palette are used in 2 BPP mode.
However, all 16 palette entries must be present. The palette is not used for
12 or 16 bits-per-pixel encoding. The 32 bytes at the top of the frame buffer,
however, must be zero-filled even though the data is not used. This is to
provide the bits-per-pixel to the LCD controller.

Each time a new frame is fetched from the frame buffer, the LCD controller
palette is first loaded with data contained within the palette buffer (this is the
default setting). Figure 11–3 and Figure 11–4 show the palette entry organiza-
tion. You can configure the LCD palette loading by setting the LCD control
register bits 21-20.

LCD Controller Operation

 11-10

Figure 11–3.256 Palette Entry/Buffer Format (8 BPP)

Individual Palette Entry

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Color n/u BPP† Red (R) Green (G) Blue (B)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mono n/u BPP† Unused Mono (M)

† Bits-per-pixel (BPP) is only contained within the first palette entry (palette entry0).

256 Entry Palette Buffer

Bit 15 0

Base + 0x0 Palette entry 0

Base + 0x2 Palette entry 1

Base + 0x1FC Palette entry 254

Base + 0x1FE Palette entry 255

Base + 0x200 Start of pixel data

Figure 11–4.16 Palette Entry/Buffer Format (1, 2, 4, 12, 16 BPP)

16 Entry Palette Buffer

Bit 15 0

Base + 0x0 Palette entry 0

Base + 0x2 Palette entry 1

Base + 0x1C Palette entry 14

Base + 0x1E Palette entry 15

Base + 0x20 Start of pixel data

LCD Controller Operation

11-11LCD Controller

The first palette entry (palette entry 0) also contains an extra field that is used
to configure the LCD controller synchronously at the beginning of each frame.
Bits 12, 13, and 14 of the first palette entry contain a field that is used to select
the number of bits-per-pixel that is to be used in the following frame and the
number of entries that are used in the palette RAM. The bits-per-pixel (BPP)
bit-field is decoded by the LCD to correctly unpack pixel data into 1-bit, 2-bit,
nibbles, bytes, 12-bit values, or words, and it is decoded by the palette to tell
it how many address bits are contained in the pixel data it is supplied, configur-
ing the palette size to 16 or 256 entries. The 12- and 16-bit pixel modes bypass
the LCD palette and supply 12-bit values directly to the dither logic when pas-
sive mode is enabled or else supply 16-bit values directly to the output FIFOs
when active mode is enabled. Table 11–2 shows the encoding of the BPP bit
field.

Table 11–2. Bits Per Pixel Encoding for Palette Entry 0 Buffer

Bit Name Value Description

14–12 BPP Bits-per-pixel

001 2 bits-per-pixel

010 4 bits-per-pixel

011 8 bits-per-pixel

1xx 12 bits-per-pixel and 16 bits-per-pixel

Note: Four 2-bit pixels and two 4-bit pixels are packed into each byte, and 12-bit pixels are right-justified on half-word bound-
aries (in the same format as palette entry).

Following the palette buffer is the pixel data buffer that contains one encoded
pixel value for each of the pixels present on the display. The number of pixel
data values depends on the size of the screen (that is, 1024 x 768 = 786,432
encoded pixel values). Again, each pixel data value can be 2, 4, 8, 12, or
16 bits wide. Figure 11–5 through Figure 11–9 show the memory organization
within the frame buffer for each size pixel encoding. For 4-bit encoding, four
pixels are placed into each half-word; for 12-bit encoding, the value is right-
justified within a half-word.

LCD Controller Operation

 11-12

Figure 11–5.2 BPP Frame Buffer Memory Organization

Frame Buffer Byte Address 7 0

Base P0 P1 P2 P3

Base + 1 P4 P5 P6 P7

Base + 2 P8 P9 P10 P11

Base + 3 P12 P13 P14 P15

w
w
w

•
•
•

•
•
•

•
•
•

Figure 11–6.4 BPP Frame Buffer Memory Organization

Frame Buffer Byte Address 7 0

Base P0 P1

Base + 1 P2 P3

Base + 2 P4 P5

Base + 3 P6 P7

w
w
w

•
•
•

Figure 11–7.8 BPP Frame Buffer Memory Organization

Frame Buffer Byte Address 7 0

Base P0

Base + 1 P1

Base + 2 P2

Base + 3 P3

w
w
w

LCD Controller Operation

11-13LCD Controller

Figure 11–8.12 BPP Frame Buffer Memory Organization

Frame Buffer Byte Address 7 0

Base P0[7:0]

Base + 1 Unused P0[11:8]

Base + 2 P1[7:0]

Base + 3 Unused P1[11:8]

•
•
•

•
•
•

Figure 11–9.16 BPP Frame Buffer Memory Organization

Frame Buffer Byte Address 7 0

Base P0[7:0]

Base + 1 P0[15:8]

Base + 2 P1[7:0]

Base + 3 P1[15:8]

•
•
•

The OMAP5910 MPU operates in little endian mode and the number and posi-
tion of pixels in an access depend on access type (byte, half-word, or word).
For example, if the LCD controller is in 2 BPP mode and the MPU performs
a read at the beginning of the frame buffer, the result of the read is:

Byte access (8-bit read):

P0 P1 P2 P3

Half-word access (16-bit read):

P4 P5 P6 P7 P0 P1 P2 P3

Word access (32-bit read):

P12 P13 P14 P15 P8 P9 P10 P11 P4 P5 P6 P7 P0 P1 P2 P3

Lookup Palette

 11-14

The pixel data is stored in the frame buffer the same way in all three cases (as
shown in Figure 11–5); only the little endian accesses of the MPU result in the
different pixel positions of each access.

The top and bottom addresses of the frame buffer (palette entries + pixels
data) are programmed in the DMA controller. A synchronization interrupt
occurs if the LCD display information settings such as pixels-per-line, lines per
frame, color/monochrome mode, and bits-per-pixel that are programmed by
the user are not in accordance with the size of the frame buffer as programmed
in the DMA.

The following equations are used to calculate the total frame buffer size (in
bytes) to be programmed in the system DMA, based on varying pixel size
encoding and screen sizes.

For 2 bits�pixel : FrameBufferSize � 32 �
(Lines * Columns)

4

For 4 bits�pixel : FrameBufferSize � 32 �
(Lines * Columns)

2

For 8 bits�pixel : FrameBufferSize � 512 � (Lines * Columns)

For 12�16 bits�pixel : FrameBufferSize � 32 � 2(Lines * Columns)

11.4 Lookup Palette

The encoded pixel data from the input FIFO is used as an address to index and
select individual palette locations: 2-bit pixels address four locations, 4-bit
pixels address sixteen locations, and 8-bit pixels select any of the 256 palette
entries.

When a palette entry is selected by the encoded pixel value, the contents of
the entry are sent to the color/grayscale space/time base dither circuit. In color
mode, the value within the palette is made up of three 4-bit fields, one for each
color component: red, green, and blue. In monochrome mode, only one 4-bit
value is present. For both modes, the 4-bit values represent 1 of 15 intensity
levels. For color operation, an individual frame is limited to a selection of 256
colors (the number of palette entries). The LCD controller, however, can
generate a total of 3375 colors (15 levels per color x 3 colors). When 12 or
16 bit-per-pixel mode is enabled, the palette is bypassed. For passive
displays, 12-bit pixels and 16-bit pixels are sent directly to the dither logic.

Color/Grayscale Dithering

11-15LCD Controller

11.5 Color/Grayscale Dithering

Entries selected from the lookup palette are sent to the color/grayscale space/
timebase dither generator. Each 4-bit value is used to select one of 15 intensity
levels. Two of the 16 dither values are identical (most intense). The gray/color
intensity is controlled by turning individual pixels on and off at varying periodic
rates. More intense grays/colors are produced by making the average time
that the pixel is off longer than the average time that it is on. The dither genera-
tor also uses the intensity of adjacent pixels in its calculations to give the
screen image a smooth appearance. The proprietary dither algorithm is opti-
mized to provide a range of intensity values that match the visual perception
of color/gray gradations. In color mode, three separate dither blocks are used
to process the three color components: red, green, and blue.

The duty cycle and resultant intensity level for all 15 color/grayscale levels is
summarized in Table 11–3.

Table 11–3. Color/Grayscale Intensities and Modulation Rates

Dither Value
(4-Bit Value From Palette)

Intensity
(0% is White)

Modulation Rate
(Ratio of ON to ON+OFF Pixels)

0000 0.0% 0

0001 11.1% 1/9

0010 20.0% 1/5

0011 26.7% 4/15

0100 33.3% 3/9

0101 40.0% 2/5

0110 44.4% 4/9

0111 50.0% 1/2

1000 55.6% 5/9

1001 60.0% 3/5

1010 66.6% 6/9

1011 73.3% 11/15

1100 80.0% 4/5

1101 88.9% 8/9

1110 100.0% 1

1111 100.0% 1

Output FIFO

 11-16

11.6 Output FIFO

The LCD controller contains a 2-entry by 8-bit wide output FIFO that is used
to store pixel pin data before it is driven out to the pins. Each time a modulated
pixel value is output from the dither generator, it is placed into a serial shifter.
The size of the shifter is controlled by programming the color/monochrome
select bit in the LCD control registers. The shifter can be configured to be 4 or
8 bits wide. Single-panel monochrome screens use either four or eight data
lines; single-panel color screens use eight data pins. Once the correct number
of pixels has been placed within the shifter (4-, 8-, or 2 2/3-pixel values), the
value is transferred to the top of the output FIFO. The value is then transferred
down until it reaches the last empty location within the FIFO. As values reach
the bottom of the FIFO, they are driven out one by one onto the LCD data pins
on the edge selected by the invert pixel clock (IPC) bit.

Note:

The output FIFO is bypassed in TFT mode.

LCD Controller Pins

11-17LCD Controller

11.7 LCD Controller Pins

When the shifter is filled, the value is driven to the LCD controller data bus pins
in one of several configurations: LCD.P[3:0] for passive monochrome panels,
LCD.P[7:0] for passive color panels, and LCD.P[15:0] for active displays. In
addition, the pixel clock pin (LCD.PCLK) is toggled. The remaining unused
LCD pixel bits always remain low.

When an entire line of pixels has been output to the LCD screen, the line clock
pin (LCD.HS) is toggled. In the same manner, if the controller is in passive
mode and the start of the first line of a new frame of pixels has been output to
the LCD controller screen, the frame clock pin (LCD.VS) is toggled. To prevent
a dc charge from building within the screen pixels, the display power and
ground supplies are periodically switched. The LCD controller signals the dis-
play to switch the polarity by toggling the ac-bias pin (LCD.AC). The user can
control the frequency of the bias pin by programming the number of line clock
transitions between each toggle.

When active display mode is enabled, the timing of the pixel, line, and frame
clocks and the ac-bias pin change. The pixel clock transitions continuously in
this mode for as long as the LCD is enabled. The ac-bias pin functions as an
output enable. When it is asserted, the display can use it to latch data from the
LCD pins using the pixel clock.

The timing of the line and frame clock pins is programmable to support both
passive and active mode. Programming options include:

� Delay insertion both at the beginning and end of each line and frame (front
and back porch)

� Pixel clock, line clock, frame clock, and ac-bias signal polarity
� Line and frame clock pulse width

If the LCD is disabled, the signals LCD.P[15:0] are set to 0 and LCD.PCLK,
LCD.VS, LCD.HS, and LCD.AC are set to their inactive state. This can be 0
or 1 depending on the inversions programmed in the timing 2 register. See
Table 11–24.

The OMAP5910 LCD controller provides outputs compatible with passive
monochrome, passive color (STN), and active color (TFT) displays. Recom-
mended connections to each type of display are outlined in the sections below.

LCD Controller Pins

 11-18

11.7.1 Passive Monochrome Panels

Passive monochrome displays can be supported for graphics depths of 8 BPP
(256 entry palette), 4 BPP, 2 BPP, or 1 BPP. For passive monochrome displays,
four signals are supplied. Each signal represents one pixel that is dithered over
successive frames to achieve a maximum of 15 gray levels (see Table 11–4).

Table 11–4. Passive Monochrome Panel Inputs

OMAP5910 LCD Controller Output Passive Monochrome Panel Input

LCD.P[0] (leftmost pixel) D[3]

LCD.P[1] D[2]

LCD.P[2] D[1]

LCD.P[3] (rightmost pixel) D[0]

11.7.2 Passive Color (STN) Panels

Passive color displays can be supported for palletized graphics depths of 2
BPP, 4 BPP, and 8 BPP (256 color palette), as well as direct graphics depths
of 12 BPP and 16 BPP. For passive color displays, eight signals are supplied.
Each signal represents one color channel of one pixel that is dithered over
successive frames to achieve a maximum of 15 shade levels per color (for a
total of 15x15x15=3375 colors). This means that each set of eight signals
represents 2 2/3 pixels (8 signals/3 colors per pixel). Table 11–5 shows the
relationship of these signals to the color channel and pixel position on screen.

Table 11–5. 8-Bit Panel

OMAP5910 LCD Controller Output Passive Color Panel Input

LCD.P[7] (0 red, 2 blue, 5 green…) D[7]

LCD.P[6] (0 green, 3 red, 5 blue…) D[6]

LCD.P[5] (0 blue, 3 green, 6 red…) D[5]

LCD.P[4] (1 red, 3 blue, 6 green…) D[4]

LCD.P[3] (1 green, 4 red, 6 blue…) D[3]

LCD.P[2] (1 blue, 4 green, 7 red…) D[2]

LCD.P[1] (2 red, 4 blue, 7 green…) D[1]

LCD.P[0] (2 green, 5 red, 7 blue…) D[0]

LCD Controller Pins

11-19LCD Controller

11.7.3 Active Color (TFT) Panels

Active color displays can be supported for palletized graphics depths of 2 BPP,
4 BPP, and 8 BPP (256 color palette), as well as direct graphics depths of 12
BPP and 16 BPP. When displaying 16 BPP, the 16 output signals are mapped
directly to the 16 bits in the frame buffer memory. When displaying 12 BPP or
less, the 12-bit pixel values (direct or from the palette) are mapped to the full
16 signal lines to provide a full-scale-corrected display. In this case, five bits
of red and blue data are provided with six bits of green data. If this same orien-
tation is used for the 16 BPP mode, the signal configuration is constant for all
modes. Connecting these signals to the appropriate input signals of the panel
allows support of a color TFT panel of any color depth. Table 11–6 to
Table 11–9 illustrate the relationship of these signals to the most common
panel types.

Note:

The actual number of colors displayed is limited to the smaller of 2output depth

and 2panel input pins.

Connecting a 12-bit panel for 16 BPP operation involves truncating the 16 bits
of data to the 12 bits required by the panel (see Table 11–6).

Table 11–6. 16-Bit Per Pixel and 12-Bit Panel

OMAP5910 LCD Controller Output 12-Bit TFT Panel Input

LCD.P[15] (red[4]) red[3]

LCD.P[14] (red[3]) red[2]

LCD.P[13] (red[2]) red[1]

LCD.P[12] (red[1]) red[0]

LCD.P[11] (red[0]) n/c

LCD.P[10] (green[5]) green[3]

LCD.P[9] (green[4]) green[2]

LCD.P[8] (green[3]) green[1]

LCD.P[7] (green[2]) green[0]

LCD.P[6] (green[1]) n/c

LCD.P[5] (green[0]) n/c

LCD.P[4] (blue[4]) blue[3]

LCD Controller Pins

 11-20

Table 11–6. 16-Bit Per Pixel and 12-Bit Panel (Continued)

OMAP5910 LCD Controller Output 12-Bit TFT Panel Input

LCD.P[3] (blue[3]) blue[2]

LCD.P[2] (blue[2]) blue[1]

LCD.P[1] (blue[1]) blue[0]

LCD.P[0] (blue[0]) n/c

Connecting a 15-bit panel for 16 BPP operation involves truncating the 16 bits
of data to the 15 bits required by the panel (see Table 11–7).

Table 11–7. 16-Bit or Per Pixel and 15-Bit Panel

OMAP5910 LCD Controller Output 12-Bit TFT Panel Input

LCD.P[15] (red[4]) red[4]

LCD.P[14] (red[3]) red[3]

LCD.P[13] (red[2]) red[2]

LCD.P[12] (red[1]) red[1]

LCD.P[11] (red[0]) red[0]

LCD.P[10] (green[5]) green[4]

LCD.P[9] (green[4]) green[3]

LCD.P[8] (green[3]) green[2]

LCD.P[7] (green[2]) green[1]

LCD.P[6] (green[1]) green[0]

LCD.P[5] (green[0]) n/c

LCD.P[4] (blue[4]) blue[4]

LCD.P[3] (blue[3]) blue[3]

LCD.P[2] (blue[2]) blue[2]

LCD.P[1] (blue[1]) blue[1]

LCD.P[0] (blue[0]) blue[0]

LCD Controller Pins

11-21LCD Controller

Connecting an 18-bit panel for 16 BPP operation involves replicating (note *’s
below) the 16 bits of data to fill in the entire 18 bits required by the panel. This
is preferable to hardwiring the extra bits to a constant value, which reduces the
dynamic range of the display and causes a color error (see Table 11–8).

Table 11–8. 16-Bit Per Pixel and 18-Bit Panel

OMAP5910 LCD Controller Output 18-Bit TFT Panel Input

LCD.P[15] (red[4]) red[5]

LCD.P[14] (red[3]) red[4]

LCD.P[13] (red[2]) red[3]

LCD.P[12] (red[1]) red[2]

LCD.P[11] (red[0]) red[1]

*LCD.P[15] (red[4]) red[0]

LCD.P[10] (green[5]) green[5]

LCD.P[9] (green[4]) green[4]

LCD.P[8] (green[3]) green[3]

LCD.P[7] (green[2]) green[2]

LCD.P[6] (green[1]) green[1]

LCD.P[5] (green[0]) green[0]

LCD.P[4] (blue[4]) blue[5]

LCD.P[3] (blue[3]) blue[4]

LCD.P[2] (blue[2]) blue[3]

LCD.P[1] (blue[1]) blue[2]

LCD.P[0] (blue[0]) blue[1]

*LCD.P[4] (blue[4]) blue[0]

LCD Controller Pins

 11-22

Connecting a 24-bit panel for 16 BPP operation involves replicating (note *’s
below) the 16 bits of data to fill in the entire 24 bits required by the panel. This
is preferable to hard-wiring the extra bits to a constant value, which reduces
the dynamic range of the display and causes a color error (see Table 11–9).

Table 11–9. 16-Bit-Per-Pixel and 24-Bit Panel

OMAP5910 LCD Controller Output 24-Bit TFT Panel Input

LCD.P[15] (red[4]) red[7]

LCD.P[14] (red[3]) red[6]

LCD.P[13] (red[2]) red[5]

LCD.P[12] (red[1]) red[4]

LCD.P[11] (red[0]) red[3]

*LCD.P[15] (red[4]) red[2]

*LCD.P[14] (red[3]) red[1]

*LCD.P[13] (red[2]) red[0]

LCD.P[10] (green[5]) green[7]

LCD.P[9] (green[4]) green[6]

LCD.P[8] (green[3]) green[5]

LCD.P[7] (green[2]) green[4]

LCD.P[6] (green[1]) green[3]

LCD.P[5] (green[0]) green[2]

*LCD.P[10] (green[5]) green[1]

*LCD.P[9] (green[4]) green[0]

LCD.P[4] (blue[4]) blue[7]

LCD.P[3] (blue[3]) blue[6]

LCD.P[2] (blue[2]) blue[5]

LCD.P[1] (blue[1]) blue[4]

LCD.P[0] (blue[0]) blue[3]

*LCD.P[4] (blue[4]) blue[2]

*LCD.P[3] (blue[3]) blue[1]

*LCD.P[2] (blue[2]) blue[0]

LCD Controller Registers

11-23LCD Controller

11.8 LCD Controller Registers

The LCD controller contains four control registers and one status register.

The control registers contain bit fields to enable and disable the LCD controller
to define:

� The height and width of the screen being controlled
� Color or monochrome mode
� Passive or active display
� Polarity of the control lines
� Pulse width of the line and frame clocks
� The pixel clock and ac-bias frequency
� The number of delays to insert before/after each line and after each frame

An additional control field exists to tune the DMA performance, based on the
type of memory system in which the LCD controller is used. This field controls
the placement of a minimum delay between each LCD palette request to
ensure enough bus bandwidth is given to other systems access. This field is
only used for palette load.

The status register contains bits that signal:

� FIFO underrun error

� Frame synchronization error

� When the last active frame has completed after the LCD is disabled
(maskable)

� ac counter, if programmed

Each of these hardware-detected events signals an interrupt request to the
interrupt controller.

Table 11–10 lists the LCD controller registers. Table 11–11 through
Table 11–23 describe the register bits.

Table 11–10. LCD Controller Registers

Register Description R/W Size Address

LcdControl LCD control R/W 32 bits FFFE:C000

LcdTiming0 LCD timing 0 R/W 32 bits FFFE:C004

LcdTiming1 LCD timing 1 R/W 32 bits FFFE:C008

LcdTiming2 LCD timing 2 R/W 32 bits FFFE:C00C

LcdStatus LCD status R/W 32 bits FFFE:C010

LcdSubpanel LCD subpanel display R/W 32 bits FFFE:C014

LCD Controller Registers

 11-24

11.8.1 LCD Control Register 1 (LCDControl)

Table 11–11. LCD Control Register (LCDControl)

Bit Name Value Description
Reset
Value

31–25 – Reserved 0

24 5-6-5
STN

12 BPP (5-6-5) mode 0

0 On

1 Off

16 bits of data are in the frame buffer, but only 12 bits are dithered
and sent out.

23 TFT Map TFT alternate signal mapping: 0

0 Output pixel data for 1, 2, 4, and 8 BPP modes are right aligned
on LCD pins (11:0)

1 Output pixel data for 1, 2, 4, and 8 BPP are converted to 5-6-5
format using pins (15:0)
R3 R2 R1 R0 R3 G3 G2 G1 G0 G3 G2 B3 B2 B1 B0 B3

22 LCDCB1 LCD control bit 1

See Table 11–16 for proper settings for this field.

0

21–20 PLM Palette loading mode. Must precede data-loading-only mode. 0

00 Palette and data loading, reset value

01 Palette loading

10 Data loading

19–12 FDD FIFO DMA request delay

Encoded value (0–255) used to specify the number of memory
controller clocks. The input FIFO DMA request must be disabled.
The clock count starts after 16 words read in the input FIFO.
Programming FDD = 00h disables this function.

0

11–10 – Reserved 0

LCD Controller Registers

11-25LCD Controller

Table 11–11. LCD Control Register (LCDControl) (Continued)

Bit
Reset
ValueDescriptionValueName

9 M8B Mono 8-bit mode. Selects 4 or 8 data lines to output pixel data to
the screen.

0

0 LCD_PIXEL[3:0] is used to output four pixel values to the panel
each pixel clock transition.

1 LCD_PIXEL[7:0] is used to output eight pixel values to the panel
each pixel clock transition.

This bit is ignored in al other modes.

8 LCDCB0 LCD control bit 0. Used with LCD control bit 1 to control mapping
of pixel data from the frame buffer to the output bus LCD.P[16:0].

See Table 11–16 for proper settings for this field.

0

7 LCDTFT LCD TFT 0

0 Passive or STN display operation enabled, dither logic is enabled

1 Active or TFT display operation enabled, external palette and DAC
required, dither logic bypassed, pin timing changes to support
continuous pixel clock, output enable, VSYNC, HSYNC signals

5–6 – Reserved 0

4 LoadMask Load mask 0

0 Mask out the loaded palette interrupt

1 Mask not active

3 Done-
Mask

Done mask 0

0 Mask out the frame done (done) interrupt

1 Mask not active

2 - Reserved 0

1 LCDBW LCD Monochrome 0

0 Color operation enable

1 Monochrome operation enabled

0 LCDEN LCD controller enable 0

0 LCD controller disabled

1 LCD controller enabled

LCD Controller Registers

 11-26

Table 11–12 lists suggested LCD register settings for various operating
modes.

Table 11–12. LCD Control Register Settings

Panel Type Graphics Mode Register Setting
First Palette

Entry

Monochrome 2 BPP 0x00400002 0x1XXX

Monochrome 4 BPP 0x00400002 0x2XXX

Monochrome 8 BPP 0x00010002 0x3XXX

Passive color 2 BPP 0x00400000 0x1XXX

Passive color 4 BPP 0x00400000 0x2XXX

Passive color 8 BPP 0x00010000 0x3XXX

Passive color 12 BPP 0x00000000 0x4XXX

Passive color 16 BPP 0x01000000 0x4XXX

Active color 2 BPP 0x00C00080 0x1XXX

Active color 4 BPP 0x00C00080 0x2XXX

Active color 8 BPP 0x00800080 0x3XXX

Active color 12 BPP 0x00800080 0x4XXX

Active color 16 BPP 0x00000080 0x4XXX

Bits Per Pixel STN Mode (5-6-5 STN)

The 16 BPP STN mode is handled similarly to the 12 BPP mode. The differ-
ences are in how the pixel data is organized in the frame buffer and in which
bits are sent to the dither logic.

The 12-bit STN mode remains the same in the frame buffer memory as: 4-4-4.

Table 11–13. 12-Bit STN Data in Frame Buffer

Unused Red Green Blue

Pins 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data Data ignored R3 R2 R1 R0 G3 G2 G1 G0 G3 G2 G1 G0

LCD Controller Registers

11-27LCD Controller

The 16-bit STN mode appears in the frame buffer memory as follows: 5-6-5.

Table 11–14. 16-Bit STN Data in Frame Buffer

Red Green Blue

Pins 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B4 B3 B2 B1 B0

The 16-bit STN mode sends only 12 bits to the dither logic (bits 11, 6, 5, and
0 are not sent to dither logic). These bits are the 4 MSBs of each color.
Figure 11–10 shows the dither logic.

Figure 11–10. Dither Logic

4

are not used as image data, and are ignored.
The 16-bit STN resolution is equal to the
12-bit STN resolution (3375 colors).

NOTE:

Red bit 11

Green bits 6, 5

Blue bit 0

Dither Logic

Bits: 15 14 13 12 10 9 8 7 4 3 2 1

11 06 5

1

4

1

4

1

The 12-BPP (5-6-5) mode can be used if the operating system does not
support 12 BPP in the frame buffer. Data is arranged in 16-BPP instead, but
only 12 bits are dithered and sent to the display.

16 Bits Per Pixel STN Mode

The 16-bit per pixel (BPP) STN mode is used to enable display of 16 BPP data
on a passive color display. When this bit is enabled, data stored in the frame
buffer as 16 BPP (5 bits red, 6 bits green, 5 bits blue) is converted internally
to 12 bits (4 bits red, 4 bits green, 4 bits blue) for input into the STN dither logic.
This bit does not affect 12 BPP mode.

LCD Controller Registers

 11-28

TFT Alternate Signal Mapping (TFT Map)

This bit controls how the TFT pixel data are output.

When this bit is set to 1, the four red bits, the four green bits, and the four blue
bits are mapped to all LCD.P[15:0] output pins, as shown in Table 11–15.

Table 11–15. TFT Alternate Signal Mapping Output

Pins 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data R3 R2 R1 R0 R3 G3 G2 G1 G0 G3 G2 B3 B2 B1 B0 B3

When this bit is set to 0 (default), the four red bits, the four green bits, and the
four blue bits are right aligned on LCD.P[11:0] pins. The upper LCD.P[15:12]
are set to 0.

LCD Control Bit 1

The LCD control bit 1 is used along with LCD control bit 0 to control the
mapping of pixel data from the frame buffer to the output bus LCD.P[15:0].
Table 11–16 shows the appropriate settings for this bit.

Table 11–16. Control Bit 0 And Control Bit 1 Mapping by Display Types

Display Type Mode Control Bit 0 Control Bit 1

Passive monochrome 2 BPP 0 1

4 BPP 0 1

8 BPP 0 0

Passive color 8 BPP 0 0

12 BPP 0 0

TFT 16 BPP 0 0

LCD Controller Registers

11-29LCD Controller

LCD TFT (LCDTFT)

The LCD TFT (LCDTFT) bit selects whether the LCD controller operates in
passive (STN) or active (TFT) display control mode. When LCDTFT = 0:
passive or STN mode is selected; all LCD data flow operates normally
(including the use of the LCD dither logic); and all LCD controller pin timing
operates as described in Section 11.7, LCD Controller Pins. When LCDTFT
= 1, active or TFT mode is selected. Frame data is transferred via the DMA
from off-chip memory to the input FIFO, is unpacked, and is used to select an
entry from the palette (for 1, 2, 4, and 8 bits-per-pixel modes), just as for
passive mode (see Figure 11–11).

Figure 11–11.Passive Mode Pixel Clock and Data Pin Timing

Data Pins
Change

LCD.PCLK

LCD.P [3:0]

LCD.HS

LCD.VS

Pixel 0
through 3

Pixel 4
through 7

Pixel 8
through 11

Pixel 12
through 15

Data Pins Samples
by the Display

LCDTFT=0
M8B=0
IPC=0

The value read from the palette, however, bypasses the LCD dither logic and
is sent directly to the output FIFO to be output on the LCD data pins. In TFT
mode, the pixel size within the frame buffer is increased to 16 bits when 12-
or 16-bit pixel encoding mode is enabled (BPP = 1XX). Thus, two 16-bit values
are packed into each word in the frame buffer. See Figure 11–12.

LCD Controller Registers

 11-30

Figure 11–12. Active Mode Pixel Clock and Data Pin Timing

Data Pins
Change

LCD.PCLK

LCD.P [3:0]

LCD.HS

LCD.VS

Pixel 0

Data Pins Samples
by the Display

Pixel 1 Pixel 2 Pixel 3

LCD.AC

1 LCD_CK_I clock period

LCDTFT=1
IPC=0
M8B= Don’t Care

The size of the pixel encoding is increased in TFT mode because the LCD
dither logic is bypassed (which only supports 3-bit RGB dithering). Increasing
the size of the pixel representation allows a total of 64K colors to be addressed
using an off-chip palette that is used in conjunction with the LCD controller.

LCD Monochrome (LCDBW)

The color/monochrome select (LCDBW) bit is used to determine whether the
LCD controller operates in color or monochrome mode.

When LCDBW = 0:

� Color mode is selected.

� Palette entries are 12 bits wide (4 bits per color).

� All three dither blocks are used: one each for the red, green, and blue pixel
components.

� Palette entries are 4 bits wide (15 levels of grayscale).

� Four or eight data lines are enabled.

LCD Controller Registers

11-31LCD Controller

Table 11–17 shows which set of LCD data pins (and LCD.P pins) is used for
each mode of operation.

Table 11–17. LCD Controller Data Pin Utilization for Mono/Color, Passive/Active Panels

Color/Mono Passive/Active Panel Screen Portion Pins

Mono 2, 4, 8 Passive Whole LCD_PIXEL[3:0]

Color 2, 4, 8, 12, 16 Passive Whole LCD_PIXEL[7:0]

Color 2, 4, 8, 16 Active Whole LCD_PIXEL[15:0]

LCD Enable (LCDEN)

The LCD enable (LCDEN) bit is used to enable and disable LCD controller
operation. When LCDEN = 0, the LCD controller is disabled. When LCDEN =
1, the LCD controller is enabled.

Note:

All other control registers must be initialized before setting LCDEN.

You program LCDControl last, and you can configure all eight bit fields at the
same time via a word write to the register. If the user clears LCDEN while the
LCD controller is enabled, it is permitted to complete transmission of the cur-
rent frame before being disabled. Completion of the current frame is signaled
by the DMA when it sets the frame done bit (Done) within the LCD status
register, which generates an interrupt request.

Table 11–18 shows the location of all seven bit fields located in the LCD control
register (LCDControl). LCDEN is the only control bit that is reset to a known
state, ensuring that the LCD is disabled after a reset of the LCD controller. The
user must program all other control bit fields before setting LCDEN = 1 (a half-
word or word write can be used to configure the whole register while setting
LCDEN) and must also disable the LCD controller when changing the state of
a control bit within the LCD controller.

Note:

Writes to reserved bits are ignored, and reads return 1s.

The LCD timing 0 register contains four bit fields that are used as modulus
values for a collection of down counters, each of which performs a different
function to control the timing of several of the LCD pins.

The LCD controller must be disabled (LCDEN = 0) when changing the state
of any field within this register. The reset state of all bit fields is unknown and
must be initialized before enabling the LCD.

LCD Controller Registers

 11-32

11.8.2 LCD Timing 0 Register (LcdTiming0)

Table 11–18 describes the LCD timing 0 register (LcdTiming0) bits.

Table 11–18. LCD Timing 0 Register (LcdTiming0)

Bit Name Description
Reset
Value

31–24 HBP Horizontal back porch

Encoded value (from 1–256) used to specify number of pixel clock periods to
add to the beginning of a line transmission before the first set of pixels is
output to the display (program to value minus one).

The pixel clock is held in its inactive state during the beginning of line wait
period in passive display mode, and is permitted to transition in active
display mode.

x

23–16 HFP Horizontal front porch

Encoded value (from 1–256) used to specify number of pixel clock periods to
add to the end of a line transmission before line clock is asserted (program
to value minus one).

The pixel clock is held in its inactive state during the end of line wait period in
passive display mode and is permitted to transition in active display mode.

x

15–10 HSW Horizontal synchronization pulse width

Encoded value (from 1–64) used to specify number of pixel clock periods to
pulse the line clock at the end of each line (program to value minus one).

The pixel clock is held in its inactive state during the generation of the line
clock in passive display mode, and is permitted to transition in active display
mode.

x

9–0 PPL Pixels-per-line

Encoded value (from 1–1024) used to specify number of pixels contained
within each line on the LCD display (program to value minus one).

x

Note: X = Unknown

LCD Controller Registers

11-33LCD Controller

Horizontal Back Porch (HBP)

The 8-bit horizontal back porch (HBP) field is used to specify the number of
dummy pixel clocks to insert at the beginning of each line or row of pixels. After
the line clock for the previous line has been negated, the value in HBP is used
to count the number of pixel clocks to wait before starting to output the first set
of pixels in the next line. HBP generates a wait period ranging from 1–256 pixel
clock cycles (program to value required minus one).

Note:

The pixel clock pin LCD.PCLK, does not transition during these dummy pixel
clock cycles in passive display mode (pixel clock transitions continuously in
active display mode).

Figure 11–13 and Figure 11–14 show the use of LCD timing register 0 control
fields for active and passive displays, respectively. Timing is shown for the
middle of a frame, not at the beginning or end where VSYNC also occurs. See
Section 11.8.3, LCD Timing 1 Register, for information on VSYNC timing. In
Figure 11–14, the dashed lines on LCD.PCLK indicate that the signal is not
actively toggling: LCD.PCLK is inactive at end-of-line mode. Virtual clocks are
shown to demonstrate the behavior of the HFP, HSW, and HBP bit fields in the
timing 0 register.

Horizontal Front Porch (HFP)

The 8-bit horizontal front porch (HFP) field is used to specify the number of
dummy pixel clocks to insert at the end of each line or row of pixels before puls-
ing the line clock pin. Once a complete line of pixels is transmitted to the LCD
driver, the value in HFP is used to count the number of pixel clocks to wait be-
fore pulsing the line clock. HFP generates a wait period ranging from 1–256
pixel clock cycles (program to value required minus one).

Note:

The pixel clock pin LCD.PCLK, does not transition during these dummy pixel
clock cycles in passive display mode (pixel clock transitions continuously in
active display mode).

LCD Controller Registers

 11-34

Figure 11–13. Active Mode End of Line Timing

HFP=
0

LCD.PCLK

LCD.HS

LCD.P

HSW=0 HBP=1

LCD.AC

First Data
New Row

Last Data in Row

Figure 11–14. Passive Mode End of Line Timing

HFP=1

LCD.HS

LCD.P

LCD.PCLK

HSW=0 HBP=1

Internal
Clock

Last pixel
data line n

First pixel
data line n+1

LCD Controller Registers

11-35LCD Controller

Horizontal Synchronization Pulse Width (HSW)

The 6-bit horizontal synchronization pulse width (HSW) field is used to specify
the pulse width of the line clock in passive mode or horizontal synchronization
pulse in active mode. LCD.HS is asserted each time a line or row of pixels is
output to the display and a programmable number of pixel clock delays have
elapsed. When line clock is asserted, the value in HSW is transferred to a 6-bit
down counter that uses the programmed pixel clock frequency to decrement.
When the counter reaches zero, the line clock is negated. HSW can be pro-
grammed to generate a line clock pulse width ranging from 1–64 pixel clock
periods (program to value required minus one).

Note:

The pixel clock does not transition during the line clock pulse in passive dis-
play mode, but transitions in active display mode. Also, the polarity (active
and inactive state) of the line clock is programmed using the invert HSYNC
(IHS) bit in LCDTiming2.

Pixels-Per-Line (PPL)

The pixels-per-line (PPL) bit-field is used to specify the number of pixels in
each line or row on the screen. PPL is a 10-bit value that represents 16–1024
pixels-per-line. PPL is used to count the correct number of pixel clocks that
must occur before the line clock can be pulsed. (The bottom four bits of this
register are not used and always read 1).

Note:

PPL must be programmed to the value required minus one (that is, 0x27F
for a 640 pixels per line LCD panel).

LCD Controller Registers

 11-36

11.8.3 LCD Timing 1 Register (LcdTiming1)

The LCD timing 1 register contains four bit fields that are used as modulus
values for a collection of down counters, each of which performs a different
function to control the timing of several of the LCD lines.

Table 11–19 shows the location of the bit fields located in LCD timing 1 register
(LCDTiming1) and provides bit descriptions. The LCD controller must be dis-
abled (LCDEN = 0) when changing the state of any field within this register. The
reset state of all bit fields is unknown and must be initialized before
enabling the LCD.

Table 11–19. LCD Timing 1 Register (LcdTiming1)

Bit Name Description
Reset
Value

31–24 VBP Vertical back porch

Value (0–255) used to specify number of line clock periods to add to the
beginning of a frame before the first set of pixels is output to the display. The
line clock transitions during the insertion of the extra line clock periods.

0

23–16 VFP Vertical front porch

Value (0–255) used to specify number of line clock periods to add to the end
of each frame. The line clock transitions during the insertion of the extra line
clock periods.

0

15–10 VSW Vertical synchronization pulse width

In active mode (LCDTFT = 1), encoded value (1–64) used to specify
number of line clock periods to pulse the LCD.VS pin at the end of each
frame after the end of frame wait (VFP) period elapses. Frame clock used as
VSYNC signal in active mode (program to value minus one).

In passive mode (LCDTFT = 0), encoded value (1–64) used to specify
number of extra line clock periods to insert after the vertical front porch
(VFP) period has elapsed. The width of LCD.VS is not effected by VSW in
passive mode and that line clock transitions during the insertion of the extra
line clock periods (program to value minus one).

0

9–0 LPP Lines per panel

Encoded value (1–1024) used to specify number of lines per panel. It
represents the total number of lines on the LCD (program to value minus
one).

0

LCD Controller Registers

11-37LCD Controller

Vertical Back Porch (VBP)

The 8-bit vertical back porch (VBP) field is used to specify the number of hori-
zontal synchronizations (line clocks) to insert at the beginning of each frame.
The VBP count starts just after the VSYNC signal for the previous frame has
been negated for active mode or the extra horizontal synchronizations have
been inserted as specified by the VSW bit field in passive mode. After this has
occurred, the value in VBP is used to count the number of horizontal synchro-
nization periods to insert before starting to output pixels in the next frame. VBP
generates 0–255 extra line clock cycles.

Figure 11–15 and Figure 11–16 show the use of LCD timing register 1 control
fields for active and passive displays, respectively.

Vertical Front Porch (VFP)

The 8-bit vertical front porch (VFP) field is used to specify the number of hori-
zontal synchronizations (line clocks) to insert at the end of each frame. Once
a complete frame of pixels is transmitted to the LCD display, the value in VFP
is used to count the number of horizontal synchronization periods to wait. After
the count has elapsed, the VSYNC (LCD.VS) signal is pulsed in active mode,
or extra horizontal synchronizations are inserted as specified by the VSW bit
field in passive mode. VFP generates 0–255 line clock cycles.

Note:

The line clock pin LCD.HS transitions during the generation of the VFP line
clock periods.

Figure 11–15. Active Mode End of Frame Timing

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

VFP=1

LCD.VS

LCD.P

LCD.HS

VSW=1 VBP=2

First
line of
frame
n+1

Second
line of
frame
n+1

Last
line of
frame

n

LCD Controller Registers

 11-38

Figure 11–16. Passive Mode End of Frame Timing

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

VFP=1

LCD.VS

LCD.P

LCD.HS

VSW=1 VBP=2

First
line of
frame
n+1

Second
line of
frame
n+1

Third
line of
frame
n+1

Last
line of
frame

n

Vertical Synchronization Pulse Width (VSW)

The 6-bit vertical synchronization pulse width (VSW) field is used to specify the
pulse width of the vertical synchronization pulse in active mode or to add extra
dummy horizontal synchronization delays (i.e., dummy lines or rows) between
the vertical front porch and vertical back porch in passive mode.

In active mode (LCDTFT = 1), LCD.VS is used to generate the vertical syn-
chronization signal. It is asserted each time the last line or row of pixels for a
frame is output to the display and a programmable number of line clock delays
have elapsed. When LCD.VS is asserted, the value in VSW is transferred to
a 6-bit down counter that uses the line clock frequency to decrement. When
the counter reaches zero, LCD.VS is negated. VSW can be programmed to
generate a vertical synchronization pulse width ranging from 1–64 line clock
periods (program to value required minus one).

In passive mode (LCDTFT = 0), VSW does not affect the timing of the LCD.VS
pin, but instead can be used to add extra horizontal synchronization delays
(that is, dummy lines or rows) between the end and beginning of frame line
clock delay counts. The total number of horizontal synchronization delays that
are inserted between each frame is equal to the sum of the values in VFP, VSW
and VBP. A counter is used to insert dummy horizontal synchronization delays
between frames by first using the value in VFP, then VSW, then VBP. In passive
mode, it is irrelevant if one or all three of the fields are used to insert delays;
the user need only ensure that the sum of the values in the three fields is equal
to the total number of line clock delays that are needed between frames.

LCD Controller Registers

11-39LCD Controller

Note:

The line clock transitions during the insertion of the dummy horizontal syn-
chronization delay periods. VSW must be long enough to load the palette.

As mentioned, VSW does not affect generation of the frame clock (i.e., vertical
synchronization) signal in passive mode. Passive LCD displays require that
the frame clock is active on the rising-edge of the first line clock (i.e., horizontal
synchronization) pulse of each frame, with adequate set-up and hold time. To
meet this requirement, the LCD controller frame clock pin is asserted on the
rising-edge of the first pixel clock for each frame. The frame clock remains
asserted for the remainder of the first line as pixels are output to the display
and during the assertion of the first line clock for the frame and are then
negated on the rising-edge of the first pixel clock of the second line of each
frame.

Lines Per Panel (LPP)

The lines per panel (LPP) bit field is used to specify the number of lines or rows
per LCD panel being controlled. It represents the total number of lines for the
entire LCD display. LPP is a 10-bit value that represents 1–1024 lines per
panel. LPP is used to count the correct number of line clocks that must occur
before the frame clock can be pulsed.

Note:

LPP must be programmed to the value required minus one (that is, 0xc7 for
a 200 lines per panel).

LCD Controller Registers

 11-40

11.8.4 LCD Timing 2 Register (LcdTiming2)

The LCD timing 2 register (LcdTiming2) contains seven different bit fields that
are used to control various functions associated with the timing of the LCD
controller (see Table 11–20).

The LCD controller must be disabled (LCDEN = 0) when changing the state
of any field within this register. The reset state of all bit fields is unknown and
must be initialized before enabling the LCD. Write functions to reserved bits
are ignored and read functions return ones.

Table 11–20. LCD Timing 2 Register (LcdTiming2)

Bit Name Value Description
Reset
Value

31–26 - Reserved 1

25 PHSVS
On_Off

HSYNC/VSYNC pixel clock control on/off (on only when in TFT
mode); off by default

0

0 LCD.HS and LCD.VS are driven on the opposite edges of the pixel
clock than the lcd_data.

1 LCD.HS and LCD.VS are driven according to bit 24.

24 PHSVS
RF

Program HSYNC/VSYNC rise and fall 0

0 LCD.HS and LCD.VS are driven on the falling edge of the pixel clock
(bit 25 is set to 1).

1 LCD.HS and LCD.VS are driven on the rising edge of the pixel clock
(bit 25 is set to 1).

23 IEO Invert output enable 0

0 LCD.AC pin is active high in active display mode.

1 LCD.AC pin is active low in active display mode.

Active display mode: data driven out to the LCD data lines on
programmed pixel clock edge when ac-bias is active. IEO is ignored
in passive display mode.

22 IPC Invert pixel clock 0

0 Data is driven on the LCD data lines on the rising edge of LCD.PCLK.

1 Data is driven on the LCD data lines on the falling edge of
LCD.PCLK.

LCD Controller Registers

11-41LCD Controller

Table 11–20. LCD Timing 2 Register (LcdTiming2) (Continued)

Bit
Reset
ValueDescriptionValueName

21 IHS Invert HSYNC 0

0 LCD.HS pin is active high and inactive low.

1 LCD.HS pin is active low and inactive high.

Active and passive mode: horizontal synchronization pulse/line clock
active between lines and after end of line wait period

20 IVS Invert VSYNC 0

0 LCD.VS pin is active high and inactive low.

1 LCD.VS pin is active low and inactive high.

Active mode: vertical synchronization pulse active between frames
and after end of frame wait period.

Passive mode: frame clock active during first line of each frame

19–16 ACBI ac-bias line transitions per interrupt

Value (0-255) used to specify the number of ac-bias pin transitions to
count before setting the line count status (LCS) bit, signaling an
interrupt request. Counter is frozen when LCS is set and is restarted
when LCS is cleared by software. This function is disabled when
ACBI = 0x0000.

0

15–8 ACB ac bias pin frequency

Value (0–255) used to specify number of line clocks to count before
transitioning the ac-bias pin. This pin is used to periodically invert the
polarity of the power supply to prevent dc charge build-up within the
display.

ACB = Number of line clocks/toggle of the LCD.AC pin

0

7–0 PCD Pixel clock divider

Value (2–255) used to specify pixel clock frequency based on CPU
clock (LCD_CK) frequency. Pixel clock frequency can range from
LCD_CK/2 to LCD_CK/255.

Pixel clock frequency = LCD_CK/2(PCD)

0

LCD Controller Registers

 11-42

HSYNC/VSYNC Rise or Fall Programmability

This bit determines whether the HSYNC/VSYNC signals are driven on the ris-
ing or falling edge of the pixel clock (PHSVS_ON_OFF must be turned on first).
By default, the HSYNC/VSYNC signals are driven on the falling edge of the
pixel clock, and the LCD pixel data is driven on the rising edge of pixel clock.
However, if the invert pixel clock (IPC) bit is set to 1, then the HSYNC and
VSYNC signals are driven on the rising edge of the pixel clock and pixel data
is driven on the falling edge. By setting the PHSVS_RISE_FALL bit and enab-
ling it (PHSVS_ON_OFF = 1), you can control on which edge the signals are
driven.

The waveforms in Figure 11–17 show PHSVS_ON_OFF = 0 and IPC = 1 in
TFT mode.

Figure 11–17. Signal Timing When PHSVS_ON_OFF = 0

Pixel 0

LCD.AC

IPC=1

LCD.VS

LCD.HS

LCD.P[15:0]

LCD.PCLK

LCD Controller Registers

11-43LCD Controller

The waveforms in Figure 11–18 show PHSVS_ON_OFF = 1,
PHSVS_RISE_FALL = 0, and IPC = 1.

Figure 11–18. Signal Timing When PHSVS_ON_OFF = 1

Pixel 0

IPC=1

HPC-1

VPC-1

LCD.AC

LCD.VS

LCD.HS

LCD.P[15:0]

LCD.PCLK

ac-Bias Line Transactions Per Interrupt (ACBI)

The 4-bit ac-bias line transitions per interrupt (ACBI) field is used to specify the
number of LCD.AC line transitions to count before setting the ac-bias count
status (ABC) bit in the LCD controller status register, which signals an interrupt
request. After the LCD controller is enabled, the value in ACBI is loaded to a
4-bit down counter, and the counter decrements each time the ac-bias line
state is inverted. When the counter reaches zero, it stops and the ac-bias count
(ABC) bit is set in the status register. When ABC is set, the 4-bit down counter
is reloaded with the value in ACBI and is disabled until ABC is cleared. When
ABC is cleared by the CPU, the down counter is enabled and it decrements
each time the ac-bias line is flipped. The number of ac-bias line transitions
between each interrupt request ranges from 0 to 15. Programming ACBI =
0h0000 disables the ac-bias line transitions per the interrupt function.

LCD Controller Registers

 11-44

ac-Bias Pin Frequency (ACB)

The 8-bit ac-bias frequency (ACB) field is used to specify the number of line
clock periods to count between each toggle of the ac-bias pin (LCD, AC). After
the LCD controller is enabled, the value in ACB is loaded to an 8-bit
down-counter, and the counter begins to decrement using the line clock. When
the counter reaches zero, it stops, the state of LCD, AC is reversed, and the
whole procedure starts again. The number of line clocks between ac-bias pin
transition ranges from 0–255 (program to value required minus one). This line
is used by the LCD display to periodically reverse the polarity of the power
supplied to the screen to eliminate DC offset.

Note:

The ACB bit field has no effect on LCD.AC in active mode. This is because
the pixel clock transitions continuously in active mode; the ac-bias line is
used as an output enable signal. The ac bias is asserted by the LCD control-
ler in active mode; this occurs whenever pixel data is driven out to the data
pins to signal to the display when it can latch pixels using the pixel clock.

Pixel Clock Divider (PCD)

The 8-bit pixel clock divider (PCD) field is used to select the frequency of the
pixel clock (see Table 11–21). PCD can generate a range of pixel clock
frequencies from LCD_CK/2 to LCD_CK/255, where LCD_CK is the LCD
controller clock from the OMAP5910 clock management logic (see Chap-
ter 15, Clock Generation and System Reset Management). The pixel clock
frequency must be adjusted to meet the required screen refresh rate. The
refresh rate depends on:

� The number of pixels for the target display

� Whether monochrome or color mode is selected

� The number of pixel clock delays programmed at the beginning and end
of each line

� The number of line clocks inserted at the beginning and end of each frame

� The width of the VSYNC signal in active mode or VSW line clocks inserted
in passive mode

� The width of the frame clock or HSYNC signal

LCD Controller Registers

11-45LCD Controller

All of these factors alter the time duration from one frame transmission to the
next. Different display manufacturers require different frame refresh rates,
depending on the physical characteristics of the display. The PCD is used to
alter the pixel clock frequency in order to meet these requirements. The PCD
is also used in parallel data input mode to select the frequency of pixel clock.
Pixel clock is used to synchronously signal the off-chip device to drive data to
the LCD data pins and to signal the output FIFO to latch the data from the pins.

The frequency of the pixel clock for a set PCD value or the required PCD value
to yield a target pixel clock frequency can be calculated using the following
equation:

Pixel Clock = LCD_CK/PCD

The pixel clock frequency can be programmed with the following limitations.

Table 11–21. Minimum Pixel Clock Divider (PCD)

Type of Display
Output (Number

of Signals) Minimum Pixel Clock Divider

Active 16 (1 pixel/clock) 2

Monochrome 4 (4 pixels/clock) 4

Passive color 8 (2 2/3 pixels/clock) 3

11.8.5 LCD Status Register (LcdStatus)

The LCD controller status register (LCSR) contains bits that signal overrun
and underrun errors for the input and output FIFOs and the ac-bias pin transi-
tion count, LCD disabled, DMA base update ready, and DMA transfer bus error
conditions. Each of these hardware-detected events signals an interrupt
request to the interrupt controller.

Each of the LCD status bits signals an interrupt request as long as the bit is
set. Once the bit is cleared, the interrupt is cleared. Read/write bits are called
status bits; read-only bits are called flags. Status bits are referred to as sticky
(that is, once set by hardware, they must be cleared by software). Writing 1 to
a sticky status bit clears it; writing zero has no effect. Read-only flags are set
and cleared by hardware; writes have no effect.

Table 11–22 describes the LCD status register (LcdStatus) bits.

See Table 11–23 for the location of the bit fields located in LCD subpanel
register and provides bit descriptions.

LCD Controller Registers

 11-46

Table 11–22. LCD Status Register (LcdStatus)

Bit Name Value Description
Reset
Value

31–7 – Reserved 0

6 PL Loaded palette (read-only) 0

0 The palette is not loaded.

1 The palette is loaded.

5 FUF FIFO underflow status (read-only). Cleared by setting LCDEN to 0,
which also resets the input FIFO in the DMA controller.

0

0 FIFO has not underrun.

1 LCD dither logic not supplying data to FIFO at a sufficient rate;
FIFO has completely emptied and data pin driver logic has
attempted to take added data from FIFO.

4 – Reserved 0

3 ABC ac-bias count status (read/clear only) 0

0 ac-bias transition counter has not decremented to zero.

1 ac-bias transition counter has decremented to zero, indicating that
the LCD.AC line has transitioned the number of times specified by
the ACBI control bit-field. Counter is reloaded with value in ACBI
but is disabled until the user clears ABC.

2 Sync Synchronization lost (read-only). Cleared by setting LCDEN to 0,
which also resets the input FIFO in the DMA controller.

0

0 Normal

1 Frame synchronization lost has occurred.

1 – Reserved 0

0 Done Frame done (read-only). Cleared by writing base address and
enabling the LCD for single-panel mode.

When the LCD is disabled by clearing the LCD enable bit (LCDEN
= 0) in LCDControl, the LCD allows the current frame to complete
before it is disabled. After the last set of pixels is clocked out onto
the LCD data pins by the pixel clock, the LCD is disabled and Done
is set.

0

0 LCD is enabled.

1 LCD disabled and the active frame has just completed.

LCD Controller Registers

11-47LCD Controller

Table 11–23. LCD Subpanel Register (LcdSubpanel)

Bit Name Value Description
Reset
Value

31 SPEN Subpanel enable 0

0 Function disabled

1 Subpanel function mode enabled

30 Reserved 0

29 HOLS High or low signal

The field indicates the position of subpanel compared to the LPPT
value.

0

28–26 Reserved 0

25–16 LPPT Line per panel threshold

This field defines the number of lines to be refreshed (1–1024).

(Program to value minus 1.)

0

15–0 DPD Default pixel data

DPD defines the default value of the pixel data sent to the panel for
the lines until LPPT is reached or after passing the LPPT.

0

The ability to display only the first or last n lines of the panel and send a fixed
contents for the other lines is supported with the subpanel display register,
shown in Figure 11–19. For the other lines, there is no access to the frame
buffer because the value stored in default pixel data is used.

LCD Controller Registers

 11-48

Figure 11–19. LCD Subpanel Display Register (LcdSubpanel)

Line N

Threshold

PANEL

Line 0

Line N

Line 0

Threshold

Line N

Line n+1

SPEN = 1
HOLS = 0

Line 0

Line N

SPEN = 1
HOLS = 1

LPPT = n

Interface to LCD Panel Signal Reset Values

11-49LCD Controller

11.9 Interface to LCD Panel Signal Reset Values

The LCD panel signal outputs can accept two distinct reset values (see
Table 11–24):

� After a hardware reset by setting the LCD_RESET_I signal to low
� By disabling the LCD (setting LCDEN bit to low)

The default value depends solely upon the signal polarity control, as
defined in the LCD timing 2 register, except for LCD.P[15:0] when driven
low and LCD.AC, which does not change status when in STN mode.

Table 11–24. LCD Panel Signals Reset Values

LCD.P[0][15:0] LCD.PCLK LCD.HS LCD.VS LCD.AC

Reset
(LCD_RESET_I = 0)

0 0 0 0 0

Disable
(LCDEN = 0)

0 0 (IPC = 0)
1 (IPC = 1)

0 (HIS = 0)
1 (HIS = 1)

0 (IVS = 0)
1 (IVS = 1)

TFT:

0 (IEO = 0)
1 (IEO = 1)

STN: No change

12-1

UART Devices

This chapter describes the three universal asynchronous receiver/transmitter
(UART) devices in the OMAP5910 multimedia processor.

Topic Page

12.1 UART Introduction 12-2.

12.2 UART Environments 12-6.

12.3 UART/Autobaud Control and Status Registers 12-17.

12.4 UART/Autobaud Modes of Operation 12-37.

12.5 UART/Autobaud Functional Description 12-38.

12.6 UART/Autobaud Configuration Example 12-50.

12.7 UART/IrDA Control and Status Registers 12-52.

12.8 UART/IrDA Modes of Operation 12-83.

12.9 UART/IrDA Functional Description 12-88.

12.10 UART/IrDA Configuration Example 12-101.

12.11 UART Software Reset 12-101.

12.12 UART FIFO Configuration 12-102.

Chapter 12

UART Introduction

 12-2

12.1 UART Introduction

Either the MPU (default) or the DSP controls the three UARTs in the
OMAP5910 processor via three TIPB switches (one for each UART).
Figure 12–1 shows the OMAP5910 device with the UART modem module
highlighted. UART1 and 2 are UART modems with autobaud capability.
UART3 is a modem with IrDA.

Figure 12–1. UART Modem Module

MPU core
(TI925T)

(instruction
cache, data

cache, MMU)

System
DMA

controller

TMS320C55x DSP
(Instruction cache, SARAM

 DARAM, DMA,
 H/W accelerators)

MPU
peripheral

bridge

LCD
I/F

MPU
Interface

SRAM

SDRAM
memories

Flash and
SRAM

memories

DSP
MMU

16

16

32

16

32

32

32

32

32

32

16

MPU privatePeripherals bus

DSP public (shared) pheripheral bus

32
MPU public

16

DSP

DSP public peripherals

McBSP1

McBSP3

MPU public peripherals

USB Host I/F

JTAG/
emulation

I/F
OSC

12 MHz Clock

OSC

OMAP5910

ETM9

Timers (3)

MPU/DSP shared peripherals

Mailbox

MPU private peripherals

Timers (3)

16

Memory interface

Reset External clock

MPU Bus

32 kHz

1.5M bits

traffic controller (TC)

Watchdog timer

Level 1/2 interrupt handlers

Configuration registers

Clock and reset management

Watchdog timer
Level 1/2

Private peripherals

GPIO I/F

USB Function I/F

Camera I/F
MPUIO

32-kHz timer
PWT
PWL

M
I
F
S

M
I
F
F

I
M
I
F

MCSI1
MCSI2

Keyboard I/F

request

E

E

TIPB
switch

UART1
UART2

UART3 IrDA

32

MMC/SD
LPG x2

HDQ / 1-WIRE

DSP private
peripheral bus

peripherals bus

McBSP2

Device identification

RTC

interrupt handlers

I2C
µWire

Frame adjstument
counter

32

32

32

32

UART Introduction

12-3UART Devices

12.1.1 Main UART Features (UART1/2/3)

The main features are as follows:

� Selectable UART/autobaud modes (UART1 and 2 only)

� Dual 64-entry FIFOs for received and transmitted data payload

� Programmable and selectable transmit and receive FIFO trigger levels for
DMA and interrupt generation

� Programmable sleep mode

� Complete status reporting capabilities in both normal and sleep mode

� Frequency prescaler values from 0 to 65535 to generate the appropriate
baud rates

� An interrupt request to the system if there are multiple DMA
requests

12.1.1.1 UART/Modem Functions (UART1/2/3)

� Baud rate from 300 bits/s up to 1.5M bits/s
� Autobaud between 1200 bits/s and 115.2K bits/s
� Software/hardware flow control

� Programmable XON/XOFF characters
� Programmable AUTO_RTS and AUTO_CTS

� Programmable serial interface characteristics

� 5-, 6-, 7-, or 8-bit characters
� Even-, odd-, or no-parity bit generation and detection
� 1, 1.5, or 2 stop bit generation

� False start bit detection
� Line break generation and detection
� Fully prioritized interrupt system controls
� Internal test and loopback capabilities

Modem control functions (CTS, RTS, DSR, and DTR)

UART Introduction

 12-4

12.1.1.2 IrDA Functions (UART3 Only)

� Slow infrared (SIR) operations

� Framing error, cyclic redundancy check (CRC) error, abort pattern (SIR)
detection

� 8-entry status FIFO (with selectable trigger levels) available to monitor
frame length and frame errors

Table 12–1 describes the I/O module at the module level.

12.1.1.3 UART Signals

The signals available on the UART modules are illustrated in Figure 12–2.
These signals are described in Table 12–1.

Figure 12–2. UART Signals

UART

RX

TX

CTS

RTS

DSR

DTR

TXIR

SD_MODE

RXIR

These signals are
only available
on UART3

UART Introduction

12-5UART Devices

Table 12–1. I/O Description

Signal I/O Description
Reset
Value

UART/MODEM Signals

RX I Serial data input –

TX O Serial data output 1

CTS I Clear to send.

Active-low modem status signal. Reading bit 4 of the modem status
register checks the condition of CTS. Reading bit 0 of that register
checks a change of state of CTS since the last read of the modem status
register. CTS is used in automatic CTS mode to control the transmitter.

–

RTS O Request to send.

When active (low), the module is ready to receive data. Setting modem
control register bit 1 activates RTS. It becomes inactive as a result of a
module reset, loop back mode or by clearing the MCR1. In automatic
RTS mode, it becomes inactive as a result of the receiver threshold logic.

1

DSR I Data set ready

Active-low modem status signal. Reading bit 5 of the modem status
register checks the condition of DSR. Reading bit 1 of that register
checks a change of state of DSR since the last read of the modem status
register.

–

DTR O Data transmit ready

Active-low modem control signal. Reading bit 0 of the modem control
register checks the condition of DTR.

1

IrDA Signals (UART3 Only)

RXIR I Serial data input –

TXIR O Serial data output 0

SD_MODE O Signal used to configure transceivers 1

UART Environments

 12-6

12.2 UART Environments

Each UART is controllable through a TIPB switch, either by the MPU (default)
or the DSP.

12.2.1 UART1 Environment

UART1 is a UART modem with autobaud capability. Table 12–2 lists the
UART1 modem signals accessible at the OMAP5910 level.

Table 12–2. Available UART1 Signals

Generic UART Signal Name Description UART1 Signal Name

RX Serial data input UART1.RX

TX Serial data output UART1.TX

CTS Clear to send input UART1.CTS

RTS Request to send input UART1.RTS

DTR Data transmit ready output UART1.DTR

DSR Data set ready input UART1.DSR

The functional clock is either a 12-MHz or a 48-MHz clock. You can select the
clock with the CONF_MOD_UART1_CLK_MODE_R bit (29) of the
MOD_CONF_CTRL_0 register (see Section 6.8, OMAP5910 Configuration
Registers) as follows:

� CONF_MOD_UART1_CLK_MODE_R = 0: 12 MHz (default)
� CONF_MOD_UART1_CLK_MODE_R = 1: 48 MHz

NDMA_REQ [1:0] are connected to the DMA request [13:12] of both the MPU
system DMA controller and the DSP DMA controller.

NDMA_REQ[1] is a RX request, and NDMA_REQ[0] is a TX request.

NIRQ from UART1 is connected to:

� The interrupt line IRQ[14] of the MPU level 2 interrupt handler
� The interrupt line IRQ[5] of the DSP level 2 interrupt handler

UART Environments

12-7UART Devices

Figure 12–3 shows the UART1 environment.

Figure 12–3. UART1 Environment

MPU TIPB

DSP TIPB (public)

Interrupt to MPUInterrupt to DSP

OMAP5910

UART1

FCLK

NBESET

NIRQ

NDMAREQ

UART1.RX

UART1.CTS

UART1.RTS

DMA request (1:0)
2

Input clock

TI peripheral bus

ULPD
Uart1_dpll_clk

12 MHz

48 MHz
1

0

TIPB switch

P_CLK
P_NBRST

CLKIN_DSP
CLKIN_MPU
NRESET

P_NIRQ

P_NDMAREQ

DSP PER_CLK (12 MHz)
MPU PER_CLK (12 MHz)

PER RESET

IRQ(14)

MPU interrupt level2

IRQ(5)

DSP interrupt level2

DMA(13:12)

DSP DMA

DMA(13:12)

MPU system DMA

(public)

(rx:tx)

UART1.DTR

UART1.DSR

(1:0)

UART1.TX

UART Environments

 12-8

12.2.2 UART2 Environment

UART2 is an UART modem with autobaud capability.

Table 12–3 lists the UART2 modem signals accessible at the OMAP5910
level.

Table 12–3. Available UART2 Signals

Generic UART Signal Name Description UART1 Signal Name

RX Serial data input RX2

TX Serial data output TX2

CTS Clear to send input CTS2

RTS Request to send input RTS2

FSR Receive frame (input only) Not available (internal feedback
from FSX)

BDCLK 16x baud clock input BDCLK2

The functional clock is either a 32-kHz/12-MHz or a 48-MHz clock. You can
select the clock with the CONF_MOD_UART2_CLK_MODE_R bit (30) of the
MOD_CONF_CTRL_0 register (see Section 6.8, OMAP5910 Configuration
Registers) as follows:

� CONF_MOD_UART1_CLK_MODE_R = 0: 32 kHz/12 MHz (default)
� CONF_MOD_UART1_CLK_MODE_R = 1: 48 MHz

The frequency of the 32-kHz/12-MHz clock depends on the OMAP5910
system state:

� 32 kHz in deep sleep modes
� 12 MHz in big sleep and awake mode

Note that the UPLD clock control register (CLOCK_CTRL_REG) bit 0
MODEM_32K_EN must be controlled as follows:

� MODEM_32K_EN = 0: Disables 32-kHz on UART clock in deep sleep
� MODEM_32K_EN = 1: Enables 32-kHz on UART clock when in deep

sleep

The reset condition is 0.

When the CONF_MOD_UART1_CLK_MODE_R = 0 and MODEM_32K_ EN = 1,
the UART2 operates at 32kHz input clock while the device is in deep sleep.

UART Environments

12-9UART Devices

UART2.BDCLK (UART2 baud clock) automatically switches to a lower fre-
quency in deep sleep based on the 12MHz to 32kHz clock switch in the ULPD.
Putting the baud clock outside of the device enables an external UART to use
this baud clock to remain synchronized even while the OMAP5910 device is
in deep sleep. If the external UART sends a byte when the OMAP5910 device
uis in deep sleep, it isreceived by UART2 correctly without loss of data,
although at a slow rate. The activity detection circuit monitors UART2.RX
activity using the UART2.BDCLK clock and requests the ULPD to wakeup by
the periph_clk_nreq signal. The activity detection logic uses a two out of three
voting logic. The following sampled combinations of UART2.RX will produce
a periph_clk_nreq: 001, 010, and 100.

Figure 12–4 shows the sequence of the wakeup by UART2.RX.

Figure 12–4. UART2.RX Wakeup Sequence

12 MHz

Start

UART2 clock

UART2.BDCLK

UART2.RX

t=1 t=2 t=3 t=4

B
it1Bit0 B
it2

B
it3

B
it4

B
it5

B
it6

B
it7

S
to

p

32.768 kHz 12 MHz

12/N MHz 32.768/N kHz 12/N MHz

� T = #1: The MPU goes to standby and enters “Deep Sleep” state. The
12MHz osc is turned off. The Baud clock automatically switches to 32,768
/ N. (N = Uart Div ratio)

� T = #2: A falling edge on UART2.RX is sensed and causes wake up of the
12MHz OSC, the wake up time depends primarily on the analog wait timer
(12MHz osc start up delay).

� T = #3: The ULPD transitions to “Awake” mode after 12MHz is stable. The
UART2 Baud clock will switch back to 12/N MHz. Note the MPU is still
sleeping now waiting for interrupt to wakeup.

� T = #4: There are two ways the MPU wakes up:

� RHR interrupt

� RX Timeout interrupt (shown in Figure 12–4): When UART2.RX has
been high for a time equivalent to (4 * Programmed word length +
12bits) / baud rate, the RX Timeout interrupt occurs and wakes up the
MPU.

UART Environments

 12-10

There is an alternate wakeup from deep sleep: By programming bit 4 of the
UART2 SCR register, it is possible to create an interrupt by a low going edge
on RX or CTS. The interrupt would be generated by RX at time #2 in
Figure 12–4.

NDMA_REQ [1:0] are connected to the DMA request [15:14] of both MPU
system DMA controller and the DSP DMA controller. NDMA_REQ[1] is a RX
request, and the NDMA_REQ[0] is a TX request. NIRQ from UART2 is
connected to the following:

� Interrupt line IRQ[15] of the MPU level 2 interrupt handler

� Interrupt line IRQ[4] of the DSP level 2 interrupt handler

Figure 12–5 shows the UART2 environment.

Figure 12–5. UART2 Environment

MPU TIPB (public)

DSP TIPB (public)

Interrupt to MPUInterrupt to DSP

OMAP5910

TX2

UART2

FCLK

NRESET

NIRQ

NDMAREQ(1:0)

RX2

CTS2

RTS2

DMA request (1:0)
(rx:tx)

2

Input clock

TI peripheral bus

ULPD
Uart1_dpll_clk

Uart_mcko
32 kHz/12 MHz

48 MHz
1

0

TIPB switch

P_NBRST

CLKIN_DSP
CLKIN_MPU
NRESET

P_NIRQ

P_NDMAREQ

DSP PER_CLK (12 MHz)
MPU PER_CLK (12 MHz)

PER RESET

IRQ(15)

MPU interrupt level2

IRQ(4)

DSP interrupt level2

DMA(15:14)

DSP DMA

DMA(15:14)

MPU system DMA

BDCLK2

UART2 Activity
detection

Periph_clk_nreq

chip_nwakeup

UART Environments

12-11UART Devices

12.2.3 UART3 Environment

The UART3 is a UART modem with IrDA capability.

The IrDA mode (SIR) is selectable by setting the MODE_SELECT bits (2:0)
of the UART3 MDRI register to 001. Set the IRDA_SELECT signal to 1.

You can use the IRDA_SELECT signal to control the multiplexing on the
UART3 I/Os between the UART3 modem signals and the UART3 IrDA signals.

Table 12–4 lists the UART3 IrDA signals accessible at the OMAP5910 level
when IRDA_SELECT = 1.

Table 12–4. Available UART3 Signals in IrDA = 1 Mode

Generic UART Signal Name Description UART1 Signal Name

TXIR IrDA serial data input TX3

RXIR IrDA serial data output UART3.RX

RX Serial data input High

SD_MODE Signal used to configure transceivers RTS3

Table 12–5 lists the UART3 IrDA signals accessible at the OMAP5910 level
when IRDA_SELECT = 0.

Table 12–5. Available UART3 Signals in IrDA = 0 Mode

Generic UART Signal Name Description UART3 Signal Name

TX Serial data output TX3

RX Serial data input UART3.RX

RXIR IrDA serial data input High

RTS Request to send output RTS3

CTS Clear to send input CTS3

DTR Data transmit ready output DTR3

DSR Data set ready input DSR3

UART Environments

 12-12

The functional clock is either a 12-MHz or a 48-MHz clock. You can select the
clock with the CONF_MOD_UART3_CLK_MODE_R bit (30) of the
MOD_CONF_CTRL_0 register (see Section 6.8, OMAP5910 Configuration
Registers) as follows:

� CONF_MOD_UART3_CLK_MODE_R = 0: 12 MHz (default)
� CONF_MOD_UART3_CLK_MODE_R = 1: 48 MHz

The NDMA_REQ [1:0] are connected to DMA request [19:18] of both the MPU
system DMA controller and the DSP DMA controller.

NDMA_REQ[1] is a RX request and the NDMA_REQ[0] is a TX request.

NIRQ from UART2 is connected to:

� The interrupt line IRQ[15] of the MPU level 1 interrupt handler
� The interrupt line IRQ[10] of the DSP level 1 interrupt handler

Figure 12–6 shows the UART3 environment.

Figure 12–6. UART3 Environment

MPU TIPB (public)

DSP TIPB (public)

Interrupt to MPUInterrupt to DSP

OMAP5910

UART3
FCLK

IRDA_SELECT

NRESET

NIRQ
NDMAREQ

DMA request (1:0)
(rx:tx)

2

Input clock

TI peripheral bus

ULPD
Uart1_dpll_clk

12 MHz

48 MHz
1

0

TIPB switch

P_CLK
P_NBRST

CLKIN_DSP
CLKIN_MPU

NRESET

P_NIRQ

P_NDMAREQ

DSP PER_CLK (12 MHz)

MPU PER_CLK (12 MHz)

PER RESET

IRQ(15) _ L1

MPU interrupt level1

IRQ(10) – L1

DSP interrupte level1

DMA(19:18)

DSP DMA

DMA(19:18)

MPU system DMA

CTS3

RTS3

TX

RX

TXIR

RXIR

DTR3

DSR3

RX3

TX3

1

1

RTS

SD_MODE(1:0)

UART Environments

12-13UART Devices

12.2.4 TIPB Switch

By default, the three UARTs are controllable from the MPU public TIPB.

The three TIPB switch modules allow you to change the default configuration
individually and thus to control the UARTs from the DSP public TIPB.

This change can only be done during the boot time. Dynamic switches are not
supported.

This switch is software programmable, so each TIPB switch has two sets of
registers:

� The MPU-accessible registers are listed in Table 12–6. Table 12–7 and
Table 12–8 describe the register bits.

� The DSP-accessible registers are listed in Table 12–9. Table 12–10 and
Table 12–11 describe the register bits.

Table 12–6. MPU Registers

UART Register Description R/W Bits Address

UART1 RHSW_ARM_CNF TIPB switch configuration R/W 16 FFFB:C800

UART1 RHSW_ARM_STA TIPB switch status R 16 FFFB:C804

UART2 RHSW_ARM_CNF TIPB switch configuration R/W 16 FFFB:C840

UART2 RHSW_ARM_STA TIPB switch status R 16 FFFB:C844

UART3 RHSW_ARM_CNF TIPB switch configuration R/W 16 FFFB:C880

UART3 RHSW_ARM_STA TIPB switch status R 16 FFFB:C884

Table 12–7. TIPB Switch Configuration MPU Register (RHSW_ARM_CNF)

Bit Name Value Function R/W
Reset
Value

15–2 Reserved – – –

1 DSP_PERIPH_LOCK 0 No lock R 0

1 DSP bus is allocated.

0 ARM_PERIPH_LOCK 0 No lock R/W 1

1 MPU bus is allocated.

UART Environments

 12-14

Table 12–8. TIPB Switch Status MPU Register (RHSW_ARM_STA)

Bit Name Value Function R/W
Reset
Value

15–4 Reserved – – –

3 RHSW_BOTH_LCK_ERR 0 Normal operation R 0

1 Lock error

2 RHSW_ITPEND_ERR 0 Normal operation R 0

1 DMA request error

1 RHSW_DMAREQ_ERR 0 Normal operation R 0

1 IT pending error

0 RHSW_ERR_NIRQ 0 Clears IRQ line and all others status
bits of register

R/W 1

1 Normal operation

Table 12–9. DSP Registers

UART Register Description R/W Bits Address

UART1 RHSW_DSP_CNF TIPB switch control R/W 16 001:C800

UART1 RHSW_DSP_STA TIPB switch status R 16 001:C802

UART2 RHSW_DSP_CNF TIPB switch control R/W 16 001:C820

UART2 RHSW_DSP_STA TIPB switch status R 16 001:C822

UART3 RHSW_DSP_CNF TIPB switch control R/W 16 001:C840

UART3 RHSW_DSP_STA TIPB switch status R 16 001:C842

UART Environments

12-15UART Devices

Table 12–10. TIPB Switch Configuration DSP Register (RHSW_DSP_CNF)

Bit Name Value Function R/W
Reset
Value

15–2 Reserved – – –

1 DSP_PERIPH_LOCK 0 No lock R/W 0

1 DSP bus is allocated.

0 ARM_PERIPH_LOCK 0 No lock R 1

1 MPU bus is allocated.

Table 12–11. TIPB Switch Status DSP Register (RHSW_DSP_STA)

Bit Name Value Function R/W
Reset
Value

15–4 Reserved – – –

3 RHSW_BOTH_LCK_ERR 0 Normal operation R 0

1 Lock error

2 RHSW_ITPEND_ERR 0 Normal operation R 0

1 DMA request error

1 RHSW_DMAREQ_ERR 0 Normal operation R 0

1 IT pending error

0 RHSW_ERR_NIRQ 0 Clears IRQ line and all others status
bits of register

R/W 1

1 Normal operation

UART Environments

 12-16

12.2.5 Switching Procedures

The following procedures enable you to switch from MPU to DSP.

For switching UART1 to DSP:

1) MPU: Write 0 into the UART1 TIPB switch configuration MPU register
(RHSW_ARM_CNF) to unlock UART1.

2) DSP: Write 2 into the UART1 TIPB switch status DSP register
(RHSW_DSP_CNF) to lock UART1.

For switching UART2 to DSP:

1) MPU: Write 0 into the UART2 TIPB switch configuration MPU register
(RHSW_ARM_CNF) to unlock UART2.

2) DSP: Write 2 into UART2 TIPB switch configuration DSP register
(RHSW_DSP_CNF) to lock UART2.

For switching UART3 to DSP:

1) MPU: Write 0 into the UART3 TIPB switch configuration MPU register
(RHSW_ARM_CNF) to unlock UART3.

2) DSP: Write 2 into UART3 TIPB switch configuration DSP register
(RHSW_DSP_CNF) to lock UART3.

Note: PERIF_LOCK Bits

If either the DSP_PERIF_LOCK (in the RHSW_DSP_CNF register) or the
ARM_PERIF_LOCK bit (in the RHSW_ARM_CNF register) is already set to
1, then a write to the other PERIF_LOCK bit has no effect on the TIPB
switches, even though such a write may be performed. Before attempting to
write 1 to a PERIF_LOCK bit, the DSP and MPU software must always read
the corresponding read-only PERIF_LOCK bits to confirm that the other
processor PERIF_LOCK bit is not already set.

UART/Autobaud Control and Status Registers

12-17UART Devices

12.3 UART/Autobaud Control and Status Registers

The programming combinations for register selection are shown in
Table 12–12.

12.3.1 UART/Autobaud Modem Register Mapping

UART1 and UART2 are accessible as follows:

� MPU (32-bit-byte aligned address) from the following base addresses:

� UART1: 0xFFFB 0000
� UART2: 0xFFFB 0800

� DSP (16-bit-aligned word address) from the following base addresses:

� UART1: 0x008000
� UART2: 0x008400

Table 12–12. UART Modem Register Program

Registers
MPU
Byte
Off-

DSP
Byte
Off-

LCR[7] = 0
LCR[7] = 1

LCR[7:0] ≠ 0xBF LCR[7:0] = 0xBF
Off-
set

Off-
set READ WRITE READ WRITE READ WRITE

0x00 0x00 RHR THR DLL DLL DLL DLL

0x04 0x02 IER† IER† DLH DLH DLH DLH

0x08 0x04 IIR FCR† IIR FCR† EFR EFR

0x0C 0x06 LCR LCR LCR LCR LCR LCR

0x10 0x08 MCR† MCR† MCR† MCR† XON1 XON1

0x14 0x0A LSR - LSR - XON2 XON2

0x18 0x0C MSR/TCR‡ TCR‡ MSR/TCR‡ TCR‡ XOFF1/TCR‡ XOFF1/TCR‡

0x1C 0x0E SPR/TLR‡ SPR/TLR‡ SPR/TLR‡ SPR/TLR‡ XOFF2/TLR‡ XOFF2/TLR‡

0x20 0x10 MDR1 MDR1 MDR1 MDR1 MDR1 MDR1

0x24 0x12 - - - - - -

0x28 0x14 - - - - - -

0x2C 0x16 - - - - - -

† MCR[7:5], FCR[5:4], and IER[7:4] can only be written when EFR[4] = 1.
‡ Transmission control register (TCR) and trigger level register (TLR) are accessible only when EFR[4] = 1 and MCR[6] = 1.

UART/Autobaud Control and Status Registers

 12-18

Table 12–12. UART Modem Register Program (Continued)

MPU
Byte
Off-
set

Registers
DSP
Byte
Off-
set

MPU
Byte
Off-
set

LCR[7:0] = 0xBF
LCR[7] = 1

LCR[7:0] ≠ 0xBFLCR[7] = 0

DSP
Byte
Off-
set

MPU
Byte
Off-
set WRITEREADWRITEREADWRITEREAD

DSP
Byte
Off-
set

0x30 0x18 - - - - - -

0x34 0x1A - - - - - -

0x38 0x1C - - UASR - UASR -

0x3C 0x1E - - - - - -

0x40 0x20 SCR SCR SCR SCR SCR SCR

0x44 0x22 SSR - SSR - SSR -

0x48 0x24 - - - - - -

0x4C 0x26 - OSC_12M_
SEL

- - - -

0x50 0x28 MVR - MVR - MVR -

† MCR[7:5], FCR[5:4], and IER[7:4] can only be written when EFR[4] = 1.
‡ Transmission control register (TCR) and trigger level register (TLR) are accessible only when EFR[4] = 1 and MCR[6] = 1.

Table 12–13 lists the UART/autobaud registers. Table 12–14 through
Table 12–41 describe specific register bits.

Table 12–13. UART/Autobaud Registers

Register Description Size Access

RHR Receive holding 8-bit R

THR Transmit holding 8-bit W

FCR FIFO control 8-bit W

SCR Supplementary control 8-bit R/W

LCR Line control 8-bit R/W

LSR UART mode (LSR) 8-bit R

SSR Supplementary status 8-bit R

MCR Modem control 8-bit R/W

UART/Autobaud Control and Status Registers

12-19UART Devices

Table 12–13. UART/Autobaud Registers (Continued)

Register AccessSizeDescription

MSR Modem status 8-bit R

IER Interrupt enable (IER) 8-bit R/W

IIR Interrupt identification (IIR) 8-bit R

EFR Enhanced feature 8-bit R/W

XON1 XON1 8-bit R/W

XON2 XON2 8-bit R/W

XOFF1 XOFF1 8-bit R/W

XOFF2 XOFF2 8-bit R/W

SPR Scratchpad 8-bit R/W

DLL Divisor latch low 8-bit R/W

DLH Divisor latch high 8-bit R/W

TCR Transmission control 8-bit R/W

TLR Trigger level 8-bit R/W

MDR1 Mode definition 1 8-bit R/W

UASR UART autobauding status 8-bit R

OSC_12M_SEL 12-MHz oscillator select 8-bit R

MVR Module version 8-bit R

The receiver section consists of the receiver holding register (RHR) and the
receiver shift register. The RHR is actually a 64-byte FIFO. The receiver shift
register receives serial data from RX input. The data is converted to parallel
data and moved to the RHR. If the FIFO is disabled, location zero of the FIFO
is used to store the single data character.

Note:

If overflow occurs, data in the RHR is not overwritten.

UART/Autobaud Control and Status Registers

 12-20

Table 12–14. Receive Holding Register (RHR)

Bit Name Function R/W
Reset
Value

7–0 RHR Receive holding register R Undefined

The transmitter section consists of the transmit holding register (THR) and the
transmit shift register. The THR is actually a 64-byte FIFO. The host (MPU or
DSP) writes data to the THR. The data is placed into the transmit shift register
where it is shifted out serially on the TX output. If the FIFO is disabled, location
0 of the FIFO is used to store the data.

Table 12–15. Transmit Holding Register (THR)

Bit Name Function R/W
Reset
Value

7–0 THR Transmit holding register W Undefined

Table 12–16. FIFO Control Register (FCR)

Bit Name Value Function R/W
Reset
Value

7–6 RX_FIFO_TRIG Sets the trigger level for the RX FIFO:

If SCR7 = 0 and TLR7:4 = 0000:

W 00

00 8 characters

01 16 characters

10 56 characters

11 60 characters

If SCR7 = 0 and TLR7:4 ≠ 0000,
RX_FIFO_TRIG is not considered.

If SCR7 = 1, RX_FIFO_TRIG is two LSBs of
the trigger level (1-63 on 6 bits) with
granularity of 1.

Notes: 1) Bits 4 and 5 can only be written when EFR[4] = 1.

2) Bits 0 to 3 can be changed only when baud clock is not running (DLL and DLH set to 0).

3) See Table 12–36 for FCR[5:4] setting restriction when SCR[6] = 1.

4) See Table 12–37 for FCR[7:6] setting restriction when SCR[7] = 1.

UART/Autobaud Control and Status Registers

12-21UART Devices

Table 12–16. FIFO Control Register (FCR) (Continued)

Bit
Reset
ValueR/WFunctionValueName

5–4 TX_FIFO_TRIG Sets the trigger level for the TX FIFO:

If SCR6 = 0 and TLR3:0 = 0000:

W 00

00 8 characters

01 16 characters

10 56 characters

11 60 characters

If SCR6 = 0 and TLR3:0 ≠ 0000,
TX_FIFO_TRIG is not considered.

If SCR6 = 1, TX_FIFO_TRIG is two LSBs of
the trigger level (1-63 on 6 bits) with
granularity of 1.

3 DMA_MODE 0 DMA_MODE 0 (No DMA) W 0

1 DMA_MODE 1 (UART_nDMA_REQ0 in TX,
UART_nDMA_REQ1 in RX)

This register only has effect if SCR0 = 0.

2 TX_FIFO_CLEAR 0 No change W 0

1 Clears the transmit FIFO and resets its
counter logic to zero. Returns to zero after
clearing FIFO.

1 RX_FIFO_CLEAR 0 No change W 0

1 Clears the receive FIFO and resets its
counter logic to zero. Returns to zero after
clearing FIFO.

0 FIFO_EN 0 Disables the transmit and receive FIFOs W 0

1 Enables the transmit and receive FIFOs

Notes: 1) Bits 4 and 5 can only be written when EFR[4] = 1.

2) Bits 0 to 3 can be changed only when baud clock is not running (DLL and DLH set to 0).

3) See Table 12–36 for FCR[5:4] setting restriction when SCR[6] = 1.

4) See Table 12–37 for FCR[7:6] setting restriction when SCR[7] = 1.

UART/Autobaud Control and Status Registers

 12-22

Table 12–17. Supplementary Control Register (SCR)

Bit Name Value Function R/W
Reset
Value

7 RX_TRIG_GRANU1 0 Disables the granularity of 1 for trigger
RX level

R/W 0

1 Enables the granularity of 1 for trigger
RX level

6 TX_TRIG_GRANU1 0 Disables the granularity of 1 for trigger
TX level

R/W 0

1 Enables the granularity of 1 for trigger
TX level

5 DSR_IT 0 Disables DSR interrupt R/W 0

1 Enables DSR interrupt

4 RX_CTS_DSR_
WAKE_UP_ENABLE

0 Disables the wake up interrupt and
clears SSR1

R/W 0

1 Waits for a falling edge of pins RX, CTS,
or DSR to generate an interrupt

3 TX_EMPTY_CTL_IT 0 Normal mode for THR interrupt (see
Table 12–23)

R/W 0

1 The THR interrupt is generated when TX
FIFO and TX shift register are empty.

2–1 DMA_MODE_2 Used to specify the DMA mode valid if
SCR0 = 1

R/W 00

00 DMA mode 0 (no DMA)

01 DMA mode 1 (UART_nDMA_REQ0 in
TX, UART_nDMA_REQ1 in RX)

10 DMA mode 2 (UART_nDMA_REQ0 in
RX)

11 DMA mode 3 (UART_nDMA_REQ0 in
TX)

0 DMA_MODE_CTL 0 The DMA_MODE is set with FCR3. R/W 0

1 The DMA_MODE is set with SCR2:1.

Note: Bit 4 enables the wake-up interrupt, but this interrupt is not mapped on the IIR register. Therefore, when an interrupt
occurs and if there is no interrupt pending in IIR, SSR[1] must be checked. To clear the wake-up interrupt, SCR[4] must
be reset to 0.

UART/Autobaud Control and Status Registers

12-23UART Devices

Table 12–18. Line Control Register (LCR)

Bit Name Value Function R/W
Reset
Value

7 DIV_EN 0 Normal operating condition R/W 0

1 Divisor latch enable. Allows access to
DLL, DLH, and other registers (see the
register mapping).

6 BREAK_EN Break control bit. R/W 0

0 Normal operating condition

1 Forces the transmitter output to go low
to alert the communication terminal

5 PARITY_TYPE2 Selects the forced parity format (if LCR3
= 1)

If LCR5 = 1 and LCR4 = 0, the parity bit
is forced to 1 in the transmitted and
received data.

If LCR5 = 1 and LCR4 = 1, the parity bit
is forced to 0 in the transmitted and
received data.

R/W 0

4 PARITY_TYPE1 0 Odd parity is generated (if bit 3 = 1). R/W 0

1 Even parity is generated (if bit 3 = 1).

3 PARITY_EN 0 No parity R/W 0

1 A parity bit is generated during
transmission and the receiver checks for
received parity.

2 NB_STOP Specifies the number of stop bits: R/W 0

0 1 stop bits (word length = 5, 6, 7, 8)

1 1.5 stop bits (word length = 5)

1 2 stop bits (word length = 6, 7, 8)

Note: As soon as LCR[6] is set to 1, the RX line is forced to 0 and remains in this state as long as LCR[6] = 1.

UART/Autobaud Control and Status Registers

 12-24

Table 12–18. Line Control Register (LCR) (Continued)

Bit
Reset
ValueR/WFunctionValueName

1–0 CHAR_LENGTH Specifies the word length to be
transmitted or received.

R/W 00

00 5 bits

01 6 bits

10 7 bits

11 8 bits

Note: As soon as LCR[6] is set to 1, the RX line is forced to 0 and remains in this state as long as LCR[6] = 1.

Table 12–19. UART Mode Line Status Register (LSR)

Bit Name Value Function R/W
Reset
Value

7 RX_FIFO_STS 0 Normal operation R 0

1 At least one parity error, framing error or
break indication in the receiver FIFO. Bit 7 is
cleared when no more errors are present in
the FIFO.

6 TX_SR_E 0 Transmitter hold and shift registers are not
empty.

R 1

1 Transmitter hold and shift registers are empty.

5 TX_FIFO_E 0 Transmit hold register is not empty. R 1

1 Transmit hold register is empty. The
processor can now load up to 64 bytes of
data into the THR if the TX FIFO is enabled.

4 RX_BI 0 No break condition R 0

1 A break was detected while the data being
read from the RX FIFO was being received
(i.e., RX input was low for one character time
frame).

UART/Autobaud Control and Status Registers

12-25UART Devices

Table 12–19. UART Mode Line Status Register (LSR) (Continued)

Bit
Reset
ValueR/WFunctionValueName

3 RX_FE 0 No framing error in data being read from RX
FIFO

R 0

1 Framing error occurred in data being read
from RX FIFO (i.e., received data did not
have a valid stop bit).

2 RX_PE 0 No parity error in data being read from RX
FIFO

R 0

1 Parity error in data being read from RX FIFO

1 RX_OE 0 No overrun error R 0

1 Overrun error has occurred. Set when the
character held in receive shift register is not
transferred to the RX FIFO. This case can
occurs only when receive FIFO is full.

0 RX_FIFO_E 0 No data in the receive FIFO R 0

1 At least one data character in the RX_FIFO

When the LSR is read, LSR[4:2] reflect the error bits [BI, FE, PE] of the charac-
ter at the top of the RX FIFO (next character to be read). Therefore reading the
LSR and then reading the RHR identifies errors in a character.

Reading RHR updates BI, FE, and PE (see Table 12–14).

LSR[7] is set when there is an error anywhere in the RX FIFO and is cleared
only when there are no more errors remaining in the FIFO.

Note:

Reading the LSR does not cause an increment of the RX FIFO read pointer.
The RX FIFO read pointer is incremented by reading the RHR.

Reading LSR clears OE, if OE is set (see Table 12–19).

UART/Autobaud Control and Status Registers

 12-26

Table 12–20. Supplementary Status Register (SSR)

Bit Name Value Function R/W
Reset
Value

7–2 – Reserved R 000000

1 RX_CTS_DSR_WAKE_
UP_STS

0 No falling edge event on RX, CTS and
DSR

R 0

1 A falling edge occurred on RX, CTS or
DSR.

0 TX_FIFO_FULL 0 TX FIFO not full R 0

1 TX FIFO full

Note: Bit 1 is reset only when SCR[4] is reset to 0.

The modem control register (MCR)[3:0] controls the interface with the modem,
data set, or peripheral device that is emulating the modem.

Table 12–21. Modem Control Register (MCR)

Bit Name Value Function R/W
Reset
Value

7 CLKSEL 0 No action R/W 0

1 Divide clock input by 4

6 TCR_TLR 0 No action R/W 0

1 Enables access to the TCR and TLR registers

5 XON_EN 0 Disable XON any function R/W 0

1 Enable XON any function

4 LOOPBACK_EN 0 Normal operating mode R/W 0

1 Enable local loop back mode (internal).
In this mode the MCR3:0 signals are looped
back into MSR7:4. The transmit output is
looped back to the receive input internally.

3 CD_STS_CH 0 In loopback mode, forces IRQ outputs to
inactive state

R/W 0

1 In loopback mode, forces IRQ outputs to
inactive state

Note: Bits 5, 6, and 7 can be written only when EFR[4] = 1.

UART/Autobaud Control and Status Registers

12-27UART Devices

Table 12–21. Modem Control Register (MCR) (Continued)

Bit
Reset
ValueR/WFunctionValueName

2 RESERVED Reserved. This bit must always be written as
0.

R/W 0

1 RTS 0 0: Forces RTS output to inactive (high) R/W 0

1 Forces RTS output to active (low)

In loopback mode controls MSR4.

If automatic RTS is enabled, the RTS output
is controlled by hardware flow control.

0 DTR 0 Forces DTR output to inactive (high) R/W 0

1 Forces DTR output to active (low)

Note: Bits 5, 6, and 7 can be written only when EFR[4] = 1.

The modem status register (MSR) provides information about the current state
of the control lines from the modem, data set, or peripheral device to the host
(MPU or DSP). It also indicates when a control input from the modem changes
state.

Table 12–22. Modem Status Register (MSR)

Bit Name Function R/W
Reset
Value

7–6 RESERVED Reserved R Input signal

5 NDSR_STS This bit is the complement of the DSR input. In loop-
back mode it is equivalent to MCR0

R Input signal

4 NCTS_STS This bit is the complement of the CTS input. In loopback
mode it is equivalent to MCR1

R Input signal

3–2 RESERVED Reserved R 0

1 DSR_STS 1: Indicates that DSR input (or MCR0 in loopback) has
changed state. Cleared on a read

R 0

0 CTS_STS 1: Indicates that CTS input (or MCR1 in loopback) has
changed state. Cleared on a read.

R 0

UART/Autobaud Control and Status Registers

 12-28

The interrupt enable register (IER) can be programmed to enable/disable any
of the following interrupts:

� Receiver error
� RHR
� THR
� XOFF received
� CTS/RTS change of state from low to high

These interrupts can be enabled/disabled individually. There is also a sleep
mode enable bit.

Table 12–23. UART Mode Interrupt Enable Register (IER)

Bit Name Value Function R/W
Reset
Value

7 CTS_IT 0 Disables the CTS interrupt R/W 0

1 Enables the CTS interrupt

6 RTS_IT 0 Disables the RTS interrupt R/W 0

1 Enables the RTS interrupt

5 XOFF_IT 0 Disables the XOFF interrupt R/W 0

1 Enables the XOFF interrupt

4 SLEEP_MODE 0 Disables sleep mode R/W 0

1 Enables sleep mode (stops baud rate clock
when the module is inactive)

3 MODEM_STS_IT 0 Disables the modem status register interrupt R/W 0

1 Enables the modem status register interrupt

2 LINE_STS_IT 0 Disables the receiver line status interrupt R/W 0

1 Enables the receiver line status interrupt

1 THR_IT 0 Disables the THR interrupt R/W 0

1 Enables the THR interrupt

0 RHR_IT 0 Disables the RHR interrupt and time out
interrupt.

R/W 0

1 Enables the RHR interrupt and time out
interrupt.

Note: Bits 4, 5, 6, and 7 can only be written when EFR[4] = 1.

UART/Autobaud Control and Status Registers

12-29UART Devices

The IIR is a read-only register that provides the source of the interrupt in a
prioritized manner.

Table 12–24. UART Mode Interrupt Identification Register (IIR)

Bit Name Value Function R/W
Reset
Value

7–6 FCR_MIRROR Mirror the contents of FCR(0) on both bits R 00

5–1 IT_TYPE Priority 5 4 3 2 1 Source

1 0 0 0 1 1 Receiver line status
error

2 0 0 1 1 0 RX time-out
2 0 0 0 1 0 RHR interrupt
3 0 0 0 0 1 THR interrupt
4 0 0 0 0 0 Modem interrupt
5 0 1 0 0 0 Xoff/special character
6 1 0 0 0 0 CTS, RTS, DSR

change state from
active (low) to
inactive (high)

R 00000

0 IT_PENDING 0 An interrupt is pending (nIRQ active). R 1

1 No interrupt is pending (nIRQ inactive).

The enhanced feature register (EFR) enables or disables enhanced features.

Table 12–25. Enhanced Feature Register (EFR)

Bit Name Value Function R/W
Reset
Value

7 AUTO_CTS_EN Automatic CTS enable bit R/W 0

0 Normal operation

1 Automatic CTS flow control is enabled; that is,
transmission is halted when the CTS pin is
high (inactive).

6 AUTO_RTS_EN Automatic RTS enable bit R/W 0

0 Normal operation

1 Automatic RTS flow control is enabled; that is,
RTS pin goes high (inactive) when the
receiver FIFO HALT trigger level, TCR(3:0), is
reached, and goes low (active) when the
receiver FIFO RESTORE transmission trigger
level is reached.

UART/Autobaud Control and Status Registers

 12-30

Table 12–25. Enhanced Feature Register (EFR) (Continued)

Bit
Reset
ValueR/WFunctionValueName

5 SPECIAL_CHAR_
DETECT

0 Normal operation R/W 0

1 Special character detect enable

Received data is compared with XOFF2 data.
If a match occurs, the received data is
transferred to FIFO and IIR bit 4 is set to 1 to
indicate a special character has been
detected.

4 ENHANCED_EN Enhanced functions write enable bit R/W 0

0 Disables writing to IER bits 4-7, FCR bits
4-5, and MCR bits 5-7.

1 Enables writing to IER bits 4-7, FCR bits 4-5,
and MCR bits 5-7.

3–0 SW_FLOW_CON-
TROL

Combinations of software flow control can be
selected by programming bit 3-bit 0. See
Section 12.5.10, Software Flow Control.

R/W 0

Table 12–26. EFR[0-3]: Software Flow Control Options

Bit 3 Bit 2 Bit 1 Bit 0 TX,RX Software Flow Controls

0 0 X X No transmit flow control

1 0 X X Transmit XON1, XOFF1

0 1 X X Transmit XON2, XOFF2

1 1 X X Transmit XON1, XON2: XOFF1, XOFF2

X X 0 0 No receive flow control

X X 1 0 Receiver compares XON1, XOFF1

X X 0 1 Receiver compares XON2, XOFF2

X X 1 1 Receiver compares XON1, XON2: XOFF1, XOFF2

Note: XON1 and XON2 must be set to different values if the software flow control is enabled.

UART/Autobaud Control and Status Registers

12-31UART Devices

Table 12–27. XON1 Register (XON1)

Bit Name Function R/W
Reset
Value

7–0 XON_WORD1 Used to store the 8-bit XON1 character R/W 0x00

Table 12–28. XON2 Register (XON2)

Bit Name Function R/W
Reset
Value

7–0 XON_WORD2 Used to store the 8-bit XON2 character R/W 0x00

Table 12–29. XOFF1 Register (XOFF1)

Bit Name Function R/W
Reset
Value

7–0 XOFF_WORD1 Used to store the 8-bit XOFF1 character R/W 0x00

Table 12–30. XOFF2 Register (XOFF2)

Bit Name Function R/W
Reset
Value

7–0 XOFF_WORD2 Used to store the 8-bit XOFF2 character R/W 0x00

The scratchpad register (SPR) does not control the module in any way; rather,
it is used by the programmer to hold temporary data.

Table 12–31. Scratchpad Register (SPR)

Bit Name Function R/W
Reset
Value

7–0 SPR_WORD Scratchpad register R/W 0x00

UART/Autobaud Control and Status Registers

 12-32

The divisor latch low register (DLL) and divisor latch high register (DLH) store
the 16-bit divisor for generation of the baud clock in the baud rate generator.
DLH stores the most significant part of the divisor; DLL stores the least
significant part of the divisor.

Note:

The DLL and DLH can only be written to before sleep mode is enabled (that
is, before IER[4] is set).

Table 12–32. Divisor Latch Low Register (DLL)

Bit Name Function R/W
Reset
Value

7–0 CLOCK_LSB Used to store the 8-bit LSB divisor value R/W 0x00

Table 12–33. Divisor Latch High Register (DLH)

Bit Name Function R/W
Reset
Value

7–0 CLOCK_MSB Used to store the 8-bit MSB divisor value R/W 0x00

To achieve the required baud rate, you must program DLL/DLH with the
integer part of the divisor value.

Choosing the appropriate divisor value:

UART: Divisor value = Operating Frequency / (16 x Baud Rate)

Just as in autobaud mode, the input frequency of the UART modem must be
fixed to the operating frequency (here 12 MHz; no CLKSEL bit setting) and the
the OSC_12M_SEL bit must be set to be able to reach desired baud rate. Set-
ting OSC_12M_SEL to 1 enables turning on the 6.5 division factor. For
instance, 12 MHz/16/6.5 = 115200 bps; in case OSC_12M_SEL is not set,
reached baud rate is either 12 MHz/16/6 or 12 MHz/16/7, which are out of
permitted tolerance.

UART/Autobaud Control and Status Registers

12-33UART Devices

The transmission control register (TCR) stores the receive FIFO threshold
levels to start/stop transmission during hardware/software flow control.

Table 12–34. Transmission Control Register (TCR)

Bit Name Function R/W
Reset
Value

7–4 RX_FIFO_TRIG_START RCV FIFO trigger level to RESTORE
transmission (0–60)

R/W 0000

3–0 RX_FIFO_TRIG_HALT RCV FIFO trigger level to HALT transmission
(0–60)

R/W 1111

Notes: 1) Trigger levels from 0 -60 bytes are available with a granularity of four
(Trigger level = 4 x [4-bit register value]).

2) The programmer must ensure that TCR[3:0] > TCR[7:4] whenever automatic RTS or software flow control is
enabled to avoid a faulty operation of the device.

3) In FIFO interrupt mode with flow control, programmer must also ensure that trigger level to HALT transmission is
greater or equal to receive FIFO trigger level (either TLR[7:4] or FCR[7:6]): otherwise, FIFO operation stalls. In FIFO
DMA mode with flow control, this issue does not exist because a DMA request is sent each time a byte is received.

The trigger level register (TLR) stores the programmable transmit and receive
FIFO trigger levels used for DMA and IRQ generation.

Table 12–35. Trigger Level Register (TLR)

Bit Name Function R/W
Reset
Value

7–4 RX_FIFO_TRIG_DMA Receive FIFO trigger level R/W 0000

3–0 TX_FIFO_TRIG_DMA Transmit FIFO trigger level R/W 0000

UART/Autobaud Control and Status Registers

 12-34

Table 12–36 and Table 12–37 summarize the different ways to set the trigger
levels for the transmit FIFO and the receive FIFO.

Table 12–36. TX FIFO Trigger Level Setting Summary

SCR[6] TLR[3:0] TX FIFO Trigger Level

0 0000 Defined by FCR5:4 (either 8, 16, 32, 56 spaces)

0 	0000 Defined by TLR3:0 (from 4 to 60 spaces with a granularity of 4 spaces)

1 Any value Defined by the concatenated value of TLR3:0 and FCR 5:4 (from 1 to 63
spaces with a granularity of 1 space).

The combination of TLR3:0 = 0000 and FCR 5:4 = 00 (all zeros) is not
supported (minimum 1 space required). All zeros result in unpredictable
behavior.

Note: The protocol to set the concatenation of TLR and FCR is:
– Set SCR[6] = 0
– Set the value of threshold into FCR and TLR
– Set SCR[6] = 1

Table 12–37. RX FIFO Trigger Level Setting Summary

SCR[7] TLR[7:4] RX FIFO Trigger Level

0 0000 Defined by FCR7:6 (either 8, 16, 56, 60 characters)

0 	0000 Defined by TLR7:4 (from 4 to 60 characters with a granularity of 4 characters)

1 Any value Defined by the concatenated value of TLR7:4 and FCR 7:6 (from 1 to 63
characters with a granularity of 1 character).

The combination of TLR7:4 = 0000 and FCR 7:6 = 00 (all zeros) is not
supported (minimum 1 character required). All zeros result in unpredictable
behavior.

Note: The protocol to set the concatenation of TLR and FCR is:
– Set SCR[7] = 0
– Set the value of threshold into FCR and TLR
– Set SCR[7] = 1

UART/Autobaud Control and Status Registers

12-35UART Devices

The mode of operation can be programmed by writing to MDR1[2:0]; therefore
the MDR1 must be programmed on start-up after configuration of the configu-
ration registers (DLL, DLH, LCR). The value of MDR1[2:0] must not be
changed again during normal operation.

Table 12–38. Mode Definition Register 1 (MDR1)

Bit Name Value Function R/W
Reset
Value

7–3 – Reserved R/W 00000

2–0 MODE_SELECT† 000: UART R/W 111

010 UART with autobauding

111 Disables UART/default state

All the other values are reserved.

† The MODE_SELECT = 0x7 setting disables the UART module by disabling the FIFO and the state machine. It does not gate
the functional clock to the module. The lowest power state is not achieved by setting MODE_SELECT = 0x7, but by putting the
UART into sleep mode. The lowest power state is achieved when in sleep mode witht DLL = 0xFFFF and DLH = 0xFFFF.

The UART autobauding status register (UASR) returns the speed, the number
of bits by characters, and the type of the parity in UART autobaud mode.

Table 12–39. Autobauding Status Register (UASR)

Bit Name Value Function R/W
Reset
Value

7–6 PARITY_TYPE 00 00: No parity identified R 00

01 Parity space

10 Even parity

11 Odd parity

5 BIT_BY_CHAR 0 7-bit character identified R 0

1 8-bit character identified

Note: This register is used to set up transmission according to characteristics of previous reception instead of LCR, DLL, and
DLH registers when UART is in autobaud mode.To reset the autobauding hardware (to start a new AT detection) or to
set the UART in standard mode (no autobaud), MDR1[2:0] must be set to reset state 111 then to the UART in autobaud
mode 010 or UART in standard mode 000.

UART/Autobaud Control and Status Registers

 12-36

Table 12–39. Autobauding Status Register (UASR) (Continued)

Bit
Reset
ValueR/WFunctionValueName

4–0 SPEED Used to report the speed identified R 0000

00000 No speed identified

00001 115 200 bauds

00010 57 600 bauds

00011 38 400 bauds

00100 28 800 bauds

00101 19 200 bauds

00110 14 400 bauds

00111 9 600 bauds

01000 4 800 bauds

01001 2 400 bauds

01010 1 200 bauds

Note: This register is used to set up transmission according to characteristics of previous reception instead of LCR, DLL, and
DLH registers when UART is in autobaud mode.To reset the autobauding hardware (to start a new AT detection) or to
set the UART in standard mode (no autobaud), MDR1[2:0] must be set to reset state 111 then to the UART in autobaud
mode 010 or UART in standard mode 000.

Table 12–40. OSC_12_MHz Register Select (OSC_12M_SEL)

Bit Name Function R/W
Reset
Value

7–1 – Reserved R 0000000

0 OSC_12M_SEL† When 1, selects 6.5 division factor with a 12-MHz
system clock.

W 0

† This register is write-only and cannot be read.

UART/Autobaud Modes of Operation

12-37UART Devices

Table 12–41. Module Version Register (MVR)

Bit Name Function R/W
Reset
Value

7-4 MAJOR_REV Major revision number of the module R ---†

3-0 MINOR_REV Minor revision number of the module R ---

† For example: MVR = 0x11 => Version 1.1

12.4 UART/Autobaud Modes of Operation

The UART/autobaud module can operate in two different modes: UART mode
and UART with autobaud mode.

The modules perform serial-to-parallel conversion on data characters
received and parallel-to-serial conversion on data characters transmitted by
the processor. The complete status of each channel of the modules and each
received character/frame can be read at any time during functional operation
via the line status register (LSR).

You can place the modules in an alternate mode (FIFO mode) to relieve the
processor of excessive software overhead by buffering received/transmitted
characters. Both the receiver and transmitter FIFOs can store up to 64 bytes
of data (plus three additional bits of error status per byte for the receiver FIFO)
and have selectable trigger levels.

Both interrupts and DMA are available to control the data-flow between the
host (MPU or DSP) and the module.

12.4.1 UART Mode

The UART modem uses a wired interface for serial communication with a
remote device.

The UART modem module is functionally compatible with the TL16C750
UART and is also functionally compatible with earlier designs such as the
TL16C550. The UART modem module can use hardware or software flow con-
trols to manage transmission/reception. Hardware flow control significantly re-
duces software overhead and increases system efficiency by automatically
controlling serial data flow using the RTS output and CTS input signals. Soft-
ware flow control automatically controls data flow by using programmable
XON/XOFF characters.

UART/Autobaud Control and Status Registers / UART/Autobaud Modes of Operation

UART/Autobaud Functional Description

 12-38

12.4.2 UART Mode With Autobauding

The UART modem module is enhanced with an autobauding functionality,
which in control mode allows automatically setting the speed, the number of
bits per character, and the parity selected (see Figure 12–7).

Figure 12–7. UART Data Format

Start
bit

5, 6, 7, or 8 bits of data according to LCR register Parity bit
(see LCR
register)

1 or 2
stop bit

according
to LCR
register

12.5 UART/Autobaud Functional Description

12.5.1 UART/Autobaud Functional Block Diagram

Figure 12–8 shows the UART/autobaud (FSM stands for finite state machine).

Figure 12–8. Functional Block Diagram

TIPB

RX

TXTX FSMTX FIFO

ControlTIPB
interface

RX FIFO

Data exchanges

Controls

CLKGEN

Clocks to all blocks

AutobaudRX
FSM

UART/Autobaud Modes of Operation / UART/Autobaud Functional Description

UART/Autobaud Functional Description

12-39UART Devices

12.5.2 Trigger Levels

The UART provides programmable trigger levels for both receiver and trans-
mitter DMA and interrupt generation. After reset, both transmitter and receiver
FIFOs are disabled (in effect, the trigger level is the default value of one byte).
Programmable trigger level is an enhanced feature available via the trigger
level register (TLR).

12.5.3 Interrupts

The UART generates interrupts on the UART_nIRQ output pin. All interrupts
can be enabled/disabled by writing to the appropriate bit in the interrupt enable
register (IER). The interrupt status of the device can be checked at any time
by reading the interrupt identification register (IIR).

12.5.3.1 Generic Interrupts Description

There are seven possible interrupts, prioritized to six different levels.

When an interrupt is generated, the interrupt identification register (IIR) indi-
cates a pending interrupt by bringing IIR[0] to logic 0, and it specifies the type
of interrupt through IIR[5-1]. Table 12–42 summarizes the interrupt control
functions.

Table 12–42. Generic Interrupt Descriptions in Modem Mode

IIR[5-0]
Priority
Level

Interrupt
Type Interrupt Source Interrupt Reset Method

0 0 0 0 0 1 None None None None

0 0 0 1 1 0 1 Receiver line
status

OE, FE, PE, or BI errors occur
in characters in the RX FIFO

FE, PE, BI: All erroneous
characters are read form the
RX FIFO. OE: Read LSR

0 0 1 1 0 0 2 RX time-out Stale data in RX FIFO Read RHR

0 0 0 1 0 0 2 RHR interrupt DRDY (data ready)
(FIFO disable)

RX FIFO above trigger level
(FIFO enable)

Read RHR until interrupt
condition disappears.

0 0 0 0 1 0 3 THR interrupt TFE (THR empty)
(FIFO disable)

TX FIFO below trigger level
(FIFO enable)

Write to THR until interrupt
condition disappears.

0 0 0 0 0 0 4 Modem status MSR1:0/ = 0 Read MSR

UART/Autobaud Functional Description

 12-40

Table 12–42. Generic Interrupt Descriptions in Modem Mode (Continued)

IIR[5-0] Interrupt Reset MethodInterrupt Source
Interrupt
Type

Priority
Level

0 1 0 0 0 0 5 XOFF
interrupt/special
character
interrupt

Receive XOFF characters(s)/
special character

Receive XON character(s), if
XOFF interrupt/read of IIR, if
special character interrupt

1 0 0 0 0 0 6 CTS, RTS,
DSR

RTS pin, CTS pin or DSR pin
change state from active (low)
to inactive (high).

Read IIR

Note: Once LSR[7] (RX_FIFO_STS) is set to FIFO disable (FCR[0]=0), this bit bit cannot be cleared by reading LSR. First,
FCR[1] (RX_FIFO_CLERA) must be set to 1, then LSR[7] can be cleared.

LSR[7] generates the receiver line status interrupt.

For the XOFF interrupt, if an XOFF flow character detection caused the inter-
rupt, the interrupt is cleared by an XON flow character detection. If special
character detection caused the interrupt, the interrupt is cleared by a read of
the interrupt identification register (IIR).

12.5.3.2 Wake-Up Interrupt

The wake-up interrupt is uniquely designed and is enabled when SCR[4] is set
to 1. The interrupt identification register (IIR) is not modified when this interrupt
occurs; SSR[1] must be checked to detect a wake-up event. When wake-up
interrupt occurs, the only way to clear it is to reset SCR[4] to 0.

12.5.3.3 FIFO Interrupt Mode

In FIFO interrupt mode, FCR[0] = 1 and relevant interrupts are enabled via the
interrupt enable register (IER). The processor is informed of the status of the
receiver and transmitter by an interrupt signal, nIRQ. These interrupts are
raised when receive/transmit FIFO threshold (respectively TLR[7:4] and
TLR[3:0] or FCR[7:6] and FCR[5:4]) are reached; they instruct the host (MPU
or DSP) to transfer data to the destination (from UART module in receive mode
and from any source to UART FIFO in transmit mode).

When UART flow control is enabled along with interrupt capabilities, you must
ensure that the UART flow control FIFO threshold (TCR[3:0]) is greater than
or equal to the receive FIFO threshold.

Figure 12–9 shows receive IT operations; Figure 12–10 shows transmit IT
operations.

UART/Autobaud Functional Description

12-41UART Devices

Figure 12–9. Receive FIFO IT Request Generation

Programmable FIFO threshold

Receive FIFO Level

Zero byte
time

Interrupt request

time

Interrupt request active low

Programmable flow control threshold

Host acknowledged IT request
and transferred enough bytes to
recover FIFO level below
threshold

In receive, no interrupt is generated until receive FIFO reaches its threshold.
A low interrupt can only be deasserted when the host (MPU or DSP) has
handled enough bytes to make the FIFO level below threshold. Notice that flow
control threshold is set at a higher value than FIFO threshold.

Figure 12–10. Transmit FIFO IT Request Generation

Number
of
spaces

Programmable FIFO threshold

Transmit FIFO level

Zero byte
time

Interrupt request

ti

Interrupt request
active low

Full level

In transmit mode, an interrupt request is automatically asserted when the FIFO
is empty. This request is deasserted when the FIFO crosses the threshold
level. The interrupt line is deasserted until a sufficient number of elements
have been transmitted to go below FIFO threshold.

UART/Autobaud Functional Description

 12-42

12.5.4 FIFO Polled Mode

In FIFO polled mode (FCR [0] = 0, relevant interrupts disabled via IER) the
status of the receiver and transmitter can be checked by polling the line status
register (LSR). This mode is an alternative to the FIFO interrupt mode of
operation where the status of the receiver and transmitter is automatically
known by means of interrupts sent to the host (MPU or DSP).

12.5.5 FIFO DMA Mode

12.5.5.1 DMA Signalling

There are four modes of DMA operation: DMA mode 0, DMA mode 1, DMA
mode 2, and DMA mode 3. They can be selected as follows.

� When SCR[0] = 0:

� Setting FCR[3] to 0 enables DMA mode 0.
� Setting FCR[3] to 1 enables DMA mode 1.

� When SCR[0] = 1, SCR[2:1] determine DMA mode 0 to 3 according to
SCR register description.

So, for instance:

� If no DMA operation is desired, set SCR[0] to 1 and SCR[2:1] to 00 (FCR[3]
is disregarded).

� If DMA mode 1 is desired, either set SCR[0] to 0 and FCR[3] to 1 or set
SCR[0] to 1 SCR[2:1] to 01 (FCR[3] is disregarded).

If the FIFOs are disabled (FCR [0] = 0), DMA occurs in single character trans-
fers. When DMA mode 0 has been programmed, the signals
associated with DMA operation are not active.

UART/Autobaud Functional Description

12-43UART Devices

12.5.5.2 DMA Transfers

Figure 12–11 shows DMA operation at receive; Figure 12–12 shows DMA
operation at transmit.

Figure 12–11. Receive FIFO DMA Request Generation

Threshold reads
From system DMA

Programmable threshold

Receive FIFO level

Zero byte
time

DMA request

time

DMA request
active low

In receive mode, a DMA request is generated as soon as receive FIFO reach-
es its threshold. This request is deasserted when the number of bytes defined
by the threshold level has been read by the system DMA.

Figure 12–12. Transmit FIFO DMA Request Generation

Programmable threshold

Transmit FIFO level

Zero byte
time

DMA request

time

DMA request

Transmit FIFO level

Full level

active low

Threshold writes
from system DMA

Number
of spaces

UART/Autobaud Functional Description

 12-44

In transmit mode, a DMA request is automatically asserted when FIFO is
empty. This request is deasserted when the number of bytes defined by the
threshold level has been written by the system DMA. The DMA request is
again asserted if the FIFO is able to receive the number of bytes defined by
the threshold.

12.5.6 Sleep Mode

Sleep mode is a low-power, enhanced feature of the UART that can be
enabled by writing a 1 to IER[4] (when EFR[4] = 1).

Sleep mode is entered when:

� Serial RX data input line is idle.
� TX FIFO and TX shift register are empty.
� No interrupts are pending except transmit holding register (THR)

interrupts.

Sleep mode is a good way to lower UART power consumption, but this state
can be achieved only when the UART is set in modem mode. Therefore, even
if the UART does not have a functional key role, it must be initialized in a func-
tional mode to take advantage of sleep mode.

In sleep mode, the module clock and baud rate clock are stopped internally.
Since most registers are clocked using these clocks, the power consumption
is greatly reduced. The module wakes up when any change is detected on the
RX line, when data is written to the TX FIFO, or when there is any change in
the state of the modem input pins. An interrupt can be generated on a wake-up
event by setting SCR[4] to 1.

Note:

Writing to the divisor latches, DLL and DLH, to set the baud clock, BCLK,
must not be done during sleep mode. Disable sleep mode using IER[4]
before writing to DLL or DLH.

UART/Autobaud Functional Description

12-45UART Devices

12.5.7 Break and Time-out Conditions

� Time-out counter

The RX idle condition is detected when the RX line has been high for a time
equivalent to (4X programmed word length) plus12 bits. The receiver line
is sampled midway through each bit.

For sleep mode, the counter is reset when there is activity on the RX line.

For the time-out interrupt, the counter only counts when there is data in the
RX FIFO and the count is reset when there is activity on the RX line or
when the RHR is read.

� Break condition

When a break condition occurs, the TX line is pulled low. A break condition
is activated by setting LCR[6]. The break condition is not aligned on the
word stream; that is, a break condition can occur in the middle of a charac-
ter. The only way to send a break condition on a full character is as follows:

� Reset transmit FIFO (if enabled).
� Wait for transmit shift register to become empty (LSR[6] = 1).
� Take a guard time according to stop bit definition.
� Set LCR[6] to 1.

The break condition is asserted as long as LCR[6] is set to 1.

12.5.8 Programmable Baud Rate Generator

The programmable baud generator takes any clock input and divides it by a
divisor between 1 and (216-1). The CLKSEL register bit MCR[7] can be used
to select the 1X or 1X/4 clock for the internal baud rate generator. The output
frequency of the baud rate generator is 16x the baud rate.

You must write to the DLL register (least significant bytes) and DLH register
(most significant bytes) of the baud rate divisor to program the baud rate.

Writing to these registers can result in wait states being inserted during the
write access while the baud rate generator is loaded with the new value. If both
registers are 0, the module is effectively disabled and no baud clock is
generated.

Note:

The programmable baud rate generator selects both the transmit and
receive clock rates.

UART/Autobaud Functional Description

 12-46

12.5.9 Hardware Flow Control

Hardware flow control is composed of automatic RTS and automatic CTS.
Both can be enabled/disabled independently by programming EFR[7:6]. With
automatic CTS, CTS must be active before the module can transmit data.

Automatic RTS only activates the RTS output when there is enough room in
the FIFO to receive data, and it deactivates the RTS output when the RX FIFO
is sufficiently full. The HALT and RESTORE trigger levels in the TCR
determine the levels at which RTS is activated/deactivated.

If both automatic CTS and automatic RTS are enabled, data transmission
does not occur unless the receiver FIFO has empty space. Thus, overrun
errors are eliminated during hardware flow control. If not enabled, overrun
errors occur if the transmit data rate exceeds the receive FIFO latency.

� Automatic RTS

Automatic RTS data flow control originates in the receiver block (see
Figure 12–8). The receiver FIFO trigger levels used in automatic RTS are
stored in the TCR. RTS is active if the RX FIFO level is below the HALT
trigger level in TCR[3:0]. When the receiver FIFO HALT trigger level is
reached, RTS is deasserted. The sending device (for example, another
UART) may send an additional byte after the trigger level is reached
because it may not recognize the deassertion of RTS until it has begun
sending the additional byte. RTS is automatically reasserted once the
receiver FIFO reaches the RESUME trigger level programmed via
TCR(7:4). This reassertion requests the sending device to resume trans-
mission.

� Automatic CTS

The transmitter circuitry checks CTS before sending the next data byte.
When CTS is active, the transmitter sends the next byte. To stop the trans-
mitter from sending the following byte, CTS must be deasserted before the
middle of the last stop bit that is currently being sent. The automatic CTS
function reduces interrupts to the host system. When automatic CTS flow
control is enabled, the CTS state changes need not trigger host interrupts
because the device automatically controls its own transmitter. Without
automatic CTS, the transmitter sends any data present in the transmit
FIFO and a receiver overrun error can result.

UART/Autobaud Functional Description

12-47UART Devices

12.5.10 Software Flow Control

Software flow control is enabled through the enhanced feature register (EFR)
and the modem control register (MCR). Different combinations of software
flow control can be enabled by setting different combinations of EFR[3-0].

There are two other enhanced features related to software flow control:

� XON any function [MCR(5)]: Operation resumes after receiving any
character after recognizing the XOFF character. The XON-any character
is written into the RX FIFO even if it is a software flow character.

� Special character [EFR(5)]: Incoming data is compared to XOFF2. Detec-
tion of the special character sets the XOFF interrupt [IIR(4)] but does not
halt transmission. The XOFF interrupt is cleared by a read of the interrupt
identification register (IIR). The special character is transferred to the RX
FIFO.

12.5.10.1 RX

When software flow control operation is enabled, the UART compares incom-
ing data with XOFF1/2 programmed characters (in certain cases XOFF1 and
XOFF2 must be received sequentially). When the correct XOFF characters
are received, transmission is halted after completing transmission of the
current character. XOFF detection also sets IIR(4) (if enabled via IER(5)) and
causes nIRQ to go low.

To resume transmission, an XON1/2 character must be received (in certain
cases XON1 and XON2 must be received sequentially). When the correct
XON characters are received, IIR(4) is cleared and the XOFF interrupt
disappears.

If a parity, framing, or break error occurs while receiving a software flow control
character, this character is treated as normal data and is written to the RX
FIFO.

When XON-any and special character detect are disabled and software flow
control is enabled, no valid XON or XOFF characters are written to the
RX FIFO. For example, if EFR[1:0] = 10, then received XON1 and XOFF1
characters are not written to the RX FIFO.

When pairs of software flow characters are programmed to be received
sequentially (EFR[1:0] = 11), they are not written to the RX FIFO if they are
received sequentially. However, received XON1/XOFF1 characters must be
written to the RX FIFO if the subsequent character is not XON2/XOFF2.

UART/Autobaud Functional Description

 12-48

12.5.10.2 TX

With XOFF1, two characters are transmitted when the RX FIFO has passed
the programmed trigger level TCR(3:0).

With XON1, two characters are transmitted when the RX FIFO reaches the
trigger level programmed via TCR(7:4).

After an XOFF character has been sent, if software flow control is disabled, the
module transmits XON characters automatically to enable normal transmis-
sion to proceed.

The transmission of XOFF/XON follows the exact same protocol as transmis-
sion of an ordinary byte from the FIFO. This means that even if the word length
is set to be 5, 6, or 7 characters, the 5, 6, or 7 least significant bits of
XOFF1,2/XON1,2 are transmitted. (The transmission of 5, 6, or 7 bits of a char-
acter is seldom done, but this functionality is included to maintain compatibility
with earlier designs.)

It is assumed that software flow control and hardware flow control are never
enabled simultaneously.

12.5.11 Autobauding Mode

In autobaud mode, UART can extract transfer characteristics (speed, length
and parity) from an AT command. These characteristics are used to receive
data following an AT and to send data.

Here are valid AT commands:

AT DATA <CR>

at DATA <CR>

A /a/

A line break during the acquisition of the sequence AT is not recognized and
echo functionality is not implemented in hardware.

A/ and a/ are not used to extract characteristics, but they must be recognized
because of their special meaning. They instruct the software to repeat the last
received AT command; therefore, an a/ always comes after an AT and transfer
characteristics are not expected to change between an AT and an a/.

When a valid AT is received, it and all subsequent data are saved into the
FIFO, including final CR (0x0D). Then the autobaud state machine waits for
the next valid AT command. If an a/ (A/) is received, the a/ (A/) is saved into
the FIFO and the state machine waits for next valid AT command.

UART/Autobaud Functional Description

12-49UART Devices

The following settings are allowed in autobaud mode:

� Speed:

115.2K baud, 57.6K baud, 38.4K baud, 28.8K baud, 19.2K baud, 14.4K
baud, 9.6K baud, 4.8K baud, 2.4K baud, or 1.2K baud.

� Length: 7 or 8 bits

� Parity: Odd, even, or space

Combination 7-bit space parity is forbidden.

The method to identify the speed is:

1) Detect the transition 1->0 on the received data. This happens as soon as
a stop to start bit transition occurs. The transition is valid after a majority
vote on three sampling periods.

2) Sample the start bit duration with 115 200 *16 Hz clock frequency as long
as there is no rising edge. A transition 0->1 is considered as valid after a
majority vote on three sampling periods.

3) Compare the sampled value with a table. If the sampled value is outside
a valid range, an error is reported (no speed identified), and the hardware
goes back to the first state (1).

4) Otherwise, the first data bit in the received register (for serial to parallel
conversion) is stored and goes to frame format identification.

5) The next received bits are sampled according to the programmed baud
rate. After reception of seven bits, the speed identification must be
restarted, because you may receive several a or A characters before a
valid t or T character.

Autobaud mode is selected when MDR1[2:0] = 010. In UART autobaud mode,
DLL, DLH, and LCR[5:0] settings are not used. Instead, UASR is updated with
the configuration detected by the autobauding logic (see Figure 12–13).

UART/Autobaud Configuration Example

 12-50

Figure 12–13. Autobaud State Machine

!(A a T)

Wait T
(Baud rate
acquired)

Wait a or A

Wait t
(Baud rate
acquired)

Reception

Aa

!<CR>

T
t

!(A a)

!(A a t)
<CR>
no PE

a

A

a A

12.6 UART/Autobaud Configuration Example

This section specifies the programming stages to operate one UART module
with FIFO, interrupt, and no DMA capabilities. It is a three-step procedure that
ensures quick start of these modules (it does not cover all UART module
features and performance):

1) Software reset of the module (interrupts, status and controls
2) FIFO configuration and enable
3) Baud rate data and stop configuration

This procedure is programming-language-agnostic.

UART/Autobaud Functional Description / UART/Autobaud Configuration Example

UART/Autobaud Configuration Example

12-51UART Devices

12.6.1 UART SW Reset

The goal is to clear IER and MCR registers, remove UART breaks (LCR[6] =
0), and put the module in reset (MDR1[2:0] = 0x3).

1) To write into both the IER and MCR registers, set EFR[4] to 1.
2) To enable access to the EFR register, write 0xBF to the LCR register:

� LCR = 0xBF
� EFR[4] = 1
� LCR = 0x80 (access to IER and MCR allowed)
� IER = 0x00
� MCR = 0x00
� LCR[6] = 0 (UART breaks removed)
� MDR1 = 0x03 (UART in reset)

12.6.2 UART FIFO Configuration

The goal is to set trigger level for halt/restore (TCR register), set trigger level
for transmit/receive (TLR register), and configure the FIFO (FCR register).

Procedure:

1) To write into both the TLR and TCR registers, set EFR[4] and MCR[6] to
1. To write into FCR, set EFR[4] to 1. Notice that EFR[4] = 1 has already
been done in the software reset, so a simple write to MCR[6] is necessary.

2) Set TCR TLR and FCR to the desired value.

3) Disable accesses to TCR, TLR, and FCR to avoid any further undesired
write to these registers:

� LCR = 0xBF (provides EFR access)
� EFR[4] = 0
� LCR[7] = 0
� MCR[6] = 0

12.6.3 Baud Rate Data and Stop Configurations

The goal is to configure UART data, stop (LCR register) baud rate (DLH and
DLL registers), and enable UART operation. If needed, you can add interrupt
capability configuration right before UART enable.

1) Input clock is 12 MHz, so set OSC_12M_SEL to 1.
2) Set LCR to desired value.
3) Set LCR[7] to 1 (access to DLH and DLL registers).
4) Set DLH and DLL LCR[7] = 0 (remove access to DLH and DLL registers).
5) Set IER to desired value (set interrupts).
6) MDR1[2:0] = 0
7) Enable UART without autobauding.

UART/IrDA Control and Status Registers

 12-52

12.7 UART/IrDA Control and Status Registers

Each register is selected using a combination of address and some LCR
register bit settings, as shown in Table 12–43.

UART3 is accessible as follows:

� MPU (32-bit aligned byte address) from the following base address:

� UART3: 0xFFFB 9800

� DSP (16-bit aligned word address) from the following base address:

� UART3: 0x00CC00

Table 12–43. UART IrDA Register Program

Registers
MPU
Byte
Off-

DSP
Byte
Off-

LCR[7] = 0
LCR[7] = 1

LCR[7:0] ≠ 0xBF LCR[7:0] = 0xBF
Off-
set

Off-
set READ WRITE READ WRITE READ WRITE

0x00 0x00 RHR THR DLL DLL DLL DLL

0x04 0x02 IER† IER† DLH DLH DLH DLH

0x08 0x04 IIR FCR‡ IIR FCR‡ EFR EFR

0x0C 0x06 LCR LCR LCR LCR LCR LCR

0x10 0x08 MCR‡ MCR‡ MCR‡ MCR‡ XON1/ADDR1 XON1/ADDR1

0x14 0x0A LSR - LSR - XON2/ADDR2 XON2/ADDR2

0x18 0x0C MSR/TCR§ TCR§ MSR/TCR§ TCR§ XOFF1/TCR§ XOFF1/TCR§

0x1C 0x0E SPR/TLR§ SPR/TLR§ SPR/TLR§ SPR/TLR§ XOFF2/TLR§ XOFF2/TLR§

0x20 0x10 MDR1 MDR1 MDR1 MDR1 MDR1 MDR1

0x24 0x12 MDR2 MDR2 MDR2 MDR2 MDR2 MDR2

0x28 0x14 SFLSR TXFLL SFLSR TXFLL SFLSR TXFLL

0x2C 0x16 RESUME TXFLH RESUME TXFLH RESUME TXFLH

0x30 0x18 SFREGL RXFLL SFREGL RXFLL SFREGL RXFLL

0x34 0x1A SFREGH RXFLH SFREGH RXFLH SFREGH RXFLH

† In UART mode, IER[7:4] can only be written when EFR[4] = 1. In SIR mode, EFR[4] has no impact on the access to IER[7:4].
‡ MCR[7:5] and FCR[5:4] can only be written when EFR[4] = 1.
§ Transmission control register (TCR) and trigger level register (TLR) are accessible only when EFR[4] = 1 and MCR[6] = 1.

UART/IrDA Control and Status Registers

12-53UART Devices

Table 12–43. UART IrDA Register Program (Continued)

MPU
Byte
Off-
set

Registers
DSP
Byte
Off-
set

MPU
Byte
Off-
set

LCR[7:0] = 0xBF
LCR[7] = 1

LCR[7:0] ≠ 0xBFLCR[7] = 0

DSP
Byte
Off-
set

MPU
Byte
Off-
set WRITEREADWRITEREADWRITEREAD

DSP
Byte
Off-
set

0x38 0x1C BLR BLR - - - -

0x3C 0x1E ACREG ACREG DIV1.6 DIV1.6 DIV1.6 DIV1.6

0x40 0x20 SCR SCR SCR SCR SCR SCR

0x44 0x22 SSR - SSR - SSR -

0x48 0x24 EBLR EBLR - - - -

0x4C 0x26 OSC_12M_
SEL

- - - -

0x50 0x28 MVR - MVR - MVR -

† In UART mode, IER[7:4] can only be written when EFR[4] = 1. In SIR mode, EFR[4] has no impact on the access to IER[7:4].
‡ MCR[7:5] and FCR[5:4] can only be written when EFR[4] = 1.
§ Transmission control register (TCR) and trigger level register (TLR) are accessible only when EFR[4] = 1 and MCR[6] = 1.

Table 12–44 lists the UART/IrDA registers. Table 12–45 through Table 12–87
describe the register bits.

Table 12–44. UART/IrDA Registers

Register Description Access

RHR Receive holding 8 bits R

THR Transmit holding 8 bits W

FCR FIFO control 8 bits W

SCR Supplementary control 8 bits R/W

LCR Line control 8 bits R/W

LSR UART mode (LSR) 8 bits R

SSR Supplementary status 8 bits R

MCR Modem control 8 bits R/W

MSR Modem status 8 bits R

IER Interrupt enable (IER) 8 bits R/W

UART/IrDA Control and Status Registers

 12-54

Table 12–44. UART/IrDA Registers (Continued)

Register AccessDescription

IIR Interrupt identification (IIR) 8 bits R

EFR Enhanced feature 8 bits R/W

XON1/ADDR1 XON1/Address 1 8 bits R/W

XON2/ADDR2 XON2/Address 2 8 bits R/W

XOFF1 XOFF1 8 bits R/W

XOFF2 XOFF2 8 bits R/W

SPR Scratchpad 8 bits R/W

DLL Divisor latch low 8 bits R/W

DLH Divisor latch high 8 bits R/W

TCR Transmission control 8 bits R/W

TLR Trigger level 8 bits R/W

MDR1 Mode definition 1 8 bits R/W

MDR2 Mode definition 2 8 bits R/W

TXFLL Transmit frame length low 8 bits W

TXFLH Transmit frame length high 8 bits W

RXFLL Received frame length low 8 bits W

RXFLH Received frame length high 8 bits W

SFLSR Status FIFO line status 8 bits R

RESUME Resume 8 bits R

SFREGL Status FIFO low 8 bits R

SFREGH Status FIFO high 8 bits R

BLR BOF control 8 bits R/W

EBLR BOF length 8 bits R/W

DIV16 DIV1.6 8 bits R/W

ACREG Auxiliary control 8 bits R/W

OSC_12M_SEL OSC 12-MHz select 8 bits W

MVR Module version 8 bits R

UART/IrDA Control and Status Registers

12-55UART Devices

The receiver section consists of the receiver holding register (RHR) and the
receiver shift register. The RHR is actually a 64-byte FIFO. The receiver shift
register receives serial data from RX input. The data is converted to parallel
data and moved to the RHR. If the FIFO is disabled, location zero of the FIFO
is used to store the single data character. If overflow occurs, data in the RHR
is not overwritten.

Table 12–45. Receive Holding Register (RHR)

Bit Name Function R/W
Reset
Value

7–0 RHR Receive holding register R Undefined

The transmitter section consists of the transmit holding register (THR) and the
transmit shift register. The THR is actually a 64-byte FIFO. The host (MPU or
DSP) writes data to the THR. The data is placed into the transmit shift register,
where it is shifted out serially on the TX output. If the FIFO is disabled, location
0 of the FIFO is used to store the data.

Table 12–46. Transmit Holding Register (THR)

Bit Name Function R/W
Reset
Value

7–0 THR Transmit holding register W Undefined

UART/IrDA Control and Status Registers

 12-56

Table 12–47. FIFO Control (FCR) Register

Bit Name Value Function R/W
Reset
Value

7–6 RX_FIFO_TRIG Sets the trigger level for the RX FIFO:

If SCR7 = 0 and TLR7:4 = 0000:

W 00

00 8 characters

01 16 characters

10 56 characters

11 60 characters

If SCR7 = 0 and TLR7:4 	 0000,
RX_FIFO_TRIG is not considered.

1 RX_FIFO_TRIG is two LSBs of the trigger
level (1-63 on 6 bits) with granularity of 1.

5–4 TX_FIFO_TRIG Sets the trigger level for the TX FIFO:

If SCR6 = 0 and TLR3:0 = 0000:

00: 8 spaces
01: 16 spaces
10: 32 spaces
11: 56 spaces

W 00

00 8 characters

01 16 characters

10 56 characters

11 60 characters

If SCR6=1, TX_FIFO_TRIG is two LSBs of
the trigger level (1-63 on 6 bits) with
granularity of 1.

Notes: 1) Bits 4 and 5 can only be written when EFR[4] = 1.

2) Bits 0 to 3 can be changed only when baud clock is not running (DLL and DLH set to 0).

3) See Table 12–36 for FCR[5:4] setting restriction when SCR[6] = 1.

4) See Table 12–37 for FCR[7:6] setting restriction when SCR[7] = 1.

UART/IrDA Control and Status Registers

12-57UART Devices

Table 12–47. FIFO Control (FCR) Register (Continued)

Bit
Reset
ValueR/WFunctionValueName

3 DMA_MODE 0 DMA_MODE 0 (no DMA) W 0

1 DMA_MODE 1 (UART_nDMA_REQ0 in TX,
UART_nDMA_REQ1 in RX)

This register is considered if SCR0 = 0.

2 TX_FIFO_CLEAR 0 No change W 0

1 Clears the transmit FIFO and resets its
counter logic to zero. Returns to zero after
clearing FIFO.

1 RX_FIFO_CLEAR 0 No change W 0

1 Clears the receive FIFO and resets its
counter logic to zero. Returns to zero after
clearing FIFO.

0 FIFO_EN 0 Disables the transmit and receive FIFOs W 0

1 Enables the transmit and receive FIFOs

Notes: 1) Bits 4 and 5 can only be written when EFR[4] = 1.

2) Bits 0 to 3 can be changed only when baud clock is not running (DLL and DLH set to 0).

3) See Table 12–36 for FCR[5:4] setting restriction when SCR[6] = 1.

4) See Table 12–37 for FCR[7:6] setting restriction when SCR[7] = 1.

UART/IrDA Control and Status Registers

 12-58

Table 12–48. Supplementary Control Register (SCR)

Bit Name Value Function R/W
Reset
Value

7 RX_TRIG_GRANU1 0 Disables the granularity of 1 for trigger
RX level

R/W 0

1 Enables the granularity of 1 for trigger
RX level

6 TX_TRIG_GRANU1 0 Disables the granularity of 1 for trigger
TX level

R/W 0

1 Enables the granularity of 1 for trigger
TX level

5 DSR_IT 0 Disables DSR interrupt R/W 0

1 Enables DSR interrupt

4 RX_CTS_DSR_WAKE_
UP_ENABLE

0 Disables the wake up interrupt and
clears SSR1

R/W 0

1 Waits for a falling edge of pins RX, CTS
or DSR to generate an interrupt

3 TX_EMPTY_CTL_IT 0 Normal mode for THR interrupt (see
Table 12–55)

R/W 0

1 The THR interrupt is generated when TX
FIFO and TX shift register are empty.

2–1 DMA_MODE_2 Used to specify the DMA mode valid if
SCR0 = 1

R/W 00

00 DMA mode 0 (no DMA)

01 DMA mode 1 (UART_nDMA_REQ0 in
TX, UART_nDMA_REQ1 in RX)

10 DMA mode 2 (UART_nDMA_REQ0 in
RX)

11 DMA mode 3 (UART_nDMA_REQ0 in
TX)

0 DMA_MODE_CTL 0 The DMA_MODE is set with FCR3. R/W 0

1 The DMA_MODE is set with SCR2:1.

Note: Bit 4 enables the wake-up interrupt, but this interrupt is not mapped on the IIR register. Therefore, when an interrupt
occurs and if there is no interrupt pending in IIR, SSR[1] must be checked. To clear the wake-up interrupt, SCR[4] must be
reset to 0.

UART/IrDA Control and Status Registers

12-59UART Devices

The line control register (LCR) [6:0] defines parameters of the transmission
and reception.

Table 12–49. Line Control Register (LCR)

Bit Name Value Function R/W
Reset
Value

7 DIV_EN 0 Normal operating condition R/W 0

1 Divisor latch enable. Allows access to
DLL, DLH, and other registers (refer to
the registers mapping).

6 BREAK_EN Break control bit. R/W 0

0 Normal operating condition

1 Forces the transmitter output to go low
to alert the communication terminal

5 PARITY_TYPE2 Selects the forced parity format (if LCR3
= 1).

If LCR5 = 1 and LCR4 = 0, the parity bit
is forced to 1 in the transmitted and
received data.

If LCR5 = 1 and LCR4 = 1, the parity bit
is forced to 0 in the transmitted and
received data.

R/W 0

4 PARITY_TYPE1 0 Odd parity is generated (if bit 3 = 1). R/W 0

1 Even parity is generated (if bit 3 = 1).

3 PARITY_EN 0 No parity R/W 0

1 Parity is generated during transmission,
and the receiver checks for received
parity.

2 NB_STOP Specifies the number of stop bits: R/W 0

0 1 stop bits (word length = 5, 6, 7, 8)

1 1.5 stop bits (word length = 5)

1 2 stop bits (word length = 6, 7, 8)

Note: As soon as LCR[6] is set to 1, the RX line is forced to 0 and remains in this state as long as LCR[6] = 1.

UART/IrDA Control and Status Registers

 12-60

Table 12–49. Line Control Register (LCR) (Continued)

Bit
Reset
ValueR/WFunctionValueName

1:0 CHAR_LENGTH Specify the word length to be transmitted
or received.

R/W 00

00 5 bits

01 6 bits

10 7 bits

11 8 bits

Note: As soon as LCR[6] is set to 1, the RX line is forced to 0 and remains in this state as long as LCR[6] = 1.

Table 12–50. UART Mode Line Status Register (UART_LSR)

Bit Name Value Function R/W
Reset
Value

7 RX_FIFO_STS 0 Normal operation. R 1

1 At least one parity error, framing error, or
break indication in the receiver FIFO. Bit is
cleared when no more errors are present in
FIFO.

6 TX_SR_E 0 Transmitter hold and shift registers are not
empty.

R 1

1 Transmitter hold and shift registers are
empty.

5 TX_FIFO_E 0 Transmit hold register is not empty R 1

1 Transmit hold register is empty. The
processor can now load up to 64 bytes of
data into the THR if the TX FIFO is
enabled.

4 RX_BI 0 No break condition R 0

1 A break was detected while the data being
read from the RX FIFO was being received
(RX input was low for one character time
frame).

UART/IrDA Control and Status Registers

12-61UART Devices

Table 12–50. UART Mode Line Status Register (UART_LSR) (Continued)

Bit
Reset
ValueR/WFunctionValueName

3 RX_FE 0 No framing error in data being read from
RX FIFO

R 0

1 Framing error occurred in data being read
from RX FIFO (received data did not have a
valid stop bit).

2 RX_PE 0 No parity error in data being read from RX
FIFO

R 0

1 Parity error in data being read from RX
FIFO

1 RX_OE 0 No overrun error R 0

1 Overrun error has occurred. Set when the
character held in the receive shift register is
not transferred to the RX FIFO. This case
can occur only when the receive FIFO is
full.

0 RX_FIFO_E 0 No data in the receive FIFO R 0

1 At least one data character in the RX_FIFO

When the line status register (LSR) is read, LSR[4:2] reflect the error bits (BI,
FE, PE) of the character at the top of the RX FIFO (next character to be read).
Therefore, reading the LSR and then reading the RHR identifies errors in a
character.

LSR[7] is set when there is an error anywhere in the RX FIFO and is cleared
only when there are no more errors remaining in the FIFO.

Reading the LSR does not cause an increment of the RX FIFO read pointer.
The RX FIFO read pointer is incremented by reading the RHR.

UART/IrDA Control and Status Registers

 12-62

Table 12–51. SIR Mode Line Status Register (SIR_LSR)

Bit Name Value Function R/W
Reset
Value

7 THR_EMPTY 0 Transmit hold register is not empty. R 1

1 Transmit hold register is empty. The
processor can now load up to 64 bytes of
data into the THR if the TX FIFO is
enabled.

6 STS_FIFO_FULL 0 Status FIFO not full R 0

1 Status FIFO full

5 RX_LAST_BYTE 0 Did not receive last byte of a frame from
the FIFO

R 0

1 Received last byte from FIFO. This bit is
set when the last byte of a frame is read.
Used to determine the frame boundary.
Cleared by first reading the last received
byte, then reading the SIR_LSR register.

4 FRAME_TOO_LONG 0 No frame-too-long error in frame R 0

1 Frame-too-long error in the frame at the
top of the STATUS FIFO next character to
be read. This bit is set to 1 when a frame
exceeding the maximum length (set by
RXFLH and RXFLL registers) has been
received. When this error is detected,
current frame reception is terminated.
Reception is stopped until the next START
flag is detected.

3 ABORT 0 No abort pattern error in frame R 0

1 Abort pattern received

2 CRC 0 No CRC error in frame R 0

1 CRC error in the frame at the top of the
STATUS FIFO (next character to be read)

1 STS_FIFO_E 0 Status FIFO not empty R 1

1 Status FIFO empty

UART/IrDA Control and Status Registers

12-63UART Devices

Table 12–51. SIR Mode Line Status Register (SIR_LSR) (Continued)

Bit
Reset
ValueR/WFunctionValueName

0 RX_FIFO_E 0 At least one data character in the
RX_FIFO

R 1

1 No data in the receive FIFO

When the LSR is read, LSR[4:2] reflect the error bits [FL, CRC, ABORT] of the
frame at the top of the STATUS FIFO (next frame status to be read). In SIR
mode, the LSR bits [4:2] reflect the same values as the SFLSR bits [3:1].

Table 12–52. Supplementary Status Register (SSR)

Bit Name Value Function R/W
Reset
Value

7–2 – Reserved R 000000

1 RX_CTS_DSR_WAKE
_UP_STS

0 No falling edge event on RX, CTS and
DSR

R 0

1 A falling edge occurred on RX, CTS or
DSR.

0 TX_FIFO_FULL 0 TX FIFO not full R 0

1 TX FIFO full

Note: Bit 1 is reset only when SCR[4] is reset to 0.

UART/IrDA Control and Status Registers

 12-64

The modem control register (MCR) [3:0] controls the interface with the
modem, data set, or peripheral device that is emulating the modem.

Table 12–53. Modem Control Register (MCR)

Bit Name Value Function R/W
Reset
Value

7 CLKSEL 0 No action R/W 0

1 Divide clock input by 4.

6 TCR_TLR 0 No action R/W 0

1 Enables access to the TCR and TLR
registers

5 XON_EN 0 Disable XON Any function R/W 0

1 Enable XON Any function

4 LOOPBACK_EN 0 Normal operating mode R/W 0

1 Enable local loopback mode (internal).
In this mode the MCR3:0 signals are looped
back into MSR7:4. The transmit output is
looped back to the receive input internally.

3 CD_STS_CH 0 In loopback mode, forces IRQ outputs to
inactive state

R/W 0

1 In loopback mode, forces IRQ outputs to
inactive state

2 RESERVED Reserved. This bit should always be written
as 0.

R/W 0

1 RTS 0 Forces RTS output to inactive (high) R/W 0

1 Forces RTS output to active (low)

In loopback mode controls MSR[4]

If automatic RTS is enabled, the RTS output
is controlled by hardware flow control.

0 DTR 0 Forces DTR output to inactive (high) R/W 0

1 Forces DTR output to active (low)

Note: Bits 5, 6, and 7 can be written only when EFR[4] = 1.

UART/IrDA Control and Status Registers

12-65UART Devices

The modem status register (MSR) provides information about the current state
of the control lines from the modem, data set, or peripheral device to the host
(MPU or DSP). It also indicates when a control input from the modem changes
state.

Table 12–54. Modem Status Register (MSR)

Bit Name Function R/W
Reset
Value

7–6 RESERVED Reserved R

5 NDSR_STS This bit is the complement of the DSR input.

In loopback mode, it is equivalent to MCR0.

R Input
signal

4 NCTS_STS This bit is the complement of the CTS input.

In loopback mode, it is equivalent to MCR1.

R Input
signal

3–2 RESERVED Reserved R 0

1 DSR_STS 1: Indicates that DSR input (or MCR0 in loopback)
has changed state. Cleared on a read.

R 0

0 CTS_STS 1: Indicates that CTS input (or MCR1 in loopback)
has changed state. Cleared on a read.

R 0

UART/IrDA Control and Status Registers

 12-66

The interrupt enable register (IER) in UART mode can be programmed to
enable/disable any of the following interrupts:

� Receiver error
� RHR
� THR
� XOFF
� CTS/RTS change of state from low to high

Each of these interrupts can be enabled/disabled individually. There is also a
sleep mode enable bit.

Table 12–55. UART Mode Interrupt Enable Register (UART_IER)

Bit Name Value Function R/W
Reset
Value

7 CTS_IT 0 Disables the CTS interrupt R/W 0

1 Enables the CTS interrupt

6 RTS_IT 0 Disables the RTS interrupt R/W 0

1 Enables the RTS interrupt

5 XOFF_IT 0 Disables the XOFF interrupt R/W 0

1 Enables the XOFF interrupt

4 SLEEP_MODE 0 Disables sleep mode R/W 0

1 Enables sleep mode (stop baud rate clock
when the module is inactive)

3 MODEM_STS_IT 0 Disables the modem status register
interrupt

R/W 0

1 Enables the modem status register interrupt

2 LINE_STS_IT 0 Disables the receiver line status interrupt R/W 0

1 Enables the receiver line status interrupt

1 THR_IT 0 Disables the THR interrupt R/W 0

1 Enables the THR interrupt

0 RHR_IT 0 Disables the RHR interrupt and time out
interrupt

R/W 0

1 Enables the RHR interrupt and time out
interrupt

Note: Bits 4, 5, 6, and 7 can only be written when EFR[4] = 1.

UART/IrDA Control and Status Registers

12-67UART Devices

The interrupt enable register (IER) in SIR mode can be programmed to enable/
disable any of the following interrupts:

� Received error
� LSR
� TX underrun
� Status FIFO
� RX overrun
� Last byte in RX FIFO
� THR
� RHR

Each of these interrupts can be enabled/disabled individually. There is also a
sleep mode enable bit.

Table 12–56. SIR Mode Interrupt Enable Register (SIR_IER)

Bit Name Value Function R/W
Reset
Value

7 EOF_IT 0 Disables the received EOF interrupt R/W 0

1 Enables the received EOF interrupt

6 LINE_STS_IT 0 Disables the receiver line status interrupt R/W 0

1 Enables the receiver line status interrupt

5 TX_UNDERRUN_IT 0 Disables the TX underrun interrupt R/W 0

1 Enables the TX underrun interrupt

4 STS_FIFO_TRIG_IT 0 Disables status FIFO trigger level interrupt R/W 0

1 Enables status FIFO trigger level interrupt

3 RX_OVERRUN_IT 0 Disables the RX overrun interrupt R/W 0

1 Enables the RX overrun interrupt

2 LAST_RX_BYTE_IT 0 Disables the last byte of frame in RX FIFO
interrupt

R/W 0

1 Enables the last byte of frame in RX FIFO
interrupt

1 THR_IT 0 Disables the THR interrupt R/W 0

1 Enables the THR interrupt

0 RHR_IT 0 Disables the RHR interrupt R/W 0

1 Enables the RHR interrupt

UART/IrDA Control and Status Registers

 12-68

The interrupt identification register (IIR) is a read-only register, which provides
the source of the interrupt in a prioritized manner.

Table 12–57. UART Mode Interrupt Identification Register (UART_IIR)

Bit Name Value Function R/W
Reset
Value

7–6 FCR_MIRROR Mirror the contents of FCR(0) on both bits. R 00

5–1 IT_TYPE Priority 5 4 3 2 1 Source
1 0 0 0 1 1 Receiver line status

error
2 0 0 1 1 0 RX time-out
2 0 0 0 1 0 RHR interrupt
3 0 0 0 0 1 THR interrupt
4 0 0 0 0 0 Modem interrupt
5 0 1 0 0 0 XOFF/special

character
6 1 0 0 0 0 CTS, RTS, DSR

change state from
active (low) to
inactive (high)

R 00000

0 IT_PENDING 0 An interrupt is pending (nIRQ active). R 1

1 No interrupt is pending (nIRQ inactive).

UART/IrDA Control and Status Registers

12-69UART Devices

The IRQ output is activated whenever one of the 8 interrupts is active.

Table 12–58. SIR Mode Interrupt Identification Register (SIR_IIR)

Bit Name Value Function R/W
Reset
Value

7 EOF_IT 0 Received EOF interrupt inactive R 0

1 Received EOF interrupt active

6 LINE_STS_IT 0 Receiver line status interrupt inactive R 0

1 Receiver line status interrupt active

5 TX_UE_IT 0 TX underrun interrupt inactive R 0

1 TX underrun interrupt active

4 STS_FIFO_IT 0 Status FIFO trigger level interrupt inactive R 0

1 Status FIFO trigger level interrupt active

3 RX_OE_IT 0 RX overrun interrupt inactive R 0

1 RX overrun interrupt active

2 RX_FIFO_LAST_
BYTE_IT

0 Last byte of frame in RX FIFO interrupt
inactive

R 0

1 Last byte of frame in RX FIFO interrupt
active

1 THR_IT 0 THR interrupt inactive R 0

1 THR interrupt active

0 RHR_IT 0 RHR interrupt inactive R 0

1 RHR interrupt active

UART/IrDA Control and Status Registers

 12-70

The enhanced feature register (EFR) enables or disables enhanced features,
most of which only apply to UART mode. But EFR[4] enables write accesses
to FCR[5:4], the TX trigger level, which is also used in SIR mode.

Table 12–59. Enhanced Feature Register (EFR)

Bit Name Value Function R/W
Reset
Value

7 AUTO_CTS_EN Automatic CTS enable bit R/W 0

0 Normal operation

1 Automatic CTS flow control is enabled; that
is, transmission is halted when the CTS pin
is high (inactive).

6 AUTO_RTS_EN Automatic RTS enable bit R/W 0

0 Normal operation

1 Automatic RTS flow control is enabled; that
is, the RTS pin goes high (inactive) when
the receiver FIFO HALT trigger level,
TCR3:0, is reached, and goes low (active)
when the receiver FIFO restore
transmission trigger level is reached.

5 SPECIAL_CHAR_
DETECT

0 Normal operation R/W 0

1 Special character detect enable bit.
Received data is compared with XOFF2
data. If a match occurs, the received data is
transferred to FIFO and IIR bit 4 is set to 1
to indicate a special character has been
detected.

4 ENHANCED_EN Enhanced functions write enable bit. R/W 0

0 Disables writing to IER bits 4-7, FCR bits
4-5, and MCR bits 5-7

1 Enables writing to IER bits 4-7, FCR bits
4-5, and MCR bits 5-7

3–0 SW_FLOW_CONTROL Combinations of software flow control can
be selected by programming bits 3:0. See
Table 12–60.

R/W 0

UART/IrDA Control and Status Registers

12-71UART Devices

Table 12–60. EFR[0:3]: Software Flow Control Options

Bit 3 Bit 2 Bit 1 Bit 0 TX, RX Software Flow Controls

0 0 X X No transmit flow control

1 0 X X Transmit XON1, XOFF1

0 1 X X Transmit XON2, XOFF2

1 1 X X Transmit XON1, XON2: XOFF1, XOFF2†

X X 0 0 No receive flow control

X X 1 0 Receiver compares XON1, XOFF1

X X 0 1 Receiver compares XON2, XOFF2

X X 1 1 Receiver compares XON1, XON2: XOFF1, XOFF2†

† In these cases, the XON1 and XON2 characters or the XOFF1 and XOFF2 characters must be transmitted/received sequentially
with XON1/XOFF1 followed by XON2/XOFF2.

XON1 and XON2 must be set to different values if the software flow control is
enabled.

Table 12–61. XON1/Address Register 1 (XON1/ADDR1)

Bit Name Function R/W
Reset
Value

7–0 XON_WORD1 Used to store the 8-bit XON1 character in UART
mode and ADDR1 address 1 for SIR mode.

R/W 0x00

Table 12–62. XON2/Address Register 2 (XON2/ADDR2)

Bit Name Function R/W
Reset
Value

7–0 XON_WORD2 Used to store the 8-bit XON2 character in UART
mode and ADDR2 address 2 for SIR mode.

R/W 0x00

Table 12–63. XOFF1 Register (XOFF1)

Bit Name Function R/W
Reset
Value

7–0 XOFF_WORD1 Used to store the 8-bit XOFF1 character in used
in UART modes.

R/W 0x00

UART/IrDA Control and Status Registers

 12-72

Table 12–64. XOFF2 Register (XOFF2)

Bit Name Function R/W
Reset
Value

7–0 XOFF_WORD2 Used to store the 8-bit XOFF2 character in used
in UART mode.

R/W 0x00

The scratchpad register (SPR) does not control the module in anyway. It is a
scratchpad register to be used by the programmer to hold temporary data.

Table 12–65. Scratchpad Register (SPR)

Bit Name Function R/W
Reset
Value

7–0 SPR_WORD Scratchpad register R/W 0x00

The two divisor latch registers (DLL and DLH) store the 16-bit divisor for gener-
ation of the baud clock in the baud rate generator. DLL stores the least signifi-
cant part of the divisor. DLH stores the most significant part of the divisor.

DLL and DLH can only be written to before sleep mode is enabled (that is,
before IER[4] is set).

Table 12–66. Divisor Latch Low Register (DLL)

Bit Name Function R/W
Reset
Value

7–0 CLOCK_LSB Used to store the 8-bit LSB divisor value R/W 0x00

Table 12–67. Divisor Latch High Register (DLH)

Bit Name Function R/W
Reset
Value

7–0 CLOCK_MSB Used to store the 8-bit MSB divisor value R/W 0x00

To achieve the required baud rate, you must program DLL/DLH with the
integer part of the divisor value.

Choosing the appropriate divisor value:

UART: Divisor value = Operating Frequency/(16 x baud rate).

UART/IrDA Control and Status Registers

12-73UART Devices

The input frequency of the UART IrDA must be fixed to the operating frequency
(here 12 MHz; no CLKSEL bit setting), and the the OSC_12M_SEL bit must
be set to be able to reach the desired baud rate. Setting OSC_12M_SEL to 1
enables turning on the 6.5 division factor. For instance, 12 MHz/16/6.5 =
115200 bps; if OSC_12M_SEL is not set, the reached baud rate is either
12 MHz/16/6 or 12 MHz/16/7, which are outside permitted tolerance.

The transmission control register (TCR) stores the receive FIFO threshold
levels to start/stop transmission during hardware/software flow control.

Table 12–68. Transmission Control Register (TCR)

Bit Name Function R/W
Reset
Value

7–4 RX_FIFO_TRIG_START RCV FIFO trigger level to restore transmission
(0-60)

R/W 0000

3–0 RX_FIFO_TRIG_HALT RCV FIFO trigger level to halt transmission
(0–60)

R/W 1111

Note: Trigger levels from 0–60 bytes are available with a granularity of four (trigger level = 4 x [4-bit register value]).

The programmer must ensure that TCR[3:0] is greater than TCR[7:4]
whenever automatic RTS or software flow control is enabled to avoid spurious
operation of the device.

In FIFO interrupt mode with flow control, the programmer must also ensure
that the trigger level to halt transmission is greater than or equal to the receive
FIFO trigger level (either TLR[7:4] or FCR[7:6]); otherwise, FIFO operation
stalls. In FIFO DMA mode with flow control, this concept does not exist
because a DMA request is sent each time a byte is received.

The trigger level register (TLR) stores the programmable transmit and receive
FIFO trigger levels used for DMA and IRQ generation.

Table 12–69. Trigger Level Register (TLR)

Bit Name Function R/W
Reset
Value

7–4 RX_FIFO_TRIG_DMA RCV FIFO trigger level R/W 0000

3–0 TX_FIFO_TRIG_DMA Transmit FIFO trigger level R/W 0000

UART/IrDA Control and Status Registers

 12-74

Table 12–70 and Table 12–71 summarize the different ways that can be used
to set the trigger levels for the transmit FIFO and the receive FIFO, respectively.

Table 12–70. Transmit FIFO Trigger Level Setting Summary

SCR[6] TLR[3:0] TX FIFO Trigger Level

0 0000 Defined by FCR5:4 (either 8, 16, 32, and 56 spaces)

0 	0000 Defined by TLR3:0 (from 4 to 60 spaces with a granularity of 4 spaces)

1 value Defined by the concatenated value of TLR3:0 and FCR 5:4 (from 1 to 63
spaces with a granularity of 1 space).

The combination of TLR3:0 = 0000 and FCR 5:4 = 00 (all zeros) is not
supported (minimum one space required). All zeros result in unpredictable
behavior.

Note: The protocol to set the concatenation of TLR and FCR is:
– Set SCR[6] = 0
– Set the value of threshold into FCR and TLR
– Set SCR[6] = 1

Table 12–71. Receive FIFO Trigger Level Setting Summary

SCR[7] TLR[7:4] TX FIFO Trigger Level

0 0000 Defined by FCR7:6 (either 8, 16, 56, and 60 characters)

0 	0000 Defined by TLR7:4 (from 4 to 60 characters with a granularity of 4 characters)

1 value Defined by the concatenated value of TLR7:4 and FCR 7:6 (from 1 to 63
characters with a granularity of 1 character).

The combination of TLR7:4 = 0000 and FCR 7:6 = 00 (all zeros) is not
supported (minimum one character required). All zeros result in unpredictable
behavior.

Note: The protocol to set the concatenation of TLR and FCR is:
– Set SCR[7] = 0
– Set the value of threshold into FCR and TLR
– Set SCR[7] = 1

UART/IrDA Control and Status Registers

12-75UART Devices

The mode of operation can be programmed by writing to MDR1[2:0]; therefore
the mode definition 1 register (MDR1) must be programmed on start-up after
configuration of the configuration registers (DLL, DLH, LCR…). The value of
MDR1[2:0] must not be changed again during normal operation.

Table 12–72. Mode Definition 1 Register (MDR1)

Bit Name Value Function R/W
Reset
Value

7 FRAME_END_MODE 0 Frame-length method R/W 0

1 Set EOT bit method

6 – Reserved R/W 0

5 SCT Stores and controls the transmission R/W 0

0 Starts the SIR transmission as soon as a
value is written to THR

1 Starts the SIR transmission with the control
of ACREG2

4 – Reserved R 0

3 IR_SLEEP 0 SIR sleep mode disabled R/W 0

1 SIR sleep mode enabled

2–0 MODE_SELECT† 000 UART mode R/W 111

001 SIR mode

111 Disable UART/default state

All the other values are reserved

† The MODE_SELECT = 0x7 setting disables the UART module by disabling the FIFO and the state machine. It does not gate
the functional clock to the module. The lowest power state is not achieved by setting MODE_SELECT = 0x7, but by putting the
UART into sleep mode. The lowest power state is achieved when in sleep mode witht DLL = 0xFFFF and DLH = 0xFFFF.

UART/IrDA Control and Status Registers

 12-76

The mode definition 2 register (MDR2) sets the trigger level for the frame
status FIFO (8 entries) and must be programmed before the mode is
programmed in MDR1[2:0].

Table 12–73. Mode Definition Register 2 (MDR2)

Bit Name Value Function R/W
Reset
Value

7–5 – Reserved R/W 000

4–3 DIV_1.6M MSB part of DIV_1.6 R/W 00

2–1 STS_FIFO_TRIG Frame status FIFO threshold select: R/W 00

00 1 entry

01 4 entry

10 7 entry

11 8 entry

0 – Reserved R/W 0

The transmit frame length registers (TXFLL and TXFLH) hold the 13-bit trans-
mit frame length. TXFLL holds the least significant bits, and TXFLH holds the
most significant bits. The frame length value is used if the frame length method
of frame closing is used.

In terms of the IrDA frame format (see Figure 12–14), the value stored in the
TXFLH/TXFLL registers is the byte length from A to I.

Table 12–74. Transmit Frame Length Low Register (TXFLL)

Bit Name Function R/W
Reset
Value

7–0 TXFLL LSB register used to specify the frame length W 00000000

Table 12–75. Transmit Frame Length High Register (TXFLH)

Bit Name Function R/W
Reset
Value

7–5 – Reserved W 000

4–0 TXFLH MSB register used to specify the frame length W 00000

UART/IrDA Control and Status Registers

12-77UART Devices

The received frame length registers (RXFLL and RXFLH) hold the 12-bit
receive maximum frame length. RXFLL holds the least significant bits, and
RXFLH holds the most significant bits. If the intended maximum receive frame
length is n bytes, then program RXFLL and RXFLH to n + 3 in SIR mode (+3
is due to frame format with CRC and stop flag).

In terms of the IrDA frame format (see Figure 12–14), the value stored in the
RXFLH/RXFLL registers is the byte length from A to EOF.

Table 12–76. Received Frame Length Low Register (RXFLL)

Bit Name Function R/W
Reset
Value

7–0 RXFLL LSB register used to specify the frame length in
reception

W 00000000

Offset Address (hex): 0x0D x Start Address

Table 12–77. Received Frame Length High Register (RXFLH)

Bit Name Function R/W
Reset
Value

7–4 – Reserved W 0000

3–0 RXFLH MSB register used to specify the frame length in
reception

W 0000

UART/IrDA Control and Status Registers

 12-78

The status FIFO line status line register (SFLSR) reads frame status informa-
tion from the status FIFO (this register does not physically exist). Reading this
register increments the status FIFO read pointer (SFREGL and SFREGH
must be read first).

Table 12–78. Status FIFO Line Status Register (SFLSR)

Bit Name Function R/W
Reset
Value

7–5 – Reserved R 000

4 OE_ERROR 1: Overrun error in RX FIFO when frame at top of
FIFO was received

R 0

3 FRAME_LENGTH_
ERROR

1: Frame-length error in frame at top of FIFO R 0

2 ABORT_DETECT 1: Abort pattern detected in frame at top of FIFO R 0

1 CRC_ERROR 1: CRC error in frame at top of FIFO R 0

0 – Reserved R 0

The resume register (RESUME) is used to clear internal flags, which halt trans-
mission/reception when an underrun/overrun error occurs. Reading this regis-
ter resumes the halted operation. This register does not physically exist and
reads always as 0x00.

Table 12–79. Resume Register (RESUME)

Bit Name Function R/W
Reset
Value

7–0 DI Dummy read to restart the TX or RX R 00000000

UART/IrDA Control and Status Registers

12-79UART Devices

The frame lengths of received frames are written into the status FIFO. This
information can be read by reading the status FIFO registers (SFREGL and
SFREGH—these registers do not physically exist). The least significant bits
are read from SFREGL, and the most significant bits are read from SFREGH.
Reading these registers does not alter the status FIFO read pointer. These
registers must be read before the pointer is incremented by reading the
SFLSR.

In terms of the IrDA frame format (see Figure 12–14), the value read in the
SFREGH/SFREGL registers is the byte length from A to CRC.

Table 12–80. Status FIFO Register Low (SFREGL)

Bit Name Function R/W
Reset
Value

7–0 SFREGL LSB part of the frame length R Undefined

Table 12–81. Status FIFO Register High (SFREGH)

Bit Name Function R/W
Reset
Value

7–4 – Reserved R 0000

3–0 SFREGH MSB part of the frame length R Undefined

The beginning of frame control register (BLR) [6] selects whether 0xC0 or
0xFF start patterns are to be used and when multiple start flags are required
in SIR mode. If only one start flag is required, this is always 0xC0. If n start flags
are required, then either (n-1) C0x0 or (n-1) 0xFF flags are sent, followed by
a single 0xC0 flag (immediately preceding the first data byte).

Table 12–82. BOF Control Register (BLR)

Bit Name Value Function R/W
Reset
Value

7 STS_FIFO_RESET Status FIFO reset. This bit is self-clearing R/W 0

6 XBOF_TYPE SIR XBOF select R/W 1

0 0xFF

1 0xC0

5–0 – Reserved R/W 000000

UART/IrDA Control and Status Registers

 12-80

The beginning of frame length register (EBLR) specifies the number of BOF
+ XBOFs to transmit in IrDA SIR operations. Value set into this register must
take into account the BOF character; to send sent one BOF with no XBOF, this
register must be set to 1. To send one BOF with N XBOF, this register must be
set to N+1. Furthermore, the value 0 sends 1 BOF plus 255 XBOF.

Table 12–83. BOF Length Register (EBLR)

Bit Name Function R/W
Reset
Value

7–0 EBLR This register allows definition of up to 176 XBOFs,
the maximum required by IrDA specification.

W 00000000

Table 12–84. DIV1.6 Register (DIV16)

Bit Name Function R/W
Reset
Value

7–0 DIV_1.6L Used to generate the 1.6-µs pulse R/W 00000000

In SIR, the DIV1.6 register (DIV16) is used to generate 1.6-µs pulse encoding
instead of 3/16 encoding when selected using ACREG[7]. The value of
DIV_1.6 is coded on ten bits by MDR2[4:3] for its MSB and DIV_1.6[7:0] for
its MSB.

In SIR mode, DIV1.6 must be programmed as follows:

DIV1.6 = [(3/(16 * baud rate)) - 1.6E-6] * FCLK_frequency

DIV1.6 = 0 is forbidden. If the calculated value Div_1.6 is between 0 and 1 the
rounding must be done to 1.

With an input frequency of 13 MHz:

At 115200 bauds DLH = 0x00 DLL = 0x07 MDR24:3 = 0x00 DIV_1.6 = 0x01

At 57600 bauds DLH = 0x00 DLL = 0x0E MDR24:3 = 0x00 DIV_1.6 = 0x16

At 38400 bauds DLH = 0x00 DLL = 0x15 MDR24:3 = 0x00 DIV_1.6 = 0x2B

At 19200 bauds DLH = 0x00 DLL = 0x2A MDR24:3 = 0x00 DIV_1.6 = 0x6A

At 9600 bauds DLH = 0x00 DLL = 0x55 MDR24:3 = 0x00 DIV_1.6 = 0xEB

At 2400 bauds DLH = 0x01 DLL = 0x53 MDR24:3 = 0x03 DIV_1.6 = 0x96E5

UART/IrDA Control and Status Registers

12-81UART Devices

With an input frequency of 12 MHz:

At 115200 bauds DLH = 0x00 DLL = 0x01 MDR24:3 = 0x00 DIV_1.6 = 0x01

At 57600 bauds DLH = 0x00 DLL = 0x02 MDR24:3 = 0x00 DIV_1.6 = 0x14

At 38400 bauds DLH = 0x00 DLL = 0x03 MDR24:3 = 0x00 DIV_1.6 = 0x27

At 19200 bauds DLH = 0x00 DLL = 0x06 MDR24:3 = 0x00 DIV_1.6 = 0x62

At 9600 bauds DLH = 0x00 DLL = 0x0C MDR24:3 = 0x00 DIV_1.6 = 0xD7

At 2400 bauds DLH = 0x01 DLL = 0x30 MDR24:3 = 0x03 DIV_1.6 = 0x96

Table 12–85. Auxiliary Control Register (ACREG)

Bit Name Value Function R/W
Reset
Value

7 PULSE_TYPE SIR pulse-width select: R/W 0

0 3/16 of baud-rate pulse width

1 1.6-µs

6 SD_MOD Primary output used to configure
transceivers. Connected to the SD/MODE
input of transceivers.

R/W 0

0 SD_MODE pin is set to high.

1 SD_MODE pin is set to low.

5 DIS_IR_RX 0 Enables RXIR input R/W 0

1 Disables RXIR input for half-duplex
purpose

4 DIS_TX_UNDERRUN 0 Long stop bits cannot be transmitted, TX
underrun is enabled.

R/W 0

1 Long stop bits can be transmitted, TX
underrun is disabled.

3 – Reserved R 0

2 SCTX_EN Store and controlled TX start. When
MDR15 = 1 and the host writes 1 to this bit,
the TX state machine starts frame
transmission. This bit is self-clearing.

R/W 0

UART/IrDA Control and Status Registers

 12-82

Table 12–85. Auxiliary Control Register (ACREG) (Continued)

Bit
Reset
ValueR/WFunctionValueName

1 ABORT_EN Frame abort. The host can intentionally
abort transmission of a frame by writing 1 to
this bit. Neither the end flag nor the CRC
bits are appended to the frame.

R/W 0

0 EOT_EN EOT (end of transmission) bit. The host
writes 1 to this bit just before it writes the
last byte to the TX FIFO in set-EOT bit
frame closing method. This bit
automatically gets cleared when the host
writes to the THR (TX FIFO).

R/W 0

Table 12–86. OSC 12-MHz Select Register (OSC_12M_SEL)

Bit Name Function R/W
Reset
Value

7–1 – Reserved R 0000000

0 OSC_12M_SEL† When 1, selects 6.5 division factor with a 12-MHz
system clock.

W 0

† This register is write-only and cannot be read.

Table 12–87. Module Version Register (MVR)

Bit Name Function R/W
Reset
Value

7–4 MAJOR_REV Major revision number of the module R †

3–0 MINOR_REV Minor revision number of the module R

† For example: MVR = 0x11: Version 1.1

UART/IrDA Modes of Operation

12-83UART Devices

12.8 UART/IrDA Modes of Operation

The UART/IrDA module can operate in two different modes: UART mode and
slow infrared (SIR) mode.

The modules perform serial-to-parallel conversion on data characters
received and parallel-to-serial conversion on data characters transmitted by
the processor. The complete status of each channel of the modules and each
received character/frame can be read at any time during functional operation
via the line control register (LSR).

You can place the modules in an alternate mode (FIFO mode) to relieve the
processor of excessive software overhead by buffering received/transmitted
characters. Both the receiver and transmitter FIFOs can store up to 64 bytes
of data (plus three additional bits of error status per byte for the receiver FIFO)
and have selectable trigger levels.

Both interrupts and DMA are available to control the data-flow between the
host (MPU or DSP) and the module.

12.8.1 UART Mode

The UART uses a wired interface for serial communication with a remote
device.

UART modules are functionally compatible to the TL16C750 UART and are
also functionally compatible with earlier designs such as the TL16C550.

UART modules can use hardware or software flow controls to manage
transmission/reception. Hardware flow control significantly reduces software
overhead and increases system efficiency by automatically controlling serial
data flow using the RTS output and CTS input signals. Software flow control
automatically controls data flow by using programmable XON/XOFF charac-
ters.

12.8.2 SIR Mode

In slow infrared (SIR) mode, data transfer takes place between the host (MPU
or DSP) and peripheral devices at speeds of up to 115200 bauds. An SIR
transmit frame starts with start flags (either a single C0h, multiple C0hs, or a
single C0h preceded by a number of FFh flags), followed by frame data,
CRC-16, and a stop flag (C1h).

BLR[6] selects whether C0h or FFh start patterns are to be used when multiple
start flags are required.

The SIR transmit state machine attaches start flags, CRC-16, and stop flags.
It checks the outgoing data to establish if data transparency is required.

UART/IrDA Modes of Operation

 12-84

SIR transparency is carried out if the outgoing data (between the start and stop
flags) contains C0h, C1h, or 7Dh. If one of these is about to be transmitted,
then the SIR state machine sends an escape character [7Dh] first, then inverts
the fifth bit of the real data to be sent, and sends this data immediately after
the 7Dh character.

The SIR receive state machine recovers the receive clock, removes the start
flags, removes any transparency from the incoming data, and determines
frame boundary with reception of the stop flag. It also checks for errors such
as frame aborts (7Dh character followed immediately by a C1h stop flag, with-
out transparency), CRC errors, and frame-length errors. At the end of a frame
reception, the host (MPU or DSP) reads the line status register (LSR) to find
out the errors, if any, of the received frame.

Data can be transferred both ways simultaneously by the module, but transmit
and receive must not take place at the same time according to the standard.

The infrared output in SIR mode can either be 1.6-µs or 3/16 encoding,
selected by ACREG[7]. In 1.6-µs encoding the infrared pulse width is 1.6-µs,
and in 3/16 encoding the infrared pulse width is 3/16 of a bit duration (1/baud-
rate).

The transmitting device must send at least two start flags at the start of each
frame for back-to-back frames.

Note:

Reception supports variable-length stop bits.

12.8.2.1 CRC Generation

Figure 12–14 shows the IrDA frame format.

Figure 12–14. IrDA Frame Format

XBOF BOF A C I CRC EOF

M*8 BitsN*8 Bits 2*8 Bits8 Bits8 Bits8 Bits 8 Bits

The CRC is applied on the address (A), control (C), and information (I) bytes.

Note:

The two words of CRC are written in the FIFO in reception.

UART/IrDA Modes of Operation

12-85UART Devices

12.8.2.2 Asynchronous Transparency

Before transmitting a byte, the UART IrDA controller examines each byte in the
payload and the CRC field (between BOF and EOF). For each byte equal to
0xC0 (BOF), 0xC1 (EOF), 0x7D (control escape), the controller does the
following.

� In transmission:

1) Inserts a control escape (CE) byte preceding the byte.

2) Complements bit 5 of the byte (that is, exclusive ORs the byte with 0x20).

The byte sent for the CRC computation is the initial byte written in the TX FIFO
(before the XOR with 0x20).

� In reception:

For the A, C, I, CRC fields:

1) Compares the byte with CE byte; if not equal, sends it to the CRC detector
and stores it in the RX FIFO.

2) If equal to CE, discards the CE byte.

3) Complements the bit 5 of the byte following the CE.

4) Send the complemented byte to the CRC detector and stores it in the RX
FIFO.

12.8.2.3 Abort Sequence

The transmitter may decide to prematurely close a frame. The transmitting
station aborts by sending the sequence 0x7dc1. The abort pattern closes the
frame without a CRC field or an ending flag.

It is possible to abort a transmission frame by programming ACREG [1].

When this bit is set to 1, 7Dh and C1h are transmitted and the frame is not
terminated with CRC or stop flags.

The receiver treats a frame as an aborted frame when a 7Dh character
followed immediately by a C1h character has been received without
transparency.

� When UART3 receives an abort sequence (0x7DC1), the abort bit
(LSR[3]) is set to 1.

� When the UART3 FIFO is empty or the SFSLR register is read, the abort
bit is cleared to 0 (If SFSLR register is read, abort actually reflects the
status of the next frame).

UART/IrDA Modes of Operation

 12-86

12.8.2.4 Pulse Shaping

In SIR mode both the 3/16th or the 1.6-µs pulse duration methods are
supported. ACREG[7] selects the pulse-width method in transmit mode.

12.8.2.5 Encoder

Serial data from the transmit state machine is encoded to transmit data to the
optoelectronics (see Figure 12–15). While the serial data input to (TXD) is
high, the output (TXIR) is always low and the counter used to form a pulse on
TXIR is continuously cleared. After TXD resets to 0, TXIR rises on the falling
edge of the 7th 16XCLK. On the falling edge of the 10th 16XCLK pulse, TXIR
falls, creating a 3-clock-wide pulse. While TXD remains low, a pulse is trans-
mitted during the 7th to the 10th clocks of each 16-clock bit cycle.

Figure 12–15. IrDA Encoder Mechanism

TXD

1 2 4 5 63 7 8 10 11 129 13 14 1615
16XCLK

TXIR

UART/IrDA Modes of Operation

12-87UART Devices

12.8.2.6 Decoder

After reset, RXD is high and the 4-bit counter is cleared (see Figure 12–16).
When a rising edge is detected on RXIR, RXD falls on the next rising edge of
16XCLK with sufficient setup time. RXD remains low for 16 cycles (16XCLK)
and then returns to high as required by the IrDA specification. As long as no
pulses (rising edges) are detected on the RXIR, RXD remains high.

The reception of RXIR input can be disabled with DIS_IR_RX bits of the
auxiliary control register (ACREG[5]).

Figure 12–16. IrDA Decoder Mechanism

RXD

1 2 4 5 63 7 8 10 11 129 13 14 1615
16XCLK

RXIR

12.8.2.7 Address Checking

In SIR mode, only frames intended for the device are written to the RX FIFO,
if address checking has been enabled. This avoids receiving frames not meant
for this device in a multipoint infrared environment. You can program two frame
addresses the UART IrDA receives with the XON1/ADDR1 and XON2/ADDR2
registers.

Selecting address1 checking is done by setting EFR[0] to 1. Address2 check-
ing is done by setting EFR[1] to 1. Setting EFR[1:0] to 0 disables all address
checking operations. If both bits are set, then the incoming frame is checked
for both the private and public addresses.

If address checking is disabled, then all received frames are written into the
reception FIFO.

UART/IrDA Functional Description

 12-88

12.9 UART/IrDA Functional Description

This section provides a functional description of the UART IrDA.

12.9.1 UART/IrDA Functional Block Diagram

Figure 12–17 shows the UART/IrDA (FSM stands for finite state machine).

Figure 12–17. Functional Block Diagram

TIPB
MPU

RX

TXUART
TX FSM

TX FIFO

ControlTIPB
interface

RX FIFO

Data exchanges

Controls

CLKGEN

Clocks to all blocks

RX
FSM

RXIR

TXIR

RX
FSM

SIR
TX FSM

UART
RX FSM

SIR
RX FSM

12.9.2 Trigger Levels

The UART provides programmable trigger levels for both receiver and trans-
mitter DMA and interrupt generation. After reset, both transmitter and receiver
FIFOs are disabled (in effect, the trigger level is the default value of one byte).
The programmable trigger levels are an enhanced feature available via the
trigger level register (TLR).

UART/IrDA Functional Description

12-89UART Devices

12.9.3 Interrupts

The UART generates interrupts on the UART_nIRQ output pin. All interrupts
can be enabled/disabled by writing to the appropriate bit in the interrupt enable
register (IER). The interrupt status of the device can be checked at any time
by reading the interrupt identification register (IIR).

The UART and IrDA modes have different interrupts in the UART/IrDA module
and therefore different IER and IIR mappings according to the selected mode.

12.9.3.1 Interrupts in MODEM Mode

There are seven possible interrupts, prioritized to six different levels. When an
interrupt is generated, the interrupt identification register (IIR) indicates a
pending interrupt by bringing IIR[0] to logic 0, and it specifies the type of inter-
rupt through IIR[5-1]. Table 12–88 summarizes the interrupt control functions.

Table 12–88. Generic Interrupt Functions in Modem Mode

IIR[5-0]
Priority
Level

Interrupt
Type Interrupt Source Interrupt Reset Method

0 0 0 0 0 1 None None None None

0 0 0 1 1 0 1 Receiver line sta-
tus

OE, FE, PE, or BI errors
occur in characters in the RX
FIFO

FE,PE,BI: All erroneous
characters are read form the
RX FIFO. OE: Read LSR

0 0 1 1 0 0 2 RX time-out Stale data in RX FIFO Read RHR

0 0 0 1 0 0 2 RHR interrupt DRDY (data ready)
(FIFO disable)

RX FIFO above trigger level
(FIFO enable)

Read RHR until interrupt
condition disappears.

0 0 0 0 1 0 3 THR interrupt TFE (THR empty)
(FIFO disable)

TX FIFO below trigger level
(FIFO enable)

Write to THR until interrupt
condition disappears.

0 0 0 0 0 0 4 Modem status MSR1:0/ = 0 Read MSR

0 1 0 0 0 0 5 XOFF interrupt/
special character
interrupt

Receive XOFF
characters(s)/special
character

Receive XON character(s), if
XOFF interrupt/read of IIR, if
special character interrupt

1 0 0 0 0 0 6 CTS,RTS, DSR RTS pin, CTS pin or DSR pin
change state from active
(low) to inactive (high).

Read IIR

Note: Once LSR[7] (RX_FIFO_STS) is set on FIFO disable (FCR[0]=0), this bit bit cannot be cleared by reading LSR. First,
FCR[1] (RX_FIFO_CLERA) must be set to 1, then LSR[7] can be cleared.

UART/IrDA Functional Description

 12-90

The RX_FIFO_STS bit (LSR[7]) generates the interrupt for the receiver line
status interrupt.

For the XOFF interrupt, if a XOFF flow character detection causes the inter-
rupt, the interrupt is cleared by a XON flow character detection. If special char-
acter detection causes the interrupt, the interrupt is cleared by a read of the
IIR.

12.9.3.2 Interrupts in SIR Mode

In the IrDA modes there are eight possible interrupts. The UART_nIRQ output
is activated when any of the eight interrupts is generated (there is no priority).

Table 12–89 summarizes the interrupt control functions in SIR mode.

Table 12–89. Generic Interrupt Functions in SIR Mode

IIR Bit No. Interrupt Type Interrupt Source Interrupt Reset Method

7 Received EOF Received end-of-frame Read IIR

6 Receiver line
status interrupt

CRC, ABORT or frame-length
error is written into STATUS FIFO.

Read STATUS FIFO.
Read until empty—maximum eight
reads required.

5 TX underrun THR empty before EOF sent Read RESUME register

4 Status FIFO
interrupt

Status FIFO triggers level reached Read STATUS FIFO.

3 RX overrun Write to RHR when RX FIFO full. Read RESUME register

2 Last byte in RX
FIFO

Last byte of frame in RX FIFO Read IIR

1 THR interrupt TFE (THR empty)
(FIFO disable)

TX FIFO below trigger level (FIFO
enable)

Write to THR until interrupt condition
disappears.

0 RHR interrupt DRDY (data ready)
(FIFO disable)

RX FIFO above trigger level
(FIFO enable)

Read RHR until interrupt condition
disappears.

UART/IrDA Functional Description

12-91UART Devices

12.9.3.3 Wake-Up Interrupt

Wake-up interrupt is a uniquely designed interrupt, enabled when SCR[4] is
set to 1. The IIR register is not modified when it occurs; SSR[1] must be
checked to detect a wake-up event. When a wake-up interrupt occurs, the only
way to clear it is to reset SCR[4] to 0.

12.9.4 FIFO Interrupt Mode

In FIFO interrupt mode (FCR[0] = 1), relevant interrupts enabled via IER), the
processor is informed of the status of the receiver and transmitter by an inter-
rupt signal, IRQ. These interrupts are raised when receive/transmit FIFO
threshold (respectively TLR[7:4] and TLR[3:0] or FCR[7:6] and FCR[5:4]) are
reached; they ask the host (MPU or DSP) to transfer data to destination (from
UART module in receive mode and from any source to UART FIFO in transmit
mode).

When UART flow control is enabled along with interrupt capabilities, you must
ensure that the UART flow control FIFO threshold (TCR[3:0]) is greater than
or equal to the receive FIFO threshold.

Figure 12–18 and Figure 12–19 show the receive and transmit IT operations,
respectively.

Figure 12–18. Receive FIFO IT Request Generation

Programmable FIFO threshold

Receive FIFO level

Zero byte
time

Interrupt request

time

Interrupt request active low

Programmable flow control threshold

Host acknowledged IT request
and transferred enough bytes to
recover FIFO level below
threshold

In receive, no interrupt is generated until receive FIFO reaches its threshold.
Once low, the interrupt can only be deasserted when the host (MPU or DSP)
has handled enough bytes to make the FIFO level below threshold. Notice that
the flow control threshold is set at a higher value than the FIFO threshold.

UART/IrDA Functional Description

 12-92

Figure 12–19. Transmit FIFO IT Request Generation

Number
of
spaces

Programmable FIFO threshold

Transmit FIFO level

Zero byte
time

Interrupt request

time

Interrupt request
Active low

Full level

In transmit mode, an interrupt request is automatically asserted when FIFO is
empty. This request is deasserted when the FIFO crossed the threshold level.
The interrupt line is deasserted until a sufficient number of elements has been
transmitted to go below FIFO threshold.

12.9.5 FIFO Polled Mode Operation

In FIFO polled mode (FCR [0] = 0 with relevant interrupts disabled via interrupt
enable register (IER)), the status of the receiver and transmitter can then be
checked by polling the line status register (LSR). This mode is an alternative
to the FIFO interrupt mode of operation, where the status of the receiver and
transmitter is automatically known by means of interrupts sent to the host
(MPU or DSP).

UART/IrDA Functional Description

12-93UART Devices

12.9.6 FIFO DMA Mode Operation

12.9.6.1 DMA Signaling

There are four modes of DMA operation: DMA mode 0, DMA mode 1, DMA
mode 2, and DMA mode 3. They can be selected as follows.

� When SCR[0] = 0:

� Setting FCR[3] to 0 enables DMA mode 0.
� Setting FCR[3] to 1 enables DMA mode 1.

� When SCR[0] = 1:SCR[2:1] determine DMA mode 0 to 3 according to
supplementary control register (SCR) description.

So for instance:

� If no DMA operation is desired, set SCR[0] to 1 and SCR[2:1] to 00 (FCR[3]
is disregarded).

� If DMA mode 1 is desired, either set SCR[0] to 0 and FCR[3] to 1 or set
SCR[0] to 1 SCR[2:1] to 01 (FCR[3] is disregarded).

If the FIFOs are disabled (FCR[0] = 0), DMA occurs in single character trans-
fers. When DMA mode 0 has been programmed, the signals associated with
DMA operation are not active.

12.9.6.2 DMA Transfers (DMA Mode 1, 2, or 3)

Figure 12–20 shows DMA operations at receive; Figure 12–21 shows DMA
operations at transmit.

Figure 12–20. Receive FIFO DMA Request Generation

Threshold reads
From system DMA

Programmable threshold

Receive FIFO level

Zero byte
time

DMA request

time

DMA request
Active low

UART/IrDA Functional Description

 12-94

In receive mode, a DMA request is generated as soon as the receive FIFO
reaches its threshold. This request is deasserted when the number of bytes
defined by the threshold level has been read by the system DMA.

Figure 12–21. Transmit FIFO DMA Request Generation

Programmable threshold

Transmit FIFO level

Zero byte
time

DMA request

time

DMA request

Transmit FIFO level

Full level

active low

Threshold writes
from system DMA

Number
of spaces

In transmit mode, a DMA request is automatically asserted when FIFO is
empty. This request is deasserted when the number of bytes defined by the
threshold level has been written by the system DMA. The DMA request is
again asserted if the FIFO is able to receive the number of bytes defined by
the threshold.

UART/IrDA Functional Description

12-95UART Devices

12.9.7 Sleep Mode

12.9.7.1 UART Mode

Sleep mode is a low-power, enhanced feature of the UART that can be
enabled by writing a 1 to IER[4] (when EFR[4] = 1).

Sleep mode is entered when:

� Serial RX data input line is idle.
� TX FIFO and TX shift register are empty.
� RX FIFO is empty.
� No interrupts are pending except THR interrupts.

Sleep mode is a good way to lower UART power consumption, but this state
can be achieved only when the UART is set in modem mode. Therefore, even
if UART does not have a functional key role, it must be initialized in a functional
mode to take advantage of sleep mode.

In sleep mode, the module clock and baud rate clock are stopped internally.
Because most registers are clocked using these clocks, the power consump-
tion is greatly reduced. The module wakes up when any change is detected
on the RX line, when data is written to the TX FIFO, or when there is any
change in the state of the modem input pins. An interrupt can be generated on
a wake up event by setting SCR[4] to 1.

Note:

Writing to the divisor latches, DLL and DLH, to set the baud clock, BCLK,
must not be done during sleep mode. Disable sleep mode using IER[4]
before writing to DLL or DLH.

12.9.7.2 IrDA Mode

In IrDA modes, sleep mode is enabled by writing a 1 to MDR1[3].

Sleep mode is entered when:

� Serial RXIR data input line is idle.
� TX FIFO and TX shift register are empty.
� RX FIFO is empty.
� No interrupts are pending except THR interrupts.

The module wakes up when any change is detected on the RXIR line, if data
is written to the TX FIFO.

UART/IrDA Functional Description

 12-96

12.9.8 Break and Time-Out Conditions

� time-out counter

An RX idle condition is detected when the receiver line, RX, has been high
for a time equivalent to 4 X programmed word length + 12 bits. The receiv-
er line is sampled midway through each bit.

For sleep mode, the counter is reset when there is activity on the RX line.

For the time-out interrupt, the counter only counts when there is data in the
RX FIFO and the count is reset when there is activity on the RX line or
when the RHR is read.

� Break condition

When a break condition occurs, the TX line is pulled low. A break condition
is activated by setting LCR[6]. The break condition is not aligned on word
stream; that is, a break condition can occur in the middle of a character.
The only way to send a break condition on a full character, is:

� Reset transmit FIFO (if enabled).
� Wait for transmit shift register becomes empty (LSR[6] = 1).
� Take a guard time according to stop bit definition.
� Set LCR[6] to 1.

The break condition is asserted as long as LCR[6] is set to 1.

12.9.9 Programmable Baud Rate Generator

The programmable baud generator takes any clock input and divides it by a
divisor between 1 and (216-1). The CLKSEL register bit MCR[7] can be used
to select the 1X or 1X/4 clock for the internal baud rate generator. The output
frequency of the baud rate generator is 16x the baud rate.

You must write to the DLL register (least significant bytes) and DLH register
(most significant bytes) of the baud rate divisor to program the baud rate.

Writing to these registers may result in wait states being inserted during the
write access while the baud rate generator is loaded with the new value. If
both registers are 0, the module is effectively disabled, and no baud clock is
generated.

Note:

The programmable baud rate generator selects both the transmit and
receive clock rates.

UART/IrDA Functional Description

12-97UART Devices

12.9.10 Hardware Flow Control

Hardware flow control is composed of automatic CTS and automatic RTS.
Automatic CTS and automatic RTS can be enabled/disabled independently by
programming EFR[7:6]. With automatic CTS, CTS must be active before the
module can transmit data.

Automatic RTS only activates the RTS output when there is enough room in
the FIFO to receive data and deactivates the RTS output when the RX FIFO
is sufficiently full. The HALT and RESTORE trigger levels in the TCR deter-
mine the levels at which RTS is activated/deactivated.

If both automatic CTS and automatic RTS are enabled, data transmission
does not occur unless the receiver FIFO has empty space. Thus, overrun
errors are eliminated during hardware flow control. If not enabled, overrun
errors occur if the transmit data rate exceeds the receive FIFO latency.

� Automatic RTS

Automatic RTS data flow control originates in the receiver block (see
Figure 12–17). The receiver FIFO trigger levels used in automatic RTS
are stored in the TCR. RTS is active if the RX FIFO level is below the HALT
trigger level in TCR[3:0]. When the receiver FIFO HALT trigger level is
reached, RTS is deasserted. The sending device (for example, another
UART) can send an additional byte after the trigger level is reached
because it may not recognize the deassertion of RTS until it has begun
sending the additional byte. RTS is automatically reasserted once the
receiver FIFO reaches the RESUME trigger level programmed via
TCR(7:4). This reassertion requests the sending device to resume trans-
mission.

� Automatic CTS

The transmitter circuitry checks CTS before sending the next data byte.
When CTS is active, the transmitter sends the next byte. To stop the trans-
mitter from sending the following byte, CTS must be deasserted before the
middle of the last stop bit that is currently being sent. The automatic CTS
function reduces interrupts to the host system. When automatic CTS flow
control is enabled, the CTS state changes need not trigger host interrupts
because the device automatically controls its own transmitter. Without au-
tomatic CTS, the transmitter sends any data present in the transmit FIFO
and a receiver overrun error can result.

UART/IrDA Functional Description

 12-98

12.9.11 Software Flow Control

Software flow control is enabled through the enhanced feature register (EFR)
and the modem control register (MCR). Different combinations of software
flow control can be enabled by setting different combinations of EFR[3-0].

There are two other enhanced features relating to software flow control:

� XON Any function [MCR(5)]: Operation resumes after receiving any char-
acter after recognizing the XOFF character. The XON-Any character is
written into the RX FIFO even if it is a software flow character.

� Special character [EFR(5)]: Incoming data is compared to XOFF2. Detec-
tion of the special character sets the XOFF interrupt [IIR(4)] but does not
halt transmission. The XOFF interrupt is cleared by a read of the IIR. The
special character is transferred to the RX FIFO.

12.9.11.1 RX

When software flow control operation is enabled, the UART compares incom-
ing data with XOFF1/2 programmed characters (in certain cases XOFF1 and
XOFF2 must be received sequentially). When the correct XOFF characters
are received, transmission is halted after completing transmission of the
current character. XOFF detection also sets IIR(4) (if enabled via IER(5)) and
causes nIRQ to go low.

To resume transmission, an XON1/2 character must be received (in certain
cases XON1 and XON2 must be received sequentially). When the correct
XON characters are received, IIR(4) is cleared and the XOFF interrupt
disappears.

If a parity, framing or break error occurs while receiving a software flow control
character, this character is treated as normal data and is written to the RX
FIFO.

When XON-Any and special character detect are disabled and software flow
control is enabled, no valid XON or XOFF characters are written to the RX
FIFO. For example, when EFR[1:0] = 10, if XON1 and XOFF1 characters are
received they do not get written to the RX FIFO.

When pairs of software flow characters are programmed to be received
sequentially (EFR[1:0] = 11), the software flow characters are not written to the
RX FIFO if they are received sequentially. However, received XON1/XOFF1
characters must be written to the RX FIFO if the subsequent character is not
XON2/XOFF2.

UART/IrDA Functional Description

12-99UART Devices

12.9.11.2 TX

XOFF1: Two characters are transmitted when the RX FIFO has passed the
programmed trigger level TCR(3:0).

XON1: Two characters are transmitted when the RX FIFO reaches the trigger
level programmed via TCR(7:4).

If, after an XOFF character has been sent, software flow control is disabled,
the module transmits XON characters automatically to enable normal trans-
mission to proceed.

The transmission of XOFF/XON(s) follows the exact same protocol as trans-
mission of an ordinary byte from the FIFO. This means that even if the word
length is set to be 5, 6, or 7 characters, the 5, 6, or 7 least significant bits of
XOFF1,2/XON1,2 are transmitted. The transmission of 5, 6, or 7 bits of a char-
acter is seldom done, but this functionality is included to maintain compatibility
with earlier designs.

It is assumed that software flow control and hardware flow control are never
enabled simultaneously.

12.9.12 Frame Closing

There are two methods by which a transmission-frame can be properly
terminated.

1) The frame-length method is selected when MDR1[7] = 0. The host (MPU
or DSP) writes the frame-length value to TXFLH and TXFLL registers. The
device automatically attaches end flags to the frame once the number of
bytes transmitted becomes equal to the frame-length value.

2) The set-EOT bit method is selected when MDR1[7] = 1. The host writes
1 to ACREG[0] (EOT bit) just before it writes the last byte to the TX FIFO.
When the host writes the last byte to the TX FIFO, the device internally sets
the tag bit for that particular character in the TX FIFO. As the TX state
machine reads data from the TX FIFO, it uses this tag-bit information to
attach end flags and properly terminate the frame.

UART/IrDA Functional Description

 12-100

12.9.13 Store and Controlled Transmission

In a store and controlled transmission (SCT), the host (MPU or DSP) first starts
writing data into the TX FIFO. Then, after it writes a part of a frame (for a bigger
frame) or a whole frame (a small frame, that is, supervisory frame), it writes
a 1 to ACREG[2] (deferred TX start) to start transmission. SCT is enabled
when MDR1[5] = 1. This method of transmission is different from the normal
mode, where transmission of data starts immediately after data is written to the
TX FIFO. SCT is useful to send short frames without TX underrun.

12.9.14 Underrun During Transmission

Underrun in transmission occurs when the TX FIFO becomes empty before
the end of the frame is transmitted. When underrun occurs, the device closes
the frame with end-flags but attaches an incorrect CRC value. The receiving
device detects a CRC error and discards the frame; it can then ask for a
retransmission. Underrun also causes an internal flag to be set which disables
further transmission. Before the next frame can be transmitted the system
(host) must:

� Reset the TX FIFO.
� Read the RESUME register—this clears the internal flag.

This functionality can be disabled or compensated for by the extension of the
stop bit in transmission, in case the TX FIFO is empty.

12.9.15 Overrun During Receive

Overrun occurs during receive if the RX state machine tries to write data into
the RX FIFO when it is already full. When overrun occurs, the device interrupts
the host (MPU or DSP) with IIR[3] and discards the remaining portion of the
frame. Overrun also causes an internal flag to be set, which disables further
reception. Before the next frame can be received the system (host) must:

� Reset the RX FIFO.
� Read the resume register—this clears the internal flag.

12.9.16 Status FIFO

In SIR mode, a status FIFO is used to record the received frame status. When
a complete frame is received, the length of the frame and the error bits associ-
ated with the frame are written into the status FIFO.

The frame length and error status can be read by reading SFREGL/H and
SFLSR. Reading the SFLSR causes the read pointer to be incremented. The
status FIFO is eight entries deep and therefore can hold the status of eight
frames.

UART/IrDA Configuration Example

12-101UART Devices

The host (MPU or DSP) uses the frame-length information to locate the frame-
boundary in the received frame data. The host can screen bad frames using
the error-status information and later request the sender to resend only the
bad frames.

This status FIFO can be used very effectively in DMA as the host does not
need to be interrupted every time a frame is received, but only whenever the
programmed status FIFO trigger level is reached.

12.10 UART/IrDA Configuration Example

This section outlines the programming stages to operate one UART module
with FIFO, interrupt, and no DMA capabilities. This is a three-step procedure
that ensures quick start of these modules (obviously it does not cover every
UART module feature). The first stage covers software reset of the module
(interrupts, status, and controls); the second stage deals with FIFO configura-
tion and enable; and the last stage deals with baud rate data and stop configu-
ration. The procedure below is programming language agnostic.

12.11 UART Software Reset

The goal of the UART software reset is to clear IER and MCR registers,
remove UART breaks (LCR[6]=0), and put module in reset (MDR1[2:0]=0x3).

The procedure of the UART is as follows:

1) Write into both the IER and MCR register (EFR[4] must first be set to 1).

2) Access the EFR register.

3) 0xBF must first be written to LCR register as follows:

� LCR=0xBF
� EFR[4]=1
� LCR=0x80 (access to IER and MCR is allowed)
� IER=0x00
� MCR=0x00; LCR[6]=0 (UART breaks removed)
� MDR1=0x03 (UART in reset)

UART/IrDA Functional Description / UART/IrDA Configuration Example / UART Software Reset

UART FIFO Configuration

 12-102

12.12 UART FIFO Configuration

The goal of the UART FIFO configuration is to set trigger level for halt/restore
(TCR register), set trigger level for transmit/receive (TLR register), and
configure the FIFO (FCR register).

The procedure of the UART FIFO configuration is as follows:

1) Write into both the TLR and TCR registers

� Set EFR[4] to 1
� Set MCR[6] to 1.

2) Write into FCR.

� Set EFR[4] to 1.

EFR[4] = 1 has already been done in the previous section, so a simple
write to MCR[6] is necessary.

3) Set TCR TLR and FCR to the desired value.

Here accesses to TCR TLR and FCR must be disabled to avoid any further
undesired write to these registers:

� LCR=0xBF (provides access to EFR)
� EFR[4]=0
� LCR[7]=0
� MCR[6]=0

12.12.1 Baud Rate Data and Stop Configuration

The goals of the baud rate and stop configuration are to configure UART data,
stop (LCR register) baud rate (DLH and DLL registers), and enable UART
operation. If interrupt capability is added, configuration must be added right
before UART enable.

The procedure to accomplish these goals is as follows:

1) Input clock is 12 MHz, so set OSC_12M_SEL to 1.
2) Set LCR to desired value.
3) LCR[7] to 1 (access to DLH and DLL registers).
4) Set DLH and DLL.
5) LCR[7]=0 (removes access to DLH and DLL registers)
6) Set IER to desired value (sets interrupts).
7) MDR1[2:0]=0 (enables UART)

The UART module is operational.

13-1

USB Function Module

This chapter describes the components and features of the OMAP5910
universal serial bus (USB) function module.

Topic Page

13.1 Overview 13-2.

13.2 Register Map 13-9.

13.3 USB Transactions 13-52.

13.4 Device Initialization 13-79.

13.5 Preparing for Transfers 13-83.

13.6 Interrupt Service Routine (ISR) Flowcharts 13-86.

13.7 DMA Operation 13-114.

13.8 Power Management 13-127.

Chapter 13

Overview

 13-2

13.1 Overview

The USB function module supports the implementation of a full-speed device
fully compliant with the USB 1.1 standard. It provides an interface between the
MPU core (TI925T) and the USB wire, and it handles USB transactions with
minimal TI925T intervention.

The module supports one control endpoint (EP0) (IN and OUT), up to 15 IN
endpoints, and up to 15 OUT endpoints. The exact endpoint configuration is
software programmable. For each endpoint, the specific parameters of a con-
figuration are the size in bytes, the direction (IN, OUT), the type (bulk/interrupt
or isochronous), and the associated number.

The module also supports three DMA channels for IN endpoints and three
DMA channels for OUT endpoints for either bulk/interrupt or isochronous
transactions.

This chapter uses terminology defined in USB1.1 Standard. Reader familiarity
with this Standard is assumed. All references to local host (LH) in this chapter
refer to the MPU processor.

Figure 13–1 shows the OMAP5910 device with the USB function module high-
lighted. Figure 13–2 shows the connection of the USB function module within
the OMAP5910 in more detail.

13.1.1 OMAP5910 Inputs/Outputs

Several configurations are possible for the USB function:

� USB function usable with internal transceiver (default configuration)
� USB function usable with external transceivers
� USB function not usable

See the details of these configurations in the section 7.14, USB Host
Controller Overview.

13.1.2 USB Function Interrupts

The USB function generates three interrupts:

1) General USB interrupt (including endpoint 0, DMA, and device states
interrupts), IRQ_GENI_ON: Connected to the MPU level 2 interrupt
handler, line 20 (level-sensitive)

2) Non-ISO endpoint-specific Interrupt, IRQ_NON_ISO_ON: Connected to
the MPU level 2 interrupt handler, line 30 (level-sensitive)

3) Start of frame (SOF) interrupt for ISO transactions, IRQ_ISO_ON:
Connected to the MPU level 2 interrupt handler, line 29 (level-sensitive)

Overview

13-3USB Function Module

The IRQ_ISO_ON interrupt is also connected to the frame adjustment counter
module (FAC) to count the number of frame start.

This count value can then be used by system software to adjust the duration
of the two time domains with respect to each other to reduce the overflow and
underflow.

Figure 13–1. USB Function Module

MPU core
(TI925T)

(instruction
cache, data

cache, MMU)

System
DMA

controller

TMS320C55x DSP
(Instruction cache, SARAM

 DARAM, DMA,
 H/W accelerators)

MPU
peripheral

bridge

LCD
I/F

MPU
Interface

SRAM

SDRAM
memories

Flash and
SRAM

memories

DSP
MMU

16

16

32

16

32

32

32

32

32

32

16

MPU privatePeripherals bus

DSP public (shared) pheripheral bus

32
MPU public

16

DSP

DSP public peripherals

McBSP1

McBSP3

MPU public peripherals

USB Host I/F

JTAG/
emulation

I/F
OSC

12 MHz Clock

OSC

OMAP5910

ETM9

Timers (3)

MPU/DSP shared peripherals

Mailbox

MPU private peripherals

Timers (3)

16

Memory interface

Reset External clock

MPU Bus

32 kHz

1.5M bits

traffic controller (TC)

Watchdog timer

Level 1/2 interrupt handlers

Configuration registers

Clock and reset management

Watchdog timer
Level 1/2

Private peripherals

GPIO I/F

USB Function I/F

Camera I/F
MPUIO

32-kHz timer
PWT
PWL

M
I
F
S

M
I
F
F

I
M
I
F

MCSI1
MCSI2

Keyboard I/F

request

E

E

TIPB
switch

UART1
UART2

UART3 IrDA

32

MMC/SD
LPG x2

HDQ / 1-WIRE

DSP private
peripheral bus

peripherals bus

McBSP2

Device identification

RTC

interrupt handlers

I2C
µWire

Frame adjstument
counter

32

32

32

32

Overview

 13-4

Figure 13–2. USB Function Environment

USB Function

 SYSTEM DMA
DMA_RX_REQ_ON [2:0]

DMA_TX_REQ_ON [2:0]

 MPU interrupt handler
IRQ_GENI_ON

IRQ_NON_ISO_ON

IRQ_ISO_ON

DMA_REQ[27:25]

DMA_REQ[30:28]

Irq20

Irq30

Irq29

 ULPD

CLOCK_I

CLK_48_I

DISABLE_CLK48_O

 DPLL

48 MHz

DS_WAKE_REQ_ON

ULPD_nIrq

Irq24

WKUP_REQ

12 MHz

CLKIN

PERCLK

VBUS_MODE

VBUS_CTRL

FUNC_MUX_CTRL_0(18)

FUNC_MUX_CTRL_0(19)

MOD_CONF_CTRL_0(17)USB _GPIO

GPIO(0)

FUNC_MUX_CTRL_7(11:9)

0

DVDD2

OMAP5910

PU_EN_O

FUNC_MUX_CTRL_D(5:3)

1.5 K

D+

D–

Clock generation

USB_CLKO

USB_PUEN

6 MHz

USB HOST HMC

USB_DP

USB_DN

USB transcievers

S
U

S
P

E
N

D
_O

T
X

D
_O

G
Z

_O

R
X

D

R
X

D
P

R
X

D
M

S
E

O
_O

PORT0

OMAP5910

MOD_CONF_CTRL_0(6:1)

Detection Cell

RESETMPU_PER_RST

VSS

configuration

(multiplexing

level2

and management

27 Ω

27 Ω

Overview

13-5USB Function Module

13.1.3 USB Function Clocks and Reset

The USB function has two clocks:

� An interface clock (CLOCK_I), used between the MPU TIPB and the USB
function and connected to the MPU peripheral programmable clock
(PERCLK), is derived by dividing CK_GEN1 (the output of DPLL1) by the
value associated with the PERDIV field of the ARM_CKCTL register
(0xFFFECE00).

This is a free-running clock when the system is awake.

� A 48-MHz functional clock (CLK_48_I), which is generated by the ULPD
DPLL.

This clock can be shutdown by the USB function (DISABLE_CLK48_O)
when:

� The USB is suspended (idle state).
� The USB is disconnected.

This shutdown must be enabled beforehand: Set SOFF_Dis (bit 1), of the
SYSCON1 register to 0 (default value).

The MPU TIPB reset (MPU_PER_RST) resets the USB function.

13.1.4 USB Function DMA Requests

The USB function can use:

� Three receive DMA channels (DMA_RX_REQ_ON [2:0]): Any endpoint
number (1:15) can be selected to be assigned to one receive DMA
channel.

The DMA_RX_REQ_ON [2:0] are connected to the system DMA request
[27:25].

� Three transmit DMA channels (DMA_TX_REQ_ON [2:0]): any endpoint
number (1:15) can be selected to be assigned to one transmit DMA
channel.

The DMA_TX_REQ_ON [2:0] are connected to the system DMA request
[30:28].

Overview

 13-6

13.1.5 USB Detection

When OMAP5910 is in deep sleep mode, the USB function can detect a bus
connection to an external USB host or hub and generate a deep sleep wake
request (DS_WAKE_REQ_ON) to wake up the system and to get the interface
clock (CLOCK_I).

The USB function can also generate a DS_WAKE_REQ_ON request while the
USB is connected: if the USB function is in idle (SUSPEND state) and a
resume event occurs, the DS_WAKE_REQ_ON request is generated. This
request does not wake up the system itself.

The ULPD module uses this request to generate an interrupt (ULPD_nIrq) to
the MPU, which wakes up the system via its wake-up request (WKUP_REQ)
(see Chapter 15, Clock Generation and System Reset Management).

Once the interface clock is present, the USB function can generate an
attached/unattached interrupt when it detects that the OMAP5910 device is
connected to an external USB host or hub or when it becomes disconnected.

This attached/unattached interrupt uses the general USB interrupt line
(connected to the MPU level 2 interrupt handler, line 20) and the connection
state is given by the ATT bit(0) of the DEVSTAT register.

The USB function can detect whether or not the USB is connected via either
software or hardware.

This choice (soft/hard) is made by the VBUS_MODE bit (18) of the OMAP5910
FUNC_MUX_CTRL_0 register:

� VBUS_MODE = 1 (default value): Software detection is selected.
� VBUS_MODE = 0: Hardware detection is selected.

13.1.5.1 Software Detection

This detection depends on the VBUS_CTRL bit (19) of the OMAP5910
FUNC_MUX_CTRL_0 register:

� VBUS_CTRL=0 (default): USB not connected
� VBUS_CTRL=1: USB connected

Overview

13-7USB Function Module

13.1.5.2 Hardware Detection

This detection can have two sources:

� The GPIO(0) OMAP5910 input
� The OMAP5910 input of the USB function I/O power supply (DVDD2)

The selection between these two sources is made by the
USB_W2FC_VBUS_MODE bit(17) of the MOD_CONF_CTRL_0 register (bit
usable only in OMAP5910 configuration mode):

� USB_W2FC_VBUS_MODE = 0 (default): GPIO(0) is selected.
� USB_W2FC_VBUS_MODE = : I/O power supply detection is selected.

GPIO0 Detection

This detection must be enabled by software as follows:

� In either the OMAP1509 or OMAP5910 configuration mode, when the
VBUS_GPIO0_SELECT bit (12) (FUNC_MUX_CTRL_1 register) is set

Or

� In the OMAP5910 configuration mode, when the CONF_GPIO0_MODE
bits (11:9) (FUNC_MUX_CTRL_7 register) are set to 010

The results of this detection are as follows:

� GPIO0 input = 0: USB not connected (default value via internal pulldown)
� GPIO0 input = 1: USB connected

I/O Power Supply Detection

An analog cell is used to detect the presence or not of the USB I/O power
supply (DVDD2), which permits the detection of the presence or absence of
the USB.

� DVDD2 present: USB connected
� DVDD2 not present: USB not connected

Overview

 13-8

13.1.6 Software Disconnect

The PULLUP_EN (0) bit of the SYSCON1 register allows the device to discon-
nect itself from the USB.

This bit is by default directly connected to the OMAP5910 pad (USB.PUEN),
which must be connected on the application board to a 1.5-kΩ resistor.

The other pin of the resistor must be connected to the positive differential line
(OMAP5910 pad USB.DP) of the USB (D+).

Thus:

� PullUp_En bit=0 (by default): The external 1.5-kΩ is seen as a pulldown
on the USB D+; the external USB host cannot detect the OMAP5910 USB
function.

� PullUp_En bit=1: The external 1.5-kΩ is seen as a pullup on the USB D+,
the USB host detects this level and, therefore, the presence of the
OMAP5910 USB function. The USB host can then configure the USB
function.

The USB.PUEN signal is multiplexed inside OMAP5910 with the USB.CLKO
clock. Bits (5:3) of the FUNC_MUX_CTRL_D register control this multiplexing:

� FUNC_MUX_CTRL_D(5:3)= 000 (default): USB.PUEN signal is output.
� FUNC_MUX_CTRL_D(5:3)= 001: USB.CLKO clock is output.

The USB.CLKO clock comes from the ULPD DPLL after an internal dividing
by 8 (6 MHz) (see Chapter 15, Clock Generation and System Reset Manage-
ment for more details). This clock is dedicated to an external USB HUB.

Register Map

13-9USB Function Module

13.2 Register Map

Table 13–1 lists the USB function registers. Table 13–2 through Table 13–24
describe the register bits. The MPU base address is FFFB:4000.

Table 13–1. USB Function Module Registers

Register Description Access
Offset

Address

REV Revision R 0x00

Endpoint

EP_NUM Endpoint selection R/W 0x04

DATA Data R/W 0x08

CTRL Control Set only 0x0C

STAT_FLG Status flag R 0x10

RXFSTAT Receive FIFO status R 0x14

SYSCON1 System configuration 1 R/W 0x18

SYSCON2 System configuration 2 Set only 0x1C

DEVSTAT Device status R 0x20

SOF Start of frame R 0x24

IRQ_EN Interrupt enable R/W 0x28

DMA_IRQ_EN DMA interrupt enable R/W/Clear 0x2C

IRQ_SRC Interrupt source R/Clear 0x30

EPN_STAT Endpoint interrupt status R 0x34

DMAN_STAT DMA endpoint interrupt status R 0x38

Reserved 0x3C

DMA Configuration

RXDMA_CFG Receive channels DMA configuration R/W 0x40

TXDMA_CFG Transmit channels DMA configuration R/W 0x44

DATA_DMA DMA FIFO data R/W 0x48

Reserved 0x4C

TXDMA0 Transmit DMA control 0 R/W 0x50

Register Map

 13-10

Table 13–1. USB Function Module Registers (Continued)

Register
Offset

AddressAccessDescription

DMA Configuration (Continued)

TXDMA1 Transmit DMA control 1 R/W 0x54

TXDMA2 Transmit DMA control 2 R/W 0x58

Reserved 0x5C

RXDMA0 Receive DMA control 0 R/W 0x60

RXDMA1 Receive DMA control 1 R/W 0x64

RXDMA2 Receive DMA control 2 R/W 0x68

Reserved 0x6C-
0x7C

Endpoint Configuration

EP0 Endpoint configuration 0 R/W 0x80

EP1_RX Receive endpoint configuration 1 R/W 0x84

EP2_RX Receive endpoint configuration 2 R/W 0x88

… …

EP15_RX Receive endpoint configuration 15 R/W 0xBC

Reserved 0xC0

EP1_TX Transmit endpoint configuration 1 R/W 0xC4

EP2_TX Transmit endpoint configuration 2 R/W 0xC8

… …

EP15_TX Transmit endpoint configuration 15 R/W 0xFC

Note on register accesses:

� The local host may read from or write into registers using one of the follow-
ing accesses:

� 16-bit access: All bits of the register are accessed.
� 8-LSB bit access: The 8 least significant bits are accessed.
� 8-MSB bit access: The 8 most significant bits are accessed.

Local host actions are required in some particular cases when reading or
writing data, depending on the access mode.

Register Map

13-11USB Function Module

13.2.1 Revision Register (REV)

The read-only revision register (REV) contains the revision number of the
module. A write to this register is forbidden.

Table 13–2. Revision Register (REV)

Bit Name Description

15–8 – Reserved

7–0 Rev_nb Revision number

13.2.1.1 REV_NB

This 8-bits field indicates the revision number of the current USB function
module. This value is fixed by hardware.

0x01: Revision 0.1

0x02: Revision 0.2

0x21: Revision 2.1

....

Local host (LH) and universal serial bus (USB) reset have no effect on this
register.

13.2.2 Endpoint Selection Register (EP_NUM)

The read/write endpoint selection register (EP_NUM) selects and enables the
endpoint that can be accessed by the local host.

Table 13–3. Endpoint Selection Register (EP_NUM)

Bit Name Description

15–7 – Reserved

6 Setup_Sel Setup FIFO select

5 EP_Sel TX / RX FIFO select

4 EP_Dir Endpoint direction

3–0 EP_Num Endpoint number

Register Map

 13-12

13.2.2.1 Setup FIFO Select (Setup_Sel)

Set by the local host in response to a setup general USB interrupt in order to
access the EP0 read-only setup FIFO when reading the DATA register. Setting
this bit clears the Setup interrupt bit. When this bit is set, other EP_NUM
register bits must be 0.

After having read the setup FIFO, the local host must clear this bit by
writing a 0 to it.

0: No access

1: Access permitted

USB reset value: 0

Local hos reset value: 0

13.2.2.2 TX/RX FIFO Select (EP_Sel)

Set by the local host to access the status (STAT_FLG, RXFSTAT) and data
(DATA) registers for the endpoint selected. If EP_Dir bit is set to 0, the local
host can read data from endpoint RX FIFO by reading the DATA register; if
EP_Dir bit is set to 1, the local host can write data into endpoint TX FIFO by
writing into the DATA register. After each access to an endpoint during interrupt
handling, the local host must clear this bit.

Before the local host sets this bit, it must set Setup_Sel bit to 0. After
having accessed the endpoint FIFO either for read or for write access the
local host must clear this bit by writing a 0 to it.

0: No access

1: Access permitted

Value after local host or USB reset is low.

Register Map

13-13USB Function Module

13.2.2.3 Endpoint Direction (EP_Dir)

This bit gives the direction associated with the endpoint number selected in
EP_Num.

0: OUT endpoint

1: IN endpoint

Value after local host or USB reset is low.

13.2.2.4 Endpoint Number (EP_Num)

The endpoint number binary encoded in these four bits, associated to the
direction given by EP_Dir bit, is the current endpoint selected. All reads and
writes to the endpoint status, control, and data locations are for this endpoint.

0000: EP0

0001: EP1

….

1111: EP15.

Value after local host or USB reset is low.

13.2.3 Data Register (DATA)

The data register (DATA) is the entry point to write into a selected TX endpoint,
to read data from a selected RX endpoint, or to read data from the setup FIFO.
If selected endpoint direction is OUT, this register is read-only and a write into
it is forbidden. If selected endpoint direction is IN, this register is write-only and
a read of this register is forbidden.

Table 13–4. Data Register (DATA)

Bit Name Description

15–0 DATA Transmit/receive FIFO data

13.2.3.1 Transmit/Receive FIFO Data (DATA)

EP_Dir = 0: This register contains the data received by the USB core from USB
host out or setup transactions. Data can only be read successfully if the
EP_Sel bit is asserted, or if Setup_Sel bit is asserted (for setup data).

EP_Dir = 1: This register contains the data written by the local host to be sent
to the USB host during the next IN transaction. Data can only be written
successfully if the EP_Sel bit is asserted.

Register Map

 13-14

Note:

Writing the DATA register when EP_Dir = 0 and reading from DATA register
when EP_Dir = 1 are denied.

13.2.4 Control Register (CTRL)

This set-only control register (CTRL) controls the FIFO and status of the
selected endpoint. A read access to this register always returns 0.

Note:

The endpoint 0 setup FIFO is always enabled and ready to accept setup
data. No control register (CTRL) is implemented for this FIFO, because the
local host cannot control it.

Table 13–5. Control Register (CTRL)

Bit Name Description

15–8 – Reserved

7 Clr_Halt Clear halt endpoint (non-isochronous)

6 Set_Halt Set halt endpoint (non-isochronous)

5–3 – Reserved

2 Set_FIFO_En Set FIFO enable (non-isochronous)

1 Clr_EP Clear endpoint

0 Reset_EP Endpoint reset (non-Ctrl)

13.2.4.1 Clear Halt Endpoint (Clr_Halt)

Only concerns non-isochronous endpoints.

Used by the local host to clear an endpoint halt condition.

0: No action

1: Clear halt condition

Always read 0.

Note:

It is not required to set the EP_Sel bit before setting this bit. Except when this
bit is set during the handling of an interrupt to the endpoint, the local host
must not set the EP_Sel bit before setting the Clr_Halt bit, in order to avoid
possible impacts on interrupts.

Register Map

13-15USB Function Module

13.2.4.2 Set Halt Endpoint (Set_Halt)

Only concerns non-isochronous endpoints.

Used by the local host to halt the selected endpoint. The halted endpoint
returns STALL handshakes to the USB host. The local host can disable the
endpoint interrupt if it does not wish to be informed of STALL handshakes.

If the endpoint to halt is used by a DMA channel, the local host must
disable the DMA channel before setting the halt conditions for this
endpoint.

0: No action

1: Halt endpoint

Always read 0.

Note:

It is not required to set the EP_Sel bit before setting this bit. Except when this
bit is set during the handling of an interrupt to the endpoint, the local host
must not set the EP_Sel bit before setting the Set_Halt bit, in order to avoid
possible impacts on interrupts.

The local host must check that FIFO is empty before setting the halt feature
for the endpoint. A stalled transaction has no effect in clearing the FIFO.

13.2.4.3 Set FIFO Enable (Set_FIFO_En)

Only concerns non-isochronous endpoints.

If the selected endpoint direction is IN, this bit is used by the local host to
enable the USB device to transmit data from the FIFO at the next valid IN
token. If the selected endpoint direction is OUT, this bit is used by the local host
to enable the USB device to receive data from the USB host at the next valid
OUT transaction. If not set, the device returns a NAK handshake.

Isochronous endpoint FIFOs are always enabled.

Register Map

 13-16

The local host must never enable endpoint 0 FIFO if not performing a
control transfer. For bulk and interrupt endpoints, the FIFO must never
be enabled when Set_Halt = 1 (halt feature enabled) or when RX FIFO
is not empty. Furthermore, during endpoint interrupt handling, the local
host must have cleared the interrupt bit before setting the Set_FIFO_En
bit (to avoid masked ACK interrupts).

0: No action

1: FIFO enabled

Always read 0.

Note:

It is not required to set the EP_Sel bit before setting this bit. Except when this
bit is set during the handling of an interrupt to the endpoint, the local host
must not set the EP_Sel bit before setting the Set_FIFO_En bit, in order to
avoid possible impacts on interrupts.

13.2.4.4 Clear Endpoint (Clr_EP)

This bit is set by the local host to clear the selected endpoint FIFO pointers and
flags. This resets the FIFO pointers and the FIFO empty status bit. The FIFO
enable bit and other FIFO flags are cleared upon completion of the FIFO reset.
Previous transaction handshake status is also cleared. For isochronous end-
points or non-isochronous double-buffered endpoints, both foreground and
background FIFO are cleared.

0: No action

1: Clear endpoint

Always read 0.

13.2.4.5 Endpoint Reset (Reset_EP)

Only concerns non-control endpoints.

Set by the local host to reset the selected endpoint. It forces an interrupt or a
bulk endpoint data PID to DATA0, clears halt condition (HALT = 0), and clears
FIFO (both foreground and background if endpoint is double-buffered) and
previous transactions handshake status. For an isochronous endpoint, it only
clears the FIFO (both foreground and background).

0: No action

1: Reset endpoint

Always read 0.

Register Map

13-17USB Function Module

13.2.5 Status Register (STAT_FLG)

The read-only status flag register provides a status of the FIFO and the results
of the transaction handshakes for the selected endpoint. The eight MSB are
reserved for isochronous endpoints, while the eight LSB are reserved for non-
isochronous endpoints. This register cannot be read if EP_Sel bit is not
asserted for the endpoint. No status flag exists for the read-only setup FIFO,
which is always enabled.

The updates for non-isochronous transactions are done at the end of
each non-transparent and valid transaction to a given endpoint, if no
interrupt is pending on the endpoint.

Note:

Non-transparent, non-isochronous IN transactions are those transactions
responding with an ACK handshake, a STALL handshake, or optionally a
NAK handshake if the Nak_En bit is asserted to 1. An ERR handshake or a
NAK handshake when the Nak_En bit is 0 is considered transparent.

A write to this register has no effect.

Table 13–6. Status Register (STAT_FLG)

Bit Name Description

15 – Reserved

14 Miss_In Isochronous missed IN token for the previous frame (isochronous IN)

13 Data_Flush Isochronous receive data flush (isochronous OUT)

12 ISO_Err Isochronous receive data error (isochronous OUT)

11–10 – Reserved

9 ISO_FIFO_Empty Isochronous FIFO empty

8 ISO_FIFO_Full Isochronous FIFO full

7 – Reserved

6 EP_Halted Endpoint halted flag (non-isochronous)

5 STALL Transaction stall (non-isochronous)

4 NAK Transaction non-acknowledge (non-isochronous)

Register Map

 13-18

Table 13–6. Status Register (STAT_FLG) (Continued)

Bit DescriptionName

3 ACK Transaction acknowledge (non-isochronous)

2 FIFO_En FIFO enable status (non-isochronous)

1 Non_ISO_FIFO_Empty Non-isochronous FIFO empty

0 Non_ISO_FIFO_Full Non-isochronous FIFO full

13.2.5.1 Isochronous Missed IN Token (Miss_In)

Only concerns isochronous IN endpoints.

Notifies the local host that the core missed a valid isochronous IN token during
previous frame and that TX data was flushed from the FIFO instead of being
transmitted to the USB host. This bit is updated on a start of frame (SOF).

0: The endpoint received an IN token the previous frame.

1: The endpoint did not receive an IN token the previous frame and TX data
was flushed.

Value after local host or USB reset is low.

13.2.5.2 Isochronous Receive Data Flush (Data_Flush)

Only concerns isochronous OUT endpoints.

When set, this bit indicates that data was flushed from the isochronous FIFO
that was moved from the foreground to the background. This happens when
the local host does not read all of the data from the foreground FIFO in a frame.

This bit is updated every frame.

0: Not significant

1: Data was flushed

Value after local host or USB reset is low.

13.2.5.3 Isochronous Receive Data Error (ISO_Err)

Only concerns isochronous OUT endpoints.

When set, this bit indicates that the isochronous data packet was received
incorrectly. This happens when the core detects an error in the data packet
(CRC, bit stuffing, PID check) or when there is an overrun condition in the
FIFO. When this bit is set, the FIFO contents are automatically flushed by the
core and the FIFO status is empty.

Register Map

13-19USB Function Module

This bit is updated every frame.

0: Not significant

1: Isochronous packet received with errors

Value after local host or USB reset is low.

13.2.5.4 Isochronous FIFO Empty (ISO_FIFO_Empty)

Only concerns isochronous endpoints.

Set when the FIFO for the selected isochronous endpoint is empty, either via
an appropriate write to the Clr_EP bit or the Reset_EP bit, or after successful
reads from the selected FIFO.

0: Isochronous FIFO not empty

1: Isochronous FIFO empty

Value after local host or USB reset is high (FIFO empty).

13.2.5.5 Isochronous FIFO Full (ISO_FIFO_Full)

Only concerns isochronous endpoints.

Set when the FIFO for the selected isochronous endpoint is full. This condition
is cleared by setting the Clr_EP bit or the Reset_EP bit, or after one successful
read (by the local host or the USB host).

0: Isochronous FIFO not full

1: Isochronous FIFO full

Value after local host or USB reset is low (FIFO empty).

13.2.5.6 Endpoint Halted Flag (EP_Halted)

Only concerns non-isochronous endpoints.

This bit, when set to 1, indicates the selected endpoint is halted. The endpoint
can be put into the halt state only by the local host writing the endpoint halt
control bit (in response to a Set_Feature request, for instance).

0: The selected endpoint is not halted.

1: The selected endpoint is halted.

Value after local host or USB reset is low.

Register Map

 13-20

13.2.5.7 Transaction Stall (STALL)

Only concerns non-isochronous endpoints.

This status bit is set at the end of a transaction if a STALL handshake packet
was returned to the USB host, and if no interrupt is pending on current buffer.
The core automatically returns a STALL packet if a valid IN token is received
by a halted TX endpoint, if a valid OUT transaction is received by an halted RX
endpoint, or if there is a request error (endpoint 0). The bit is cleared when the
local host has finished handling the corresponding interrupt (at EP_Sel bit
deselection).

0: No STALL handshake was returned.

1: A STALL handshake packet was returned.

Value after local host or USB reset is low.

13.2.5.8 Transmit Non-Acknowledge (NAK)

Only concerns non-isochronous endpoints with the Nak_En bit asserted.

This status bit is set at the end of a transaction if a NAK handshake is returned
to the USB host, and if no interrupt is pending on current buffer. The USB core
automatically returns a NAK handshake to the USB host if a valid IN token is
received by a TX endpoint or if a valid OUT transaction is received by an RX
endpoint and the FIFO_En bit is not set for the endpoint. The bit is cleared
when the local host has finished handling the corresponding interrupt (at
EP_Sel bit deselection).

0: No NAK handshake was returned (the Nak_En bit is set).

1: A NAK handshake packet was returned and the Nak_En bit is set.

Value after local host or USB reset is low.

13.2.5.9 Transaction Acknowledge (ACK)

Only concerns non-isochronous endpoints.

Set at the end of a non-transparent valid IN transaction if the data packet was
sent successfully to the USB host, and the ACK handshake was received, or
at the end of a non-transparent valid OUT transaction if the data packet was
received successfully by the USB device, and the ACK handshake was
returned. The bit is cleared when the local host has finished handling the
corresponding interrupt (at EP_Sel bit deselection).

0: No ACK handshake packet was returned.

1: An ACK handshake packet was returned.

Value after local host or USB reset is low.

Register Map

13-21USB Function Module

13.2.5.10 FIFO Enable (FIFO_En)

Only concerns non-isochronous endpoints.

This bit is asserted when the Set_FIFO_En bit is set to 1 and is cleared auto-
matically after a transaction completes with an ACK or STALL.

0: The non-isochronous endpoint FIFO is disabled.

1: The non-isochronous endpoint FIFO is enabled.

Value after local host or USB reset is low.

13.2.5.11 Non-Isochronous FIFO Empty (Non_ISO_FIFO_Empty)

Only concerns non-isochronous endpoints.

Set when the FIFO for the selected non-isochronous endpoint is empty, either
via an appropriate Clr_EP bit or the Reset_EP bit or after successful reads
from the selected FIFO.

0: Non-isochronous FIFO not empty

1: Non-isochronous FIFO empty

Value after local host or USB reset is high (FIFO empty).

13.2.5.12 Non-Isochronous FIFO Full (Non_ISO_FIFO_Full)

Only concerns non-isochronous endpoints.

Set when the FIFO for the selected non-isochronous endpoint is full. This con-
dition is cleared by setting the Clr_EP bit or the Reset_EP bit, or after one
successful read (by the local host or the USB host).

0: Non-isochronous FIFO not full

1: Non-isochronous FIFO full

Value after local host or USB reset is low (FIFO empty).

Register Map

 13-22

13.2.6 Receive FIFO Status Register (RXFSTAT)

The read-only receive FIFO status register (RXSTAT) tells how many bytes are
in the receive FIFO for the selected endpoint. A write to this register has no
effect. The local host cannot read this register if EP_Sel bit is not set for the
endpoint.

Note:

No receive FIFO status exists for the setup FIFO, because 8 bytes always
are expected.

Table 13–7. Receive FIFO Status Register (RXSTAT)

Bit Name Description

15–10 – Reserved

9–0 RXF_Count Receive FIFO byte count

13.2.6.1 Receive FIFO Byte Count (RXF_Count)

This 10-bit field indicates the number of bytes currently in the receive FIFO.

Value after local host or USB reset is low (all 10 bits).

13.2.7 System Configuration Register 1 (SYSCON1)

The read/write system configuration 1 register (SYSCON1) provides control
functions for power management and miscellaneous control for the core.

Table 13–8. System Configuration Register 1(SYSCON1)

Bit Name Description

15–9 – Reserved

8 Cfg_Lock Device configuration locked

7–5 – Reserved

4 Nak_En NAK enable

3 – Reserved

2 Self_Pwr Self-powered

1 SOFF_Dis Shutoff disable

0 Pullup_En External pullup enable

Register Map

13-23USB Function Module

13.2.7.1 Device Configuration Locked (Cfg_lock)

After the local host has entered the device configuration (registers 0x20 to
0x3F), it must set this bit so that the device can be used. If the device configura-
tion is not locked, the device is not ready to be used.

0: Device configuration is not locked. Device is not ready.

1: Device configuration is locked.

Value after local host reset is low, after USB reset is unchanged (keep previous
configuration).

13.2.7.2 NAK Enable (Nak_En:)

This bit can be set by the local host so that it will be signaled for NAK transac-
tion handshake response. When this bit is set, the NAK bit is set on a NAK
handshake if no interrupt is pending on the endpoint and the endpoint interrupt
is asserted. In the normal mode, when cleared, NAK handshake response to
the USB host is made transparent to the local host and no interrupt is asserted.

0: NAK disabled

1: NAK enabled

Value after local host or USB reset is low.

Note:

If the local host sets this bit, it must wait for a NAK interrupt before selecting
the TX endpoint to write TX data.

13.2.7.3 Self-Powered (Self_Pwr)

Indicates to the USB host whether the device is bus-powered or self-powered.
This is needed for a GET_DEVICE_STATUS auto-decoded request. The local
host must update this bit after a SET_CONFIGURATION according to the self-
powered bit D6 given in the configuration descriptor (see USB 1.1 specification
chapter 9).

0: Bus-powered

1: Self-powered

Value after local host reset is low, after USB reset is unchanged.

13.2.7.4 Shutoff Disable (SOFF_Dis)

When this bit is set, it disables the power shutoff circuitry.

0: Power shutoff circuitry enabled

1: Power shutoff circuitry disabled

Value after local host reset is low, after USB reset is unchanged.

Register Map

 13-24

13.2.7.5 External Pullup Enable (Pullup_En)

Allows the device to disconnect itself from the USB bus, forcing the host to
reset and reconfigure the device. This bit can be used to prevent USB traffic
when the device is not ready.

0: Pullup disabled. USB host cannot detect the device. In this mode, the
48-MHz USB clock is forced off.

1: Pullup enabled.

Value after local host reset is low, after USB reset is high, after detach is
unchanged.

13.2.8 System Configuration Register 2 (SYSCON2)

The set-only system configuration 2 register (SYSCON2) provides miscella-
neous controls for the function. A read of this register always returns 0.

Table 13–9. SYSCON2 – System Configuration Register 2 (SYSCON2)

Bit Name Description

15–7 – Reserved

6 Rmt_Wkp Remote wakeup

5 Stall_Cmd Stall command

4 – Reserved

3 Dev_Cfg Device configured

2 Clr_Cfg Clear configured

1–0 – Reserved

13.2.8.1 Remote Wakeup (Rmt_Wkp)

This set-only bit when written with a 1 initiates the remote wakeup sequence,
regardless of whether or not the R_Wk_OK bit has been previously set to 1 by
the USB host. So the MPU must make sure that remote wakeup has been
enabled by the USB host by reading the DEVSTAT register to check that the
R_Wk_OK bit [6] is set to 1 before generating a remote wakeup by writing a
1 to the Rmt_Wkp bit [6]. Reading the Rmt_Wkp bit always returns 0. Writing
0 into this bit has no effect.

0: No action

1: Initiates the remote wakeup sequence

Always read 0.

Register Map

13-25USB Function Module

13.2.8.2 Stall Command (Stall_Cmd)

Only concerns non-autodecoded requests on control endpoint (EP0).

This is asserted in response to a USB command where either the command
itself or its data is invalid. Asserting this bit forces the non-autodecoded com-
mand to complete with a STALL handshake. It has no effect for autodecoded
requests. This set-only bit always reads 0.

0: No action

1: Stall current USB command

Always read 0.

13.2.8.3 Device Configured (Dev_Cfg)

If the local host receives a SET_CONFIGURATION with a valid configuration
value and the device is in addressed state, it must write a 1 to this bit to inform
the command decodes that the device has moved to the configured state. The
CFG bit is set to 1 by the core.

If the device is already configured when the SET_CONFIGURATION request
is received, the local host must not set this bit. If the new configuration value
is 0, it must set the Clr_Cfg bit in order to move to the addressed state.

Reading this bit always returns 0. Writing 0 to this bit has no effect.

0: No action

1: Allows CFG to be set

Always read 0.

13.2.8.4 Clear Configured (Clr_Cfg)

If the local host receives a SET_CONFIGURATION with a configuration value
of 0 and if device is configured, it must write a 1 to this bit to inform the com-
mand decoder that the device is now deconfigured (has moved to the
addressed state). The CFG bit is cleared by the core.

Reading this bit always returns 0. Writing 0 to this bit has no effect.

0: No action

1: Allows CFG to be cleared

Always read 0.

Register Map

 13-26

13.2.9 Device Status Register (DEVSTAT)

The read-only device status register (DEVSTAT) provides a status reflecting
the visible device states as defined in USB1.1 chapter 9. A write to this register
has no effect.

This register is double buffered. If the DS_Chg_IE bit is set (interrupt enabled),
the background register is moved to foreground position only after clearing any
pending DS_Chg interrupts. So if there is a state change and there is still a
pending DS_Chg interrupt, then recent state change is not visible because the
background register was updated and not moved into foreground position.

Table 13–10. Device Status Register (DEVSTAT)

Bit Name Description

15–7 – Reserved

6 R_WK_OK Remote wakeup granted

5 USB_Reset USB reset signaling is active

4 SUS Suspended state

3 CFG Configured state

2 ADD Addressed state

1 DEF Default state

0 ATT Attached state

13.2.9.1 Remote Wakeup Enabled (R_WK_OK)

This bit is automatically set and cleared when the core receives a valid set/
clear device feature request from the USB host. It returns a 1 when the USB
host has granted the function the ability to assert remote wakeup.

0: Not significant

1: Remote wakeup granted

Value after local host or USB reset is low.

Register Map

13-27USB Function Module

13.2.9.2 USB Reset Signaling (USB_Reset)

This bit returns 1 when the USB host is resetting the USB bus.

A valid USB reset resets all the endpoint FIFOS, all other control register bits
except Cfg_Lock, all associated configuration registers (0x20 to 0x3F), and
bits DS_Chg_IE and DS_Chg. This register (DEVSTAT) forces the device to
the default state. This bit is cleared at the end of reset.

This bit is double buffered just as the other DEVSTAT bits are. If there is a
pending interrupt that is not handle when a USB reset occurs, and if that inter-
rupt is handled only when USB reset is finished, the local host does not see
the USB_Reset bit going high and then low.

0: Device not being reset by USB host

1: Device is being reset by USB host

Value after local host reset is low and during USB reset is high (low after USB
reset).

13.2.9.3 Suspended State (SUS)

Device is, at minimum, attached to the USB and is powered, has been reset
by the USB host, and has not seen bus activity for 5 ms. It may also have a
unique address and be configured for use. However, because the device is
suspended, the host can not use the device function. This bit returns 1 when
the USB device is in suspend state.

0: Not suspended

1: Suspended

Value after local host or USB reset is low.

13.2.9.4 Configured State (CFG)

Device is attached to the USB and powered, has been reset, has a unique
address, and is configured. The host can now use the function provided by the
device. This bit returns 1 when the USB device has been configured after a set
Dev_Cfg = 1. This bit remains set to 1 until the device becomes deconfigured.

This bit is cleared when the core receives a valid SET_CONFIGURATION
request and the local host sets Clr_Cfg bit. While this bit is not set to 1, any
transaction not for control EP0 is ignored. A GET_ENDPOINT_STATUS to a
non-control endpoint is stalled.

0: Not configured

1: Configured

Value after local host or USB reset is low.

Register Map

 13-28

13.2.9.5 Addressed State (ADD)

Device is attached to the USB and powered, has been reset, and a unique
device address has been assigned. This bit returns 1 after a SET_ADDRESS
standard request. This bit remains set to 1 until the device becomes
de-addressed.

0: Not addressed

1: Addressed

Value after local host or USB reset is low.

13.2.9.6 Default State (DEF)

This bit returns 1 when the USB device is attached to the USB and powered
and has been reset. This bit remains set to 1 until the device becomes depow-
ered. Device moves into default state as soon as the USB reset is effective.

0: Not in default

1: Default

Value after local host is low and after USB reset is high.

13.2.9.7 Attached State (ATT)

This bit returns 1 when the device is attached to the USB and powered. This
bit remains set to 1 until the device becomes depowered.

0: Not attached

1: Attached

Value after local host reset is low (unattached) or high (attached). After USB
reset, value is high.

Register Map

13-29USB Function Module

13.2.10 Start of Frame Register (SOF)

The read-only start of frame register (SOF) provides a frame timer status for
use in isochronous communications. A write to this register is forbidden.

Table 13–11. Start of Frame Register (SOF)

Bit Name Description

15–13 – Reserved

12 FT_Lock Frame timer locked

11 TS_OK Time stamp OK

10–0 TS Time stamp number

13.2.10.1 Frame Timer Locked (FT_Lock)

The USB host sends out a start of frame (SOF) packet every millisecond.
When a SOF packet is not received by the device due to a bus error, a local
start-of-frame is generated for use by the isochronous FIFO switch.

Once the core receives two valid SOFs separated by time-frame (TF), it sets
the FT_LOCK to 1 only if TF is the frame interval (IF) allowed by USB 1.1 speci-
fication (IF = [11964:12036] USB bit time). If TF is out of this interval, the
FT_Lock value remains 0, and a local SOF is generated by the core.

When the FT_Lock bit is set and the frame timer is locked to the timing TF, a
local SOF is generated if no valid SOF has been received in an interval of TF
since the last valid the The FT_Lock bit is cleared if a valid SOF is received
out of the interval IF. If the core receives a valid SOF in this interval, the frame
timer locks to the new frame-time. If the core does not receive a valid SOF, the
frame timer remains lock to TF.

When the FT_Lock is cleared, a local SOF is generated after 12036 USB bit
times if no valid SOF has been received, and the FT_Lock remains 0.

0: Frame timer is not locked.

1: Frame timer is locked.

Value after local host or USB reset is low.

Each time a valid SOF is received by the core out of allowed interval IF, a local
SOF is generated and isochronous FIFO switch.

Register Map

 13-30

13.2.10.2 Time Stamp OK(TS_OK)

This bit indicates that the time stamp in the TS field is valid for the current
frame. It returns a 1 if a valid SOF packet was received from the USB host and
a 0 otherwise.

0: Time stamp is invalid.

1: Time stamp is valid.

Value after local host or USB reset is low.

13.2.10.3 Time Stamp Number(TS)

This field returns the time stamp from last USB host valid SOF packet. The
frame number is valid if the TS_OK is 1. In case of a SOF miss, this value is
not updated and TS_OK is cleared.

Value after local host or USB reset is low (all 11 bits).

13.2.11 Interrupt Enable Register (IRQ_EN)

The read/write interrupt enable register (IRQ_EN) enables all non-DMA
interrupts (control, state changed, isochronous, non-isochronous).

Table 13–12. Interrupt Enable Register (IRQ_EN)

Bit Name Description

15–8 – Reserved

7 SOF_IE Start-of-frame interrupt enable

6 – Reserved

5 EPn_RX_IE Receive endpoint n interrupt enable (non-isochronous)

4 EPn_TX_IE Transmit endpoint n interrupt enable (non-isochronous)

3 DS_Chg_IE Device state changed interrupt enable

2–1 – Reserved

0 EP0_IE EP0 transactions interrupt enable

When a bit position is set to 1 by the local host, an interrupt is signaled to the
local host if the corresponding IRQ_SRC bit is asserted to 1 by the core, for
any IRQ_SRC bit controlled by this bit. If reset to 0, the interrupt is masked and
not signaled to the local host.

0: Interrupt disabled

1: Interrupt enabled

Value after local host or USB reset is low for all bits except the DS_Chg_IE bit,
which remains unchanged after a reset from USB host.

Register Map

13-31USB Function Module

13.2.12 Interrupt Source Register (IRQ_SRC)

The read/clear-only interrupt source register (IRQ_SRC) has for function to
identify and clear the source of the interrupt signaled by a set flag.

Table 13–13. Interrupt Source Register (IRQ_SRC)

Bit Name Description

15–11 – Reserved

10 TXn_Done Transmit DMA channel n done interrupt flag (non-isochronous)

9 RXn_Cnt Receive DMA channel n transactions count interrupt flag (non-isochronous)

8 RXn_EOT Receive DMA channel n end of transfer interrupt flag (non-isochronous)

7 SOF Start-of-frame interrupt flag

6 – Reserved

5 EPn_RX EPn OUT transactions interrupt flag

4 EPn_TX EPn IN transactions interrupt flag

3 DS_Chg Device state changed interrupt flag

2 Setup Setup transaction interrupt flag

1 EP0_RX EP0 OUT transactions interrupt flag

0 EP0_TX EP0 IN transactions interrupt flag

Common to all bits:

The local host can only clear a set bit location by writing a 1 into the bit location
(except for Setup bit, which is automatically cleared by the core). A write of 0
has no effect.

When a bit location is set to 1 by the core, an interrupt is signaled to the local
host if the interrupt was enabled.

0: No interrupt

1: Interrupt signaled

Value after local host or USB reset is low, except for the DS_Chg bit, which is
high after a USB reset.

Register Map

 13-32

13.2.12.1 Transmit DMA CH.n Done Interrupt Flag (TXn_Done)

Only for non-isochronous DMA transfer. This bit is never set for isochronous
DMA transfer.

This bit is set automatically by the core when a transmit DMA channel has com-
pleted the programmed transfer by servicing the last IN transaction from the
USB host. This is when TXn_TSC (transfer size counter) equals 0 and the last
IN transaction completes with an ACK. When this bit is asserted, the local host
must read the DMAN_STAT register to identify the endpoint number for which
the transfer completed.

The endpoint interrupt the EPn_TX is never set for the assigned endpoint to
TX DMA channel n.

0: No action

1: Non-isochronous transmit DMA transfer for a channel has ended.

Value after local host or USB reset is low.

13.2.12.2 RX DMA CH.n Transactions Count Interrupt Flag (RXn_Cnt)

Only for non-isochronous DMA transfer. This bit is never set for isochronous
DMA transfer.

This bit is set automatically by the core during an active receive DMA transfer
each time RXn_TC equals 0 after an OUT transaction with ACK status. This
bit is set after RX DMA data has been read (end of DMA request). When this
bit is asserted, the local host must read the DMAN_STAT register to identify
the endpoint number for which the transfer completed. An RXn_Cnt interrupt
is asserted also if the RXn_Stop bit is set; in this case, both the RXn_EOT and
the RXn_Cnt are asserted.

0: No action

1: Non-isochronous receive DMA transfer for a channel has reached transac-
tions count level.

Value after local host or USB reset is low.

Register Map

13-33USB Function Module

13.2.12.3 Receive DMA CH.n EOT Interrupt Flag (RXn_EOT)

Only for non-isochronous DMA transfer. This bit is never set for isochronous
DMA transfer.

This bit is set automatically by the core when a receive DMA channel has
detected an end of transfer (EOT) packet during the last OUT transaction from
the USB host. This bit is set after RX DMA data has been read (end of DMA
request). When this happens, the DMA-assigned endpoint FIFO is kept dis-
abled (the FIFO_En = 0) to avoid receiving a new packet data from the USB
host. The local host can grant another DMA transfer to the same endpoint by
simply enabling the FIFO again (the FIFO_En = 1).

An end of transfer is detected when the core receives a data packet whose size
is less than the configured endpoint FIFO size (or empty) or when RXn_TC
equals 0 after an OUT transaction with ACK status and the RXn_Stop bit is set.

When this bit is asserted, the local host must read the DMAn_RX_IT_src to
identify the endpoint number for which the transfer completed and must read
the DMAn_RX_SB to be informed of an odd number of bytes received during
the last transaction (useful for 16-bit read access from DATA_DMA register).

The endpoint interrupt EPn_RX bit is never set for the assigned endpoint to
RX DMA channel.

0: No action

1: Non-isochronous receive DMA transfer for a channel has ended.

Value after local host or USB reset is low.

13.2.12.4 Start Of Frame Interrupt Flag (SOF)

Every millisecond, the USB host outputs a start of frame packet to the func-
tions. The SOF bit reflects when a new SOF is received. Writing a 1 to the SOF
bit location clears the flag. Writing a 0 has no effect.

In accordance with the USB1.1 spec, if an SOF is not received or is corrupted,
the core still sets this flag at the same rate (if bit FT_Lock = 1) or after 12043
USB bit times (if bit FT_lock = 0).

0: No action

1: Start of frame packet received (or internal SOF)

Value after local host or USB reset is low.

Register Map

 13-34

13.2.12.5 OUT Transaction Endpoint n Interrupt Flag (EPn_RX)

Only concerns non-isochronous endpoints.

This bit is automatically set by the core when a handshake sequence occurs
for an OUT transaction to an interrupt of bulk endpoint (NAK with the Nak_En
bit set, ACK, or STALL). The local host must read EPN_STAT register to identi-
fy the endpoint causing the interrupt.

0: No action

1: OUT transaction detected on an endpoint.

Value after local host or USB reset is low.

13.2.12.6 IN Transaction Endpoint n Interrupt Flag (EPn_TX)

Only concerns non-isochronous endpoints.

This bit is automatically set by the core when a handshake sequence occurs
for an IN transaction to an interrupt of bulk endpoint (NAK with the Nak_En bit
set, ACK or STALL). The local host must read EPN_STAT register to identify
the endpoint causing the interrupt.

0: No action

1: IN transaction detected on an endpoint.

Value after local host or USB reset is low.

13.2.12.7 Device State Changed Interrupt Flag (DS_Chg)

This bit is automatically set by the core when the state of the device changes.
This is when the core modifies any of the bits present in the DEVSTAT register.
When this bit is cleared, the background DEVSTAT register moves into fore-
ground position.

0: No action

1: Device state change detected

Value after local host reset is low and after USB reset is high.

13.2.12.8 Setup Transaction Interrupt Flag (Setup)

This bit is automatically set by the core when a valid setup transaction com-
pletes one control endpoint for a non-autodecoded control request and is
cleared automatically by the core when the local host sets the Setup_Sel bit
when reading setup data. A write of 1 to it has no effect.

0: No action

1: Valid setup transaction occurred on endpoint 0.

Value after local host or USB reset is low.

Register Map

13-35USB Function Module

13.2.12.9 OUT Transaction Endpoint 0 Interrupt Flag (EP0_RX)

This bit is set automatically by the core when a handshake sequence occurs
for a non-autodecoded OUT transaction to control endpoint (NAK with the
Nak_En bit set, ACK, or STALL).

0: No action

1: OUT transaction on EP0

Value after local host or USB reset is low.

13.2.12.10 IRQ_SRC[0].EP0_TX: IN Transaction Endpoint 0 Interrupt Flag

This bit is set automatically by the core when a handshake sequence occurs
for a non-autodecoded IN transaction to control endpoint (NAK with the
Nak_En bit set, ACK, or STALL).

0: No action

1: IN transaction on EP0

Value after local host or USB reset is low.

Register Map

 13-36

13.2.13 Non-Isochronous Endpoint Interrupt Status Register (EPN_STAT)

The read-only non-isochronous endpoint interrupt status register
(ENP_STAT) identifies the non-isochronous endpoint causing an EPn inter-
rupt. A write into it is forbidden.

If a non-transparent transaction occurs before a previous one on another end-
point in the same direction has been handled by the local host, the second
interrupt is asserted only after first one has been cleared by the local host and
EPN_STAT is updated with the corresponding interrupt assertion.

Table 13–14. Non-Isochronous Endpoint Interrupt Status Register (EPN_STAT)

Bit Name Description

15–12 – Reserved

11–8 EPn_RX_IT_src Receive endpoint interrupt source (non-isochronous)

7–4 – Reserved

3–0 EPn_TX_IT_src Transmit endpoint interrupt source (non-isochronous)

13.2.13.1 Receive Endpoint Interrupt Source (EPn_RX_IT_src)

Only concerns non-isochronous endpoints. When the EPn_RX flag bit is set,
the endpoint causing the interrupt condition is encoded in these four register
bits. When the EPn_RX flag bit is cleared, the four bits read as 0.

0000: No receive endpoint interrupt is pending.

0001: EP1

….

1111: EP15

Value after local host or USB reset is low (all 4 bits).

13.2.13.2 Transmit Endpoint Interrupt Source (EPn_TX_IT_src)

Only concerns non-isochronous endpoints.

When the EPn_TX flag is set, the endpoint causing this flag to be set is en-
coded in these four register bits. When the EPn_TX flag is cleared, the four bits
read as 0.

0000: No transmit endpoint interrupt is pending.

0001: EP1

….

1111: EP15

Value after local host or USB reset is low (all 4 bits).

Register Map

13-37USB Function Module

13.2.14 Non-Isochronous DMA Interrupt Status Register (DMAN_STAT)

The read-only non-isochronous DMA interrupt status register (DMAN_STAT)
identifies the endpoint causing a DMA interrupt. A write into it is forbidden.

If a DMA interrupt occurs before a previous one on another endpoint in the
same direction has been handled by the local host, the second interrupt is
asserted only after first one has been cleared by the local host and
DMAN_STAT is updated when the corresponding interrupt is asserted.

Table 13–15. Non-Isochronous DMA Interrupt Status Register (DMAN_STAT)

Bit Name Description

15–11 – Reserved

12 DMAn_RX_SB DMA receive single byte (non-isochronous)

11–8 DMAn_RX_IT_src DMA receive interrupt source (non-isochronous)

7–4 – Reserved

3–0 DMAn_TX_IT_src DMA transmit interrupt source (non-isochronous)

13.2.14.1 DMA Receive Single Byte (DMAn_RX_SB)

Only concerns non-isochronous endpoints (isochronous endpoints receive a
constant number of bytes).

This bit is set when the RXn_EOT interrupt is asserted and the core receives
an odd number of bytes during the last transaction. This bit determines the ex-
act number of bytes received in case of a 16-bit read access from DATA_DMA
register. When the RXn_EOT flag is cleared, this bit read as 0.

0: No EOT DMA interrupt is pending, or core received an even number of
bytes during last transaction.

1: An EOT DMA interrupt is pending, and an odd number of bytes was
received during last transaction.

Value after local host or USB reset is low.

Register Map

 13-38

13.2.14.2 DMA Receive Interrupt Source (DMAn_RX_IT_src)

Only concerns non-isochronous endpoints.

When the EPn_RX flag bit is set, the endpoint causing this flag to be set is
encoded in these four register bits. When the EPn_RX flag bit is cleared, the
four bits read as 0.

0000: No receive DMA interrupt is pending.

0001: EP1

….

1111: EP15

Value after local host or USB reset is low (all 4 bits).

13.2.14.3 DMA Transmit Interrupt Source (DMAn_TX_IT_src)

Only concerns non-isochronous endpoints.

When the EPn_TX flag is set, the endpoint causing this flag to be set is
encoded in these four register bits. When the EPn_TX flag is cleared, the four
bits read as 0.

0000: No transmit DMA interrupt is pending.

0001: EP1

….

1111: EP15

Value after local host or USB reset is low (all 4 bits).

13.2.15 Receive DMA Channels Configuration Register (RXDMA_CFG)

The read/write receive DMA channels configuration register (RXDMA_CFG)
enables the three possible DMA receive channels and selects the endpoint
number that is assigned to each of these DMA channels. An endpoint used by
an RX DMA channel must have been configured through register EPn_RX.
The RXDMA_CFG register can be filled when the Cfg_Lock bit is set.

There is no hardware mechanism to protect against setting invalid
endpoints.

Register Map

13-39USB Function Module

Table 13–16. Receive DMA Channels Configuration Register (RXDMA_CFG)

Bit Name Description

15–12 – Reserved

11–8 RXDMA2_EP Receive endpoint number for DMA channel 2

7–4 RXDMA1_EP Receive endpoint number for DMA channel 1

3–0 RXDMA0_EP Receive endpoint number for DMA channel 0

13.2.15.1 Receive Endpoint Number for DMA Channel 2 (RXDMA2_EP)

The endpoint number binary-encoded in these four bits is the current receive
endpoint selected for DMA channel 2. A zero value indicates that the DMA
channel 2 is deactivated. Any other value automatically enables receive DMA
transfer for the selected endpoint.

0000: Receive DMA channel 2 is deactivated.

0001: EP1

….

1111: EP15

Value after local host or USB reset is low (all 4 bits).

13.2.15.2 Receive Endpoint Number for DMA Channel 1 (RXDMA1_EP)

The endpoint number binary-encoded in these four bits is the current receive
endpoint selected for DMA channel 1. A zero value indicates that the DMA
channel 1 is deactivated. Any other value automatically enables receive DMA
transfer for the selected endpoint.

0000: Receive DMA channel 1 is deactivated.

0001: EP1

….

1111: EP15

Value after local host or USB reset is low (all 4 bits).

Register Map

 13-40

13.2.15.3 Receive Endpoint Number for DMA Channel 0 (RXDMA0_EP)

The endpoint number binary encoded in these four bits is the current receive
endpoint selected for DMA channel 0. A zero value indicates that the DMA
channel 0 is deactivated. Any other value automatically enables receive DMA
transfer for the selected endpoint.

0000: Receive DMA channel 0 is deactivated.

0001: EP1

….

1111: EP15

Value after local host or USB reset is low (all 4 bits).

13.2.16 Transmit DMA Channels Configuration Register (TXDMA_CFG)

The read/write transmit DMA channels configuration register (TXDMA_CFG)
enables the three possible DMA transmit channels and selects the endpoint
number that is assigned to each of these DMA channels. An endpoint used by
a TX DMA channel must have been configured through register EPn_TX.
TXDMA_CFG register can be filled when the Cfg_Lock bit is set.

There is no hardware mechanism to protect against setting invalid
endpoints.

Table 13–17. Transmit DMA Channels Configuration Register (TXDMA_CFG)

Bit Name Description

15–12 – Reserved

11–8 TXDMA2_EP Transmit endpoint number for DMA channel 2

7–4 TXDMA1_EP Transmit endpoint number for DMA channel 1

3–0 TXDMA0_EP Transmit endpoint number for DMA channel 0

Register Map

13-41USB Function Module

13.2.16.1 Transmit Endpoint Number for DMA Channel 2 (TXDMA2_EP)

The endpoint number binary-encoded in these four bits is the current transmit
endpoint selected for DMA channel 2. A zero value indicates that the DMA
channel 2 is deactivated. Any other value automatically enables transmit DMA
transfer for the selected endpoint.

0000: Transmit DMA channel 2 is deactivated.

0001: EP1

….

1111: EP15

Value after local host or USB reset is low (all 4 bits).

13.2.16.2 Transmit Endpoint Number for DMA Channel 1 (TXDMA1_EP)

The endpoint number binary-encoded in these four bits is the current transmit
endpoint selected for DMA channel 1. A zero value indicates that the DMA
channel 1 is deactivated. Any other value automatically enables transmit DMA
transfer for the selected endpoint.

0000: Transmit DMA channel 1 is deactivated.

0001: EP1

….

1111: EP15

Value after local host or USB reset is low (all 4 bits).

13.2.16.3 Transmit Endpoint Number for DMA Channel 0 (TXDMA0_EP)

The endpoint number binary-encoded in these four bits is the current transmit
endpoint selected for DMA channel 0. A zero value indicates that the DMA
channel 0 is deactivated. Any other value automatically enables transmit DMA
transfer for the selected endpoint.

0000: Transmit DMA channel 0 is deactivated.

0001: EP1

….

1111: EP15

Value after local host or USB reset is low (all 4 bits).

Register Map

 13-42

13.2.17 DMA FIFO Data Register (DATA_DMA)

The DMA FIFO data register (DATA_DMA) is the entry point to write or to read
data into/from an endpoint used in a DMA transfer through DMA channel 0, 1,
or 2.

Table 13–18. DMA FIFO Data Register (DATA_DMA)

Bit Name Description

15–0 DATA_DMA DMA FIFO data

13.2.17.1 DMA FIFO Data(DATA_DMA)

When an RX DMA request is active for a channel (only one active at a given
time), this register contains the data received by the core from USB host OUT
transaction using this channel. Data can be accessed by the main DMA con-
troller engine (read access) in response to the DMA request for the channel.

When a TX DMA request is active for a channel (only one active at a given
time), this register contains the data written by the main DMA controller engine
(write access) in response to a DMA request for the transmit channel to be sent
to the USB host during the next IN transaction.

It is possible for both an RX DMA request and a TX DMA request to be
active at the same time. In this case, the main DMA controller engine can
access both transmit endpoint and receive endpoint FIFO. A read
access to DATA_DMA register affects the endpoint that caused the RX
DMA request to be active, and a write access affects the endpoint that
caused the TX DMA request to be active.

The local host must not access this register directly; however, there is no
hardware mechanism to protect from such access. Do not attempt
access into this register during DMA request handling.

Register Map

13-43USB Function Module

13.2.18 Transmit DMA Control Registers (TXDMA0...TXDMA2)

The read/write transmit DMA control registers (TXDMA...TXDMA2) control the
operation of the transmit DMA channel n (n = 0, 1, 2).

Table 13–19. Transmit DMA Control Registers (TXDMA...TXDMA2)

Bit Name Description

15 TXn_EOT Transmit DMA channel n end of transfer

14 TXn_Start Transmit DMA channel n start

13–10 – Reserved

9:0 TXn_TSC Transmit DMA channel n transfer size counter

13.2.18.1 Transmit DMA Ch.n End of Transfer (TXn_EOT)

This bit can be either 0 or 1 for BULK DMA transfer.

When set to 1 by the local host, it signals to the core that the transfer size set
in TXn_TSC is in bytes. A TX done interrupt (the TXn_Done) is asserted with
the last IN transaction. If the number of bytes set in TXn_TSC is a multiple of
the endpoint buffer size, the TX done interrupt is asserted only after an IN
transaction with an empty data packet.

When cleared, the transfer size set in TXn_TSC is in full buffer size for the end-
point selected (BULK only). A TX done interrupt is asserted when the last buff-
er is sent with the last IN transaction. This mode is to be used for a partial bulk
transfer of a large file exceeding 1023 bytes.

0: DMA transfer size is in buffers.

1: DMA transfer size is in bytes.

Value after local host or USB reset is low.

13.2.18.2 Transmit DMA Ch.n Start (TXn_Start)

Set by the local host to tell the device that the main DMA system is ready to
transmit the number of bytes or buffers. Once set, the DMA transfer cannot be
interrupted, except if the local host clears endpoint in TXDMA_CFG register
(see part 8.8). Writing 0 to this bit has no effect and a read of this bit always
returns 0. The TXn_Done interrupt bit is asserted when the DMA transfer ends.

0: No action

1: DMA transfer start

Always reads 0.

Register Map

 13-44

13.2.18.3 Transmit DMA Ch.n Transfer Size Counter (TXn_TSC)

The binary-encoded value from 0 to 1023, which is written by the local host into
this register, corresponds to the number of bytes or number of buffer transfers
(function of TXn_EOT), which is transmitted by the transmit DMA channel n.
When read, the register reflects the number of bytes/buffers the USB device
has left to transmit. This read mode is only provided for software debug
purposes.

For isochronous transfer, the user must verify that the set value does not
exceed the isochronous FIFO size for the endpoint. There is no
hardware mechanism to protect from this situation. If it happens, results
are unpredictable.

For bulk transfer, when TXn_EOT = 0 a set value of TXn_TSC = 0 means
1024 buffers and not 0. The counter then operates in the following way:
000, 3FF, 3FE, …001, 000, stop. When TXn_EOT = 1, a set value of
TXn_TSC = 0 a NULL packet is sent in response to the next IN token.

Value after local host or USB reset is low (all 10 bits).

Register Map

13-45USB Function Module

13.2.19 Receive DMA Control Registers (RXDMA...RXDMA2)

These read/write receive DMA control registers enable monitoring of incoming
OUT transactions during DMA transfer on channel n (n=0,1,2).

Table 13–20. Receive DMA Control Registers (RXDMA0...RXDMA2)

Bit Name Description

15 RXn_Stop Receive DMA channel n transfer stop

14–8 – Reserved

7–0 RXn_TC Receive DMA channel n transactions count

13.2.19.1 Receive DMA Ch.n Transfer Stop (RXn_Stop)

When this bit is set, an RXn_EOT interrupt is asserted to the local host after
n OUT transactions where n is the encoded binary value + 1 programmed into
RXn_TC field. This register is used when no smaller than buffer size packet
is received at an end-of-transfer (EOT) and the local host expects a given
amount of data for the transfer.

At end of transfer, the DMA channel is disabled and all OUT transactions
received to the assigned endpoint are sent NAK by the core. The local
host must set the Set_FIFO_En for the endpoint to reenable the channel.

Value after local host or USB reset is low.

13.2.19.2 Receive DMA Ch.n Transactions Count (RXn_TC)

The local host can ask for an interrupt each n OUT transactions where n is the
encoded binary value + 1 programmed into RXn_TC field. This register must
be programmed to the desired transactions watermark limit prior to enabling
the DMA transfer for the receive DMA channel n.

A reached watermark does not disable an active DMA transfer if
RXn_Stop was not set. If RXn_Stop was set for the transfer, both
RXn_Cnt and RXn_EOT interrupts are asserted.

A read of this register returns the number of transactions remaining
before the RXn_Cnt interrupt flag is asserted. This read mode is only
provided for software debug purposes.

Value after local host or USB reset is low (all 8 bits).

Register Map

 13-46

13.2.20 Endpoint 0 Configuration Register (EP0)

The read/write endpoint 0 configuration register (EP0) gives the device config-
uration for control endpoint 0.

Table 13–21. Endpoint 0 Configuration Register (EP0)

Bit Name Description

15–14 – Reserved

13–12 EP0_Size Endpoint 0 FIFO size

11 – Reserved

10–0 EP0_ptr Endpoint 0 pointer

13.2.20.1 Endpoint 0 FIFO Size (EP0_Size)

This field contains the endpoint 0 FIFO size value and must match the
value sent by the local host to the USB host during the GET_DEVICE_
DESCRIPTOR request preceding configuration phase. Status flags (the
Non_ISO_FIFO_Empty, the Non_ISO_FIFO_Full) and overrun/underrun con-
ditions are based on this value for all IN and OUT transactions to endpoint 0.

The local host must fill this field before setting the Cfg_Lock bit.

00: 8 bytes

01: 16 bytes

10: 32 bytes

11: 64 bytes

Value after local host reset is low (both bits), after USB reset is unchanged.

13.2.20.2 Endpoint 0 Pointer (EP0_ptr)

This field contains the address of the endpoint 0 pointer. Value 0x000 is forbid-
den (reserved for setup FIFO).

0x000: address = BASE (forbidden)

0x001: address = BASE + 8 bytes

0x002: address = BASE + 16 bytes

0x003: address = BASE + 24 bytes

...

0x0FF: address = BASE + 2040 bytes

Value after local host reset is low (all bits), after USB reset is unchanged.

Register Map

13-47USB Function Module

Set the pointer value higher than 0xFF, because the memory size is 2K bytes.
A pointer value equal to 0xFF corresponds to 2040 bytes: addressing upper
bytes results in memory overlap (see Section 13.4, Device Initialization).

13.2.21 Receive Endpoint Configuration Registers (EP1_RX...EP15_RX)

The read/write receive endpoint configuration registers (EP1_RX...EP15_RX)
give the device configuration for non-control receive endpoint n (n: 115). The
endpoints size fields must match values sent by the local host to the USB host
in response to the GET_CONFIGURATION_DESCRIPTOR during configura-
tion phase.

The local host must fill this field before setting the Cfg_Lock bit and must not
change the values once Cfg_Lock bit is set.

Table 13–22. Receive Endpoint n Configuration Registers (EP1_RX...EP15_RX)

Bit Name Description

15 EPn_RX_Valid Receive endpoint n valid

14 EPn_RX_Size/Db Receive non-isochronous endpoint n double-buffer (Db)

Or receive isochronous endpoint n size[2]

13–12 EPn_RX_Size Receive endpoint n size

11 EPn_RX_Iso Receive isochronous endpoint n

10–0 EPn_RX_ptr Receive endpoint n pointer

13.2.21.1 Receive Endpoint n Valid (EPn_RX_Valid)

This bit must be set by the local host to allow receive endpoint n to be used
for USB transfers as part of the device configuration. If not set, all transactions
to this endpoint are ignored by the core.

1: Receive endpoint n is part of the device configuration.

0: Receive endpoint n does not exist for this configuration.

Value after local host reset is low, after USB reset is unchanged.

Register Map

 13-48

13.2.21.2 Receive Endpoint n Double-Buffer (EPn_RX_Db)

This bit is only for non-isochronous endpoints. For isochronous endpoints,
which are always double-buffered, this bit is endpoint size MSB.

This bit must be set by the local host to allow double buffering for receive
non-isochronous endpoint n. This is used to reduce number of transactions
resulting in NAK handshake.

1: Double buffer used for non-isochronous receive endpoint n.

0: No double buffer for non-isochronous receive endpoint n.

Value after local host reset or USB reset is unchanged.

13.2.21.3 Receive Endpoint n Size (EPn_RX_Size)

This paragraph includes description of EPn_RX.[14] bit for isochronous
endpoints.

This field contains the endpoint n FIFO size value. Status flags (the
Non_ISO_FIFO_Empty, the Non_ISO_FIFO_Full, the ISO_FIFO_Empty, the
ISO_FIFO_Full) and overrun and underrun conditions are based on this value
for all OUT transactions to endpoint n (see Table 13–23).

Table 13–23. Endpoint n Size Values

Non-Isochronous
[13:12]

Isochronous
[14:12]

00: 8 bytes 000: 8 bytes

01: 16 bytes 001: 16 bytes

10: 32 bytes 010: 32 bytes

11: 64 bytes 011: 64 bytes

100: 128 bytes

101: 256 bytes

110: 512 bytes

Reserved

Value after local host reset or USB reset is unchanged.

Register Map

13-49USB Function Module

13.2.21.4 Receive Isochronous Endpoint n(EPn_RX_Iso)

This field must be set if the receive endpoint n type is isochronous in the
desired device configuration. If not set, the endpoint type is bulk or interrupt
(the hardware does not distinguish bulk type from interrupt).

0: Receive endpoint n type is isochronous.

1: Receive endpoint n type is bulk or interrupt.

Value after local host reset or USB reset is unchanged.

13.2.21.5 Receive Endpoint n Pointer (EPn_RX_ptr)

This field contains the address of the receive endpoint n pointer. Value 0x000
is forbidden (reserved for setup FIFO).

For isochronous endpoints or for non-isochronous endpoints that allow
double-buffering, 2*RX buffer size must be reserved for ping-pong.

0x000: address = BASE (forbidden)

0x001: address = BASE + 8 bytes

0x002: address = BASE + 16 bytes

0x003: address = BASE + 24 bytes

...

0x0FF: address = BASE + 2040 bytes

Value after local host reset or USB reset is unchanged.

Set the pointer value higher than 0xFF, because the memory size is 2K bytes.
A pointer value equal to 0xFF corresponds to 2040 bytes: addressing upper
bytes results in memory overlap (see Section 13.4, Device Initialization).

Register Map

 13-50

13.2.22 Transmit Endpoint Configuration Registers (EP1_TX...EP15_TX)

The read/write transmit endpoint configuration registers (EP1_TX...
EP15_TX) configure the device for noncontrol transmit endpoint n (n: 115).
The endpoint size fields must match the values sent by the local host to the
USB host in response to the GET_CONFIGURATION_DESCRIPTOR during
configuration phase.

The local host must fill this field before setting the Cfg_Lock bit and must not
change the values once the Cfg_Lock bit is set.

Table 13–24. Transmit Endpoint Configuration Registers (EP1_TX...EP15_TX)

Bit Name Description

15 EPn_TX_Valid Transmit endpoint n valid

14 EPn_TX_Size/Db Transmit non-isochronous endpoint n double-buffer or transmit isochronous
endpoint n size[2]

13–12 EPn_TX_Size Transmit endpoint n size

11 EPn_TX_Iso Transmit isochronous endpoint n

10–0 EPn_TX_ptr Transmit endpoint n pointer

13.2.22.1 EPn_TX[15].EPn_TX_Valid: Transmit Endpoint n Valid

This bit must be set by the local host to allow transmit endpoint n to be used
for USB transfers as part of the device configuration. If not set, all transactions
to this endpoint are ignored by the core.

1: Transmit endpoint n is part of the device configuration.

0: Transmit endpoint n does not exist for this configuration.

Value after local host reset is low, after USB reset is unchanged.

13.2.22.2 Transmit Endpoint n Double-Buffer(EPn_TX_Db)

This bit is only for non-isochronous endpoints used in DMA mode. For isochro-
nous endpoints, which are always double buffered, this bit is the endpoint size
MSB. For non-isochronous endpoints which are not used in a DMA transfer,
double-buffering is not provided.

This bit must be set by the local host to allow double buffering for transmit non-
isochronous endpoint n, when used in a DMA transfer. This is used to reduce
number of transactions resulting in NAK handshake.

1: Double buffer used for non-isochronous transmit endpoint n.

0: No double buffer for non-isochronous transmit endpoint n.

Value after local host or USB reset is unchanged.

Register Map

13-51USB Function Module

13.2.22.3 Transmit Endpoint n Size (EPn_TX_Size)

EPn_TX.[14] bit description only applies for isochronous endpoints.

This field contains the endpoint n FIFO size value. Status flags (FIFO_Empty,
FIFO_Full) and underrun condition are based on this value for all IN transac-
tions to endpoint n (see Table 13–23, Endpoint n Size Values).

Value after local host reset or USB reset is unchanged.

13.2.22.4 Transmit Isochronous Endpoint n (EPn_TX_Iso)

This field must be set if the transmit endpoint n type is isochronous in the
desired device configuration. If not set, the endpoint type is bulk or interrupt
(the hardware does not distinguish bulk type from interrupt).

0: Transmit endpoint n type is isochronous.

1: Transmit endpoint n type is bulk or interrupt.

Value after local host or USB reset is unchanged.

13.2.22.5 Transmit Endpoint n Pointer (EPn_TX_ptr)

This field contains the address of the transmit endpoint n pointer.

For isochronous endpoints or for non-isochronous endpoints that allow
double-buffering, 2*TX buffer size must be reserved for ping-pong.

0x000: address = BASE

0x001: address = BASE + 8 bytes

0x002: address = BASE + 16 bytes

0x003: address = BASE + 24 bytes

...

0x0FF: address = BASE + 2040 bytes

Value after local host reset or USB reset is unchanged.

Set the pointer value higher than 0xFF, because the memory size is 2K bytes.
A pointer value equal to 0xFF corresponds to 2040 bytes: addressing upper
bytes results in memory overlap (see Section 13.4, Device Initialization).

USB Transactions

 13-52

13.3 USB Transactions

There is an interrupt to the local host at the end of a USB transaction if the local
host has actions to perform. Isochronous transactions are an exception,
because isochronous interrupt information is available at start of frame inter-
rupts. The local host ISR code determines which endpoint and direction
caused the interrupt and acts appropriately. The following sections describe
in detail the activities surrounding USB transactions that are not part of a DMA
transfer. Cases where a transaction occurs before the previous one has been
handled by the local host are not taken into account in this section. The infor-
mation is organized so that each section deals with one type and direction of
transaction, such as non-isochronous, non-setup OUT transactions, non-
isochronous IN transactions, isochronous OUT transactions, isochronous IN
transactions, etc. This allows each section to focus only on a specific style of
transaction without adding in the confusion of special cases related to other
styles.

13.3.1 Non-Isochronous, Non-Setup OUT (USB HOST –> LH) Transactions

Non-isochronous, non-setup OUT transactions refer to USB transactions
where data is moved from the USB host to the local host and where the USB
handshaking protocols are in effect and data transmission is guaranteed.
These types of transactions apply to all OUT transactions on bulk and interrupt
endpoint types, and to non-setup transactions on control endpoints.

Figure 13–3 shows the various USB protocol conditions that can occur during
non-isochronous, non-setup OUT transactions. The diagram shows the three
phases that can occur in an OUT transaction, the direction of information flow
for each phase, when endpoint interrupts are generated, and the resulting
STAT_FLG bits for the endpoint. The top three cases show the normal USB
handshaking: ACK (good data received), NAK (device not ready to receive
data), and STALL (device in a condition where the endpoint cannot handle
OUT transactions). The last case shows an abnormal case where the token
packet or the data packet was received with errors. The RX FIFO only contains
valid receive data under the first, ACK, case.

USB Transactions

13-53USB Function Module

Figure 13–3. Non-Isochronous, Non-Control OUT Endpoint Handshaking Conditions

Token Data ACK

Token Data NAK

Token Data STALL

Token Data

Successful data transfer from USB host. (Occurs because the endpoint’s
STAT_FLG.FIFO_En bit was set when token was received.)

No data accepted by DSP. (Occurs because the endpoint’s STAT_FLH.FIFO_En bit
was clear when token was received.)

EP stalled. No data accepted by DSP. (Occurs because the endpoint’s

Bad data received. No data accepted by DSP. (Occurs because of CRC error, PID
check error, bit stuffing error, or overrun conditions.)

EPx Rx Interrupt

EPx RX Interrupt

EPx RX Interrupt

STAT_FLG bits after
interrupt

A
C

K

S
TA

LL

E
P

_H
al

te
d

N
A

K

100 0

STAT_FLG bits after
interrupt

000 1

STAT_FLG bits after
interrupt

011 0

010 0
or

After interrupt, EP’s RX FIFO contains received data.

After interrupt, EP’s RX FIFO is empty.

After interrupt, EP’s RX FIFO is empty.

No EPx RX interrupt occurs. EP’s RS FIFO is empty. STAT_FLG is not
updated.

Indicates a packet received by the device

Indicates a packet sent by the device

No handshake
sent

(SYSCON1.Nak_En=1)

(SYSCON1.Nak_En=1)

A
C

K

S
TA

LL

E
P

_H
al

te
d

N
A

K

STAT_FLG.EP_Halted bit was set when token was received or because an EPO control
request error has occured.)

A
C

K

S
TA

LL

E
P

_H
al

te
d

N
A

K

USB Transactions

 13-54

13.3.1.1 Non-Isochronous, Non-Control OUT Endpoint Handshaking Conditions

The Set_FIFO_En bit provides the main control for the ability to allow success-
ful OUT transaction data reception for the endpoint. If at the beginning of an
OUT transaction to an endpoint the FIFO_En bit is 1, the USB module is al-
lowed to accept the OUT transaction data to the RX FIFO and, when the trans-
action completes, the USB module can return ACK to the USB host to indicate
that the data was received correctly (this is the top case shown in Figure 13–3).
If, however, the FIFO_En bit was 0 at the beginning of an OUT transaction to
the endpoint, the USB module returns NAK during the handshake phase to
indicate that the endpoint did not accept the data (the second case shown in
Figure 13–3).

It is important to note that the USB host need not send a whole RX FIFO worth
of data to the endpoint during an OUT transaction. In this case, the RX FIFO
is not full when the endpoint RX interrupt is generated. The local host code
must be careful not to read too much data. Local host code must read the
RXF_Count value before reading data from the RX FIFO.

After a USB OUT transaction to an endpoint where the data is accepted
(ACKed), the hardware clears the endpoint’s FIFO_En bit. Once the local host
software has dealt with the OUT transaction data in the endpoint RX FIFO, it
must re-enable the endpoint OUT transaction reception by setting the
Set_FIFO_En bit. Local host software can use the Set_FIFO_En bit as a
receive flow control mechanism.

Acknowledged Transactions (ACK)

At completion of an OUT transaction to an endpoint, the USB module issues
an endpoint-specific interrupt to the local host and the STAT_FLG is updated.
In response to the endpoint interrupt, the local host must read EPN_STAT reg-
ister to identify the endpoint causing the interrupt, then write a 1 to the interrupt
bit to clear it. The local host must set EP_Num to the endpoint number and
EP_Sel to 1, then read the endpoint status. The ACK bit is set to indicate that
the endpoint received a transaction to which the USB module signaled ACK
handshaking.

If the FIFO_Empty is cleared, the host sent 1 or more bytes of data (but less
than or equal to the physical size of the endpoint RX FIFO) and the data is in
the endpoint RX FIFO. The local host knows the number of bytes to read from
RX FIFO by reading the RXF_Count value. The local host can then read RX
data from DATA register. Once the local host has read the data from the FIFO,
it sets the Set_FIFO_En bit to allow the next USB OUT transaction to the end-
point to be placed into the RX FIFO and then clears the EP_Sel bit. This clears
the ACK bit for this endpoint and allows the next transaction status to be written
to the STAT_FLG register.

USB Transactions

13-55USB Function Module

Non-Acknowledged Transactions (NAK)

The device can be configured via the Nak_En bit, either to inform the local host
of a NAKed transaction or not. If the NAK_EN bit is cleared, no interrupt is
asserted to the local host if an OUT transaction completes with a NAK hand-
shake and the NAK bit not set. If the Nak_En bit is set, the USB module issues
an endpoint-specific interrupt to the local host at completion of an OUT trans-
action to an endpoint and the NAK bit is set. In response to the endpoint inter-
rupt, the local host must read EPN_STAT register to identify the endpoint caus-
ing the interrupt then write a 1 to the interrupt bit to clear it. The local host must
set EP_Num to the endpoint number and EP_Sel to 1 then read the endpoint
status. The NAK bit is set to indicate that the endpoint received a transaction
to which the USB module signaled NAK handshaking.

The local host must set the Set_FIFO_En bit to allow the next USB OUT
transaction to the endpoint to be placed into the RX FIFO and then clear the
EP_Sel bit. This clears the NAK bit for this endpoint and allows the next trans-
action status to be written to the STAT_FLG register.

13.3.1.2 Non-Isochronous, Non-Control OUT Transaction Error Conditions

STALLed Transactions

The USB module responds to an endpoint OUT transaction with a STALL
handshake to indicate an error condition on the endpoint either if the end-
point’s EP_Halted bit is set or if a request error occurs (control transactions
only). When an endpoint OUT transaction is given a STALL handshake, the
endpoint’s STALL bit is set and an endpoint-specific interrupt is generated for
the endpoint. The FIFO_En bit is of lower priority than the EP_Halted; when
the EP_Halted bit is set, transactions to the RX endpoint are stalled, regard-
less of the FIFO_En value. If the FIFO_En bit is set, the FIFO_En bit is auto-
matically cleared at the end of the STALLed transaction, and RX FIFO is
cleared.

In response to the endpoint interrupt, the local host must read EPN_STAT reg-
ister to identify the endpoint causing the interrupt, then write a 1 to the interrupt
bit to clear it. The local host must set EP_Num to the endpoint number and
EP_Sel to 1, then read the endpoint status. The STALL bit is set to indicate that
the endpoint received a transaction to which the USB module signaled STALL
handshaking.

If the EP_Halted has been set by the local host and can be removed, the local
host must set the Clr_Halt to clear the condition and set the Set_FIFO_En to
allow the next USB OUT transaction to the endpoint to be placed into the RX

USB Transactions

 13-56

FIFO. If the EP_Halted has been set in response to a SET_FEATURE request
sent by the USB host or if the bit is cleared (control transaction only), the local
host has no action to perform and must clear the EP_Sel bit. This clears the
STALL bit for this endpoint and allows the next transaction status to be written
to the STAT_FLG register.

Packet Errors

In case of a receive data error during an endpoint OUT transaction (token or
data packet), the USB module does not provide a handshake during the hand-
shake phase of the transaction and no interrupt is asserted to the local host
(the fourth case shown in Figure 13–3). Additionally, the endpoint RX FIFO is
not filled and the FIFO_En bit is not cleared. If the local host clears the RX FIFO
during the data packet of an OUT transaction, no handshake is returned to the
USB host to signal an error.

Sequence Bit Errors

If the core does not receive expected DATA PID during an OUT transaction,
the module automatically returns an ACK handshake to the USB host, regard-
less of the FIFO_En bit (per USB spec). Data is ignored, and no interrupt is
asserted to the local host.

This error occurs if an ACK handshake from the previous OUT transaction is
received corrupted by the USB host.

13.3.1.3 Non-Isochronous, Non-Control OUT Endpoint FIFO Error Conditions

If the USB host attempts to fill more data into an endpoint RX FIFO than the
FIFO can hold, a FIFO overrun occurs. The USB module does not provide a
handshake during the handshake phase of the transaction and no interrupt is
asserted to the local host. Additionally, the endpoint RX FIFO is not filled, and
the FIFO_En bit is not cleared.

The local host must not read more data from the RX FIFO than the amount
indicated by RXF_Count.

USB Transactions

13-57USB Function Module

13.3.2 Non-Isochronous IN (LH–>USB HOST) Transactions

Non-isochronous IN transactions refer to USB transactions where data is
moved from the local host to the USB host where the USB handshaking proto-
cols are in effect and data transmission is guaranteed. These transactions are
the IN transactions that occur on control, bulk, and interrupt endpoints. These
transactions do not guarantee USB bandwidth.

To provide data for an endpoint IN transaction, the local host code writes the
transmit data into the endpoint transmit FIFO. Local host code must first wait
until the USB is done with any previous TX data for the endpoint (if data had
previously been written to the TX FIFO). This must be done by proper
response to endpoint-specific transmit interrupts. When an IN transaction to
the endpoint occurs, if the endpoint’s FIFO_En bit is set, the USB module
sends any data that is in the endpoint TX FIFO during the data phase. If the
TX FIFO is empty and the FIFO_En bit is set when an IN transaction to the end-
point occurs, a 0-byte data packet is sent.

Once the endpoint’s previous transmit activity is taken care of, the local host
code gains access to endpoint’s FIFO and status by setting EP_Sel bit. Then
the local host can write the new transmit data to the endpoint TX FIFO via the
DATA register (being careful not to overflow the FIFO). Once all of the transmit
data has been written to the endpoint FIFO, local host code sets the
Set_FIFO_En bit to allow the USB to use the endpoint’s TX FIFO and then
clears the EP_Sel bit. The data in the endpoint TX FIFO is sent to the USB host
the next time an IN transaction to the endpoint occurs.

Figure 13–4 shows the various USB protocol conditions that can occur during
non-isochronous IN transactions. It diagrams the three phases of the IN trans-
action, the direction of information flow for each phase, when endpoint-specific
interrupts are generated, and the resulting STAT_FLG bits for the endpoint.
The top three cases show the normal USB handshaking: ACK (data sent by
USB module and received properly by the USB host), NAK (device not ready
to send data to USB host), and STALL (device in a condition where the end-
point cannot handle IN transactions). The last case shows an abnormal case
where there is an error either in the token packet received by the core, or in
the data packet received by the USB host.

USB Transactions

 13-58

Figure 13–4. Non-Isochronous IN Transaction Phases and Interrupts

IN Token ACK

NAK

STALL

Successful data transfer to USB host (endpoint STAT_FLG.FIFO_En bit was set

No data transmitted by LH (endpoint STAT_FLG>FIFO_En bit was clear when

Endpoint stalled. No data transmitted by LH (endpoint STAT_FLG>EP_Halted bit was
set when token was received or an EP0 control request error has occurred).

Endpoint X TX interrupt

Data (w/Error)

Endpoint TX data error during transmission.

After interrupt, endpoint TX FIFO is empty.

Endpoint TX FIFO is unchanged by this USB transaction. No interrupt occurs. STAT_FLG is
unchanged.

Indicates a packet received by the device

Indicates a packet sent by the device

Data

Stage not
executed

Stage not
executed

No handshake
received

when token was received).

STAT_FLG bits after
interrupt

A
C

K

S
TA

LL

E
P

_H
al

te
d

N
A

K

100 0

STAT_FLG bits after
interrupt

000 1

STAT_FLG bits after
interrupt

011 0

010 0
or

(SYSCON1.Nak_En=1)

A
C

K

S
TA

LL

E
P

_H
al

te
d

N
A

K

A
C

K

S
TA

LL

E
P

_H
al

te
d

N
A

K

(SYSCON1.Nak_En=1)

token was received).

IN Token

IN Token

IN Token

Endpoint TX FIFO is unchanged by this USB transaction.

Endpoint TX FIFO is unchanged by this USB transaction.

Endpoint X TX interrupt

Endpoint X TX interrupt

USB Transactions

13-59USB Function Module

13.3.2.1 Non-Isochronous IN Endpoint Handshaking

Per the USB spec for IN transactions, the USB host may only provide one of
two handshakes to the USB function during the handshake phase: ACK or no
handshake at all. The first indicates successful transfer (first case shown in
Figure 13–4), and the second indicates that the host received a garbled data
packet (last case shown in Figure 13–4).

Acknowledged Transactions (ACK)

When the endpoint IN transaction completes on the USB bus with an ACK
handshake, the endpoint generates an endpoint-specific interrupt to the local
host (see first case in Figure 13–4). In response to the endpoint interrupt, the
local host must read EPN_STAT register to identify the endpoint causing the
interrupt, then write a 1 to the interrupt bit to clear it. The local host mustset
EP_Num to the endpoint number, EP_Dir to 1 (to signal an IN endpoint), and
EP_Sel to 1, then read the endpoint status. The ACK bit is set to indicate that
the endpoint received an ACK handshake from the USB host and that the TX
FIFO is empty (because any data that was in the TX FIFO was transmitted
during the IN transaction).

If the local host has more data to transmit to the USB host, it must fill the TX
FIFO following the process indicated above. It must then clear the EP_Sel bit.
This clears the ACK bit for this endpoint and allows the next transaction status
to be written to the STAT_FLG register.

Non-must Transactions (NAK)

For the case where the local host is not ready to provide transmit data for trans-
actions to an IN endpoint, the core provides a NAK handshake to the host for
any USB IN transaction to that endpoint (as shown in the second case in
Figure 13–4). Readiness to transmit data is signaled via the endpoint’s
FIFO_En bit; when 1, it indicates that data in the TX FIFO can be sent to the
USB host. When the endpoint’s FIFO_En bit is 0 and an IN transaction to the
endpoint occurs, a NAK handshake is sent, indicating that the local host is not
ready to handle the request.

If the Nak_En bit is cleared when the NAK handshake is sent in the data packet
portion of the transaction to the IN endpoint, STAT_FLG is not updated and no
endpoint-specific interrupt to the local host is generated. If the Nak_En bit is
set when the NAK handshake is sent in the data packet portion of the transac-
tion to the IN endpoint, the NAK bit is set and an endpoint-specific interrupt to
the local host is generated.

USB Transactions

 13-60

In response to the endpoint interrupt, the local host must read the EPN_STAT
register to identify the endpoint causing the interrupt, then write a 1 to the inter-
rupt bit to clear it. The local host must set EP_Num to the endpoint number,
EP_Dir to 1 (to signal an IN endpoint), and EP_Sel to 1, then read the endpoint
status. The NAK bit is set to indicate that the endpoint sent a NAK handshake
to the USB host. If the local host has data to transmit to the USB host, it must
fill the TX FIFO following the process indicated above. The local host must then
clear the EP_Sel bit. This clears the NAK bit for this endpoint and allows the
next transaction status to be written to the STAT_FLG register. Signaling NAK
does not cause the endpoint’s TX FIFO to be cleared (since the local host still
retains control of the FIFO).

Signaling NAK handshake for several endpoint transactions in a row can
cause the PC host to discard the transaction, so NAK may not be a good mech-
anism in cases where the local host is not able to service a request for long
periods of time.

13.3.2.2 Non-Isochronous IN Transaction Error Conditions

STALLed Transactions

The USB module sends a STALL handshake to the USB host during the data
phase of the transaction to the IN endpoint either if the endpoint’s EP_Halted
flag bit is set (as shown in the third case in Figure 13–4) or if a request error
occurs (control transaction only). A STALL handshake indicates that the de-
vice endpoint is in a condition where it is not able to transfer data and that the
USB host must not retry the transaction. The device typically requires interven-
tion via some other mechanism to clear the condition, typically a control trans-
fer via endpoint 0. The local host can set the endpoint EP_Halted bit by writing
the appropriate value in the EP_NUM register to select it. It can then set the
endpoint’s Set_Halt bit and clear it by selecting the endpoint and setting the
endpoint’s Clr_Halt bit. When the endpoint EP_Halt bit bit is set, the endpoint
signals STALL for its IN transactions until the HALT condition is cleared. When
the STALL handshake is sent in response to a transaction to the endpoint,
the STALL bit is set, and an endpoint-specific interrupt to the local host is
generated.

In response to the endpoint interrupt, the local host must read EPN_STAT reg-
ister to identify the endpoint causing the interrupt, then write a 1 to the interrupt
bit to clear it. The local host must set EP_Num to the endpoint number, EP_Dir
to 1 (to signal an IN endpoint), and EP_Sel to 1, then read the endpoint status.
The STALL bit is set to indicate that the endpoint sent a STALL handshake to
the USB host. The local host must then clear the EP_Sel bit. This clears the
STALL bit for this endpoint and allows the next transaction status to be written
to the STAT_FLG register

USB Transactions

13-61USB Function Module

Except for control endpoint 0, separate endpoint halt bits are defined for each
direction; so for a given endpoint number, the TX can be halted when the RX
is not.

Packet Errors

If an error (CRC, bit stuffing or PID check) occurs during the token packet of
a USB IN transaction to a non-isochronous endpoint, the USB block ignores
the transaction. No endpoint-specific interrupt to the local host occurs for
transactions with corrupted packets. If the local host clears the TX FIFO during
the data packet of an IN transaction, a bit stuffing error is forced.

If the USB host returns no handshake after an IN transaction (case of error
during transmission), the USB function module detects after a time-out that an
error has occurred. The data to transmit is still in the TX FIFO, and can be
resent during next IN transaction, the FIFO_En bit is not cleared, and no inter-
rupt is asserted to the local host.

13.3.2.3 Non-Isochronous IN Endpoint FIFO Error Conditions

The local host cannot write more data into the TX FIFO than the configured
FIFO size.

13.3.3 Isochronous OUT (USB HOST–> LH) Transactions

Isochronous OUT transactions are USB transactions where a given amount
of data is transferred from the USB host to the USB function module device
every 1-ms USB frame. No USB handshaking is provided, and no endpoint-
specific interrupt to the local host is generated at completion of an isochronous
OUT transaction. The local host is responsible for handling isochronous OUT
data at each start of frame (SOF) interrupt.

At every SOF interrupt, the local host code must select the endpoint for each
isochronous OUT endpoint by writing the appropriate value into the EP_NUM
register and checking the ISO_FIFO_Empty bit. If the RX FIFO contains data,
code must read the RXF_Count value (if the number of bytes to read from RX
FIFO is not known), read all the bytes from RX FIFO via the DATA register, then
clear the EP_Sel bit.

Because the USB transaction for the isochronous endpoint can occur at any
time during the 1-ms USB frame, the USB interface implements double-buffer-
ing of the endpoint receive data FIFO. The endpoint includes two FIFOs, each
of which is the length of the configured isochronous endpoint. At all times, one
of the two FIFOs is foreground and the other is background. The USB interface

USB Transactions

 13-62

side of the USB module is allowed to write to the background RX FIFO, and
the local host is allowed to read to the foreground RX FIFO. The designations
foreground and background are swapped at each start of frame (SOF).
Isochronous endpoint FIFOs in the background are always enabled to the
USB, while the foreground FIFOs are enabled to the local host.

Figure 13–5 shows the two phases (isochronous OUT token and data) of an
isochronous OUT data transfer in the top portion of the figure. No endpoint-
specific interrupt to the local host is generated for the isochronous OUT trans-
action. The data for isochronous endpoints are instead handled by the local
host at each start of frame (SOF) interrupt, which is shown as the second case
in Figure 13–4.

Figure 13–5. Isochronous OUT Transaction Phases and Interrupts

ISO OUT Token Data

Successful data transfer from USB host

No handshake occurs. Endpoint RX FIFO contains receive data after data packet
completes. No interrupt occurs.

Indicates a packet received by the device

Indicates a packet sent by the device

SOF Token

Reception of SOF causes SOF interrupt.

SOF Interrupt

LH code for SOF interrupt servide routine must fill all isochronous IN endpoint TX FIFOs

An SOF interrupt is generated even if the SOF packet is corrupted.

with new transmit data and pull new receive data from all isochronous OUT endpoint RX
FIFOs.

13.3.3.1 Isochronous OUT Endpoint Handshaking

Because isochronous endpoint transactions have no handshake packets, the
STALL, the NAK, and the ACK bits for isochronous endpoints always return
0. Because there is no handshake, the endpoint-specific interrupt for isochro-
nous endpoints is not used.

USB Transactions

13-63USB Function Module

13.3.3.2 Isochronous OUT Transaction Error Conditions

If the local host fails to read all of the data in the isochronous OUT endpoint
foreground FIFO by the time that the foreground and background FIFOs are
switched (at the next SOF), the endpoint FIFO that is being switched to the
background is flushed and the Data_Flush bit is asserted for the duration of
the next frame.

There is no special indication for the case where the USB host does not pro-
vide a transaction to an isochronous OUT endpoint during a frame; but once
the FIFO that was background in that frame is foreground, the FIFO is empty.
A 0-length data isochronous OUT transaction also results in an empty FIFO
and can not be distinguished from a missed isochronous OUT transaction.

If an isochronous OUT transaction occurs with data error (CRC, PID check,
bit stuffing), the RX FIFO is empty at the next SOF interrupt and the ISO_Err
bit is asserted for the duration of the next frame.

13.3.3.3 Isochronous OUT Endpoint FIFO Error Conditions

The local host must never read more data than value given by the RXF_Count.

If the USB host sends more data than the FIFO can contain, the FIFO is
cleared and the ISO_Err bit is set at the next SOF interrupt. A properly
configured USB system does not do this.

Both foreground and background isochronous FIFOs are cleared when the
Clr_EP bit is set.

13.3.4 Isochronous IN (LH–>USB HOST) Transactions

Isochronous IN transactions are USB transactions where a given amount of
data is transferred from the USB function module device to the USB host every
1-ms USB frame. No handshaking is provided.

The USB module provides double buffering of data for isochronous IN end-
points; the background FIFO is used as the source of data for IN transactions
to the isochronous endpoint, and the foreground FIFO can be written to by the
local host. When an IN transaction to an isochronous endpoint occurs, the
USB module sends all data found in the endpoint background TX FIFO. The
local host is responsible for providing new data to the isochronous IN endpoint
foreground TX FIFO at each start of frame interrupt.

In response to the SOF interrupt, for each isochronous IN endpoint, local host
code selects the endpoint (via EP_NUM register), then fills the endpoint TX
FIFO (via DATA register). Once all the transmit data has been written to the
FIFO, the local host code must clear the EP_Sel bit.

USB Transactions

 13-64

Because the USB transaction for the isochronous endpoint can occur at any
time during the 1-ms USB frame, the USB interface implements a double buff-
ering of the endpoint transmit data FIFO. The endpoint includes two FIFOs,
each of which is the length of the configured isochronous endpoint. At all times,
one of the two FIFOs is foreground and the other is background. The USB
interface side of the USB module is allowed to read from the background TX
FIFO, and the local host is allowed to write to the foreground TX FIFO. The
designations foreground and background are swapped, and the new back-
ground TX FIFO is cleared at each start of frame (SOF). Because isochronous
endpoints implement double buffering, isochronous endpoints do not control
access to the FIFOs via the Set_FIFO_En bit; the Set_FIFO_En and the
FIFO_En bits are not implemented for isochronous IN endpoints.

Figure 13–6 shows the transaction phases associated with isochronous IN
transactions and the SOF transaction. No endpoint-specific interrupt to the
local host is generated as a result of an isochronous IN transaction. There is
no handshake phase. The SOF transaction causes an SOF interrupt to the
local host; it is assumed that the local host refills the isochronous IN endpoint
transmit FIFO at each SOF interrupt.

Figure 13–6. Isochronous IN Transaction Phases and Interrupts

Iso In Token

SOF Token

Successful data transfer to PC host

Reception of SOF causes SOF interrupt.

SOF Interrupt

No handshake occurs. Endpoint TX FIFO is empty after data sent. No endpoint interrupt
occurs. STAT_FLG is unchanged.

Indicates a packet received by the device

Indicates a packet sent by the device

Data

LH code for SOF ISR must fill all isochronous IN endpoint TX FIFOs with new transmit

An SOF interrupt is generated even if the SOF packet is corrupted.

data and pull new receive data from all isochronous OUT endpoint RX FIFOs.

USB Transactions

13-65USB Function Module

13.3.4.1 Isochronous IN Endpoint Handshaking

Because isochronous endpoint transactions have no handshake packets, the
STALL, the NAK, and the ACK bits for isochronous endpoints always return
0. Because there is no handshake, there is no endpoint-specific interrupt to the
local host to report handshake results for isochronous endpoints.

13.3.4.2 Isochronous IN Transaction Error Conditions

If the USB host did not successfully complete an isochronous IN transaction
in the previous frame and if data were present in the TX FIFO to be sent at the
IN transaction, the Miss_In bit is asserted for the duration of the following
frame. If the isochronous IN endpoint is cleared in the middle of a USB transac-
tion to the background FIFO, a bit-stuffing error is forced for the isochronous
transaction.

13.3.4.3 Isochronous IN Endpoint FIFO Error Conditions

If the local host attempts to overfill the configured endpoint FIFO, data written
to the DATA register after the TX FIFO is full is lost, but any data that was suc-
cessfully put into the FIFO is transmitted when that FIFO is the background
FIFO and an IN transaction for that endpoint occurs. Since an isochronous TX
FIFO is cleared automatically on the toggle from background to foreground,
there is no reason to clear the FIFO. However, if the local host does not wish
to send the data it wrote, clearing the endpoint is the only mechanism to do this.

13.3.5 Control Transfers on Endpoint 0

Control transfers on endpoint 0 include control write and control read transfers.
Control write and control read transfers are each composed of two or more
transactions to endpoint 0. Additionally, the USB function module is capable
of autodecoding some control write and control read transfers. These opera-
tions are summarized in Figure 13–7 and Figure 13–8. If an IN or OUT trans-
action is received in a control request, this transaction is automatically stalled
by the core.

USB Transactions

 13-66

Figure 13–7. Stages and Transaction Phases of Autodecoded Control Transfers

Autodecode control write transfer–correct status

Setup
Token Command ACK Status

Token
Completion

Status

Setup Stage Status Stage

Data StageSetup Stage Status Stage

ACK

Setup Stage Status Stage

Setup
Token

Command ACK Status
Token Stall

Setup
Token Command ACK IN Token Command

Data ACK Status
Token

0-length
data

Completion
Status

Data StageSetup Stage Status Stage

Setup
Token Command ACK IN Token Stall Status

Token
0-length

data Stall

(set address, clear/set device/interface feature).

(due to wrong setup data).

Wrong

Autodecode control read transfers-–correct status
(get device/endpoint status)

Autodecode control read transfers-–request error
(due to wrong setup or command data)

Autodecode control read transfers-–request error

Interrupt occurs/status flags are not updated.

Interrupt occurs/status flags are not updated.

Interrupt occurs/status flags are not updated.

Interrupt occurs/status flags are not updated.

USB Transactions

13-67USB Function Module

Figure 13–8. Stages and Transaction Phases of Non-Autodecoded Control Transfers

Non-autodecode control write transfers-–correct status

Setup
Token Command ACK Out

Token
Command

Data ACK Status
Token

Completion
Status

Data Stage
(Occurs 0 or more times,

depending on the amount of data)Setup Stage Status Stage

Non-autodecode control read transfers-–correct status
Data Stage

(Occurs 1 or more times, depending
on the Command and amount of data)Setup Stage Status Stage

EP0 TX Interrupt
STAT_FLG.ACK bit set
(one per IN transaction)

ACK

Non-autodecode control write transfers–request error
(due to LH setting RXCON1.Stall_Cmd)

Data Stage
(Occurs 0 or more times,

depending on the amount of data)Setup Stage Status Stage

Non-autodecode control read transfers-–request error
(due to LH setting CTRL.Stall_Cmd)

EP0 RX Interrupt
STAT_FLG.STALL bit set

EP0 TX Interrupt
STAT_FLG.STALL bit set
(one per In transaction)

EP0 RX Interrupt
STAT_FLG.ACK bit set

EP0 TX Interrupt
STAT_FLG.ACK bit set

EP0 TX Interrupt
STAT_FLG.STALL bit set

Setup Interrupt EP0 RX Interrupt
STAT_FLG.ACK bit set

(one per OUT transaction)

EP0 RX Interrupt
RXSTATFLG.STALL bit set
(one per OUT transaction)

Setup
Token Command ACK Out

Token
Command

Data Stall Status
Token

Completion
Status Stall

Setup
Token Command ACK In Token Command

Data ACK Status
Token

0-length
data

Completion
Status

Data Stage
(Occurs 1 or more times, depending

on the Command and amount of data)Setup Stage Status Stage

Setup
Token Command ACK In Token Stall Status

Token
0-length

data Stall

No flag is updated.

Setup Interrupt
No flag is updated.

Setup Interrupt
No flag is updated.

Setup Interrupt
No flag is updated.

USB Transactions

 13-68

Non-autodecoded control read and control write transfers are sets of transac-
tions that occur on endpoint 0, have specific USB protocol meaning, and are
not handled automatically by the core. The USB function block automatically
provides an ACK handshake for the setup stage transaction, but the data and
status stage transaction handshaking is accomplished using the normal RX
and TX control bits that affect transaction handshaking. A general USB inter-
rupt to the local host occurs at the end of each transaction of each stage of a
control transfer. The local host must perform the following actions to act on
non-autodecoded control transfers:

� Process the setup phase USB interrupt. The local host reads the control
transfer command from the setup FIFO and decodes the command. For
control reads, the local host fetches the requested read data and places
it (or as much of the read data as will fit) into the endpoint 0 FIFO, then
enables the endpoint 0 FIFO. For control writes, the local host code only
enables the endpoint 0 FIFO. Local host code also sets any flags needed
for processing endpoint 0 USB interrupts during the control transfer.

� Process the data phase endpoint 0 general USB interrupt(s). For control
reads, the data phase general USB endpoint 0 TX interrupt indicates that
the previously provided transmit data has been sent. Any additional data
must be written to the endpoint 0 FIFO. For control writes, the write data
must be pulled from the endpoint 0 FIFO, and, when all control write data
is available, interpret the write data and act on the write request. After han-
dling the last data phase interrupt, the local host must set the endpoint 0
control bits to signal the desired stage status to the host.

� Process the status stage endpoint 0 general USB interrupt. The local
host provides its completion status back to the USB host during this stage,
either via status in the data phase of the transaction (for control write
transfers) or via the handshake phase of the transaction (for control read
transfers).

Autodecoded control read and control write transfers are sets of transactions
that occur on endpoint 0, have specific USB protocol meaning, and are han-
dled automatically by the USB function block without any intervention by the
local host. The USB function block handles all handshaking automatically and
without regard to the endpoint 0 control bits that affect normal (non-control
transfer) transaction handshaking. No interrupt is asserted to the local host
during autodecoded control transfers.

If no request defined by the USB1.1 specification is associated with the data
of the setup phase, the request is stalled by the core and the local host is not
informed of its occurrence (autodecoded).

USB Transactions

13-69USB Function Module

When a setup token is identified, the USB decode module must monitor the
setup stage data packet, decode it, and determine if it is an autodecoded or
a non-autodecoded transfer and a control read or a control write. If it is a valid
non-autodecoded request, the setup FIFO is immediately cleared and control
of the FIFO is immediately taken away from the local host (if the local host had
control of the FIFO). New setup data is placed into the setup FIFO, and the
setup interrupt flag is set (Setup bit).

In response to the setup interrupt, the local host must select the setup FIFO
by setting Setup_sel bit. This clears the setup flag. The local host must then
read 8 bytes from the setup FIFO, clear the Setup_Sel bit, and check that the
setup bit has not been reset by a new setup transaction. If the setup flag is
asserted, the local host must discard the previously read data and handle the
new setup packet as explained above. Thus the local host never misses a new
occurring setup transaction (this is per USB 1.1 specification).

13.3.5.1 Autodecoded Control Write Transfers

For set address control write transfers, the USB address provided in the setup
token is captured to the USB module device address register. If the new
address is different from 0, the device moves into addressed state (the ADD
bit set) if it was not already addressed.

For set and clear feature control writes, the appropriate feature information bit
is set or cleared. When a set or clear feature transfer occurs to set or clear the
device’s remote-wakeup feature, the R_WK_OK bit is set or cleared as
appropriate. If a set or clear interface feature occurs, the request is automati-
cally stalled by the core because no feature is defined for interface (see USB
1.1 specification).

Per USB 1.1 specification, a SET_ADDRESS request is effective after the
status stage of the request, even if the status stage does not end with an ACK
handshake. SET/CLEAR_FEATURE requests are effective after the setup
stage, even if no status stage occurs.

Autodecoded Control Write Transfer Handshaking

The USB function module automatically provides ACK handshaking for all
transactions of all stages of autodecoded control write transfers, except if a
corrupted packet is received, which is ignored by the USB module. The
Set_FIFO_En and Stall_Cmd bits have no effect on the handshaking.

Autodecoded Control Write Transfer Error Conditions

If the token packet or the data packet of a setup stage transaction has an error
(bad CRC, PID check, or bit-stuffing error), the USB block ignores the transac-
tion. The USB block does not provide ACK handshaking in this case.

USB Transactions

 13-70

13.3.5.2 Autodecoded Control Read Transfers

Autodecoded control reads include the standard device request to get the end-
point and device status. These control read transfers access information that
is kept in registers inside the USB module, so local host code is not involved
in filling the read data into the TX FIFO.

The USB module returns the currently selected endpoint’s status information
(depending on the index value in the setup stage data packet) during the data
phase of the single IN transaction of the data stage and provides ACK as the
handshake for the status stage handshake phase. The local host receives no
interrupt.

Autodecoded Control Read Transfer Handshaking

The USB function module automatically provides ACK handshaking for all
transactions of all stages of autodecoded control read transfers, except if a
corrupted token packet is received, which is ignored by the USB module. The
FIFO_En and Stall_Cmd bits have no effect on the handshaking. If the status
packet has a DATA0 PID instead of a DATA1 PID, status is STALLed and no
interrupt is asserted to the local host. If the setup packet has a DATA1 PID
instead of a DATA0 PID, setup transaction is ignored (error).

Autodecoded Control Read Transfer Error Conditions

If the token phase or the data phase of a setup stage transaction has an error
(bad CRC, PID check or bit stuffing error), the USB block ignores the transac-
tion. The USB block does not provide ACK handshaking in this case.

Data errors during the data stage of autodecoded control write transfers are
handled in the standard way—any data stage transaction from the host in
which a data error occurs is ignored.

It is possible that the USB host sends a get endpoint/device status request with
a bad parameter. If the autodecode mechanism senses a bad parameter in the
setup stage data phase, the autodecode mechanism causes a STALL hand-
shake to be signaled during the data phase of the data stage and during the
status stage.

USB Transactions

13-71USB Function Module

13.3.5.3 Non-Autodecoded Control Write Transfers

Non-autodecoded control write transfers include the set/clear endpoint
feature, set configuration, set interface, set descriptor, and class- or vendor-
specific control write transfers. Non-autodecoded control write transfers
consist of two or three stages (setup, data (optional), and status).

The setup stage of a valid non-autodecoded control write transfer consists of
one SETUP transaction from USB host to USB device. At the end of the setup
stage handshake, the USB module generates a local host general USB inter-
rupt with the setup flag set. The local host must respond to this general USB
interrupt by setting the Setup_Sel bit, which clears the setup interrupt flag. The
local host must then read 8 bytes from the setup FIFO via the DATA register,
clear EP_Sel bit, and check the setup flag. If the setup flag is set, the local host
must discard the setup data it has just read and handle the new setup data
packet following the same scheme. If the setup flag is cleared, the local host
code must interpret this request information and performs any application-
specific activity needed due to the setup stage request (see Figure 13–8). If
there is one or more data stages for the transfer, the local host must set the
Set_FIFO_en bit for endpoint 0 to allow the core to accept RX data from the
coming OUT transaction.

The data stage for non-autodecoded control writes consists of zero or more
OUT transactions. Transaction handshaking and interrupt generation apply as
for non-isochronous, non-control OUT endpoints. The local host can cause
NAK, STALL, or ACK signaling for the data stage transactions. If ACK was
signaled on a given general USB interrupt, the local host must respond by
reading the data from the endpoint 0 RX FIFO and saving it for processing.

After completion of the data stage, a status stage IN transaction occurs. The
USB module provides handshaking to the USB host based on the endpoint 0
handshaking control bit FIFO_En. The local host may delay signaling comple-
tion of the control write transfer by forcing NAK handshaking to the host during
the status stage (by holding the FIFO_En bit equal to 0), or by causing ACK
handshaking by setting the Set_FIFO_En bit to 1 (with an empty endpoint 0
FIFO). An endpoint 0 TX general USB interrupt is sent to the local host at
completion of the status stage.

After a SET_CONFIGURATION request, the device moves into addressed or
configured state as soon as the local host sets the Dev_Cfg or the Clr_Cfg bits.

USB Transactions

 13-72

Specific Local Host Required Actions

If the device receives a valid set endpoint halt feature request, it must set the
appropriate Set_Halt control bit.

If the device receives a valid clear endpoint halt feature request, it must set the
appropriate Reset_EP bit to clear halt condition, set FIFO flags, and reset data
PID to DATA0 for the endpoint. If specified endpoint number is 0, the local host
has only to set the Clr_Halt bit to clear halt condition.

If the device receives a valid set configuration request, it must reset all end-
points by setting the Reset_EP control bits, set the Self_Pwr bit to the appropri-
ate value, and set halt conditions for endpoints not used by the default inter-
face set for the configuration. If the device was addressed when the set config-
uration was received, the local host must write 1 to the Dev_Cfg bit to allow
the device to move into the configured state (the CFG bit set). If the device was
configured when the set configuration was received, and new configuration
value is 0, the local host must write 1 to the Clr_Cfg bit to allow the device to
move back into the addressed state (the CFG bit cleared).

If the device receives a valid set interface request, it must reset all endpoints
used by the interface set by setting the Reset_EP control bits and must set the
halt conditions for endpoints not used by this interface.

Other local host required actions are specific to the request and not detailed
in this document.

Non-Autodecoded Control Write Transfer Handshaking

Setup stage transactions that are valid are signaled ACK. Transactions with
invalid setup stage token or data packets are ignored and receive no hand-
shake packet from the USB module. No interrupt is generated.

Data stage handshaking for non-autodecoded control write transfers is depen-
dant on the endpoint 0’s FIFO_En, EP_Halted, and Stall_Cmd bits. The local
host may delay completion of any transaction of the data stage by signaling
NAK (via the Set_FIFO_En bit not set). The USB specification requires that
once a STALL is signaled in a control transfer, it must be signaled on that end-
point until the next setup token is received. Either the Stall_Cmd or the
Set_Halt (reflected in the EP_Halted register bit) register bits provide this func-
tionality. Also note that the EP_Halted bit does not reflect the forced STALL
caused by the Stall_Cmd bit; it retains its previous value.

USB Transactions

13-73USB Function Module

Status stage handshaking is controlled by the endpoint 0’s FIFO_En and
Stall_Cmd bits. Successful completion of a non-autodecoded control write
transfer is indicated by the USB function module returning a zero-length data
payload for the data phase of the status stage and an ACK handshake from
the host for the handshake phase of the status stage. While NAK handshaking
can be used to indicate delays in completion of the requested control write, the
USB host may choose to abort the control write after some number of NAKs.

Non-Autodecoded Control Write Transfer Error Conditions

If an error occurs while dealing with the control write, which the local host
cannot deal with itself, the local host must signal STALL to the USB host for
all subsequent transactions until a new setup token to endpoint 0 occurs. This
is true for both data stage and status stage transactions. This is most conve-
niently done by setting the endpoint 0 Stall_Cmd bit, which causes stalling of
all the remaining transactions of all remaining stages of a non-autodecoded
control transfer, up to the reception of the next valid SETUP command.

Error conditions are handled as for BULK/INTERRUPT transactions. If a
packet is received corrupted, the core ignores the transaction and no interrupt
is asserted.

13.3.5.4 Non-Autodecoded Control Read Transfers

Non-autodecoded control read transfers include the GET_INTERFACE_STA-
TUS, GET_CONFIGURATION, GET_INTERFACE, GET_DESCRIPTOR,
SYNCH_FRAME and class- or vendor-specific control read transfers.
Non-autodecoded control read transfers consist of three stages (setup, data,
and status).

The setup stage of a valid non-autodecoded control read transfer consists of
one SETUP transaction from USB host to USB device. At the end of the setup
stage handshake, the USB module generates a local host general USB inter-
rupt with the setup flag set. The local host must respond to this general USB
interrupt by setting the Setup_Sel bit, which clears the setup interrupt flag. The
local host must then read 8 bytes from the setup FIFO via the DATA register,
clear EP_Sel bit, and check the setup flag. If the setup flag is set, the local host
must discard the setup data it has just read, and handle the new setup data
packet following the same scheme. If the setup flag is cleared, the local host
code interprets this request information and then prepares data for the IN
transaction that follows. This includes placing the data being requested (or the
first few bytes, if more than one FIFO worth of data is being returned) into the
endpoint 0 FIFO and setting the Set_FIFO_En bit.

USB Transactions

 13-74

The data stage of a control read transfer consists of one or more IN transac-
tions. Transaction handshaking and interrupt generation apply as for non-
isochronous, non-control IN endpoints; the local host can cause NAK, STALL,
or ACK signaling for the data stage transactions. At endpoint 0 TX general
USB interrupts, local host code must move more data to the endpoint 0 FIFO
until the last bytes of the requested data has been provided. Although SETUP
packets have a defined payload length, the USB host can cancel the transac-
tion at any time, without the status stage, and resend another SETUP com-
mand. The local host code must be able to operate correctly in this situation.

After completion of the data stage, a status stage OUT transaction occurs. The
USB host sends a 0-length data packet, and the local host code must return
its completion status for the control read standard request via standard hand-
shaking mechanisms.

In the case of returning exactly what the host requested when the request was
a multiple of the maximum packet size, no zero length packet is required. A
zero-length packet is required only when the amount of data the device has
to return is less than the amount requested by the host and the amount
returned is a multiple of the maximum packet size.

Non-Autodecoded Control Read Transfer Handshaking

Handshaking for the setup stage of non-autodecoded control read transfers
is forced by the USB module to always be ACK, unless there is a data error
in the packet, in which case the USB module ignores the transaction. If the set-
up packet has a DATA1 PID instead of a DATA0 PID, setup transaction is
ignored (error).

Data stage handshaking for non-autodecoded control read transfers is depen-
dant on the endpoint 0 FIFO_En, EP_Halted, and Stall_Cmd bits. The hand-
shaking information is used during the data phase of the data stage trans-
action. The USB specification requires that once STALL is signaled in a control
transfer, it must be signaled until the next setup token is received. The
Stall_Cmd and the Set_Halt (reflected through the EP_Halted register bit) reg-
ister bits provide this functionality. The EP_Halted does not reflect the forced
STALL caused by the Stall_Cmd bit; it retains its previous value.

Status stage is controlled by the FIFO_En and the Stall_Cmd bits.

USB Transactions

13-75USB Function Module

Successful completion of non-autodecoded control read transfers is indicated
by the host sending an OUT token followed by an empty packet and the USB
function module responding with ACK. If the data packet sent by the USB host
during the status stage of a control read request is not empty, the OUT trans-
action is accepted by the core, but OUT data is not put into the endpoint 0 RX
FIFO. If the status packet has a DATA0 PID instead of a DATA1 PID, a STALL
is returned by the core, and an interrupt is asserted.

Non-Autodecoded Control Read Transfer Error Conditions

If an error occurs that the local host cannot handle itself while handling the con-
trol read, the local host must signal STALL to the USB host for all subsequent
transactions until a new setup token to endpoint 0 occurs. This is true for both
data stage and status stage transactions. This is most conveniently done by
setting endpoint 0’s Stall_Cmd bit, which causes stalling of all the remaining
transactions of all remaining stages of a non-autodecoded control transfer, up
to the reception of the next valid SETUP command.

Error conditions are handled as for bulk/interrupt transactions. The USB func-
tion module responds to control read status stage transactions that have a bad
token or bad data by not sending a handshake packet. In both cases, the trans-
action is ignored and no general USB interrupt is generated to the local host.

13.3.5.5 Autodecoded Versus Non-Autodecoded Control Requests

Table 13–25. Autodecoded Versus Non-Autodecoded Control Requests

Request Recipient Status LH Required Action
Device Behavior if
Device not Configured

GET_
STATUS

Device Autodecoded None Device status is returned
(the Self_Pwr and
R_WK_OK bits).

Interface Non-autode-
coded

The local host must stall the
command (via the Stall_
Cmd bit) if interface number is
not correct. No feature is
defined for interface.

Command is passed to the
local host.

Endpoint Autodecoded None The core automatically
stalls the command if end-
point number is different
from 0.

USB Transactions

 13-76

Table 13–25. Autodecoded Versus Non-Autodecoded Control Requests (Continued)

Request
Device Behavior if
Device not ConfiguredLH Required ActionStatusRecipient

CLEAR/SET
FEATURE

Device Autodecoded None
(DS_Chg interrupt is asserted to
the local host after any the
R_WK_OK bit modification).

The core handles the
request.

Interface Autodecoded None
(No feature is defined in USB
1.1 spec for interface. These
requests are stalled).

Command is stalled.

Endpoint Non-autode-
coded

The local host must stall the
command (via the Stall_Cmd
bit) if endpoint
number/type/direction is not
correct.

The local host must reset the
endpoint after having handled
the pending transactions (if
CLEAR) or set halt condition (if
SET). For EP 0, local host only
has to clear or set halt condition:
FIFO and data PID are always
correct for next setup.

Command is passed to the
local host.

SET_
ADDRESS

Device Autodecoded None
(Whether the device is
addressed or not is available in
DEVSTAT register. A valid
SET_ADDRESS request with
address number from 0
generates a DS_Chg interrupt to
the local host).

� Default: device moves
into the addressed
state if address num-
ber is different from 0.

� Addressed: device
takes the new address
value or moves in de-
fault state if address
number is 0.

� Configured: request is
STALLed.

GET_
DESCRIPTOR

All Non-autode-
coded

The local host must write
descriptor data into endpoint 0
FIFO.

Command is passed to the
local host.

USB Transactions

13-77USB Function Module

Table 13–25. Autodecoded Versus Non-Autodecoded Control Requests (Continued)

Request
Device Behavior if
Device not ConfiguredLH Required ActionStatusRecipient

SET_
DESCRIPTOR

All Non-autode-
coded

The local host must stall the
command (via the Stall_Cmd
bit) if it does not support set
descriptor requests.

Command is passed to the
local host.

GET/SET
CONFIGURATION

Device Non-autode-
coded

The local host must stall the
command (via the Stall_Cmd
bit) if configuration number is
not correct.

If the request is SET_CONFIG,
the local host must reset all
endpoints, halt endpoints not
used by the default interface
setting, set the Self_Pwr value if
device is self-powered for the
configuration set, and then set
the Dev_Cfg bit (if config nb is
not 0), or set the Clr_Cfg bit (if
config nb is 0) before allowing
status stage to complete.

The device goes to configured
state (if Dev_Cfg set), or moves
to addressed state (if Clr_Cfg
set) and a DS_Chg interrupt is
asserted to the local host.

Command is passed to the
local host.

GET/SET
INTERFACE

Interface Non-autode-
coded

The local host must stall the
command (via the Stall_Cmd
bit) if interface/setting number is
not correct.

If the request is
SET_INTER–FACE, the local
host must reset endpoints used
by the interface, and then halt
endpoints not used by the
interface setting, before allowing
status stage to complete.

Command is passed to the
local host.

SYNCH_
FRAME

Endpoint Non-autode-
coded

The local host must stall the
command if it does not support
SYNCH_FRAME request, else
write requested data in the
endpoint 0 FIFO.

Command is passed to the
local host.

USB Transactions

 13-78

� Transactions on endpoints other than zero are ignored if the device is not
configured (addressed state).

� If some endpoints are not used by the interface currently set, transactions
on these endpoints are not ignored; the local host must set the Halt feature
for the endpoint. This does not happen if the USB host works correctly.

� If endpoint 0 is halted, per USB 1.1 specification (see USB 1.1 specifica-
tion, section 9.4.5: Get_Status), all requests are stalled except GET_
STATUS, CLEAR_FEATURE, and SET_FEATURE requests.

� Requests are handled per specification USB 1.1, when specified in this
specification, but many device reactions are not specified by USB 1.1.

13.3.5.6 Note on Control Transfers Data Stage Length

The control transfer data stage length is indicated in setup data packet.

During control reads, if the USB host requests more data than indicated in set-
up packet, an unexpected IN transaction is STALLed, causing STALL hand-
shake for all remaining transactions of the transfer until next SETUP. If the USB
host requires less data than indicated in the setup packet, the transfer is not
STALLed. However, if the host moves to status stage earlier than expected for
a non-autodecoded request, the OUT status stage is NAKed because local
host will not have enabled the RX FIFO.

During control writes, if the USB host sends more bytes than indicated in setup
packet, the transfer is STALLed. If the USB host sends less bytes than were
expected, the request is accepted. But if the USB host moves to status stage
earlier than expected for a non-autodecoded request, the IN status stage is
NAKed because the local host will not have enabled the TX FIFO.

Device Initialization

13-79USB Function Module

13.4 Device Initialization

To allow communication between the device and a USB host, the local host
must configure the device by filling the configuration registers.

For each endpoint, the local host must write to dedicated register:

� Endpoint size
� Whether or not double buffering is allowed for endpoint
� Endpoint type (isochronous or non-isochronous)
� Address of the pointer

The RAM has a specified size (2048 bytes), and the local host can choose its
configuration by setting appropriate value. Figure 13–9 shows an example of
RAM organization.

Once the endpoints are configured, the local host must set the Cfg_Lock bit.
If this bit is not set, all transactions are ignored by the core. Then, when the
local host is ready to communicate with the USB host, it must set the Pullup_En
bit. The local host can wait until the DS_Chg Attach interrupt has been
detected and handled before setting the Pullup_En bit. The USB host does not
detect the device until this bit is set.

Figure 13–10 and Figure 13–11 are flowcharts of the configuration phase.

Device Initialization

 13-80

Figure 13–9. Example of RAM Organization

Setup Data (8 bytes)

Endpoint0 Data

Endpoint1 RX Data

Endpoint2 RX Data

Endpoint15 RX Data

Endpoint1 TX Data

Endpoint2 TX Data

Endpoint15 TX Data

EP0_ptr

EP2_RX_ptr

EP0_Size

EP1_RX_Size or
2*EP1_RX_Size (if

Double Buffering or ISO)

EP1_RX_ptr

EP3_RX_ptr

EP15_RX_ptr

EP1_TX_ptr

EP2_TX_ptr

EP3_TX_ptr

EP15_TX_ptr

EP2_RX_Size or
2*EP2_RS_Size (if

EP15_RX_Size or
2*EP15_RX_Size (if

EP1_TX_Size or
2*EP1_TX_Size (if

EP2_TX_Size or
2*EP2_TX_Size (if

EP15_TX_Size or
2*EP15_TX_Size (if

Double Buffering or ISO)

Double Buffering or ISO)

Double Buffering or ISO)

Double Buffering or ISO)

Double Buffering or ISO)

Device Initialization

13-81USB Function Module

Figure 13–10. Device Configuration Routine

End of Device
Configuration

Routine

Enter Device
Configuration

Routine

Endpoint Configuration

Configured
endpoint values must
match values returned
in descriptors during
the enumeration
phase.

Set
SYSCON1.Cfg_Lock

to 1

Fill other SYSCON1

fields (Nak_En,
Self_Pwr, SOFF_Dis,

Pullup_En)
The LH can keep
Pullup_En value set to
0 if not ready to

communicate with the
USB host.

No

At this point, the LH must initialize all flags used
by ISR flowcharts, including:
– Set DS_mem flag to 0x0000 (see device
state changed handler).
– Set control read and control write flags to 0.
– Set FIFO not full and double-buffer flag to 0.

Fill IRQ_EN register with
appropriate value to enable

needed interrupt signals

After a USB reset, all IRQ_EN
registers except DS_Chg are
cleared. They must be re-

enabled.

Device Initialization

 13-82

Figure 13–11. Endpoint Configuration Routine

End of endpoint
configguration

routine

Enter Endpoint
Configuration

Routine

Any OUT
endpoint to
configure ?

(EPn)

Endpoint n is
of type ISO ?

Ptr_flag =
Ptr_flag +

2^EPn_RX_Size

Double
-buffer

allowed for
EPn ?

Ptr_flag =
Ptr_flag +

EPn_RX_Size

Any IN
endpoint to
configure ?

(EPn)

Endpoint n is
of type ISO ?

Fill EPn_TX register with:
– EPn_TX_Valid = 1
– EPn_TX_Db = 1
– EPn_TX_Size = EP Size (2 bits)
– EPn_TX_Iso = 0
– EPn_TX_ptr = Ptr_flag

Ptr_flag =
Ptr_flag +

2^EPn_TX_Size

Ptr_flag =
Ptr_flag +

EPn_TX_Size

Set Ptr_flag
 to 8

Fill EP0 register with
– EP0_Size
– EP0_ptr=Ptr_flag

Ptr_flag =
Ptr_flag +
EP0_Size

Fill EPn_TX register with:
– EPn_TX_Valid = 1
– EPn_TX_Db = 0
– EPn_TX_Size = EP Size (2 bits)
– EPn_TX_Iso = 0
– EPn_TX_ptr = Ptr_flag

Fill EPn_TX register with:
– EPn_TX_Valid = 1
– EPn_TX_Size = EP Size (3 bits)
– EPn_TX_Iso = 1
– EPn_TX_ptr = Ptr_flag

Double
-buffer

allowed for
EPn ?

Fill EPn_RX register with:
– EPn_RX_Valid = 1
– EPn_RX_Db = 0
– EPn_RX_Size = EP Size (2 bits)
– EPn_RX_Iso = 0
– EPn_RX_ptr = Ptr_flag

Fill EPn_RX register with:
– EPn_RX_Valid = 1
– EPn_RX_Db = 1
– EPn_RX_Size = EP Size (2 bits)
– EPn_RX_Iso = 0
– EPn_RX_ptr = Ptr_flag

Fill EPn_RX register with:
– EPn_RX_Valid = 1
– EPn_RX_Size = EP Size (3 bits)
– EPn_RX_Iso = 1
– EPn_RX_ptr = Ptr_flag

Another
OUT endpoint
to configure ?

(EPn)

Another
IN endpoint

to configure ?
(EPn)

Yes Yes

No

Yes

No

Yes

No

No

Yes Yes

No

No

Yes

Yes

No

No

Double-buffering is
activated in DMA mode

only.

Preparing for Transfers

13-83USB Function Module

13.5 Preparing for Transfers

To avoid NAK handshakes for the first transaction on an endpoint, the local
host must prepare the endpoint FIFO for receiving or transferring data. After
the first transaction, the FIFO is enabled during the interrupt handling.

For receive endpoints, this phase consists of enabling the FIFO to receive data
from the USB host. If double buffering is allowed for the endpoint, setting the
Set_FIFO_En bit enables both FIFOs. Therefore, it is not possible to allow a
single transaction when double buffering is used.

The local host enters the Prepare for USB RX Transfers routine, shown in
Figure 13–12, after the enumeration phase and then properly reacts to end-
point interrupts. Whether double buffering is allowed or not is transparent to
the local host, unless both FIFOs are cleared through the Clr_EP or the
Reset_EP bits. In that case, and in the case where the local host finishes
handling an interrupt without having set the Set_FIFO_En bit, the local host
must reenter the Prepare for USB RX Transfers routine.

For transmit endpoints, the local host enters the Prepare for USB Transfer on
endpoint n routine each time a new file must be transmitted from endpoint n
to USB host. The local host must not enter this routine until data written into
TX FIFO from previous transfer has been received successfully by the USB
host (ACK interrupt received), unless TX FIFO is cleared through the Clr_EP
or the Reset_EP bits.

This does not apply to endpoint 0, which is not used before a setup interrupt
occurs. At setup interrupt, the local host reacts appropriately and enables the
EP0 FIFO only if necessary.

Preparing for Transfers

 13-84

Figure 13–12. Prepare for USB RX Transfer Routine

Prepare for USB
RX transfers

routine

Device is
ready to receive

data for
EPn ?

Write EP_NUM register:
– EP_NUM.EP_Num = n
– EP_NUM.EP_Dir = 0
– EP_NUM.EP_Sel = 0
– EP_NUM.Setup_Sel = 0

Set CTRL.
Set_FIFO_En

Any OUT
endpoint

configured ?
(EPn)

Another
OUT endpoint
configured ?

(EPn)

Yes

End of prepare for
USB RX transfers

routine

Yes

Note: This applies to all non-
ISO endpoints, with or
without DMA.

No

No

Yes

This enables both
FIFOs if double-buffering

is used.

Preparing for Transfers

13-85USB Function Module

Figure 13–13. Prepare for TX Transfer on Endpoint n Routine

Prepare for USB

TX Transfer on

Endpoint n routine

Write EP_NUM register:
– EP_NUM.EP_Num = n
– EP_NUM.EP_Dir = 1
– EP_NUM.EP_Sel = 1
– EP_NUM.Setup_Sel = 0

Set CTRL.
Set_FIFO_En

bit

Write one packet
(Size <=

EPn_TX_Size).

This does not apply to TX
endpoints using DMA, which
are enabled when TXDMAn.Start
is set by the LH.

End of prepare for

USB TS transfer for

Endpoint n routine

At this point, TX data is
written in response to
EPn_TX interrupts.

Write EP_NUM register:
– EP_NUM.EP_Num = n
– EP_NUM.Dir = 1
– EP_NUM.EP_Sel = 0
– EP_NUM.Setup_Sel = 0

6 WAIT
STATES

Note: No double buffering in non-DMA TX mode.

Interrupt Service Routine (ISR) Flowcharts

 13-86

13.6 Interrupt Service Routine (ISR) Flowcharts

The flowcharts in this section give general operational guidelines for USB ISR
processing. System-architecture-specific details are left to the engineers who
write the local host and USB host code. One USB-specific interrupt register is
provided (IRQ_SRC) to keep track of the interrupts to handle. These interrupts
can be of the following types:

� General USB interrupts (including endpoint 0, DMA, and device states
interrupts)

� Non-isochronous endpoint-specific interrupt
� Start of frame (SOF) interrupt for isochronous transactions

The general USB interrupt ISR must handle non-autodecoded control trans-
fers on endpoint 0 and some special interrupts generated due to USB device
state modifications or DMA transfers. The ISR for the endpoint-specific inter-
rupt must handle interrupts from the USB module that are generated due to
USB activity for non-isochronous endpoints. The SOF ISR is responsible for
handling isochronous endpoints and, if needed by the application, tracking the
USB frame number. Many flowcharts are presented below to give a guideline
for how to handle the interrupts related to the USB function module. The flow-
charts in this section assume that the Nak_En bit is cleared.

A key assumption behind the flowcharts presented here is that the application
provides separate buffers for each direction of endpoint, except for endpoint
0. The flowcharts show reads from these application buffers for IN transactions
on TX endpoints, and they show writes to these application buffers for OUT
transactions on RX endpoints.

13.6.1 Important Note on USB Interrupts

When an endpoint interrupt is asserted, the local host sets the EP_Sel bit to
1. The local host must finish the interrupt handling before clearing EP_Sel bit,
because clearing this bit clears the corresponding status bit in the status flag
register (ACK, NAK, STALL). When an interrupt is pending on an endpoint, the
local host must not select then deselect the endpoint without handling the inter-
rupt, because this clears the pending transaction status flags. The local host
does not need to set EP_Sel to 1 when setting the Set_FIFO_En, the Set_Halt
and the Clr_Halt bits.

The endpoint status (STAT_FLG register) is updated at the end of each USB
transaction if the previous transaction has been handled. If a pending interrupt
has not been handled when a new non-transparent transaction occurs, status
flags are not updated (and NAK is returned, even if FIFO was enabled, or
STALLed, if endpoint halt feature was set), so that the local host never misses

Interrupt Service Routine (ISR) Flowcharts

13-87USB Function Module

an ACKed transaction. If double buffering is used for an endpoint, the status
flag register is updated if there is zero or one interrupt pending for the endpoint
and is not updated if there are already two interrupts pending on the endpoint.

The local host does not need to set the Nak_En bit during normal operation.
However, this bit must be set when the local host finishes handling an endpoint
interrupt without having set the corresponding Set_FIFO_End bit. During TX
transaction, if the Nak_En bit is set, the local host must wait for a NAK interrupt
to write the TX data, to avoid a possible conflict caused by reception of a NAK
interrupt while the local host is writing the TX data.

13.6.2 Parsing the General USB Interrupt

The general USB interrupt ISR must parse the interrupt identifier register
IRQ_SRC to determine the types of general USB interrupts that are active.
These include interrupts relating to USB device state modifications (USB
reset, suspend/resume during enumeration phase) and control transfers on
endpoint 0 or non-isochronous DMA transfers in either receive or transmit
mode. Multiple interrupts may be active at any time, and all interrupts must be
dealt with by the ISR before returning from the ISR. Figure 13–14 shows an
appropriate flowchart for parsing the general USB interrupts.

13.6.3 Setup Interrupt Handler

A separate interrupt flag exists for setup transactions, so that the local host
cannot miss a setup transaction, even if it occurs during data or status phase
of another transfer (case of aborted transfer). The setup parsing function cap-
tures the control transfer request information for use in determining which USB
bus activity is needed and controlling how the local host must generate or
respond to the control transfer. This information includes:

� bmRequestType
� bmRequest
� wValue
� wIndex
� wLength

The setup interrupt handler shown in Figure 13–15 is responsible for process-
ing setup transactions occurring on endpoint 0. It calls the routine that parses
the control transfer request information, shown in Figure 13–16 to set flags
that the rest of the ISR code can use to control proper response to control
transfers. Two flags are set by the setup interrupt handler, to be used during
endpoint 0 interrupt handlers:

� Control read flag
� Control write flag

Interrupt Service Routine (ISR) Flowcharts

 13-88

Figure 13–14. General USB Interrupt ISR Source Parsing Flowchart

Enter General USB
ISR

USB Device State
Changed Handler

IRQ_SRC.EP0_RX
=1?

EP0 RX
Handler

Return from General
USB ISR

Set
IRQ_SRC.

EP0_RX = 1
to clear the IT.

IRQ_SRC.EP0_TX
=1?

EP0 TX
Handler

Set
IRQ_SRC.

EP0_TX = 1
to clear the IT.

IRQ_SRC.
RXn_EOT =1?

Non-ISO RX DMA
End of Transfer

 Handler

IRQ_SRC.
RXn_Cnt =1?

Non-ISO RX DMA
Transactions

Count Handler

IRQ_SRC.
TXn_Done =1?

Non-ISO TX DMA
Done Handler

The interrupt must
be cleared within the
device state changed
handler.

IRQ_SRC.Chg
=1?

Setup
Handler

DMA interrupts
are cleared within their
respective handlers.

Yes

No

No

No

Yes

No

Yes

No

Yes

No

Yes

Yes

IRQ_SRC.Setup
=1?

No

Yes

Yes

No

Interrupt Service Routine (ISR) Flowcharts

13-89USB Function Module

Figure 13–15. Setup Interrupt Handler

Setup stage handler

End of setup
stage handler

 Is a control read

Parse command

Yes

Write Non-ISO TX
FIFO Data

Enable NAK interrupt
by setting

SYSCON1.Nak_En to
1 if not enabled.

Decrement wlenght_
count by number of

bytes written.

 Is the request
legal and

supported?

Yes

Set
SYSCON2.Stall_Cm

d to 1 to stall next
EP0 transaction.

wlength_count
 >0 ?

Ready to
receive
data?

Want to
go out of
the ISR?

Set
CTRL.Set_FIFO_En

to 1.

Wait until ready
to receive.

Set CTRL.
Set_FIFO_En to 1.

Prepare for control
write stage status

wlength_count =
wlenght

Application-specific
action to cancel any

ongoing transfer

Clear control
flags.

Set control
write flag.

Set control
read flag.

No

NoNo

Write EP_NUM register:
– EP_NUM.EP_Num = 0
– EP_NUM.EP_Dir = 0
– EP_NUM.EP_Sel = 0
– EP_NUM.Setup_Sel = 0

Yes

Yes

Yes

No

Write EP_NUM register:
– EP_NUM.EP_Num = 0
– EP_NUM.EP_Dir = 1
– EP_NUM.EP_Sel = 1
– EP_NUM.Setup_Sel = 0

Write EP_NUM register:
– EP_NUM.EP_Num = 0
– EP_NUM.EP_Dir = 1
– EP_NUM.EP_Sel = 0
– EP_NUM.Setup_Sel = 0

?

No

Interrupt Service Routine (ISR) Flowcharts

 13-90

Figure 13–16. Parse Command Routine (Setup Stage Control Transfer Request)

Parse command routine

End of parse command
routine

Read byte from DATA
register.

Save bmRequest type
byte.

Read byte from DATA
register. Save bRequest byte.

Read byte from DATA
register.

Save (LS) byte of
wValue.

Read byte from DATA
register.

Save (MS) byte of
wValue.

Read byte from DATA
register.

Save (LS) byte of
windex.

Read byte from DATA
register.

Save (MS) byte of
windex.

Read byte from DATA
register.

Save (LS) byte of
wLength.

Read byte from DATA
register.

Save (MS) byte of
wLength.

Write EP_NUM register:
– EP_NUM.EP_Num = 0
– EP_NUM.EP_Dir = 0
– EP_NUM.EP_Sel = 0
– EP_NUM.Setup_Sel = 1

This clears the
IRQ_SRC.Setup bit.

Write EP_NUM register:
– EP_NUM.EP_Num = 0
– EP_NUM.EP_Dir = 0
– EP_NUM.EP_Sel = 0
– EP_NUM.Setup_Sel = 0

IRQ_SRC.
Setup = 0?

Yes A new setup transaction
has been received while
the LH was reading setup
data. The LH must handle
new setup data.

Discard
setup data

No

Interrupt Service Routine (ISR) Flowcharts

13-91USB Function Module

13.6.4 Endpoint 0 RX Interrupt Handler

The endpoint 0 RX portion of the general USB interrupt handler, shown in
Figure 13–17, must handle general USB interrupts related to control OUT
transactions on endpoint 0. Notice that no EP0 interrupt is generated for
autodecoded control transfers.

13.6.5 Endpoint 0 TX Interrupt Handler

The endpoint 0 TX portion of the general USB interrupt handler, shown
in Figure 13–19, must handle general USB interrupts related to control IN
transactions on endpoint 0.

The endpoint 0 TX interrupt handler must be able to move data into the end-
point 0 TX FIFO when the application buffer for endpoint 0 TX data is not empty
and an endpoint 0 TX interrupt occurs signaling an ACKed non-autodecoded
endpoint 0 IN transaction. This data can be control read data stage information
or control write status stage handshaking information.

Interrupt Service Routine (ISR) Flowcharts

 13-92

Figure 13–17. Endpoint 0 RX Interrupt Handler

Endpoint 0 RX handler

End of endpoint 0 RX
handler

Decrement
wlength_count value by
nb of received bytes.

STAT_FLG.
ACK bit set?

Control
read flag set

?

Application-
specific actions

to complete
control read

Read non-ISO RX
FIFO data.

wlength_count
> 0?

Ready to
receive more

data?

Set
CTRL.Set_FIFO_En bit

to 1.

Prepare for
control write
status stage

Want to stall
the command

Want to go
out of the ISR

?

Enable NAK interrupt
by setting

SYSCON1.Nak_En bit
to 1 if not enabled.

Wait until ready to
receive data.

Set
SYSCON2.Stall_cmd

bit to stall the
command.

Is LH-initiated stall
and can remove halt

condition?

Set CTRL.Clr_Halt
bit to 1.

Application
specific action
to resolve stall

No

Yes

Yes Yes

No If control write data stage (OUT
transactions on EP0) is out of control,
write data stage and control read
status stage are automatically
stalled by the core.

Yes

wlength_count is 0 (OUT
transactions with more bytes
than expected are
automatically stalled by the
core).

Yes

No

No

YesYes

No. Must be STAT_FLG.STALL.

Write EP_NUM register:
– EP_NUM.EP_Num = 0
– EP_NUM.EP_Dir = 0
– EP_NUM.EP_Sel = 1
– EP_NUM.Setup_Sel = 0

No
Write EP_NUM register:
– EP_NUM.EP_Num = 0
– EP_NUM.EP_Dir = 0
– EP_NUM.EP_Sel = 0
– EP_NUM.Setup_Sel = 0

Write EP_NUM register:
– EP_NUM.EP_Num = 0
– EP_NUM.EP_Dir = 0
– EP_NUM.EP_Sel = 0
– EP_NUM.Setup_Sel = 0

Write EP_NUM register:
– EP_NUM.EP_Num = 0
– EP_NUM.EP_Dir = 0
– EP_NUM.EP_Sel = 0
– EP_NUM.Setup_Sel = 0

?

Interrupt Service Routine (ISR) Flowcharts

13-93USB Function Module

Figure 13–18. Prepare for Control Write Status Stage Routine

Prepare for control
write stage status

routine

End of prepare for
control write status

stage routine

Application-
specific action

to determine
control write

action and
status result

Set CTRL.Clr_EP to
1, then set

CTRL.Set_FIFO_En
to 1.

Want to respond
with ACK?

No

Want to respond
with stall?

Set SYSCON2.
Stall_Cmd to 1.

Yes

This actions include:
Reset-relevant endpoints if request is clear
endpoint feature, set config, or set interface.
Set halt for relevant endpoints if
request is set endpoint feature, set config, or
set interface.
Set SYSCON2.Dev_Cfg if request is valid
set config and device is addressed.
Set SYSCON2.Clr_Cfg if request is valid
set config with config_nb of 0 and device
is configured.
Set SYSCON1.Self_Pwr if request is set
config and device is self-powered in the
new config.

Enable NAK interrupt by
setting SYSCON1.Nak_En
to 1 if not already enabled.

No

Command-
specific
actions

Yes
Write EP_NUM register:
– EP_NUM.EP_Num = 0
– EP_NUM.EP_Dir = 1
– EP_NUM.EP_Sel = 1
– EP_NUM.Setup_Sel = 0

Write EP_NUM register:
– EP_NUM.EP_Num = 0
– EP_NUM.EP_Dir = 1
– EP_NUM.EP_Sel = 0
– EP_NUM.Setup_Sel = 0

Interrupt Service Routine (ISR) Flowcharts

 13-94

Figure 13–19. Endpoint 0 TX Interrupt Handler

Endpoint 0 TX fandler

End of endpoint 0 RX
handler

Decrement
wlength_count value by

nb of received bytes.

STAT_FLG.
ACK bit set?

Control
write flag set

?

Application-
specific actions

to complete
control write

wlength_count
> 0 or other
data to send

?

Set
CTRL.Set_FIFO_En bit

to 1.

Prepare for
control read
status stage.

Is LH-initiated stall
and can remove halt

condition ?

Set CTRL.Clr_Halt
bit to 1.

Application-
specific action
to resolve stall

No

Yes

Yes Yes

No If control read data stage (IN
transactions on EP0) is out of control,
read data stage or control write
status stage are automatically
stalled by the core.

Yes

No. Must be STAT_FLG.STALL.

Flush data from EPO
application’s TX buffer

(based on amount
previously put into TX FIFO).

Write non-ISO
TX data.

Write EP_NUM register:
– EP_NUM.EP_Num = 0
– EP_NUM.EP_Dir = 1
– EP_NUM.EP_Sel = 1
– EP_NUM.Setup_Sel = 0

Write EP_NUM register:
– EP_NUM.EP_Num = 0
– EP_NUM.EP_Dir = 1
– EP_NUM.EP_Sel = 0
– EP_NUM.Setup_Sel = 0

No

Write EP_NUM register:
– EP_NUM.EP_Num = 0
– EP_NUM.EP_Dir = 1
– EP_NUM.EP_Sel = 0
– EP_NUM.Setup_Sel = 0

Write EP_NUM register:
– EP_NUM.EP_Num = 0
– EP_NUM.EP_Dir = 1
– EP_NUM.EP_Sel = 0
– EP_NUM.Setup_Sel = 0

Write EP_NUM register:
– EP_NUM.EP_Num = 0
– EP_NUM.EP_Dir = 1
– EP_NUM.EP_Sel = 0
– EP_NUM.Setup_Sel = 0

Write EP_NUM register:
– EP_NUM.EP_Num = 0
– EP_NUM.EP_Dir = 1
– EP_NUM.EP_Sel = 0
– EP_NUM.Setup_Sel = 0

Interrupt Service Routine (ISR) Flowcharts

13-95USB Function Module

Figure 13–20. Prepare for Control Read Status Stage Routine

Prepare for control
read status stage

routine

End of prepare for
control read status

stage routine

Application-
specific actions

to determine
control read
action and

status result

Set CTRL.Clr_EP to
1, then set

CTRL.Set_FIFO_En
to 1.

Want to respond
with ACK?

No

Want to respond
with stall?

Set SYSCON2.
Stall_Cmd to 1.

Yes

Enable NAK interrupt by
setting SYSCON1.Nak_En
to 1 if not already enabled.

No

Write EP_NUM register:
– EP_NUM.EP_Num = 0
– EP_NUM.EP_Dir = 0
– EP_NUM.EP_Sel = 1
– EP_NUM.Setup_Sel = 0

Write EP_NUM register:
– EP_NUM.EP_Num = 0
– EP_NUM.EP_Dir = 0
– EP_NUM.EP_Sel = 0
– EP_NUM.Setup_Sel = 0

Yes

Interrupt Service Routine (ISR) Flowcharts

 13-96

13.6.6 Device States Changed Handler

This section describes how USB device states and transitions states are
decoded by the USB function and how they can be handled.

The state machine (see Figure 13–21) moves the USB function device from
one state to another state with respect to USB1.1 specification. Attach/
unattach transition is not shown in the transition flow.

Since the SET_CONFIGURATION is not decoded by the core, the local host
has the responsibility to distinguish a SET_CONFIGURATION with a non-valid
configuration value from other SET_CONFIGURATION requests and to set
the Dev_Cfg only if configuration value is valid (value 0 is non-valid), when
device is in addressed state. When device is in configured state, the local host
has the responsibility to set the Clr_Cfg if configuration number is 0 so that the
device moves to addressed state.

Device states are visible in DEVSTAT register and are decoded as follows:

� Attached: The device is attached to the USB and powered.

� Default: The device is attached to the USB, powered, and reset.

� Addressed: The device is attached to the USB, powered, reset, and an
address has been assigned. The device moves into the addressed state
after a SET_ADDRESS request with an address number different of 0.

� Configured: The device is attached to the USB, powered, reset, has an
address different from 0, and is configured. The device moves into the
configured state after a valid SET_CONFIGURATION request only if the
local HOST has set the Dev_Cfg bit (meaning the configuration is valid).

� Suspended: Device is at minimum default and has not seen bus activity
for 5 ms.

� Reset: When set, the device is receiving a valid USB host reset.

� R_WK_OK: This bit is set/cleared automatically after a valid
SET_DEVICE_FEATURE/CLEAR_DEVICE_FEATURE request,
respectively.

Any change in the DEVSTAT register bits triggers a device change interrupt
(the DS_Chg) if enabled.

The device moves to addressed state after the status stage of a valid SET_
ADDRESS, even if the status stage ACK handshake is received
corrupted or not sent by the USB host. A SET_DEVICE_FEATURE or a
CLEAR_DEVICE_FEATURE is effective after setup transaction, even if no
status stage occurs. A SET_CONFIGURATION request is effective before
status stage, when the local host sets the Clr_Cfg or the DEV_Cfg bit.

Interrupt Service Routine (ISR) Flowcharts

13-97USB Function Module

Figure 13–21. USB Function Device State Transitions

DEFAULT

ADDRESSED

SUSPEND

SET_ADDRESS < > 0

ATTACHED

USB RESET

SUSPEND

SET_ADDRESS < > 0
or

SET_CONFIGURATION
SYSCON2.Dev_Cfg not set

CONFIGURED

SUSPENDSET_ADDRESS
(stalled) or

SET_CONFIGURATION
SYSCON2.Dev_Cfg not set

or
SET_CONFIGURATION

stalled

SET_CONFIGURATION
SYSCON2.Dev_Cfg set

USB RESET

SET_CONFIGURATION
SYSCON2.Dev_Cfg set

SET_ADDRESS 0
or

USB RESET

Behavior not specified by USB 1.1 specifications (see chapter 9)
USB reset generates two interrupts (when USB reset is asserted and then when USB reset completes).

No interrupt is asserted by the core for tansitions shown with dashed lines.

Remote wake
up enabled

Remote wake
up enabled

Remote wake
up enabled

SET_ADDRESS 0
or

SET_CONFIGURATION

USB RESET

‡

‡

‡

‡

α†

†

Interrupt Service Routine (ISR) Flowcharts

 13-98

Figure 13–22. Typical Operation for USB Device State Changed Interrupt Handler

End of device state
changed handler

Device state changed
handler

Read DEVSTAT
register (new value),

read DS_mem
(previous value).

DEVSTAT.
ATT changed?

Attached/
umattached

handler

DEVSTAT.
USB_Reset or
DEF changed?

USB Reset
handler

Device state must be
at least attached at
this point.

DEVSTAT.
SUS changed?

Suspend/
resume
handler

DEVSTAT.
R_Wk_Ok
changed?

Inform application that
a set/clear device

feature has modified
the remote wake-up

enable function.

DEVSTAT.
CFG changed

?
DEVSTAT.
CFG = 1?

DEVSTAT.
ADD = 1?

Application-Specific
Action to Handle

Configured State to
Addressed State

Transition

Application-Specific
Action to Handle

Addressed State to
Configured State

Transition

Application-Specific
Action to Handle

Configured State to
Default State Transition

DEVSTAT.
ADD changed?

Action-Specific
Action to Handle Default

State to Addressed
State Transition

Application-Specific
Action to Handle

Addressed State to
Default State Transition

Set IRQ_SRC.
DS_Chg = 1 to

clear the IT.

Save DEVSTAT
in DS_mem for

next DS_Chg IT.

No

Yes

Yes

No

Device state must be
at least default at this

point.

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Must be
not
configured
yet

Yes

No

IRQ_SRC.DS_Chg interrupt
flag is cleared inside the
attached/unattached, USB
reset and suspend/resume
handlers.

DEVSTAT.
ADD = 1?

Yes

No

Set IRQ_SRC.
DS_Chg = 1 to

clear the IT.

Set IRQ_SRC.
DS_Chg = 1 to

clear the IT.

Interrupt Service Routine (ISR) Flowcharts

13-99USB Function Module

13.6.7 Device States Attached/Unattached Handler

The device attached/unattached interrupt (Figure 13–23) occurs either when
the device etects it is connected to the USB host or Hub (VBUS is on) or when
it becomes disconnected (VBUS is off). The local host can use this interrupt
to put the evice into deep sleep or to initialize any application-specific informa-
tion relating to the USB device.

Figure 13–23. Attached/Unattached Handler

Yes

End of attached/
unattached handler

Attached/unattached
handler

DEVSTAT.ATT
No

The device can now be put in
deep sleep (LH clock can be
shutoff).

Inform application
that the device has
been connected to
a USB host or hub.

Inform application
that the device has
been disconnected
from a USB host

or hub.

Set IRQ_SRC.DS_Chg

to clear the IT.

Must be done prior to remove the
LH clock=1

Set IRQ_SRC.DS_Chg

to clear the IT.
=1

= 0?

Interrupt Service Routine (ISR) Flowcharts

 13-100

13.6.8 USB Reset Interrupt Handler

When a USB reset occurs, the USB module generates a general USB interrupt
to the local host (see Figure 13–24 and Figure 13–25). The local host
responds to this interrupt by performing the following operations:

� Cancels any ongoing USB transaction and/or control transfer handling

� Clears any copies that the application has of configuration number or of
alternate interface numbers

� Clears any application-specific information relating to halted endpoints

� Clears any application-specific information relating to the remote wake
enable flag

� Clears any application-specific information relating to the suspend mode
flag

� Clears any application-specific copy of the frame number

13.6.9 Suspend/Resume Interrupt Handler

When a USB suspend/resume general USB interrupt occurs (see
Figure 13–26), the USB module has either entered or left suspend mode. The
local host code must determine which and react appropriately.

The suspend sense hardware is implemented to trigger only after 5 ms of bus
IDLE. This forces compliance with the USB Spec Version 1.1 tWTRSM timing
parameter (3 ms of IDLE to identify suspend, 2 ms before remote device can
signal resume).

If the local host wants to wake the device from suspend mode and remote
wakeup enable is set (bit R_WK_OK = 1), it must first turn its clock on (if
stopped) then set the Rmt_Wkp. The device then resumes.

If shutoff is enabled (the SOFF_Dis = 0), the 48-MHz clock is automatically
shut off at suspend and turned on at resume (USB host or local host driven).
Setting the SOFF_Dis bit is part of the device configuration; however, the local
host can modify its value at suspend interrupt time if necessary.

13.6.10 Parsing the Non-Isochronous Endpoint-Specific Interrupt

The endpoint-specific interrupt ISR (Figure 13–27) must parse the interrupt
identifier registers IRQ_SRC to determine the interrupts that are active
(EPn_RX, EPn_TX, or both). The two interrupts can be active at any time, and
must be dealt with by the ISR before returning from the ISR. The ISR must then
read EPN_STAT register to determine the endpoint causing the interrupt. For
each direction, only one endpoint interrupt can be active at a time.

Interrupt Service Routine (ISR) Flowcharts

13-101USB Function Module

Figure 13–24. USB Reset Handler Flowchart I

USB reset handler

Clear endpoint’s

control transfer flags.

Application-
specific actions
to clear app’s
RX and TX

buffers

End of USB reset
handler

Application-
specific actions

to mark all
endpoints
unhalted

Application-
specific actions
to mark device

as not in
suspend mode

Application-
specific actions
to clear app’s
Config #, Alt.

I/F #s

Application-
specific actions
to mark device
as not remote
wake-enabled

Application-
specific actions

to clear local
copy of frame

number

USB_Reset
= 1?

Yes

Inform application
that the USB

reset has completed
and that device is in

default state.

No

Set IRQ_SRC.DS_Chg

to clear the IT.

DEVSTAT.

transaction and

= 1

Interrupt Service Routine (ISR) Flowcharts

 13-102

Figure 13–25. USB Reset Handler Flowchart II

USB reset handler

Clear endpoint

control transfer flags.

Application-
specific actions
to clear app’s
RX and TX

buffers

End of USB reset
handler

Application-
specific actions

to mark all
endpoints un-

halted

Application-
specific actions
to mark device

as not in
suspend mode

Application-
specific actions
to clear app’s
Config #, Alt.

I/F #s

Application-
specific actions
to mark device
as not remote-
wake-enabled

Application-
specific actions

to clear local
copy of frame

number

USB_Reset
= 1 ?

Yes

Inform application
that the USB

reset has completed
and that device is in

default state.

No

Set IRQ_SRC.DS_Chg

to clear the IT.

DEVSTAT.

transaction and

= 1

Interrupt Service Routine (ISR) Flowcharts

13-103USB Function Module

Figure 13–26. Typical Operation for USB Suspend/Resume General USB Interrupt Handler

Suspend/resume
handler

Inform
application that

entering
suspend.

DEVSTAT.SUS

No

Yes

Inform
application of

resume.

End of suspend/
resume handler

Is remote wake-up
supported?
Is low power mode
supported?

Set IRQ_SRC.DS

to clear the IT.
device is _Chg = 1

Set IRQ_SRC.DS

to clear the IT.
_Chg = 1

Read
DEVSTAT.R_Wk_

OK value.

= 1?

Interrupt Service Routine (ISR) Flowcharts

 13-104

Figure 13–27. Non-Isochronous Endpoint-Specific (Except ER 0) ISR Flowchart

Enter non_ISO
endpoint-specific ISR

Return from non_ISO
endpoint-specifc ISR

No

IRQ_SRC.
EPn_RX = 1?

TX handler

Read endp_nb value
from EPN_STAT.
EPn_RX_IT_src.

Write 1 to
IRQ_SRC.EPn_RX to

clear the IT.

Write EP_NUM register:
– EP_NUM.EP_Num = endp_nb
– EP_NUM.EP_Dir = 0
– EP_NUM.EP_Sel = 1

– EP_NUM.Setup_Sel = 0

Yes

Write EP_NUM register:
– EP_NUM.EP_Num = endp_nb
– EP_NUM.EP_Dir = 0
– EP_NUM.EP_Sel = 0
– EP_NUM.Setup_Sel = 0

Read endp_nb value
from EPN_STAT.
EPn_TX_IT_src

Write EP_NUM register:
– EP_NUM.EP_Num = endp_nb
– EP_NUM.EP_Dir = 1
– EP_NUM.EP_Sel = 1

– EP_NUM.Setup_Sel = 0

RX handler

Write EP_NUM register:
– EP_NUM.EP_Num = endp_nb
– EP_NUM.EP_Dir = 1
– EP_NUM.EP_Sel = 0
– EP_NUM.Setup_Sel = 0

Write 1 to
IRQ_SRC.EPn_TX to

clear the IT.

Must be
IRQ_SRC.EPn_TX

Flag Fifo not full
and DB
 = 1?

Write CTRL register:
– CTRL.Set_FIFO_En = 1.

Yes

No

Interrupt Service Routine (ISR) Flowcharts

13-105USB Function Module

13.6.11 Non-Isochronous, Non-Control OUT Endpoint Receive Interrupt Handler

Figure 13–28 shows the operations necessary to handle non-isochronous,
non-control OUT endpoint-specific receive interrupts. This flowchart shows
two different RX transaction handshaking interrupts. There is a third interrupt
handshaking possibility when NAK interrupts are enabled, which is not
depicted here. Depending on the application-specific actions needed for
various endpoints in the real system, it is possible to use one routine that is
common to all of the non-isochronous, non-control receive endpoints, where
the only differences are in EP_NUM register value set for the selection of the
proper application RX data buffer in the read non-isochronous RX FIFO data
routine (see Figure 13–29).

This flowchart does not attempt to document control endpoint 0 receive inter-
rupts, which are discussed separately due to the more complex three-stage
transfer mechanism used for control writes.

13.6.12 Non-Isochronous, Non-Control IN Endpoint Transmit Interrupt Handler

Figure 13–30 shows the operations necessary to handle non-isochronous,
non-control IN endpoint-specific transmit interrupts. This flowchart shows two
TX transaction handshaking interrupts. There is a third interrupt handshaking
possibility when NAK interrupts are enabled, which is not depicted here.
Depending on the application-specific actions needed for various endpoints
in the real system, it is possible to use one routine that is common to all of the
non-isochronous, non-control transmit endpoints, where the only differences
are in EP_NUM register value set for the routine selection of the application
TX buffer (see Figure 13–31).

This flowchart does not attempt to document control endpoint 0 transmit inter-
rupts, which are discussed separately due to the more complex three-stage
transfer mechanism used for control reads.

13.6.13 SOF Interrupt Handler

SOF interrupts to the local host occur once per USB frame. The local host must
handle data traffic for the isochronous endpoints at each SOF interrupt. In
addition, the SOF ISR can handle any application-specific activity related to
the implicit timing of the SOF interrupt. Figure 13–32 shows the SOF ISR flow-
chart. The read isochronous RX FIFO data and write isochronous TX FIFO
data procedures are shown in Figure 13–33 and Figure 13–34, respectively.

Interrupt Service Routine (ISR) Flowcharts

 13-106

Figure 13–28. Non-Isochronous Non-Control Endpoint Receive Interrupt Handler

Non-ISO RX handler
(NAK disabled)

STAT_FLG.

(Data packet
received?)

Read Non-ISO
packet from

RX FIFO data.

Ready to handle
another RX transaction

Set CTRL.Set_FIFO_En

Application-
specific

preparation to
receive

endpoint data

End of non-ISO RX
handler

Yes

Yes

No. Must be STAT_FLG.STALL

Set RXCON1.Clr_Halt
(remove halt conditions).

LH-initiated
stall and can
remove stall?

Yes

No

Application-
specific actions
to resolve stall

No

ACK = 1?

and flag FIFO not full
and DB

= 0?

to 1.

Note: If flag FIFO not full and DB

Caution: the core responds to

is set to 1, Set_FIFO_En must
be set later, after EP is
deselected to enble both FIFO.

the next OUT transaction with a
NAK and no IT is generated
if SYSCON1.Nak_En = 0.

Interrupt Service Routine (ISR) Flowcharts

13-107USB Function Module

Figure 13–29. Read Non-Isochronous RX FIFO Data Flowchart

Read non-ISO RX
FIFO data

Read byte from DATA
register (RX FIFO).

RXbyte = 0?

Place byte in
application’s RX buffer.

DecrementRXbyte
counter.

Update application’s
RX buffer counter.

End of read non-ISO
RX FIFO data

STAT_FLG.
non_ISO FIFO
_Empty = 1?

Yes

No

A

A

Yes

Inform
application of
completion of
endpoint’s RX
transaction.

STAT_FLG.
Non_ISO_FIFO

_Full
= 1?

Set RXbyte counter
to EP buffer size.

Yes

Read received bytes
count in

RXFSTAT.RXF_Count.

Set RXbyte counter
to RXF_Count value.

No

No

EPn_RX.EPn_RX_
Size or DB

= 1?

Set FIFO not full and DB
to 1.

Yes

No

EPn_RX.EPn_RX_
Size or DB

= 1?

Set FIFO not full and DB
to 1.

Yes

No

Interrupt Service Routine (ISR) Flowcharts

 13-108

Figure 13–30. Non-Isochronous Non-control Endpoint Transmit Interrupt Handler

Non-ISO TX handler
(NAK disabled

STAT_FLG.
ACK = 1?

(Data packet
received?)

Write non-ISO TX
FIFO data

More data to send
for this endpoint?

Set
CTRL.Set_FIFO_En

Application–
specific activity
because data
successfully

sent

End of non-ISO TX
handler

NoYes

No. Must be STAT_FLG.STALL.

Set CTRL.Cir_Halt
(remove halt condition).

LH initiated
stall and can
remove stall?

Yes

No

Application-
specific actions
to remove stall

Retire the data that
was just sent to the
USB host from the

application’s endpoint
TX buffer.

Yes

TX data that was previously placed in the endpoint’s TX FIFO
remains in the application’s buffer until that data is properly
sent to the USB host and receives an ACK.

to 1.

Caution: If double-buffer is used, the local host must retire
from its buffer the first packet that was written into TX FIFO.

Interrupt Service Routine (ISR) Flowcharts

13-109USB Function Module

Figure 13–31. Write Non-Isochronous TX FIFO Data Flowchart

Write non-ISO TX
FIFO data

Read byte from
application’s TX buffer

Loop count = 0?
No

Write byte to DATA Decrement loop count

Save endpoint-specific
copy of amount of data

placed into TX FIFO
(loop count).

Yes

End of write non-ISO
TX FIFO data

Set loop count to #
bytes in application’s

TX buffer.

Loop count <=
endpoint’s current
configured length?

Yes

No Set loop count to
endpoint’s current
configured length.

The TX data copied from the application’s TX buffer is
not retired from the buffer until it is correctly received by the USB host

The loop count must be set to 0 for sending an empty
data packet.

(In transaction with ACK). The count saved here is used at that time to
retire the correct amount of TX buffer data. If double buffer is used,
two packets are saved into TX buffer.

In case of 16-bit access mode,
the local host writes 2 bytes
at each access. If the number of
bytes in application’s buffer is odd,
the LH must change the access
mode to 8 bit access for the last
byte write.

(2 bytes read in case of
16-bit access)

Interrupt Service Routine (ISR) Flowcharts

 13-110

Figure 13–32. SOF Interrupt Handler Flowchart

SOF ISR entry

ISO RX
Handler

End of SOF ISR

Application-
specific SOF

timing handling

Write 1 to
IRQ_SRC.SOF to clear

the IT.

Yes
Any ISO RX

endpoint
configured?

(EPn)

Write EP_NUM register:
– EP_NUM.EP_Num = n
– EP_NUM.EP_Dir = 0
– EP_NUM.EP_Sel = 1
– EP_NUM.Setup_Sel = 0

Write EP_NUM register:
– EP_NUM.EP_Num = n
– EP_NUM.EP_Dir = 0
– EP_NUM.EP_Sel = 0
– EP_NUM.Setup_Sel = 0

Another
ISO RX endpoint

configured?
(EPn)

Yes

No

Any ISO TX
endpoint

configured?
(EPn)

Write EP_NUM register:
– EP_NUM.EP_Num = n
– EP_NUM.EP_Dir = 1
– EP_NUM.EP_Sel = 1
– EP_NUM.Setup_Sel = 0

ISO TX
handler

Write EP_NUM register:
– EP_NUM.EP_Num = n
– EP_NUM.EP_Dir = 1
– EP_NUM.EP_Sel = 0
– EP_NUM.Setup_Sel = 0

Another
ISO TX endpoint

configured?
(EPn)

Yes

Yes

No

No

No

Caution: The local host must have
handled all ISO endpoints before next

start-of-frame.

6 WAIT
STATES

6 WAIT
STATES

Interrupt Service Routine (ISR) Flowcharts

13-111USB Function Module

Figure 13–33. Read Isochronous RX FIFO Data Flowchart

ISO RX handler

Read byte from
DATA (RX FIFO).

Loop_count = 0?

Place byte in
application’s RX buffer.

Increment RX byte
count, decrement loop

count.

Update application’s
RX buffer count.

Yes

End of RX ISO Handler

Loop_count =
RXFSTAT.RXF_Count

STAT_FLG.
Data_Flush

=1?

Application-
specific actions
to handle case
for data flush

No

Yes

STAT_FLG.
ISO_Error

=1?

Application-
specific actions

to handle
unrecovered
ISO packet

Yes

No

STAT_FLG.
ISO_FIFO_Empty

=1?

Application-
specific actions

to handle
empty ISO

packet (or no
packet)

Yes

No (must be valid data)

No

Interrupt Service Routine (ISR) Flowcharts

 13-112

Figure 13–34. Write Isochronous TX FIFO Data Flowchart

ISO TX handler

Read byte from
application’s TX

buffer.
Loop count = 0?

No Write byte to TX
FIFO (via DATA

Increment TX byte
count, decrement

loop count.

Update application’s
TX buffer count.

Yes

End of TX ISO handler

STAT_FLG.
Miss_In

= 1 ?

Yes

No

Wish to resend
missed data?

Yes
Set

CTRL.Cir_EP to
clear the current

FIFO.

No

Set Loop_count to TX
ISO packet length

(max is endpoint size).

When a Missed_in occurs, missed
data are from TWO frames previous).

Application-
specific actions

to handle
missed in data

(Reload TX byte
count,...).

Must put missed transmit data
into foreground ISO TX FIFO.

Clear both foreground and
background TX FIFO.

register).

Interrupt Service Routine (ISR) Flowcharts

13-113USB Function Module

13.6.14 Summary of USB-Related Interrupts

Table 13–26. USB Interrupt Type by Endpoint Type

General USB IRQs EP-Specific IRQs SOF

Interrupt Type
Setup
(EP0)

Control
(EP0)
Out

Control
(EP0)

In Other

Bulk or
Interrupt

Out

Bulk or
Interrupt

In
(Isochronous)

SOF

Transaction
ACKd

√ √ √ √

Transaction
NAKed
(if enabled)

√ √ √ √

Transaction
STALLed

√ √ √ √

Setup √

SOF √

Device State
Changed

√

RX DMA EOT
(non_ISO)

√

RX DMA Trans
Count
(non_ISO)

√

TX DMA
Done
(non_ISO)

√

DMA Operation

 13-114

13.7 DMA Operation

The USB function module provides support for six DMA channels. Three
receive DMA channels are reserved for OUT transfers (isochronous or non-
isochronous) and three transmit DMA channels are reserved for IN transfers
(isochronous or non-isochronous). It is not possible to operate DMA trans-
actions on control EP0.

The local host must not access an endpoint used in a DMA transfer
through EP_NUM, CTRL and STAT_FLG registers (in DMA, this remark
applies after the local host has set the Set_FIFO_En bit to enable the RX
DMA transfer). In particular, the local host must not set the halt feature
while the endpoint is selected in the RXDMA_CFG register.

13.7.1 Receive DMA Channels Overview

Receive DMA channels are programmed via the three RXDMA control
registers. Each channel is assigned to a given endpoint number by assigning
a non-zero value in RXDMAn_EP fields (a 0 value means the DMA channel
is deselected). Received OUT data must be read when a RX DMA request is
active, through the register DATA_DMA. The RX FIFO accessed is that of the
endpoint for which DMA request is active (only one RX DMA request active at
a time).

13.7.2 Non-Isochronous OUT (USB HOST −> LH) DMA Transactions

During non-isochronous transfers to a DMA-operated OUT endpoint, a re-
quest to the local host DMA controller is generated when data has been placed
into the endpoint FIFO and must be read. Notice that ACK and NAK interrupts
are always disabled automatically by the core for DMA operated endpoints.

There are two dedicated maskable interrupts per DMA channel to control
non-isochronous OUT transfers.

� End of transfer interrupt (the RXn_EOT)

This interrupt signals that the core has detected an end-of-transfer (EOT).
EOT occurs in the two following cases:

� When the last valid transaction to the endpoint is either an empty
packet (ACK and buffer empty) or a packet whose size is less than the
physical endpoint buffer size (ACK and buffer not full).

� When the number of received transactions has reached the
programmed value in RXn_TC field, if Rxn_Stop bit has been set by
the local host.

DMA Operation

13-115USB Function Module

After an end of transfer interrupt, the local host must set the Set_FIFO_
En for the endpoint to reenable the channel.

The local host must not initiate a new RX DMA transfer until it receives
an end-of-transfer interrupt.

� Transactions count interrupt (the RXn_Cnt)

This interrupt performs watermark control. It can be used by the local host
to monitor the file size of incoming transfers and take appropriate actions
if, for instance, the file being received exceeds an expected size.

A transaction count interrupt does not disable the ongoing DMA transfer.

A transaction count interrupt occurs each time the number of received
transactions (and not bytes) has reached the programmed value in the
receive transaction counter for the DMA channel. One transaction has a
size equal to the buffer size of the selected non-isochronous endpoint. An
RXn_Count interrupt is asserted even if RXn_Stop has been set: in that
case, both RXn_Count and RXn_EOT interrupts are asserted.

The transaction count watermark is programmed in the RXDMAn register.

Figure 13–35. Non-Isochronous RX DMA Transaction Example (RX_TC = 2)

1Host message

System DMA read

Dma_request

1

2

2

3

3

4

4

Rx Count IT Rx EOT IT

5

5

6

6

7

7

Rx Count IT

2 1 0 2 1 0 2 1RxTC

EOT

DMA Operation

 13-116

Figure 13–36. Non-Isochronous RX DMA Start Routine

EP number

Non-ISO RXDMA[0, 1, 2]
start routine

Assign non-ISO endpoint
number to DMA channel n.

Application-specific
action to initialize
the main system
DMA controller

LH DMA read access
must point to
DATA_DMA register in
response to DMA
channel n request.

End of
Non-ISO RXDMA [0, 1, 2]

start routine

IRQ_SRC.RXn_EOT
interrupt is asserted
when the DMA transfer
completes.

Set max transactions count
into RXDMAn.RXn_TC.

Optional step required only if max
transactions count IT is enabled
(DMA_IRQ_EN.RXn_Cnt_IE =1).

−−>
RXDMA_CFG.
RXDMAn_EP

LH wants to be
interrupted with EOT after

a given number of
transactions (Nt) ?

Set RXDMAn.RXn_TC to
(Nt–1) and set

RXDMAn.RXn_Stop to 1.

Yes

No

Endpoints assigned to a DMA
channel must have been configured
during endpoint configuration phase.

Fill DMA_IRQ_EN
register with

appropriate value.

Set EP_NUM.EP_Num=endp
then set CTRL.Set_FIFO_En to

enable DMA transfer.

DMA Operation

13-117USB Function Module

Figure 13–37. Non-Isochronous RX DMA EOT Interrupt Handler

Non-ISO RX DMA
EOT handler

Inform the application

The LH must renable
End of

Non-ISO RX DMA EOT
handler

Read DMAN_STAT.

Read endpoint number

IRQ_SRC.RXn_EOT = 1

the endpoint to allow
next transfer.

in DMAN_STAT.
DMAn_RX_IT_src

register.

DMAn_RX_SB register to be
informed of an odd number of

bytes for last transaction.

that the RX DMA transfer
on channel n is

completed.

to clear the IT.

DMA Operation

 13-118

Figure 13–38. Non-Isochronous RX DMA Transaction Count Interrupt Handler

Non-ISO RX DMA
count handler

End of Non-ISO
RX DMA count

handler

Set
IRQ_SRC.RXn_Cnt = 1

to clear the IT.

Inform the application that

Read channel number n in
DMAN_STAT.

DMAn_RX_IT_src register.

the RX DMA transfer on
channel n has sent
RXDMAn.RXn_TC

transaction count without
detecting an EOT.

DMA Operation

13-119USB Function Module

13.7.3 Isochronous OUT (USB HOST −> LH) DMA Transactions

During isochronous transfers to a DMA-operated OUT endpoint, a request to
the local host DMA controller is generated every 1-ms frame when an isochro-
nous data packet is received with no error. There is no interrupt associated with
DMA transfer to isochronous OUT endpoints.

Figure 13–39. Isochronous RX DMA Transaction

1ms

1

1

2 3 4Host message

FIFO content

System DMA read

Dma_request

1

2

2

3

3

4

4

Error

6

6

6

Figure 13–40. Isochronous RX DMA Start Routine

ISO RXDMA[0,1, 2]
start routine

Assign ISO endpoint number
to DMA channel n.

End of
ISO RXDMA [0,1, 2]

start routine

If no interrupt is signaled to
the LH (except SOF if
enabled), the Device DMA
sends a new DMA request to the LH
DMA controller every frame till
the HOST stops sending ISO
packets to the endpoint.

Application-Specific
action to intialize the
main system DMA

controller

LH DMA read access
must point to
DATA_DMA register in
response to DMA
channel n request.

EP number −−>
RXDMA_CFG.
RXDMAn_EP.

DMA Operation

 13-120

13.7.4 Transmit DMA Channels Overview

Transmit DMA channels are programmed via the three TXDMA control regis-
ters. Each channel can be assigned to a given endpoint number by assigning
a nonzero value in TXDMAn_EP (a 0 value means the DMA channel is
deselected). The other three control registers (TXDMA0, TXDMA1, and
TXDMA2) operate in a different manner for isochronous or non-isochronous
endpoints. Transmitted data must be written into the DATA_DMA when a TX
DMA request is active. They are written into the TX FIFO of the endpoint asso-
ciated with active request (only one TX DMA request active at a given time).

13.7.5 Non-Isochronous IN (LH −> USB HOST) DMA Transactions

Non-isochronous (bulk) TX DMA file transfers are virtually unlimited in size.
The flowcharts depicted in Figure 13–42 and Figure 13–43 show how to han-
dle small, medium, or large file transfers.

TXDMA0, TXDMA1, and TXDMA2 registers operate for non-isochronous end-
points in the following manner. The transfer size counter (TXn_TSC) corre-
sponds to either the number of bytes to transmit (EOT bit set) or the number
of buffers to transmit (EOT bit cleared). The buffer size corresponds to the
programmed size of the TX endpoint.

A request to the local host main DMA controller is generated when the end-
point buffer is empty initially after that the START bit is set and then each time
there is space free in TX FIFO for other TX packets to be written, until
TXn_TSC counts down to zero. The request is removed when the buffer is full
or when there are no more bytes of data to be sent.

A DMA transmit transfer done interrupt is signaled to the local host after the
last IN transaction completes successfully. This is after the START bit was set
and after TXn_TSC equals 0 for the selected DMA channel.

The local host must not initiate a new TX DMA transfer until it receives
a TX_Done interrupt.

Small file transfer less than 1024 bytes can be achieved in a single DMA pass
signaled by a single interrupt completion. File size equal or greater than 1024
bytes needs two or more DMA passes signaled by an interrupt completion
after each pass.

DMA Operation

13-121USB Function Module

The size of the file to transfer (FTZ) can be assimilated conceptually as a
concatenation of three arguments as shown in Figure 13–41.

Figure 13–41. File Transfer Size

FBTXSWL EOTB

FTZ (File transfer size)

EOTB(End of transfer
byte count)

[0 – (EP Buffer size – 1)]

FBT (Full buffer
transfer count)

[0–1023]

XSWL (Extra software
Loop – n DMA transfer)

[0–n]

lsbMSB

The flowchart in Figure 13–42 shows the necessary steps to prepare and
permit a TX DMA transfer of any size. It also effectively starts the initial DMA
transfer. The completion of this DMA task is signaled to local host via a DONE
interrupt, as depicted in Figure 13–43. The start routine and the associated
interrupt handler are tightly coupled.

An example would be 100603 bytes to transfer via 32 bytes IN bulk endpoint,
which gives XSWL = 0x3, FBT = 0x47, EOTB = 0x1b. In this example, five
passes of DMA transfer, signaled by five TXn_Done interrupts, are required,
as follows:

1) EOT = 0, FBT = 0, loop = 3 32768 bytes transferred (1024 x 32 bytes)
2) EOT = 0, FBT = 0, loop = 2 32768 bytes
3) EOT = 0, FBT = 0, loop = 1 32768 bytes
4) EOT = 0, FBT = 0x47, loop = 0 2272 bytes (71 x 32 bytes)
5) EOT = 1, FBT = 0x1B, loop = 0 27 bytes

DMA Operation

 13-122

Figure 13–42. Non-Isochronous TX DMA DMA Start Routine

Non-ISO TXDMA[0, 1, 2]
start routine

No

Yes
EOTBn = FTZ & (EPsize–1)

temp = FTZ >> EPsize
XSWLn = temp >> 10bit
FBTn = temp & 0x3FF

Set XSWLn = 0
(for interrupt handler).

FTZ > 1024
bytes?

XSWLn=0 ?

XSWLn = XSWLn – 1
(used by interrupt

handler for next pass)

Yes

No

TSC=0 means
1024 transfers.

Compute parameters for a
large file transfer with multi
DMA sessions (2 or above).

EP number −−>
TXDMA_CFG.

Assign non-ISO endpoint
number to DMA channel n.

Application-specific
action to initialize the

main system DMA
controller

LH DMA write access
must point to
TXDCHn.TXDATn in
response to DMA
channel n request.

End of non-ISO
TXDMA [0,1, 2]

start routine

Start single pass DMA
transfer of size FTZ
bytes

IRQ_SRC.TXn_Done interrupt
is asserted when the DMA
transfer completes.

Start 1st pass of 2
DMA transfer of size
FTBn x EP size bytes.

Start DMA transfer:
TXDMAn.TXn_TSC = 0,
TXDMAn.TXn_EOT = 0,
TXDMAn.TXn_Start = 1

Start 1st pass of 3 or more
DMA transfers of size
1024 x EP size bytes.

TXDMAn_EP.

Start DMA transfer:
TXDMAn.TXn_TSC = FBTn,

TXDMAn.TXn_EOT = 0,
TXDMAn.TXn_Start = 1

Start DMA transfer:
TXDMAn.TXn_TSC = FTZ,

TXDMAn.TXn_EOT = 1,
TXDMAn.TXn_Start = 1

Fill DMA_IRQ_EN
register with

appropriate value.

DMA Operation

13-123USB Function Module

Figure 13–43. Non-Isochronous TX DMA Done Interrupt Handler

Non-ISO TX DMA
done handler

No

Yes

Start new DMA transfer
of 1024 EP buffer size.

XSWLn = XSWLn – 1

EOTn = 1?

Yes

XSWLn = 0?

Inform the
application that

the TX DMA
transfer is
completed.

No

FBTn = 0?

Yes

No

Initiate new DMA transfer:
TXDMAn.TXn_TSC = 0,
TXDMAn.TXn_EOT = 0,
TXDMAn.TXn_Start = 1

FBTn = 0

Needed for next pass

Start new DMA transfer
of FBTn EP buffer size.

Needed for next pass

Start new DMA transfer
of EOTBn bytes
(could be null packet).

End of non-ISO
TX DMA handler

Set
IRQ_SRC.TXn_Done = 1

to clear the IT.

Read the endpoint umber
n in DMAN_STAT.
DMAn_TX_IT_src

register.

Initiate new DMA transfer:
TXDMAn.TXn_TSC = FBTn,

TXDMAn.TXn_EOT = 0,
TXDMAn.TXn_Start = 1

Initiate new DMA transfer:
TXDMAn.TXn_TSC = EOTBn,

TXDMAn.TXn_EOT = 1,
TXDMAn.TXn_Start = 1

DMA Operation

 13-124

13.7.6 Isochronous IN (USB HOST −> LH) DMA Transactions

For isochronous endpoints (Figure 13–44), the transfer size counter
(TXn_TSC) corresponds to the number of bytes to transmit. The programmed
size must not exceed the programmed buffer size of the endpoint; otherwise
the results are unpredictable.

A request to the local host main DMA controller is generated when the end-
point buffer is empty initially; after that, the START bit is set and then set again
after each SOF (every 1 ms). The request is removed when the number of
bytes written in the buffer matches TXn_TSC value.

During isochronous transfers to a DMA-operated IN endpoint, a request to the
local host system DMA controller is generated every 1-ms frame when an
isochronous data packet is received with no error. There is no special interrupt
associated with DMA transfer.

No interrupt is signaled to the local host during DMA operation to isochronous
IN endpoints.

13.7.7 Important Note on DMA Requests

For each direction, only one DMA request can be active at any time. A request
must then be serviced to allow the next pending request on the same direction
to be asserted. In particular, a TX DMA request is asserted at each start-of-
frame if a TX DMA channel is configured for an isochronous endpoint; request
must be serviced imperatively.

� For a USB TX DMA transfer, a DMA synchronization event is sent for each
frame (DMA_CCR register FS field set to 1). Here the software decides
the size of the USB transfer, so the DMA transfer is known in advance. The
software must program the system DMA and the USB function to this
transfer size.

� For a USB RX DMA transfer, a DMA synchronization event is sent for each
element (DMA_CCR register FS field set to 0). Here the transfer size is
unknown, and the DMA transfer is undetermined. Even if the USB function
is programmed to transfer n elements, a RX DMA request is generated for
each element.

DMA Operation

13-125USB Function Module

Figure 13–44. Isochronous TX DMA Start Routine

ISO TXDMA[0,1, 2]
start routine

EP number −−>
TXDMA_CFG.

Assign ISO endpoint number
to DMA channel n.

Application-specific
action to initialize the

main system DMA
controller

LH DMA write access
must point to
TXDCHn.TXDATn in
response to DMA
channel n request.

End of ISO TXDMA
[0,1, 2]

start routine

Start DMA transfer:
TXDMAn._TSC = FTZ,

TXDMAn.TXn_EOT = 1,
TXDMAn.TXn_Start = 1

If no interrupt is signaled to
the LH (except SOF if
enabled), the Device DMA
sends a new request to the LH
DMA controller every frame.

EOT bit is don’t care for ISO
endpoints.

TXDMAn_EP

DMA Operation

 13-126

13.7.8 Note on DMA Channel Deconfiguration

It is recommended that the local host wait for an EOT (RX) or a done (TX) in-
terrupt before disabling the channel by writing a value 0 in TX/RXDMA_CFG
register. However, if needed by the application, the local host can deselect the
endpoint number in the TX/RXDMA_CFG register during a DMA transfer. The
behavior is as follows:

� For RX transfer:

If an RX DMA request is active for the endpoint when endpoint is
unselected, deconfiguration is effective only at the end of the RX DMA
request (that is, after all the DMA data has been read). When double buff-
ering is used, the deconfiguration is effective after both buffers have been
read (if both buffers were not empty at deselection). An EOT interrupt is
asserted if an end-of-transfer is detected.

If RX DMA request is not active when deselection occurs, the effect is
immediate.

� For TX transfer:

If request is active when the endpoint is unselected, deconfiguration is
effective after the TX DMA request has been handled and the TX data has
been sent through an IN transaction (both buffers in case of double buffer-
ing with both buffers full). No TX_Done interrupt is asserted even if TSC bit
value is 0 after the transaction.

If TX DMA request is inactive when the endpoint is unselected, deconfi-
guration is effective when all data available in TX buffer(s) have been sent
through IN transaction(s). If TXDMAn_TSC value is 0 at this point, no
TX_Done interrupt is asserted. If TX_Done interrupt had already been
asserted when endpoint is deselected, configuration is effective only after
the TX_Done interrupt handling.

TX/RXDMAn_EP reflects endpoint value until deconfiguration is effective.
The local host must read this register to know if channel has been disabled
or not yet. It must wait until read value is 0 before performing other actions
to the endpoint. After effective deconfiguration, all transactions to the
endpoint generates an endpoint-specific interrupt (if non-transparent).

If the selected endpoint is isochronous, deconfiguration is effective after
the TX/RX request has been serviced and the following isochronous trans-
actions are handled at SOF interrupt through endpoint registers (EP_NUM
and STAT_FLG).

Power Management

13-127USB Function Module

13.8 Power Management

The flowchart in Figure 13–45 shows the values assigned to USB function
signals concerned with power management in the functioning of the device
state. These signals are:

� PUEN_O

Pullup enable signal, which always reflects the Pullup_En register bit.

� SHUTOFF_O

Power circuitry shutoff signal, controlled by the core and the SOFF_Dis bit.

� DS_WAKE_REQ_ON

Deep sleep wake request, asserted low when interface clock is needed.

� SUSPEND_O

Suspend signal, asserted high when the device is in suspend mode.

Power Management

 13-128

Figure 13–45. Power Management Signal Values

Device not powered
not attached to USB

PUEN_O = 0
SUSPEND_O = 1
SHUTOFF_O = 1

DS_WAKE_REQ_ON = 1

Power on

No power

USB cable inserted

PUEN_O = 1
SUSPEND_O = 1
SHUTOFF_O = 1

DS_WAKE_REQ_ON = 1

PUEN_O = 0
SUSPEND_O = 1
SHUTOFF_O = 1

DS_WAKE_REQ_ON = 0

LH sets SYSCON1.
Pullup_En. USB cable inserted

Power on

PUEN_O =1
SUSPEND_O = 1
SHUTOFF_O = 1

DS_WAKE_REQ_ON = 0

LH sets SYSCON1.
Pullup_En.

USB cable inserted

PUEN_O =1
SUSPEND_O = 0
SHUTOFF_O = 0

DS_WAKE_REQ_ON = 0
USB reset

PUEN_O =1
SUSPEND_O = 1
SHUTOFF_O = 1

DS_WAKE_REQ_ON = 1
(after DS_Chg interrupt

handling)

Idle for moreReset or
resume

SHUTOFF_O value is 0 if the LH
has set SYSCON1.SOFF_D bit

SUSPEND_O value remains
1 until USB Reset is

effective (after 2,5µs).

than 5 ms

†

††

†

†

14-1

Universal Serial Bus Host

This chapter describes the universal serial bus (USB) host of the OMAP5910
multimedia processor.

Topic Page

14.1 USB Host Controller 14-2.

14.2 USB Open Host Controller Interface Functionality 14-5.

14.3 USB Host Controller Registers 14-8.

14.4 USB Host Controller Interrupt Sources 14-46.

14.5 USB Pin Multiplexing 14-48.

14.6 USB Host Controller Access to System Memory 14-81.

14.7 OMAP5910 Local Bus 14-93.

14.8 OMAP5910 Local Bus MMU 14-101.

14.9 USB Host Controller Reset and Clock Control 14-115.

14.10 OMAP5910 USB Hardware Considerations 14-118.

Chapter 14

USB Host Controller

 14-2

14.1 USB Host Controller

The OMAP5910 USB host controller (HC) is a three-port controller that com-
municates with USB devices at the USB low-speed (1.5M bit/s maximum) and
full-speed (12M bit/s maximum) data rates. It is compatible with the Universal
Serial Bus Specification Revision 1.1 and the Open HCI—Open Host Control-
ler Interface Specification for USB, Release 1.0a, available through the Com-
paq Computer Corporation web site, and hereafter called the OHCI Specifica-
tion for USB. It is assumed that users of the OMAP5910 USB host controller
are already familiar with the USB Specification and OHCI Specification for
USB.

The OMAP5910 USB host controller implements the register set and makes
use of the memory data structures defined in the OHCI Specification for USB.
These registers and data structures are the mechanism by which a USB host
controller driver software package can control the OMAP5910 USB host con-
troller. The OHCI Specification for USB also defines how the USB host control-
ler implementation must interact with those registers and data structures in
system memory.

To reduce processor software and interrupt overhead, the USB host controller
generates USB traffic based on data structures and data buffers stored in
system memory. The OMAP5910 USB host controller accesses these data
structures without direct intervention by the processor using the OMAP5910’s
local bus. These data structures and data buffers can be located in internal or
external system RAM. The local bus MMU allows the USB host controller to
access the full address range of internal and external memories.

The OMAP5910 USB host controller is connected to the OMAP5910 MPU
public peripheral bus for MPU access to registers. The USB host controller
gains access to the data structures in OMAP5910 system memory via the
internal OMAP5910 local bus (LB) interface. The USB host controller provides
an interrupt to the MPU level 2 interrupt handler to signal certain hardware
events to the host controller driver software.

Flexible multiplexing of signals from the OMAP5910 USB host controller, the
OMAP5910 USB function controller, and other OMAP5910 peripherals allows
a wide variety of system-level USB functions. Notice in Figure 14–2 that many
of the pins can be used for USB-related signals or for signals from other
OMAP5910 peripherals. The OMAP5910 top-level pin multiplexing controls
each pin individually to select one of several possible internal pin signal inter-
connections. When these shared pins are programmed for use as USB
signals, the OMAP5910 USB signal multiplexing selects how the signals
associated with the three OMAP5910 USB host ports and the OMAP5910
USB function controller can be brought out to OMAP5910 pins. Notice that the

USB Host Controller

14-3Universal Serial Bus Host

OMAP5910 pins associated with the integrated USB transceiver are only
available for use by the OMAP5910 USB host controller or OMAP5910 USB
function controller and are not shared with any other peripherals.

Figure 14–1 shows the OMAP5910 device with the USB host controller high-
lighted. Figure 14–2 shows the OMAP5910 USB host controller.

Figure 14–1. OMAP5910 USB Host Controller Block Diagram

MPU core
(TI925T)

(instruction
cache, data

cache, MMU)

System
DMA

controller

TMS320C55x DSP
(Instruction cache, SARAM

 DARAM, DMA,
 H/W accelerators)

MPU
peripheral

bridge

LCD
I/F

MPU
Interface

SRAM

SDRAM
memories

Flash and
SRAM

memories

DSP
MMU

16

16

32

16

32

32

32

32

32

32

16

MPU privatePeripherals bus

DSP public (shared) pheripheral bus

32
MPU public

16

DSP

DSP public peripherals

McBSP1

McBSP3

MPU public peripherals

USB Host I/F

JTAG/
emulation

I/F
OSC

12 MHz Clock

OSC

OMAP5910

ETM9

Timers (3)

MPU/DSP shared peripherals

Mailbox

MPU private peripherals

Timers (3)

16

Memory interface

Reset External clock

MPU Bus

32 kHz

1.5M bits

traffic controller (TC)

Watchdog timer

Level 1/2 interrupt handlers

Configuration registers

Clock and reset management

Watchdog timer
Level 1/2

Private peripherals

GPIO I/F

USB Function I/F

Camera I/F
MPUIO

32-kHz timer
PWT
PWL

M
I
F
S

M
I
F
F

I
M
I
F

MCSI1
MCSI2

Keyboard I/F

request

E

E

TIPB
switch

UART1
UART2

UART3 IrDA

32

MMC/SD
LPG x2

HDQ / 1-WIRE

DSP private
peripheral bus

peripherals bus

McBSP2

Device identification

RTC

interrupt handlers

I2C
µWire

Frame adjstument
counter

32

32

32

32

USB Host Controller

 14-4

Figure 14–2. OMAP5910 USB Host Controller

U
S

B
 s

ig
na

l m
ul

tip
le

xi
ng

Local Bus
interface

MPU

MPU Public
peripheral

bus
interface

USB Host Controller

Peripheral

Peripheral

U
S

B
tr

an
sc

ie
ve

r

U
S

B
tr

an
sc

ei
ve

r,
E

S
D

pr
ot

ec
tio

n

MPU’s
MMU

O
H

C
I c

on
tr

ol
le

r

OMAP5910

U
S

B
co

nn
ec

to
r

ESD
protection

U
S

B
tr

an
sc

ei
ve

r,
E

S
D

pr
ot

ec
tio

n

Internal
memory

External
memory

USB
function
controller

USB power
switching

GPIO

Memory
controller

Local bus
controller

LB’s
MMU

MPU public
peripheral bus

To
p–

le
ve

l p
in

Signals to/from other

peripherals

INTH2

UART 1
Peripheral

m
ul

tip
le

xi
ng

U
S

B
co

nn
ec

to
r

U
S

B
co

nn
ec

to
r

USB Open Host Controller Interface Functionality

14-5Universal Serial Bus Host

14.2 USB Open Host Controller Interface Functionality

14.2.1 OHCI Controller Overview

The Open HCI—Open Host Controller Interface Specification for USB,
Release 1.0a defines a set of registers and data structures stored in system
memory that define how a USB host controller interfaces to system software.
This specification, in conjunction with the Universal Serial Bus Specification
Version 1.1, define most of the USB functionality that the OMAP5910 USB host
controller provides.

The OHCI Specification for USB focuses on two main aspects of the hardware
implementation of a USB host controller: its register set and the memory data
structures that define the activity to appear on the USB bus. Also discussed
are issues such as interrupt generation, USB host controller state, USB frame
management, and the methods that the hardware must use to process the lists
of data structures in system memory.

This document does not duplicate the information presented in the OHCI
Specification for USB or the USB Specification. OMAP5910 USB host control-
ler users can refer to the USB Specification and the OHCI Specification for
USB for detailed discussions of USB requirements and OHCI controller
operation.

14.2.2 OMAP5910 USB Host Controller Differences from OHCI Specification for USB

The OMAP5910 USB host controller implementation does not implement
every aspect of the functionality defined in the OHCI Specification for USB.
The differences focus on power switching, overcurrent reporting, and the
OHCI ownership change interrupt. Other restrictions are imposed by
OMAP5910 system memory addressing mechanisms and the effects of
OMAP5910 pin multiplexing options.

14.2.2.1 Power Switching Output Pins Not Supported

The OMAP5910 device does not provide pins that can be controlled directly
by the USB host controller OHCI port power control features. The OHCI
RhPortStatus(n) register port power control bits can be programmed by the
USB host controller driver software, but this does not have any direct effect on
any VBUS switching implemented on the board.

Users can use other GPIO pins or implementation-specific control
mechanisms to control VBUS switching.

USB Open Host Controller Interface Functionality

 14-6

14.2.2.2 Overcurrent Protection Input Pins Not Supported

The OMAP5910 device does not provide any pins that allow the USB host con-
troller OHCI RhPortStatus(n) overcurrent protection status bits to be directly
controlled by external hardware.

Users can use GPIO pins or other implementation-specific control mecha-
nisms to report port overcurrent information to the USB host controller driver.

14.2.2.3 HMC_MODE and Top-Level Pin Multiplexing and OHCI Registers

The USB signal multiplexing modes provide selections where 0, 1, 2, or 3 USB
host controller ports can be brought to OMAP5910 pins. The OHCI
RhDescriptorA register always reports three available USB host ports,
regardless of the CONF_MOD_USB_HOST_HMC_MODE_R field of the
MOD_CONF_CTRL_0 register or top-level pin multiplexing settings. When
the CONF_MOD_USB_HOST_HMC_MODE_R field setting of the
MOD_CONF_CTRL_0 register disables a USB host controller port, the USB
host controller sees that port as unattached.

When OMAP5910 top-level pin multiplexing configures a pin for functionality
other than the USB, the USB host controller is disconnected from that pin and
that pin does not affect the USB host controller.

14.2.2.4 No Ownership Change Interrupt

The OMAP5910 USB host controller does not implement the OHCI ownership
change interrupt.

14.2.2.5 Valid Address Ranges for Pointers to Data Structures

The mechanism that allows the OMAP5910 USB host controller to access
USB endpoint descriptor (ED), transfer descriptor (TD) , and HCCA data struc-
tures in system memory places certain requirements on the registers that point
to data structures in system memory and on the pointers within those data
structures. Details can be found in Section 14.6, USB Host Controller Access
to System Memory.

USB Open Host Controller Interface Functionality

14-7Universal Serial Bus Host

14.2.3 OMAP5910 Implementation of OHCI Specification for USB

14.2.3.1 Isochronous TD OFFSETX/PSWX Values

The OMAP5910 USB host controller implements the OHCI Specification for
USB optional feature of checking isochronous OFFSETX/PSWX values. If
either OFFSETX or OFFSET(X+1) does not have a condition code of Not
Accessed, or if the OFFSET(X+1) value is not greater than or equal to
OFFSETX, then an unrecoverable Error is reported. Unrecoverable errors
issued for these reasons do not cause an update of the HostUEAddr,
HostUEStatus, or HostTimeoutCtrl registers.

14.2.3.2 OMAP5910 USB Host Controller Endpoint Descriptor (ED) List Head Pointers

The OHCI Specification for USB provides a specific sequence of operations
for the host controller driver to perform when setting up the host controller.
Failure to follow that sequence can result in malfunction. As a specific
example, the HcControlHeadED and HCBulkHeadED pointer registers and
the 32 HccaInterruptTable pointers must all point to valid local bus addresses
of valid endpoint descriptors.

The OMAP5910 USB host controller does not check HcControlHeadED regis-
ters, HcBulkHeadED registers, or the values in the 32 HccaInterruptTable
pointers before using them to access EDs. If any of these pointers are NULL
when the corresponding list enable bit is set, the OMAP5910 USB host control-
ler attempts to access using the local bus virtual address of 0, which
causes an unrecoverable error. Registers HostUEAddr, HostUEStatus, and
HostTimeoutCtrl are updated in this case.

USB Host Controller Registers

 14-8

14.3 USB Host Controller Registers

Most of the OMAP5910 host controller (HC) registers are the OHCI operation-
al registers, which are defined by the OHCI Specification for USB. Four
additional registers not specified by the OHCI Specification for USB provide
additional information about the USB host controller state. USB host controller
registers can be accessed in user and supervisor modes.

Note:

The USB host controller registers must be accessed using 32-bit data opera-
tions. Use of smaller data access sizes may result in unexpected operation
of the USB host controller. The USB host controller registers and the USB
host controller data structures are organized for little endian operation mode
because the TI925T MPU processor on the OMAP5910 device must use
little endian mode.

The OMAP5910 USB host controller registers are listed in Table 14–1.
Table 14–2 through Table 14–29 describe specific register bits.

Table 14–1. USB Host Controller Registers

Name Description R/W Size† Address

HcRevision OHCI revision number R 32 FFFB:A000h

HcControl HC operating mode R/W 32 FFFB:A004h

HcCommandStatus HC command and status R/W 32 FFFB:A008h

HcInterruptStatus HC interrupt status R/W 32 FFFB:A00Ch

HcInterruptEnable HC interrupt enable R/W 32 FFFB:A010h

HcInterruptDisable HC interrupt disable R 32 FFFB:A014h

HcHCCA Local bus virtual address of HCCA‡ R/W 32 FFFB:A018h

HcPeriodCurrentED Local bus virtual address of current
periodic endpoint descriptor‡

R/W 32 FFFB:A01Ch

HcControlHeadED Local bus virtual address of head of
control endpoint descriptor list‡

R/W 32 FFFB:A020h

HcControlCurrentED Local bus virtual address of current
control endpoint descriptor‡

R/W 32 FFFB:A024h

† Access to these registers must be by 32-bit reads or 32-bit writes. Use of other access sizes may result in undefined operation.
‡ Restrictions apply to the local bus virtual addresses used in these registers. See Section 14.6.1, Local Bus Addressing.
§ This register provides control and status for the OMAP5910 pins associated with the USB transceiver for some HMC_MODE

values.
¶ This register provides control and status for the OMAP5910 pins associated with USB port 1 for some HMC_MODE values.
This register provides control and status for the OMAP5910 pins associated with USB port 2 for some HMC_MODE values.

USB Host Controller Registers

14-9Universal Serial Bus Host

Table 14–1. USB Host Controller Registers (Continued)

Name AddressSize†R/WDescription

HcBulkHeadED Local bus virtual address of head of
bulk endpoint descriptor list‡

R/W 32 FFFB:A028h

HcBulkCurrentED Local bus virtual of current bulk
endpoint descriptor‡

R/W 32 FFFB:A02Ch

HcDoneHead Local bus virtual address of head of list
of retired transfer descriptors‡

R 32 FFFB:A030h

HcFmInterval HC frame interval R/W 32 FFFB:A034h

HcFmRemaining HC frame remaining R 32 FFFB:A038h

HcFmNumber HC frame number R 32 FFFB:A03Ch

HcPeriodicStart HC periodic start R/W 32 FFFB:A040h

HcLSThreshold HC low speed threshold R/W 32 FFFB:A044h

HcRhDescriptorA HC root hub A R, R/W 32 FFFB:A048h

HcRhDescriptorB HC root hub B R/W 32 FFFB:A04Ch

HcRhStatus HC root hub status R, R/W 32 FFFB:A050h

HcRhPortStatus1 HC port 1 control and status§ R, R/W 32 FFFB:A054h

HcRhPortStatus2 HC port 2 control and status¶ R, R/W 32 FFFB:A058h

HcRhPortStatus3 HC port 3 control and status# R, R/W 32 FFFBA05Ch

Reserved Reserved None FFFB:A060h to
FFFB:A0DFh

HostUEAddr Host UE address R 32 FFFB:A0E0h

HostUEStatus Host UE status R 32 FFFB:A0E4h

HostTimeoutCtrl Host timeout control R/W 32 FFFB:A0E8h

HostRevision Host revision R 32 FFFB:A0ECh

Reserved Reserved None FFFB:A0F0h to
FFFB:AFFFh

† Access to these registers must be by 32-bit reads or 32-bit writes. Use of other access sizes may result in undefined operation.
‡ Restrictions apply to the local bus virtual addresses used in these registers. See Section 14.6.1, Local Bus Addressing.
§ This register provides control and status for the OMAP5910 pins associated with the USB transceiver for some HMC_MODE

values.
¶ This register provides control and status for the OMAP5910 pins associated with USB port 1 for some HMC_MODE values.
This register provides control and status for the OMAP5910 pins associated with USB port 2 for some HMC_MODE values.

USB Host Controller Registers

 14-10

The other revision number register reports the revision number of the OHCI
Specification for USB upon which the USB host controller is based.

Table 14–2. OHCI Revision Number Register (HcRevision)

Bit Name Description Type
Reset
Value

31–8 Reserved Reserved 0x00 0000

7–0 REV OHCI Specification revision—the OHCI revision
number upon which the USB host controller is based.
Write has no effect.

R 0x10

The HC operating mode register controls the operating mode of the USB host
controller.

Table 14–3. HC Operating Mode Register (HcControl)

Bit Name Value Description Type
Reset
Value

31–11 Reserved Reserved

10 RWE Remote wake-up enable. This bit has no effect in
OMAP5910. The OMAP5910 USB host controller does
not provide a processor wake-up mechanism.

R/W 0

9 RWC Remote wake up connected. This bit has no effect in
OMAP5910. The OMAP5910 USB host controller does
not provide a processor wake-up mechanism.

R/W 0

8 IR Interrupt routing. The OMAP5910 USB host controller
does not provide an SMI interrupt. This bit must be 0 to
allow the USB host controller interrupt to propagate to
the MPU level 2 interrupt controller.

R/W 0

USB Host Controller Registers

14-11Universal Serial Bus Host

Table 14–3. HC Operating Mode Register (HcControl) (Continued)

Bit
Reset
ValueTypeDescriptionValueName

7–6 HCFS Host controller functional state: R/W 00

00 USBReset

01 USBResume

10 USBOperational

11 USBSuspend

A transition to USBOperational causes SOF generation
to begin in 1 ms. The USB host controller may
automatically transition from USBSuspend to
USBResume if a downstream resume is received. The
USB host controller enters USBSuspend after a
software reset. The USB host controller enters
USBReset after a hardware reset. The USBReset state
resets the root hub and causes downstream signaling
of USBReset.

5 BLE Bulk list enable: R/W 0

0 Bulk ED list not processed in the next 1-ms frame. Host
controller driver can modify the list. If driver removes
the ED pointed to by the HcBulkCurrentED from the ED
list, it must update HcBulk-CurrentED to point to an ED
still on the list before it reenables the bulk list.

1 Enables processing of bulk ED List. HcBulkHeadED
must be 0 or point to a valid ED before setting this bit.
HcBulkCurrentED must point to a valid ED or be 0
before setting this bit.

4 CLE Control list enable: R/W 0

0 Control ED list is not processed in the next 1-ms frame.
Host controller driver may modify the control ED list. If
driver removes the ED pointed to bythe
HcControlCurrentED from the ED list, it must
updateHcControlCurrentED to point to an ED still on
the list before it reenables the control list.

1 Enables processing of the control ED list.
HcControlHeadED must be 0 or point to a valid ED
before setting this bit. HcControlCurrentED must be 0
or point to a valid ED before setting this bit

USB Host Controller Registers

 14-12

Table 14–3. HC Operating Mode Register (HcControl) (Continued)

Bit
Reset
ValueTypeDescriptionValueName

3 IE Isochronous enable R/W 0

0 Enables processing of isochronous EDs.

1 Isochronous EDs are not processed. The USB host
controller checks this bit every time it finds an
isochronous ED in the periodic list.

When this bit is written to 1, processing of isochronous
EDs might not occur in the current frame but is enabled
in the next frame.

2 PLE Periodic list enable R/W 0

0 The periodic ED lists are not processed. When written
to 0, periodic list processing is disabled beginning with
the next frame.

1 Enables processing of the periodic ED lists. When
written to 1, periodic list processing begins in the next
frame.

1–0 CBSR Control/bulk service ratio

Specifies the ratio between control and bulk EDs
processed in a frame.

R/W 00

00 One control ED per bulk ED

01 Two control EDs per bulk ED

10 Three control EDs per bulk ED

11 Four control EDs per bulk ED

USB Host Controller Registers

14-13Universal Serial Bus Host

The HC command and status register shows the current state of the host
controller and accepts commands from the host controller driver.

Table 14–4. HC Command and Status Register (HcCommandStatus)

Bit Name Description Type
Reset
Value

31–18 Reserved Reserved

17–16 SOC Scheduling overrun count

Counts the number of times a scheduling overrun occurs.
This count is incremented even if the host controller driver
has not acknowledged any previous pending scheduling
overrun interrupt.

R 00

15–4 Reserved Reserved

3 OCR Ownership change request

This bit is set by the host controller driver to gain ownership
of the host controller.

OMAP5910 does not support SMI interrupts, so no
ownership change interrupt occurs.

R/W 0

2 BLF Bulk list filled

The host controller driver must set this bit if it modifies the
bulk list to include new TDs. If HcBulkCurrentED is 0, the
USB host controller does not begin processing bulk list EDs
unless this bit is set. When the USB host controller sees this
bit set and begins processing the bulk list, it clears this bit.

R/W 0

1 CLF Control list filled

The host controller driver must set this bit if it modifies the
control list to include new TDs. If HcControlHeadED is 0, the
USB host controller does not begin processing control list
EDs unless this bit is set. When the USB host controller sees
this bit set and begins processing the control list, it clears this
bit.

R/W 0

0 HCR Host controller reset

Write of 0 has no effect.

1: This bit initiates a software reset of the USB host
controller. This transitions the USB host controller to the
USBSuspend state. This resets most USB host controller
OHCI registers. OHCI register accesses must not be
attempted until a read of this register returns a 0. A write of 1
to this bit does not reset the root hub, and does not signal
USB reset to downstream USB functions.

R/W 0

USB Host Controller Registers

 14-14

The HC interrupt status register reports the status of the USB host controller
internal interrupt sources.

Table 14–5. HC Interrupt Status Register (HcInterruptStatus)

Bit Name Description Type
Reset
Value

31 Reserved Reserved

30 OC Ownership change

The OMAP5910 USB host controller does not implement
ownership change interrupts.

R 0

29–7 Reserved Reserved

6 RHSC Root hub status change

When 1 indicates a root hub status change has occurred.

Write of 0 has no effect.

Write of 1 clears this bit.

R/W 0

5 FNO Frame number overflow

When 1 indicates a frame number overflow has occurred.

Write of 0 has no effect.

Write of 1 clears this bit.

R/W 0

4 UE Unrecoverable error

When 1 indicates that an unrecoverable error has occurred

on the local bus or that an isochronous TD PSW field
condition code was not set to Not Accessed when the USB
host controller attempted to perform a transfer using that
PSW/offset pair.

Write of 0 has no effect.

Write of 1 clears this bit.

R/W 0

3 RD Resume detected

When 1 indicates that a downstream device has issued a

resume request.

Write of 0 has no effect.

Write of 1 clears this bit.

R/W 0

USB Host Controller Registers

14-15Universal Serial Bus Host

Table 14–5. HC Interrupt Status Register (HcInterruptStatus) (Continued)

Bit
Reset
ValueTypeDescriptionName

2 SF Start of frame

When 1 indicates that a SOF has been issued.

Write of 0 has no effect.

Write of 1 clears this bit.

R/W 0

1 WDH Write done head

When 1 indicates that the USB host controller has updated

the HcDoneHead register.

Write of 0 has no effect.

Write of 1 clears this bit. The host controller driver must read
the value from HcDoneHead before writing 1 to this bit.

R/W 0

0 SO Scheduling overrun

When 1 indicates that a scheduling overrun has occurred.

Write of 0 has no effect.

Write of 1 clears this bit.

R/W 0

The HC interrupt enable register enables various OHCI interrupt sources to
generate interrupts to the OMAP5910 level 2 interrupt handler.

Table 14–6. HC Interrupt Enable Register (HcInterruptEnable)

Bit Name Description Type
Reset
Value

31 MIE Master interrupt enable

When 1, allows other enabled OHCI interrupt sources to
propagate to the OMAP5910 level 2 interrupt controller.

When 0, OHCI interrupt sources are ignored and no USB
host controller interrupts are propagated to the OMAP5910
level 2 interrupt controller.

A write of 0 has no effect on this bit.

A write of 1 sets this bit.

R/W 0

30 OC Ownership change

This bit has no effect on OMAP5910.

R 0

29–7 Reserved Reserved

USB Host Controller Registers

 14-16

Table 14–6. HC Interrupt Enable Register (HcInterruptEnable) (Continued)

Bit
Reset
ValueTypeDescriptionName

6 RHSC Root hub status change

When 1 and MIE is 1, allows root hub status change
interrupts to propagate to the OMAP5910 level 2 interrupt
controller.

When 0, or when MIE is 0, root hub status change
interrupts do not propagate.

A write of 0 has no effect on this bit.

A write of 1 sets this bit.

R/W 0

5 FNO Frame number overflow

When 1 and MIE is 1, allows frame number overflow
interrupts to propagate to the OMAP5910 level 2 interrupt
controller.

When 0, or when MIE is 0, frame number overflow
interrupts do not propagate.

A write of 0 has no effect on this bit.

A write of 1 sets this bit.

R/W: 0

4 UE Unrecoverable error

When 1 and MIE is 1, allows unrecoverable error interrupts
to propagate to the OMAP5910 level 2 interrupt controller.

When 0, or when MIE is 0, unrecoverable error interrupts do
not propagate.

A write of 0 has no effect on this bit.

A write of 1 sets this bit.

R/W 0

3 RD Resume detected

When 1 and MIE is 1, allows resume detected interrupts to
propagate to the OMAP5910 level 2 interrupt controller.

When 0, or when MIE is 0, resume detected interrupts do
not propagate.

A write of 0 has no effect on this bit.

A write of 1 sets this bit.

R/W 0

USB Host Controller Registers

14-17Universal Serial Bus Host

Table 14–6. HC Interrupt Enable Register (HcInterruptEnable) (Continued)

Bit
Reset
ValueTypeDescriptionName

2 SF Start of frame

When 1 and MIE is 1, allows start of frame interrupts to
propagate to the OMAP5910 level 2 interrupt controller.

When 0, or when MIE is 0, start of frame interrupts do not
propagate.

A write of 0 has no effect on this bit.

A write of 1 sets this bit.

R/W 0

1 WDH Write done head

When 1 and MIE is 1, allows write done head interrupts to
propagate to the OMAP5910 level 2 interrupt controller.

When 0, or when MIE is 0, write done head interrupts do
not propagate.

A write of 0 has no effect on this bit.

A write of 1 sets this bit.

R/W 0

0 SO Scheduling overrun

When 1 and MIE is 1, allows scheduling overrun interrupts
to propagate to the OMAP5910 level 2 interrupt controller.

When 0, or when MIE is 0, scheduling overrun interrupts do
not propagate.

A write of 0 has no effect on this bit.

A write of 1 sets this bit.

R/W 0

USB Host Controller Registers

 14-18

The HC interrupt disable register is used to clear bits in the HcInterruptEnable
register.

Table 14–7. HC Interrupt Disable Register (HcInterruptDisable)

Bit Name Description Type
Reset
Value

31 MIE Master interrupt enable

Read always returns 0.

Write of 0 has no effect.

Write of 1 clears the HcInterruptEnable MIE bit.

R/W 0

30 OC Ownership change

This bit has no effect on OMAP5910.

R 0

29–7 Reserved Reserved

6 RHSC Root hub status change

Read always returns 0.

Write of 0 has no effect.

Write of 1 clears the HcInterruptEnable RHSC bit.

R/W 0

5 FNO Frame number overflow

Read always returns 0.

Write of 0 has no effect.

Write of 1 clears the HcInterruptEnable FNO bit.

R/W 0

4 UE Unrecoverable error

Read always returns 0.

Write of 0 has no effect.

Write of 1 clears the HcInterruptEnable UE bit.

R/W 0

3 RD Resume detected

Read always returns 0.

Write of 0 has no effect.

Write of 1 clears the HcInterruptEnable RD bit.

R/W 0

2 SF Start of frame

Read always returns 0.

Write of 0 has no effect.

Write of 1 clears the HcInterruptEnable SF bit.

R/W 0

USB Host Controller Registers

14-19Universal Serial Bus Host

Table 14–7. HC Interrupt Disable Register (HcInterruptDisable) (Continued)

Bit
Reset
ValueTypeDescriptionName

1 WDH Write done head

Read always returns 0.

Write of 0 has no effect.

Write of 1 clears the HcInterruptEnable WDH bit.

R/W 0

0 SO Scheduling overrun

Read always returns 0.

Write of 0 has no effect.

Write of 1 clears the HcInterruptEnable SO bit.

R/W 0

The HCAA address register defines the local bus virtual address of the begin-
ning of the HCCA.

Table 14–8. HC HCAA Address Register (HcHCCA)

Bit Name Description Type
Reset
Value

31–8 HCCA See Section 14.6.1, Local Bus Addressing, for the restrictions
on local bus virtual addresses.

R/W 0

7–0 Reserved Reserved R 0

The HC current periodic register defines the local bus virtual address of the
next endpoint descriptor (ED) on the periodic ED List.

Table 14–9. HC Current Periodic Register (HcPeriodCurrentED)

Bit Name Description Type
Reset
Value

31–4 PCED Local bus virtual address of current ED on the periodic ED
list.

This field represents bits 31:4 of the local bus virtual address
of the next ED on the periodic ED List. EDs are assumed to
begin at 16-byte-aligned address, so bits 3:0 of this pointer
are assumed to be 0. See Section 14.6.1, Local Bus
Addressing, for the restrictions on local bus virtual
addresses.

R/0 0x0000
000

3–0 Reserved Reserved R 0x0

USB Host Controller Registers

 14-20

The HC head control register defines the local bus virtual address of the head
ED of the control ED list.

Table 14–10. HC Head Control Register (HcControlHeadED)

Bit Name Description Type
Reset
Value

31–4 CHED Local bus virtual address of head ED on the control ED list

This field represents bits 31:4 of the local bus virtual address
of the head ED on the control ED list. EDs are assumed to
begin at 16-byte-aligned address, so bits 3:0 of this pointer
are assumed to be 0. See See Section 14.6.1, Local Bus
Addressing, for the restrictions on local bus virtual
addresses.

R/W 0

3–0 Reserved Reserved R 0x0

The HC current control register defines the local bus virtual address of the next
ED on the control ED list.

Table 14–11. HC Current Control Register (HcControlCurrentED)

Bit Name Description Type
Reset
Value

31–4 CCED Local bus virtual address of current ED on the control ED list

This field represents bits 31:4 of the local bus virtual address
of the next ED on the control ED list. EDs are assumed to
begin at 16-byte-aligned address, so bits 3:0 of this pointer
are assumed to be 0. See See Section 14.6.1, Local Bus
Addressing, for the restrictions on local bus virtual
addresses.

A value of 0x0000000 indicates that the USB host controller
has reached the end of the control ED list without finding any
transfers to process.

This register is automatically updated by the USB host
controller.

R/W 0

3–0 Reserved Reserved R 0x0

USB Host Controller Registers

14-21Universal Serial Bus Host

The HC head bulk register defines the local bus virtual address of the head ED
on the bulk ED list.

Table 14–12. HC Head Bulk Register (HcBulkHeadED)

Bit Name Description Type
Reset
Value

31–4 BHED Local bus virtual address of head ED on the bulk ED list

This field represents bits 31:4 of the local bus virtual address
of the head ED on the bulk ED list. EDs are assumed to
begin at 16-byte-aligned address, so bits 3:0 of this pointer
are assumed to be 0. See See Section 14.6.1, Local Bus
Addressing, for the restrictions on local bus virtual
addresses.

R/W 0

3–0 Reserved Reserved R 0x0

The HC current bulk register defines the local bus virtual address of the next
ED on the bulk ED list.

Table 14–13. HC Current Bulk Register (HcBulkCurrentED)

Bit Name Description Type
Reset
Value

31–4 BCED Local bus virtual address of current ED on the bulk ED list

This field represents bits 31:4 of the local bus virtual address
of the next ED on the bulk ED list. EDs are assumed to begin
at 16-byte-aligned address, so bits 3:0 of this pointer are
assumed to be 0. See See Section 14.6.1, Local Bus
Addressing, for the restrictions on local bus virtual
addresses.

A value of 0x0000000 indicates that the USB host controller
has reached the end of the bulk ED list without finding any
transfers to process.

This register is automatically updated by the USB host
controller.

R/W 0

3–0 Reserved Reserved R 0x0

USB Host Controller Registers

 14-22

The HC head done register defines the local bus virtual address of the current
head of the done TD queue.

Table 14–14. HC Head Done Register (HcDoneHead)

Bit Name Description Type
Reset
Value

31–4 DH Local bus virtual address of the last TD that was added to
the done queue.

This field represents bits 31:4 of the local bus virtual
address of the top TD on the done TD queue. TDs are
assumed to begin at 16-byte-aligned address, so bits 3:0 of
this pointer are assumed to be 0. See See Section 14.6.1,
Local Bus Addressing, for the restrictions on local bus
virtual addresses.

A value of 0x00000000 indicates that there are no TDs on
the done queue.

This register is automatically updated by the USB host
controller.

R 0x0000000

3–0 Reserved Reserved R 0x0

The HC frame interval register defines the number of 12-MHz clock pulses in
each USB frame.

Table 14–15. HC Frame Interval Register (HcFmInterval)

Bit Name Description Type
Reset
Value

31 FIT Frame interval toggle

The host controller driver must toggle this bit any time it
changes the frame interval field.

R/W 0

30–16 FSMPS Largest data packet

Largest data packet size allowed for full speed packets, in bit
times.

R/W 0

15–14 Reserved Reserved

13–0 FI Frame interval

Number of 12-MHz clocks in the USB frame. Nominally, this
is set to 11,999, to give a 1-ms frame. The host controller
driver may make minor changes to this field to attempt to
manually synchronize with another clock source.

R/W 0x2EDF

USB Host Controller Registers

14-23Universal Serial Bus Host

The HC frame remaining register reports the number of full speed bit times
remaining in the current frame.

Table 14–16. HC Frame Remaining Register (HcFmRemaining)

Bit Name Description Type
Reset
Value

31 FRT Frame remaining toggle

This bit is loaded with the frame interval toggle bit every time
the USB host controller loads the frame interval field into the
frame remaining field.

R 0

30–14 Reserved Reserved

13–0 FR Frame remaining

The number of full speed bit times remaining in the current
frame. This field is automatically reloaded with the frame
interval field value at the beginning of every frame.

R 0

The HC frame number register reports the current USB frame number.

Table 14–17. HC Frame Number Register (HcFmNumber)

Bit Name Description Type
Reset
Value

31–16 Reserved Reserved

15–0 FN Frame number

This field reports the current USB frame number. It is
incremented when the frame remaining field is reloaded with
the frame interval field value. Frame number automatically
rolls over from 0xFFFF to 0x0000.

After frame number is incremented, its new value is written to
the HCCA and the USB host controller sets the SOF interrupt
status bit and begins processing the ED lists.

R 0

USB Host Controller Registers

 14-24

The HC periodic start register defines the position within the USB frame where
EDs on the periodic list have priority over EDs on the bulk and control lists.

Table 14–18. HC Periodic Start Register (HcPeriodicStart)

Bit Name Description Type
Reset
Value

31–14 Reserved Reserved

13–0 PS Periodic start

The host controller driver must program this value to be
about 10% less than the frame interval field value so that
control and bulk EDs have priority for the first 10% of the
frame; then periodic EDs have priority for the remaining 90%
of the frame.

R/W 0

The HC low-speed threshold register defines the latest time in a frame that the
USB host controller can begin a low-speed packet.

Table 14–19. HC Low-Speed Threshold Register (HcLSThreshold)

Bit Name Description Type
Reset
Value

31–14 Reserved Reserved

13–0 LST Low-speed threshold

This field defines the number of full-speed bit times in the
frame after which the USB host controller may not start an
8-byte low-speed packet. The USB host controller only
begins a low speed transaction if the frame remaining field is
greater than the low-speed threshold.

The host controller driver must set this field to a value that
ensures that an 8-byte low-speed TD completes before the
end of the frame. When set, the host controller driver must
not change the value.

R/W 0x0628

USB Host Controller Registers

14-25Universal Serial Bus Host

The HC root hub A register defines several aspects of the USB host controller
root hub functionality.

Table 14–20. HC Root Hub A Register (HcRhDescriptorA)

Bit Name Value Description Type
Reset
Value

31–24 POTPG Power-on to power-good time

This field defines the minimum amount of time (2 ms ×
POTPG) between the USB host controller turning on
power to a downstream port and when the USB host
can access the downstream device.

This field has no effect on USB host controller
operation. After turning on power to a port, the USB
host controller driver must delay the amount of time
implied by POTPG before attempting to reset an
attached downstream device.

The required amount of time is implementation-specific
and must be calculated based on the amount of time
the VBUS supply takes to provide valid VBUS to a
worst-case downstream USB function controller.

The implementation-specific value must be computed
and then written to this register before the USB host
controller driver is initialized.

Because OMAP5910 does not provide a direct control
from the USB host controller to switch VBUS on and
off, this value must take into account any delays
caused by other methods of controlling VBUS
externally.

R/W 0xA

23–13 Reserved Reserved

12 NOCP No overcurrent protection

When 1, this bit indicates that the USB host controller
does not implement overcurrent protection inputs.
OMAP5910 does not provide signals to allow
connection of external overcurrent indication signals to
the USB host controller, so this bit defaults to 1.

R/W 1

11 OCPM Overcurrent protection mode

OMAP5910 does not provide overcurrent protection
input signals, so this bit has no effect.

R/W 0

USB Host Controller Registers

 14-26

Table 14–20. HC Root Hub A Register (HcRhDescriptorA) (Continued)

Bit
Reset
ValueTypeDescriptionValueName

10 DT Device type

This bit is always 0, which indicates that the USB host
controller implemented is not a compound device.

R 0

9 NPS No power switching R/W 1

0 Indicates that VBUS power switching is supported and
is either per-port or all-port switched per the power
switching mode field.

1 Indicates that VBUS power switching is not supported
and that power is available to all downstream ports
when the USB host controller is powered.

Because OMAP5910 does not provide connections
from the USB host controller to control external VBUS
switching, this bit defaults to 1.

8 PSM Power switching mode R/W 0

0 Indicates that all ports are powered at the same time.

1 Indicates that individual port power switching is
supported.

Because OMAP5910 does not provide signals from the
USB host controller to control external VBUS switching,
this bit defaults to 0.

7–0 NDP Number of downstream ports

This register defaults to 3 to indicate three downstream
ports.

The USB signal multiplexing mode and OMAP5910
top-level pin multiplexing features may place the
OMAP5910 device in a mode where 0, 1, 2, or 3 of the
USB host controller downstream ports are actually
usable. This register reports three regardless of USB
signal multiplexing mode and OMAP5910 top-level pin
multiplexing mode.

See Section 14.5, USB Pin Multiplexing, for information
on USB signal multiplexing.

R 0x03

USB Host Controller Registers

14-27Universal Serial Bus Host

The HC root hub B register defines several aspects of the USB host controller
root hub functionality.

Table 14–21. HC Root Hub B Register (HcRhDescriptorB)

Bit Name Description Type
Reset
Value

31–16 PPCM Port power control mask

Each bit defines whether a corresponding downstream port
has port power controlled by the global power control. If set,
per-port power control is implemented for the corresponding
port. If clear, global power control is implemented for the
corresponding port.

PPCM bit 0 is reserved.

PPCM bit 1 is the port power control mask for downstream
port 1.

PPCM bit 2 is the port power control mask for downstream
port 2.

PPCM bit 3 is the port power control mask for downstream
port 3.

PPCM bits 4 through 15 are reserved.

OMAP5910 does not provide connections from the USB host
controller to pins to provide external port power switching.
Systems that implement port power switching must use other
mechanisms to control port power.

R/W 0x0000

15–0 DR Device removable

Each bit defines whether a corresponding downstream port
has a removable or nonremovable device. A cleared bit
indicates the corresponding port may have a removable
device attached. A set bit indicates that the corresponding
port has a nonremovable device attached.

DR bit 0 is reserved.

DR bit 1 is the device removable bit for downstream port 1.

DR bit 2 is the device removable bit for downstream port 2.

DR bit 3 is the device removable bit for downstream port 3.

DR bits 4 through 15 are reserved.

R/W 0x0000

USB Host Controller Registers

 14-28

The HC root hub status register reports the USB host controller root hub status.

Table 14–22. HC Root Hub Status Register (HcRhStatus)

Bit Name Description Type
Reset
Value

31 CRWE Clear remote wake-up enable

Write of 0 has no effect.

Write of 1 clears the device remote wake-up enable bit.

R/W 0

30–18 Reserved Reserved

17 OCIC Overcurrent indication change

This bit is automatically set when the overcurrent indicator bit
changes.

Write of 0 has no effect.

Write of 1 clears this bit.

R/W 0

16 LPSC Local power status change

This bit defaults to 0 since the root hub does not support the
local power status feature.

Write of 0 has no effect.

Write of 1 sets the PortPowerStatus bits for all ports if
PowerSwitchingMode is 0. A write of 1 sets PortPowerStatus
bits for ports with their corresponding PortPowerControlMask
bits cleared if PowerSwitchingMode is 1.

R/W 0

15 DRWE Device remote wake-up enable

When 1, this bit enables a ConnectStatusChange event to be
treated as a resume event, which causes a transition from
USBSuspend to USBResume state, and sets the
ResumeDetected interrupt status bit.

When 0, ConnectStatusChange events do not cause a
transition from USBSuspend to USBResume state and the
ResumeDetected interrupt is not changed.

Write of 0 has no effect.

Write of 1 sets the device remote wake-up enable bit.

R/W 0

14–2 Reserved Reserved

USB Host Controller Registers

14-29Universal Serial Bus Host

Table 14–22. HC Root Hub Status Register (HcRhStatus) (Continued)

Bit
Reset
ValueTypeDescriptionName

1 OCI Overcurrent indicator

This bit reports global overcurrent indication if global
overcurrent reporting is selected. When 1, this bit indicates
that an overcurrent condition has been sensed. When 0, no
overcurrent condition has been sensed.

Because OMAP5910 does not provide signals for external
hardware to report overcurrent status to the USB host
controller, this bit is always 0.

R 0

0 LPS Local power status

The root hub does not support the local power status feature.
This bit always reads as 0.

Write of 0 has no effect.

Write of 1 when in global power mode (power switching mode
= 0), turns off power to all ports. If in per-port power mode
(power switching mode = 1), a write of 1 turns off power to
those ports whose corresponding PortPowerControlMask bit
is 0.

Because OMAP5910 does not provide signals from the USB
host controller to external VBUS switching circuitry, this bit
has no effect.

R/W 0

USB Host Controller Registers

 14-30

The HC port 1 status and control register reports and controls the state of USB

host port 1. HcRhPortStatus1 can provide status and control for the

OMAP5910 USB port associated with the OMAP5910 integrated USB trans-

ceiver according to the HMC_MODE value. See Section 14.5, USB Pin

Multiplexing.

Table 14–23. HC Port 1 Status and Control Register (HcRhPortStatus1)

Bit Name Description Type
Reset
Value

31–21 Reserved Reserved

20 PRSC Port 1 reset status change

This bit indicates, when 1, that the port 1 port reset status bit
has changed.

Write of 0 has no effect.

Write of 1 clears this bit.

R/W 0

19 OCIC Port 1 overcurrent indicator change

This bit indicates, when 1, that the port 1 port overcurrent
indicator has changed.

Write of 0 has no effect.

Write of 1 clears this bit.

The OMAP5910 does not provide inputs for signaling
external overcurrent indication to the USB host controller.
Overcurrent monitoring, if required, must be handled through
some other mechanism.

R/W 0

18 PSSC Port 1 suspend status change

This bit indicates, when 1, that the port 1 port suspend status
has changed. Suspend status is considered to have changed
only after the resume pulse, low speed EOP, and 3-ms
synchronization delays have been completed.

Write of 0 has no effect.

Write of 1 clears this bit.

R/W 0

17 PESC Port 1 enable status change

This bit indicates, when 1, that the port 1 port enable status
changed.

Write of 0 has no effect.

Write of 1 clears this bit.

R/W 0

USB Host Controller Registers

14-31Universal Serial Bus Host

Table 14–23. HC Port 1 Status and Control Register (HcRhPortStatus1) (Continued)

Bit
Reset
ValueTypeDescriptionName

16 CSC Port 1 connect status change

This bit indicates, when 1, that the port 1 current connect
status has changed due to a connect or disconnect event. If
CurrentConnectStatus is 0 when a SetPortReset,
SetPortEnable, or SetPortSuspend write occurs, then this bit
is set.

A write of 1 clears this bit. A write of 0 has no effect.

If the HcRhDescriptorB.DR[1] bit is set to indicate a
nonremovable USB device on port 1, this bit is set only after
a root hub reset to inform the system that the device is
attached.

R/W 0

15–10 Reserved Reserved

9 LSDA/CPP Port 1 low-speed device attached/clear port power

This bit indicates, when read as 1, that a low-speed device is
attached to port 1. A 0 in this bit indicates a full speed device.

This bit is only valid when port 1 CurrentConnectStatus is 1.

The host controller driver can write a 1 to this bit to clear the
port 1 PortPowerStatus. A write of 0 to this bit has no effect.

OMAP5910 USB host controller does not control external
port power using OHCI mechanisms, so, if required, USB
host port power must be controlled through other means.

R/W 0

8 PPS/SPP Port 1 port power status/set port power

This bit indicates, when read as 1, that the port 1 power is
enabled. When read as 0, port 1 power is not enabled.

The OMAP5910 does not provide signals from the USB host
controller to control external port power, so, if required, USB
host port power control signals must be controlled through
other means. Software can track the current power state
using the port power status bit and other power control bits,
but those bits have no direct effect on external port power
control.

A write of 1 to this bit sets the port 1 port power status bit. A
write of 0 has no effect.

R/W 1

7–5 Reserved Reserved

USB Host Controller Registers

 14-32

Table 14–23. HC Port 1 Status and Control Register (HcRhPortStatus1) (Continued)

Bit
Reset
ValueTypeDescriptionName

4 PRS/SPR Port 1 port reset status/set port reset

When read as 1, indicates that port 1 is receiving the USB
reset signaling. When read as 0, USB reset is not being sent
to port 1.

A write of 1 to this bit sets the port 1 port reset status bit and
causes the USB host controller to begin signaling USB reset
to port 1. A write of 0 to this bit has no effect.

R/W 0

3 POCI/CSS Port 1 port overcurrent indicator/clear suspend status

When read as 1, indicates a port 1 port overcurrent condition
has occurred. When 0, no port 1 port overcurrent condition
has occurred.

OMAP5910 does not provide inputs for signaling external
overcurrent indication to the USB host controller. Overcurrent
monitoring, if required, must be handled through some other
mechanism.

A write of 1 to this bit when port 1 port suspend status is 1
causes resume signaling on port 1. A write of 1 when port 1
port suspend status is 0 has no effect. A write of 0 has no
effect.

R/W 0

2 PSS/SPS Port 1 port suspend status/set port suspend

When read as 1, indicates that port 1 is in the USB suspend
state or is in the resume sequence. When 0, indicates that
port 1 is not in the USB suspend state. This bit is cleared
automatically at the end of the USB resume sequence and
also at the end of the USB reset sequence.

If port 1 CurrentConnectStatus is 1, a write of 1 to this bit
sets the port 1 port suspend status bit and places port 1 in
USB suspend state. If CurrentConnectState is 0, a write of 1
instead sets ConnectStatusChange to inform the USB host
controller driver software of an attempt to suspend a
disconnected device. A write of 0 to this bit has no effect.

R/W 0

USB Host Controller Registers

14-33Universal Serial Bus Host

Table 14–23. HC Port 1 Status and Control Register (HcRhPortStatus1) (Continued)

Bit
Reset
ValueTypeDescriptionName

1 PES/SPE Port 1 port enable status/set port enable

When read as 1, indicates that port 1 is enabled. When read
as 0, this bit indicates that port 1 is not enabled. This bit is
automatically set at completion of port 1 USB reset if it was
not already set before the USB reset completed, and is
automatically set at the end of a USB suspend if the port was
not enabled when the USB resume completed.

A write of 1 to this bit when port 1 CurrentConnectStatus is 1
sets the port 1 port enable status bit. A write of 1 when port 1
current connect status is 0 has no effect. A write of 0 has no
effect.

R/W 0

0 CCS/CPE Port 1 current connection status/clear port enable

When read as 1, indicates that port 1 currently has a USB
device attached. When 0, indicates that no USB device is
attached to port 1.

This bit is set to 1 after root hub reset if the
HcRhDescriptorB.DR[1] bit is set to indicate a non-removable
device on port 1.

A write of 1 to this bit clears the port 1 port enable bit. A write
of 0 to this bit has no effect.

R/W 0

USB Host Controller Registers

 14-34

The HC port 2 status register reports and controls the state of USB host port
2. Depending on HMC_MODE value, HcRhPortStatus2 can provide status
and control for the OMAP5910 USB Port 1 pins:

� CLK32K_OUT/USB1.SPEED
� BOOT/USB1.SUSP
� RST_HOST_OUT/USB1_SE0
� MCBSP.CLK/USB1_TXEN
� MCSI1.DOUT/USB1.TXD
� MCSI1.SYNC/USB1.VP
� MCSI1.CLK/USB1.VM
� MCSI1.DIN/USB1.RCV

Table 14–24. HC Port 2 Status and Control Register (HcRhPortStatus2)

Bit Name Description Type
Reset
Value

31–21 Reserved Reserved

20 PRSC Port 2 reset status change

This bit indicates, when 1, that the port 2 port reset status bit
has changed.

A write of 1 clears this bit. A write of 0 has no effect.

R/W 0

19 OCIC Port 2 overcurrent indicator change

This bit indicates, when 1, that the port 2 port overcurrent
indicator has changed.

A write of 1 clears this bit. A write of 0 has no effect.

The OMAP5910 does not provide inputs for signaling
external overcurrent indication to the USB host controller.
Overcurrent monitoring, if required, must be handled through
some other mechanism.

R/W 0

18 PSSC Port 2 suspend status change

This bit indicates, when 1, that the port 2 port suspend status
has changed. Suspend status is considered to have changed
only after the resume pulse, low-speed EOP, and 3-ms
synchronization delays have been completed.

A write of 1 clears this bit. A write of 0 has no effect.

R/W 0

17 PESC Port 2 enable status change

This bit indicates, when 1, that the port 2 port enable status
changed.

A write of 1 clears this bit. A write of 0 has no effect.

R/W 0

USB Host Controller Registers

14-35Universal Serial Bus Host

Table 14–24. HC Port 2 Status and Control Register (HcRhPortStatus2) (Continued)

Bit
Reset
ValueTypeDescriptionName

16 CSC Port 2 connect status change

This bit indicates, when 1, that the port 2 current connect
status has changed due to a connect or disconnect event. If
CurrentConnectStatus is 0 when a SetPortReset,
SetPortEnable, or SetPortSuspend write occurs, then this bit
is set.

A write of 1 clears this bit. A write of 0 has no effect.

If the HcRhDescriptorB.DR[2] bit is set to indicate a
nonremovable USB device on port 2, this bit is only set after
a root hub reset to inform the system that the device is
attached.

R/W 0

15–10 Reserved Reserved

9 LSDA/CPP Port 2 low-speed device attached/clear port power

This bit indicates, when read as 1, that a low-speed device is
attached to port 2. A 0 in this bit indicates a full-speed device.

This bit is only valid when port 2 CurrentConnectStatus is 1.

The host controller driver can write a 1 to this bit to clear the
port 2 PortPowerStatus. A write of 0 to this bit has no effect.

The OMAP5910 USB host controller does not control
external port power using OHCI mechanisms, so, if required,
USB host port power must be controlled through other
means.

R/W 0

8 PPS/SPP Port 2 port power status/set port power

This bit indicates, when read as 1, that the port 2 power is
enabled. When read as 0, port 2 power is not enabled.

The OMAP5910 does not provide signals from the USB host
controller to control external port power, so, if required, USB
host port power control signals must be controlled through
other means. Software can track the current power state
using the port power status bit and other power control bits,
but those bits has no direct effect on external port power
control.

A write of 1 to this bit sets the port 2 port power status bit. A
write of 0 has no effect.

R/W 1

7–5 Reserved Reserved

USB Host Controller Registers

 14-36

Table 14–24. HC Port 2 Status and Control Register (HcRhPortStatus2) (Continued)

Bit
Reset
ValueTypeDescriptionName

4 PRS/SPR Port 2 port reset status/set port reset

When read as 1, indicates that port 2 is receiving the USB
reset signaling. When read as 0, USB reset is not being sent
to port 2.

A write of 1 to this bit sets the port 2 port reset status bit and
cause the USB host controller to begin signaling USB reset
to port 2. A write of 0 to this bit has no effect.

R/W 0

3 POCI/CSS Port 2 port overcurrent indicator/clear suspend status

When read as 1, indicates that a port 2 port overcurrent
condition has occurred. When 0, no port 2 port overcurrent
condition has occurred.

The OMAP5910 does not provide inputs for signaling
external overcurrent indication to the USB host controller.
Overcurrent monitoring, if required, must be handled through
some other mechanism.

A write of 1 to this bit when port 2 port suspend status is 1
causes resume signaling on port 2. A write of 1 when port 2
port suspend status is 0 has no effect. A write of 0 has no
effect.

R/W 0

2 PSS/SPS Port 2 port suspend status/set port suspend

When read as 1, indicates that port 2 is in the USB suspend
state, or is in the resume sequence. When 0, indicates that
port 2 is not in the USB suspend state. This bit is cleared
automatically at the end of the USB resume sequence and
also at the end of the USB reset sequence.

If port 2 CurrentConnectStatus is 1, a write of 1 to this bit
sets the port 2 port suspend status bit and places port 2 in
USB suspend state. If CurrentConnectState is 0, a write of 1
instead sets ConnectStatusChange to inform the USB host
controller driver software of an attempt to suspend a
disconnected device. A write of 0 to this bit has no effect.

R/W 0

USB Host Controller Registers

14-37Universal Serial Bus Host

Table 14–24. HC Port 2 Status and Control Register (HcRhPortStatus2) (Continued)

Bit
Reset
ValueTypeDescriptionName

1 PES/SPE Port 2 port enable status/set port enable

When read as 1, indicates that port 2 is enabled. When read
as 0, this bit indicates that port 2 is not enabled. This bit is
automatically set at completion of port 2 USB reset if it was
not already set before the USB reset completed and is
automatically set at the end of a USB suspend if the port was
not enabled when the USB resume completed.

A write of 1 to this bit when port 2 CurrentConnectStatus is 1
sets the port 2 port enable status bit. A write of 1 when port 2
current connect status is 0 has no effect. A write of 0 has no
effect.

R/W 0

0 CCS/CPE Port 2 current connection status/clear port enable

When read as 1, indicates that port 2 currently has a USB
device attached. When 0, indicates that no USB device is
attached to port 2.

This bit is set to 1 after root hub reset if the
HcRhDescriptorB.DR[2] bit is set to indicate a non-removable
device on port 2.

A write of 1 to this bit clears the port 2 port enable bit. A write
of 0 to this bit has no effect.

R/W 0

USB Host Controller Registers

 14-38

The HC port 3 status and control register reports and controls the state of USB
host port 3. Depending on HMC_MODE value, HcRhPortStatus2 can provide
status and control for the OMAP5910 USB port 2 pins:

� MCSI2.CLK/USB2_SUSP
� UART2.RTS/USB2_SE0
� MCSI2.DOUT/USB2.TXEN
� UART2.TX/USB2.TXD
� MCSI2.DIN/USB2.VP
� UART2.RX/USB2.VM
� UART2.CTS/USB2.RCV.

Table 14–25. HC Port 3 Status and Control Register (HcRhPortStatus3)

Bit Name Description Type
Reset
Value

31–21 Reserved Reserved

20 PRSC Port 3 reset status change

This bit indicates, when 1, that the port 3 port reset status bit
has changed.

A write of 1 clears this bit. A write of 0 has no effect.

R/W 0

19 OCIC Port 3 overcurrent indicator change

This bit indicates, when 1, that the port 3 port overcurrent
indicator has changed.

A write of 1 clears this bit. A write of 0 has no effect.

The OMAP5910 does not provide inputs for signaling
external overcurrent indication to the USB host controller.
Overcurrent monitoring, if required, must be handled through
some other mechanism.

R/W 0

18 PSSC Port 3 suspend status change

This bit indicates, when 1, that the port 3 port suspend status
has changed. Suspend status is considered to have changed
only after the resume pulse, low-speed EOP, and 3-ms
synchronization delays have been completed.

A write of 1 clears this bit. A write of 0 has no effect.

R/W 0

17 PESC Port 3 enable status change

This bit indicates, when 1, that the port 3 port enable status
changed.

A write of 1 clears this bit. A write of 0 has no effect.

R/W 0

USB Host Controller Registers

14-39Universal Serial Bus Host

Table 14–25. HC Port 3 Status and Control Register (HcRhPortStatus3) (Continued)

Bit
Reset
ValueTypeDescriptionName

16 CSC Port 3 connect status change

This bit indicates, when 1, that the port 3 current connect
status has changed due to a connect or disconnect event. If
CurrentConnectStatus is 0 when a SetPortReset,
SetPortEnable, or SetPortSuspend write occurs, then this bit
is set.

A write of 1 clears this bit. A write of 0 has no effect.

If the HcRhDescriptorB.DR[3] bit is set to indicate a
non-removable USB device on Port 3, this bit is only set after
a root hub reset to inform the system that the device is
attached.

R/W 0

15–10 Reserved Reserved

9 LSDA/CPP Port 3 low-speed device attached/clear port power

This bit indicates, when read as 1, that a low speed device is
attached to port 3. A 0 in this bit indicates a full speed device.

This bit is only valid when port 3 CurrentConnectStatus is 1.

The host controller driver may write a 1 to this bit to clear the
port 3 PortPowerStatus. A write of 0 to this bit has no effect.

OMAP5910 USB host controller does not control external
port power using OHCI mechanisms, so, if required, USB
host port power must be controlled through other means.

R/W 0

8 PPS/SPP Port 3 port power status/set port power

This bit indicates, when read as 1, that the port 3 power is
enabled. When read as 0, port 3 power is not enabled.

The OMAP5910 does not provide signals from the USB host
controller to control external port power, so, if required, USB
host port power control signals must be controlled through
other means. Software may track the current power state
using the port power status bit and other power control bits,
but those bits has no direct effect on external port power
control.

A write of 1 to this bit sets the port 3 port power status bit. A
write of 0 has no effect.

R/W 1

7–5 Reserved Reserved

USB Host Controller Registers

 14-40

Table 14–25. HC Port 3 Status and Control Register (HcRhPortStatus3) (Continued)

Bit
Reset
ValueTypeDescriptionName

4 PRS/SPR Port 3 port reset status/set port reset

When read as 1, indicates that port 3 is receiving the USB
reset signaling. When read as 0, USB reset is not being sent
to port 3.

A write of 1 to this bit sets the port 3 port reset status bit and
cause the USB host controller to begin signaling USB reset
to port 3. A write of 0 to this bit has no effect.

R/W 0

3 POCI/CSS Port 3 port overcurrent indicator/clear suspend status

When read as 1, indicates that a port 3 port overcurrent
condition has occurred. When 0, no port 3 port overcurrent
condition has occurred.

The OMAP5910 does not provide inputs for signaling
external overcurrent indication to the USB host controller.
Overcurrent monitoring, if required, must be handled through
some other mechanism.

A write of 1 to this bit when port 3 port suspend status is 1
causes resume signaling on port 3. A write of 1 when port 3
port suspend status is 0 has no effect. A write of 0 has no
effect.

R/W 0

2 PSS/SPS Port 3 port suspend status/set port suspend

When read as 1, indicates that port 3 is in the USB suspend
state, or is in the resume sequence. When 0, indicates that
port 3 is not in the USB suspend state. This bit is cleared
automatically at the end of the USB resume sequence and
also at the end of the USB reset sequence.

If port 3 CurrentConnectStatus is 1, a write of 1 to this bit
sets the port 3 port suspend status bit and places port 3 in
USB suspend state. If CurrentConnectState is 0, a write of 1
instead sets ConnectStatusChange to inform the USB host
controller driver software of an attempt to suspend a
disconnected device. A write of 0 to this bit has no effect.

R/W 0

USB Host Controller Registers

14-41Universal Serial Bus Host

Table 14–25. HC Port 3 Status and Control Register (HcRhPortStatus3) (Continued)

Bit
Reset
ValueTypeDescriptionName

1 PES/SPE Port 3 port enable status/set port enable

When read as 1, indicates that port 3 is enabled. When read
as 0, this bit indicates that port 3 is not enabled. This bit is
automatically set at completion of port 3 USB reset if it was
not already set before the USB reset completed and is
automatically set at the end of a USB suspend if the port was
not enabled when the USB resume completed.

A write of 1 to this bit when port 3 CurrentConnectStatus is 1
sets the port 3 port enable status bit. A write of 1 when port 3
current connect status is 0 has no effect. A write of 0 has no
effect.

R/W 0

0 CCS/CPE Port 3 current connection status/clear port enable

When read as 1, indicates that port 3 currently has a USB
device attached. When 0, indicates that no USB device is
attached to port 3.

This bit is set to 1 after root hub reset if the
HcRhDescriptorB.DR[3] bit is set to indicate a nonremovable
device on port 3.

A write of 1 to this bit clears the port 3 port enable bit. A write
of 0 to this bit has no effect.

R/W 0

USB Host Controller Registers

 14-42

The host UE address register reports the local bus virtual address of the last
local bus access which caused an unrecoverable error (UE). This register has
no meaning until an unrecoverable error has occurred. It also has no meaning
if the USB host controller issues an unrecoverable error because the offset
checking fault occurred while processing an isochronous TD. This register is
not defined by the OHCI specification.

Table 14–26. Host UE Address Register (HostUEAddr)

Bit Name Description Type
Reset
Value

31–0 UE_ADDR Unrecoverable error address

This register captures the local bus virtual address of any
local bus operation that is started by the USB host controller
that encounters an unrecoverable error condition. This
information, along with the information in HostUEStatus, can
help a developer determine why the USB host issued a local
bus access that resulted in an unrecoverable error.

This register is not affected by local bus timeouts occurring
when the MPU, DSP, or DMA controller attempts to access a
local bus slave peripheral.

R 0x0000
0000

USB Host Controller Registers

14-43Universal Serial Bus Host

The host UE status register reports the local bus cycle type for the last unre-
coverable error that occurred. This register has no meaning until an unrecov-
erable error has occurred. It also has no meaning if the USB host controller
issues an unrecoverable error because the offset checking fault occurred
while processing an isochronous TD. This register is not defined by the OHCI
specification.

Table 14–27. Host UE Status Register (HostUEStatus)

Bit Name Description Type
Reset
Value

31–1 Reserved Reserved R xxxxxxxx

0 UEAccess Access type when unrecoverable error occurred

When an unrecoverable error occurs due to timeout of a local
bus write, this bit is set. When an unrecoverable error occurs
due to timeout of a local bus read, this bit is cleared. This bit
has no meaning before an unrecoverable error occurs.

This information, along with the information in HostUEAddr,
can help a developer determine why the USB host issued a
local bus access that resulted in an unrecoverable error.

This register is not affected by local bus time-outs occurring
when the MPU, DSP, or DMA controller attempts to access a
local bus slave peripheral.

0

USB Host Controller Registers

 14-44

The host time-out control register controls the USB host controller local bus
time-out mechanism. This register is not defined by the OHCI specification.

Table 14–28. Host Time-out Control Register (HostTimeoutCtrl)

Bit Name Description Type
Reset
Value

31–1 Reserved Reserved

0 TO_DIS Local bus time-out disable

When 1, the USB host controller local bus time-out counter is
disabled and the host controller waits indefinitely for
completion of a USB host controller access to system
memory.

When 0, the USB host controller waits indefinitely to access
system memory. When cleared (the default state), the USB
host controller waits no more than 4096 local bus clocks for
completion of a local bus access to system memory. If the
local bus cycle does not complete in that time, the USB host
controller signals an unrecoverable error.

This bit has no effect on MPU, DSP, or DMA controller
accesses to local bus slave peripherals.

R/W 0

The host revision register returns the revision number for the OMAP5910 USB
host controller. This register is not defined by the OHCI specification.

Table 14–29. Host Revision Register (HostRevision)

Bit Name Description Type
Reset
Value

31–8 Reserved Reserved R xxxxxx

7–4 MajorRev Major revision number

MajorRev indicates the major revision number of the USB
host controller. The original OMAP5910 USB host controller
version implements a major revision number of 0.

R xx

3–0 MinorRev Minor revision number

MinorRev indicates the minor revision number of the USB
host controller. The original OMAP5910 USB host controller
version implements a minor revision number of 0.

R xx

USB Host Controller Registers

14-45Universal Serial Bus Host

14.3.1 USB Host Controller Reserved Registers and Reserved Bit Fields

To enhance code reusability with possible future versions of the USB host con-
troller, reads and writes to reserved USB host controller register addresses are
to be avoided. Unless otherwise specified, when writing registers that have
reserved bits, read-modify-write operations must be used so that the reserved
bits are written with their previous values.

14.3.2 Endianism and USB Host Controller Registers

The OMAP5910 USB host controller assumes that all MPU accesses to its reg-
isters are 32-bit accesses. This restriction means that the host controller driver
software may operate in either big-endian or little-endian without having to per-
form endian conversion on USB host controller register accesses. Software
that uses 16-bit or 8-bit accesses to USB host controller registers does not
work correctly, regardless of processor endianism mode.

The processor endianism does affect how the software must access the USB
data structures and USB data buffers in system memory. See Section 14.6.5,
Endianism and USB Host Controller Access to System Memory for details on
endianism, data buffers, and data structures.

14.3.3 USB Host Controller Registers, USB Reset, and USB Clocking

When the USB host controller is not clocked (because the
MOD_CONF_CTRL_0 register CONF_MOD_USB_HOST_HHC_UHOST_EN
_R bit is 0), or when the ULPD does not provide 48 MHz to the USB host con-
troller, reads from and writes to the USB host controller registers do not
occur correctly. To properly access the USB host controller registers, the USB
host controller must be clocked and must be out of reset.

The USB host controller completes its reset within about 72 clock cycles
after CONF_MOD_USB_HOST_HHC_UHOST_EN_R is active and the
ULPD begins providing clock to the USB host controller. After system software
turns on the clock to the USB host controller and removes it from reset, it is
necessary to wait until the USB host controller internal reset completes. To
ensure that the USB host controller has completely reset, system software
must wait until reads of both the HcRevision register and the HcHCCA register
return their correct reset default values.

USB Host Controller Interrupt Sources

 14-46

14.4 USB Host Controller Interrupt Sources

14.4.1 OHCI Interrupts

The OMAP5910 USB host controller provides an interrupt output to the MPU
level 2 interrupt handler on its IRQ_06 interrupt input. This is a level-sensitive
interrupt signal, and the MPU level 2 interrupt handler IRQ_06 must be
programmed as a level-sensitive input.

14.4.1.1 OHCI Scheduling Overrun Interrupt

The OHCI scheduling overrun interrupt is supported as described in the OHCI
Specification for USB.

14.4.1.2 OHCI HcDoneHead Writeback Interrupt

The OHCI HcDoneHead writeback interrupt is supported as described in the
OHCI Specification for USB.

14.4.1.3 OHCI Start Of Frame Interrupt

The OHCI start of frame interrupt is supported as described in the OHCI
Specification for USB.

14.4.1.4 OHCI Resume Detect Interrupt

The OHCI resume detect interrupt is supported as described in the OHCI
Specification for USB.

14.4.1.5 OHCI Unrecoverable Error Interrupt

The OHCI unrecoverable error interrupt is supported as described in the OHCI
Specification for USB. This interrupt occurs if the USB host controller is unable
to complete a local bus read or local bus write within 4096 local bus clocks
when the USB host local bus timeout feature is enabled (see Table 14–28,
Host Timeout Control Register (HostTimeoutCtrl). When a local bus timeout
causes an unrecoverable error, HostUEAddr and HostUEStatus are updated.
When an isochronous TD is processed with an Offset/PSW field that is not set
for Not Accessed, an unrecoverable error interrupt is generated but
HostUEAddr and HostUeStatus are not updated.

14.4.1.6 OHCI Frame Number Overflow

The OHCI frame number overflow interrupt is supported as described in the
OHCI Specification for USB.

USB Host Controller Interrupt Sources

14-47Universal Serial Bus Host

14.4.1.7 OHCI Root Hub Status Change

The OHCI root hub status change interrupt is supported as described in the
OHCI Specification for USB. The OMAP5910 does not provide a connection
between the USB host controller and USB port overcurrent detection hard-
ware, so the root hub status change interrupt does not occur due to a port over-
current event.

14.4.1.8 OHCI Ownership Change Interrupt

The optional OHCI ownership change interrupt is not supported.

14.4.2 Local Bus MMU Interrupts

Interrupts from the local bus MMU to the MPU level 1 interrupt handler IRQ_17
input occur if the USB host controller attempts an access which the local bus
MMU cannot perform. This interrupt can be an important tool when debugging
a USB host controller driver and can be used to help identify operational faults
in a final product.

This interrupt does not occur if the USB host controller attempts to access a
local bus virtual address that is in the range 0x00000000 to 0x2FFFFFFF or
0x40000000 to 0xFFFFFFFF. For more detail on the local bus MMU, see
Section 14.6, USB Host Controller Access to System Memory.

USB Pin Multiplexing

 14-48

14.5 USB Pin Multiplexing

OMAP5910 USB signal multiplexing provides five main types of signaling:
USB host and USB function with USB transceivers, USB host and USB func-
tion without USB transceivers, and UART1. This section describes first gener-
al external connectivity for these types of multiplexing and then the
specific OMAP5910 USB multiplexing modes along with specific OMAP5910
connectivity for each mode.

14.5.1 Host Controller Connectivity With USB Transceivers

To provide a robust USB solution, a system that provides a USB host controller
must implement certain features. These features include a USB-type A
receptacle, power on the VBUS signal (may be switched or unswitched
power), transient suppression, pulldown resistors, and USB-compatible
downstream port transceiver. These elements are shown in Figure 14–3.

Figure 14–3. Typical USB Host Connections

USB
transceiver

VBUS
control

U
S

B
 ty

pe
 A

re
ce

pt
ac

le

Transient
suppressor

USB host

controller

R1

R2

R3

R4

R1, R2
R3, R4
C1
U1
U2

Value depends on transceiver
15K Ohm +/– 5%
Low ESR cap, minimum 120 uF
Transient suppressor, such as SN65220, SN65240, or SN75240
Power switch, such as TPS2014 or TPS2015

U1

U2

+5 V

+3.3 V

C1

(OMAP5910 does not provide a
dedicated pin for these connections)

VBUS_EN

Overcurrent

VBUS

D+

D–

USB Pin Multiplexing

14-49Universal Serial Bus Host

There are at least three different types of signaling used by commercially-
available USB transceivers to interface to a USB function controller.
OMAP5910 is designed for use with USB transceivers that use TXSE0 and
TXD signaling. OMAP5910 is not designed to interface directly with USB trans-
ceivers that use bidirectional signals between the transceiver and the USB
host controller or with USB transceivers that use TXD+ and TXD– signaling.

Because OMAP5910 does not provide a pin that connects to the USB host
controller port power control registers, some other mechanism must be used
if VBUS switching is required. Similarly, OMAP5910 does not provide any pins
that connect to the USB host controller overcurrent status bits, so some
other mechanism must be used if overcurrent sensing is required.

14.5.2 USB Function Controller Connectivity With USB Transceivers

To provide a robust USB solution, a system that provides a USB function con-
troller must implement certain features. These features include a USB-type B
receptacle, VBUS power detection, transient suppression, a controllable
pullup resistor to the D+ or D– line, and USB-compatible upstream port
transceiver. These elements are shown in Figure 14–4.

Figure 14–4. Typical USB Function Connections

USB
transceiver

Level
shifter

U
S

B
 ty

pe
 B

re
ce

pt
ac

le

Transient
suppressor

USB function

controller

R1

R2

R3

R1, R2
R3

C1
U1

Value depends on transceiver
1.5K Ohm +/– 5%

Low ESR cap, minimum 120 uF
Transient suppressor, such as SN65220, SN65240, or SN75240

U1

+3.3 V

VBUS_DETECT

USB_PUEN

VBUS

D+

D–

R4 R5

R4, R5 Weak pulldown (optional, see text)

USB Pin Multiplexing

 14-50

There are at least three different types of signaling used by commercially-
available USB transceivers to interface to a USB function controller.
OMAP5910 is designed mainly for use with USB transceivers that use TXSE0
and TXD signaling. OMAP5910 is not designed to interface directly with USB
transceivers which use bidirectional signals between the transceiver and the
USB host controller, or with USB transceivers that use TXD+ and TXD– signal-
ing.

Figure 14–4 shows optional weak pulldown resistors R4 and R5. These can
be used to hold the D+ and D- signals at voltages below the USB transceiver
VIL level when there is no USB host connected to the USB Type B connector.
By keeping D+ and D- voltages below VIL, the USB transceiver IDDQ can be
reduced. Choice of value for R4 and R5 must be made carefully so that the
circuit meets the requirements of the USB Specification.

The OMAP5910 USB function controller only supports implementation as a full
speed USB device. As such, the pullup resistor must be connected to the D+
signal to indicate implementation of a full-speed USB device.

14.5.3 On-Board Transceiverless Connection Using OMAP5910 Transceiverless Link
Logic

The transceiverless link logic feature of the OMAP5910 USB signal multiplex-
ing enables connection of the OMAP5910 device to an external, on-board
USB host controller or external on–board USB function controller, without the
use of USB transceivers or associated circuitry. When the transceiverless lin
logic is used, both of the USB transceivers, the series resistors, pullup and pull-
down resistors, VBUS switching components, and USB connectors and
cables that normally are used between a USB host controller and the down-
stream USB function controller are removed.

The transceiverless link logic signaling system is not suitable for use across
a cable. It is intended only for use when the OMAP5910 device is used with
an external USB integrated circuit which is on the same board.

When using the transceiverless link logic, six of the external USB integrated
circuit pins that normally connect to a USB transceiver connect instead directly
to OMAP5910 device pins. Signaling on these pins use CMOS levels.

USB Pin Multiplexing

14-51Universal Serial Bus Host

Transceiverless link logic can be compared to a normal USB implementation
as shown in Figure 14–5 and Figure 14–6. Figure 14–5 shows OMAP5910
being used as a USB host controller, with the top portion of the diagram show-
ing a transceiver-based solution and the bottom portion showing a transceiver-
less solution using the OMAP5910 transceiverless link logic. Figure 14–6
shows OMAP5910 used as a USB function controller, with the top portion of
the diagram showing a transceiver-based solution and the bottom portion
showing a transceiverless solution using the OMAP5910 transceiverless link
logic.

The transceiverless link logic function in the OMAP5910 device interprets the
transmit control signals from the external USB integrated circuit and similar
signals from the OMAP5910 USB host controller or OMAP5910 USB function
controller and computes the equivalent USB differential pair state. The com-
puted differential pair state is interpreted and the appropriate transceiver out-
put signals are provided to the external USB integrated circuit and to the
OMAP5910 USB host controller or OMAP5910 USB function controller.

Figure 14–5. OMAP5910 USB Host Controller Connection—With and Without the
OMAP5910 Transceiverless Link Logic

OMAP5910

USB
function

controller

USB
transceiver

USB
type B

connector

USB
type A

connector

USB host
controller

VBUS
control

Functionality that can be modeled by OMAP5910 transceiverless
link logic

USB
transceiver

USB host
controller

USB
function

controller

Transceiverless
link logic

OMAP5910

OMAP5910
transceiverless

link logic
enabled

W
ith

ou
t t

ra
ns

ce
iv

er
le

ss
 li

nk
 lo

gi
c

USB Pin Multiplexing

 14-52

Figure 14–6. OMAP5910 USB Function Connection—With and Without the OMAP5910
Transceiverless Link Logic

Functionality that can be modeled by OMAP5910 transceiverless
link logic

OMAP5910

USB
transceiver

USB
type A

connector

VBUS
control

USB
transceiver

USB
function

controller

transceiverless
link logic

OMAP5910

OMAP5910
transceiverless

link logic
enabled

W
ith

ou
t T

ra
ns

ce
iv

er
le

ss
 L

in
k

Lo
gi

c

USB
type B

connector

USB host
controller

USB host
controller

USB
function

controller

14.5.4 USB Signal Multiplexing Mode Diagrams

The OMAP5910 USB signal multiplexing mechanisms provide a wide variety
of options for bringing USB functionality to the OMAP5910 pins. These options
are listed in Table 14–30 and are shown in Figure 14–7 through Figure 14–31.
Each of these figures shows the external connectivity used to implement a
typical system using one of the USB signal multiplexing modes. Each diagram
assumes that OMAP5910 top-level signal multiplexing has been initialized to
select the USB signal multiplexer as the source/destination for those signals
shown as actively controlled by the USB signal multiplexing box. Top level pin
muxing is configured via the OMAP5910 configuration registers described in
section 6.8. In the figures, the items shown in gray do not receive or control
OMAP5910 USB related pin signals for the HMC_MODE shown. For each
configuration, appropriate external hardware is also required. This may
include pullup or pulldown resistors, series resistors, USB transceiver devices,
ESD protection devices, power switching circuitry, and USB connectors.

USB Pin Multiplexing

14-53Universal Serial Bus Host

Table 14–30. USB Signal Multiplexing Modes

CONF_MOD_USB_HOST_HMC_MODE_R USB Functions Available to OMAP5910

Integrated USB
Transceiver Pins
(UXB0.x Pins) Pin Group 1 Pin Group 2

0 USB function

1 USB host port 1 USB host port 2 USB host port 3

2 USB host port 1 UART 1† USB host port 3

3 USB host port 1 USB function USB host port 3

4 USB function USB host port 2 USB host port 3

5 USB host port 1 USB host port 3

6 USB function USB host port 3

7 USB host port 1 ‡ ‡

8 Reserved. Do not use. Reserved Reserved Reserved

9 USB host port 1 USB host port 2 USB host port 3
with TLL

10 USB host port 1 UART 1† USB host port 3
with TLL

11 USB host port 1 USB function USB host port 3
with TLL

12 USB function USB host port 2 USB host port 3
with TLL

13 USB host port 1 USB host port 3
with TLL

14 USB function USB host port 3
with TLL

15 USB host port 1 USB host port 2 USB host port 3
with TLL

16 USB host port 1

† CONF_MOD_USB_HOST_HMC_MODE_R values that select UART 1 bring UART1 CTS, RX, and TX signals to pins that
can, in other CONF_MOD_USB_HOST_HMC_MODE_R values, be used for USB.

‡ CONF_MOD_USB_HOST_HMC_MODE_R 7 provides an internal signal path from six of the USB-related OMAP5910 input
pins to six of the USB-related OMAP5910 output pins.

§ CONF_MOD_USB_HOST_HMC_MODE_R 21 provides an internal signal path from USB host controller Port 3 to the
OMAP5910 USB function via the transceiverless link logic.

USB Pin Multiplexing

 14-54

Table 14–30. USB Signal Multiplexing Modes (Continued)

CONF_MOD_USB_HOST_HMC_MODE_R USB Functions Available to OMAP5910

Pin Group 2Pin Group 1

Integrated USB
Transceiver Pins
(UXB0.x Pins)

17 USB host port 1 USB host port 2

18 USB host port 1 UART 1†

19 USB host port 1 USB function

20 USB function USB host port 2

21§ USB host port 1

22

23 USB host port 1 USB host port 2 USB host port 3
with TLL (TXD–
signaling)

24 USB host port 1 UART 1† USB host port 3
with TLL (TXD–
signaling)

25 USB host port 1 USB function USB host port 3
with TLL (TXD–
signaling)

26–31

† CONF_MOD_USB_HOST_HMC_MODE_R values that select UART 1 bring UART1 CTS, RX, and TX signals to pins that
can, in other CONF_MOD_USB_HOST_HMC_MODE_R values, be used for USB.

‡ CONF_MOD_USB_HOST_HMC_MODE_R 7 provides an internal signal path from six of the USB-related OMAP5910 input
pins to six of the USB-related OMAP5910 output pins.

§ CONF_MOD_USB_HOST_HMC_MODE_R 21 provides an internal signal path from USB host controller Port 3 to the
OMAP5910 USB function via the transceiverless link logic.

USB Pin Multiplexing

14-55Universal Serial Bus Host

Figure 14–7. OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 0

U
S

B
 ty

pe
 B

re
ce

pt
ac

le

Transient
suppressor

Level
translator

USB0.DP
USB0.DM

CLK3 2K _OUT ** /USB1.SPEED
MPU_BOOT** /USB1.SUSP

RST_HOST_OUT**/USB1.SE0
MCBSP3.CLKX**/USB1.TXEN

MCSI1.DOUT**/USB1.TXD
MCSI1.SYNC**/USB1.VP
MCSI1.CLK** /USB1.VM

MCSI1.DIN** /USB1.RCV

USB host
controller

Host port 1

Host port 2

Host port 3

USB function
controller

UART 1

USB singal
multiplexing

TLL

OMAP5910
HMC_MODE = 0

GPIO00/ USB.VBUS *

USB.PUEN

USB
transceiver

MCSI2.CLK** /USB2.SUSP
UART2.RTS** /USB2.SE0

MCSI2.DOUT**/USB2.TXEN
UART2.TX** /USB2.TXD

MCSI2.DIN**/USB2.VP
UART2.RX** /USB2.VM

UART2.CTS**/USB2.RCV

Top-Level Pin
Multiplexing

* Assumes pins have configured for USB functionality.
** Unused USB functional pins can be configured for non-USB functionality.

USB Pin Multiplexing

 14-56

Figure 14–8. OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 1

U
S

B
 tr

an
sc

ei
ve

r

USB0.DP
USB0.DM

USB host
controller

Host port 1

Host port 2

Host port 3

USB function
controller

UART 1

USB singal
multiplexing

TLL

OMAP5910

HMC_MODE = 1

U
S

B
 ty

pe
 A

re
ce

pt
ac

le

Transient
suppressor

GPIO00 ** /USB.VBUS

USB.PUEN

USB
transceiver

VBUS
control

U
S

B
 ty

pe
 A

re
ce

pt
ac

le

Transient
suppressor

U
S

B
 tr

an
sc

ei
ve

r

U
S

B
 ty

pe
 A

re
ce

pt
ac

le

Transient
suppressor

CLK32K_OUT /USB1.SPEED*
MPU_BOOT/USB1.SUSP*

RST_HOST_OUT/USB1_SE0*
MCBSP3.CLKX/USB1.TXEN*

MCSI1.DOUT/USB1.TXD*
MCSI1.SYNC/USB1.VP*
MCSI1.CLK /USB1.VM*
MCSI1.DIN/USB1.RCV*

MCSI2.CLK /USB2.SUSP*
UART2.RTS /USB2.SE0*

MCSI2.DOUT/USB2.TXEN*
UART2.TX /USB2.TXD*
MCSI2.DIN /USB2.VP*
UART2.RX /USB2.VM*

UART2.CTS / USB2.RCV*

Top-level pin
multiplexing

* Assumes pins have configured for USB functionality.
** Unused USB functional pins can be configured for non-USB functionality.

USB Pin Multiplexing

14-57Universal Serial Bus Host

Figure 14–9. OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 2

USB.DP
USB.DM

USB host
controller

Host port 1

Host port 2

Host port 3

controller

UART 1

USB signal
multiplexing

TLL

OMAP5910

HMC_MODE = 2

U
S

B
 ty

pe
 A

re
ce

pt
ac

le

GPIO00 ** /USB.VBUSI

USB.PUEN

USB
transceiver

VBUS
control

U
S

B
 tr

an
sc

ei
ve

r

U
S

B
 ty

pe
 A

re
ce

pt
ac

le

Serial transceiver
Serial
device

Transient
suppressor

Transient
suppressor

USB function

CLK3 2K _OUT ** /USB1.SPEED
MPU_BOOT** /USB1.SUSP

RST_HOST_OUT**/USB1.SE0
MCBSP3.CLKX**/USB1.TXEN

MCSI1.DOUTUART1_TX*
MCSI1.SYNC**/USB1.VP

MCSI1.CLK** /UART1_RX*
MCSI1.DIN** /UART1_CTS*

MCSI2.CLK/USB2.SUSP*
UART2.RTS /USB2.SE0*

MCSI2.DOUT/USB2.TXEN*
UART2.TX** /USB2.TXD*

MCSI2.DIN /USB2.VP*
UART2.RX /USB2.VM*

UART2.CTS /USB2.RCV*

Top-level pin
multiplexing

* Assumes pins have configured for USB functionality.
** Unused USB functional pins can be configured for non-USB functionality.

USB Pin Multiplexing

 14-58

Figure 14–10. OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 3

Transient
suppressor

Transient
suppressor

U
S

B
 tr

an
sc

ei
ve

r

USB.DP
USB.DM

USB host
controller

Host port 1

Host port 2

Host port 3

USB function
controller

UART 1

USB singal
multipexing

TLL

OMAP5910

HMC_MODE = 3

U
S

B
 ty

pe
 A

re
ce

pt
ac

le

GPIO00/ USB.VBUSI*

USB.PUEN

USB
transceiver

VBUS
control

U
S

B
 ty

pe
 B

re
ce

pt
ac

le

U
S

B
 tr

an
sc

ei
ve

r

U
S

B
 ty

pe
 A

re
ce

pt
ac

le

Level
translator

Transient
suppressor

CLK32K_OUT/USB1.SPEED*
MPU_BOOT/USB1.SUSP*

RST_HOST_OUT/USB1.SE0*
MCBSP3.CLKX/USB1.TXEN*

MCSI1.DOUT/USB1.TXD*
MCSI1.SYNC/USB1.VP*
MCSI1.CLK /USB1.VM*
MCSI1.DIN/USB1.RCV*

MCSI2.CLK /USB2.SUSP*
UART2.RTS /USB2.SE0*

MCSI2.DOUT/USB2.TXEN*
UART2.TX /USB2.TXD*
MCSI2.DIN /USB2.VP*
UART2.RX /USB2.VM*

UART2.CTS / USB2.RCV*

Top-level pin
multipexing

* Assumes pins have configured for USB functionality.

USB Pin Multiplexing

14-59Universal Serial Bus Host

Figure 14–11. OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 4

Transient
suppressor

Transient
suppressor

U
S

B
 tr

an
sc

ei
ve

r

USB.DP
USB.DM

USB host
controller

Host port 1

Host port 2

Host port 3

USB function
controller

UART 1

USB singal
multipexing

TLL

OMAP5910

HMC_MODE = 3

U
S

B
 ty

pe
 B

re
ce

pt
ac

le

GPIO00/ USB.VBUSI*

USB.PUEN

USB
transceiver

VBUS
control

U
S

B
 ty

pe
 A

re
ce

pt
ac

le

U
S

B
 tr

an
sc

ei
ve

r

U
S

B
 ty

pe
 A

re
ce

pt
ac

le

Level
translator

Transient
suppressor

CLK32K_OUT/USB1.SPEED*
MPU_BOOT/USB1.SUSP*

RST_HOST_OUT/USB1.SE0*
MCBSP3.CLKX/USB1.TXEN*

MCSI1.DOUT/USB1.TXD*
MCSI1.SYNC/USB1.VP*
MCSI1.CLK /USB1.VM*
MCSI1.DIN/USB1.RCV*

MCSI2.CLK /USB2.SUSP*
UART2.RTS /USB2.SE0*

MCSI2.DOUT/USB2.TXEN*
UART2.TX /USB2.TXD*
MCSI2.DIN /USB2.VP*
UART2.RX /USB2.VM*

UART2.CTS / USB2.RCV*

Top-level pin
multipexing

* Assumes pins have configured for USB functionality.

USB Pin Multiplexing

 14-60

Figure 14–12. OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 5

USB.DP
USB.DM

USB host
controller

Host port 1

Host port 2

Host port 3

USB function
controller

UART 1

USB signal
multiplexing

TLL

OMAP5910

HMC_MODE = 5

U
S

B
 ty

pe
 A

re
ce

pt
ac

le

GPIO00 ** /USB.VBUSI

USB.PUEN

USB
transceiver

VBUS
control

U
S

B
 tr

an
sc

ei
ve

r

U
S

B
 ty

pe
 A

re
ce

pt
ac

lle

Transient
suppressor

Transient
suppresor

CLK3 2K _OUT ** /USB1.SPEED
MPU_BOOT** /USB1.SUSP

RST_HOST_OUT**/USB1.SE0
MCBSP3.CLKX**/USB1.TXEN

MCSI1.DOUTUART1_TX
MCSI1.SYNC**/USB1.VP

MCSI1.CLK** /UART1_RX
MCSI1.DIN** /UART1_CTS

MCSI2.CLK USB2.SUSP*
UART2.RTS /USB2.SE0*

MCSI2.DOUT/USB2.TXEN*
UART2.TX** /USB2.TXD*

MCSI2.DIN /USB2.VP*
UART2.RX /USB2.VM*

UART2.CTS /USB2.RCV*

Top-level pin
multipexing

* Assumes pins have configured for USB functionality.
** Unused USB functional pins can be configured for non-USB functionality.

USB Pin Multiplexing

14-61Universal Serial Bus Host

Figure 14–13. OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 6

USB.DP
USB.DM

USB host
controller

Host port 1

Host port 2

Host port 3

USB function
controller

UART 1

USB signal
multiplexing

TLL

OMAP5910

HMC_MODE = 5

U
S

B
 ty

pe
 B

re
ce

pt
ac

le

GPIO00 ** /USB.VBUSI

USB.PUEN

USB
transceiver

VBUS
control

U
S

B
 tr

an
sc

ei
ve

r

U
S

B
 ty

pe
 A

re
ce

pt
ac

lle

Transient
suppressor

Transient
suppressor

CLK3 2K _OUT ** /USB1.SPEED
MPU_BOOT** /USB1.SUSP

RST_HOST_OUT**/USB1.SE0
MCBSP3.CLKX**/USB1.TXEN

MCSI1.DOUTUART1_TX
MCSI1.SYNC**/USB1.VP

MCSI1.CLK** /UART1_RX
MCSI1.DIN** /UART1_CTS

MCSI2.CLK USB2.SUSP*
UART2.RTS /USB2.SE0*

MCSI2.DOUT/USB2.TXEN*
UART2.TX** /USB2.TXD*

MCSI2.DIN /USB2.VP*
UART2.RX /USB2.VM*

UART2.CTS /USB2.RCV*

Top-level pin
multipexing

* Assumes pins have configured for USB functionality.
** Unused USB functional pins can be configured for non-USB functionality.

USB Pin Multiplexing

 14-62

Figure 14–14. OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 7

USB.DP
USB.DM

USB host
controller

Host port 1

Host port 2

Host port 3

USB function
controller

UART 1

USB signal
multiplexing

TLL

OMAP5910

HMC_MODE = 7

U
S

B
 ty

pe
 A

re
ce

pt
ac

le

GPIO00 **/USB.VBUSI

USB.PUEN

USB
transceiver

VBUS
control

Transient
suppressor

CLK32K_OUT**/USB1.SPEED
MPU_BOOT**/USB1.SUSP

RST_HOST_OUT/USB1.SE0*
MCBSP3.CLKX/USB1.TXEN*

MCSI1.DOUT/USB1.TXD*
MCSI1.SYNC/USB1.VP*
MCSI1.CLK /USB1.VM*
MCSI1.DIN/USB1.RCV*

MCSI2.CLK**/USB2.SUSP
UART2.RTS /USB2.SE0*

MCSI2.DOUT/USB2.TXEN*
UART2.TX/USB2.TXD*
MCSI2.DIN /USB2.VP*
UART2.RX /USB2.VM*

UART2.CTS / USB2.RCV*

Top-level pin
multiplexing

* Assumes pins have configured for USB functionality.
** Unused USB functional pins can be configured for non-USB functionality.

USB Pin Multiplexing

14-63Universal Serial Bus Host

Figure 14–15. OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 9

USB.DP
USB.DM

USB host
controller

Host port 1

Host port3

USB function
controller

UART 1

USB signal
multiplexing

TLL

OMAP5910

HMC_MODE = 9

U
S

B
 T

ty
pe

 A
re

ce
pt

ac
le

GPIO00 ** /USB.VBUSI
USB.PUEN

USB
transceiver

VBUS
control

On-board
USB

device
without

transceiver

VP
RCV
VM
TXSE0
TXD
TXEN

U
S

B
 tr

an
sc

ei
ve

r

Host port 2

U
S

B
 ty

pe
 A

re
ce

pt
ac

le

Transient
suppressor

Transient
suppressor

CLK32K_OUT/USB1.SPEED*
MPU_BOOT/USB1.SUSP*

RST_HOST_OUT/USB1.SE0*
MCBSP3.CLKX/USB1.TXEN*

MCSI1.DOUT/USB1.TXD*
MCSI1.SYNC/USB1.VP*
MCSI1.CLK /USB1.VM*
MCSI1.DIN/USB1.RCV*

MCSI2.CLK** /USB2.SUSP
UART2.RTS /USB2.SE0*

MCSI2.DOUT/USB2.TXEN*
UART2.TX /USB2.TXD*
MCSI2.DIN /USB2.VP*
UART2.RX /USB2.VM*

UART2.CTS / USB2.RCV*

Top-level pin
multiplexing

* Assumes pins have configured for USB functionality.
** Unused USB functional pins can be configured for non-USB functionality.

USB Pin Multiplexing

 14-64

Figure 14–16. OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 10

USB.DP
USB.DM

USB host
controller

Host port 1

Host port 3

USB function
controller

USB signal
multiplexing

TLL

OMAP5910

HMC_MODE = 10

U
S

B
 ty

pe
 A

re
ce

pt
ac

le

GPIO00 ** /USB.VBUSI

USB.PUEN

USB
transceiver

VBUS
control

USB
device

transceiver

VP
RCV
VM
TXSE0
TXD
TXEN

Host port 2

UART 1

Serial transceiver
Serial
device

Transient
suppressor

On-board

without

CLK3 2K _OUT ** /USB1.SPEED
MPU_BOOT** /USB1.SUSP

RST_HOST_OUT**/USB1.SE0
MCBSP3.CLKX**/USB1.TXEN

MCSI1.DOUTUART1_TX*
MCSI1.SYNC**/USB1.VP

MCSI1.CLK** /UART1_RX*
MCSI1.DIN** /UART1_CTS*

MCSI2.CLK**/USB2.SUSP
UART2.RTS /USB2.SE0*

MCSI2.DOUT/USB2.TXEN*
UART2.TX** /USB2.TXD*

MCSI2.DIN /USB2.VP*
UART2.RX /USB2.VM*

UART2.CTS /USB2.RCV*

Top-level pin
multiplexing

* Assumes pins have configured for USB functionality.
** used USB functional pins can be configured for non-USB functionality.

USB Pin Multiplexing

14-65Universal Serial Bus Host

Figure 14–17. OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 11

USB.DP
USB.DM

USB host
controller

Host port 1

Host port3

USB function
controller

UART 1

USB signal
multiplexing

TLL

OMAP5910

HMC_MODE = 9

U
S

B
 T

ty
pe

 A
re

ce
pt

ac
le

GPIO00 ** /USB.VBUSI
USB.PUEN

USB
transceiver

VBUS
control

On-board
USB

device
without

transceiver

VP
RCV
VM
TXSE0
TXD
TXEN

U
S

B
 tr

an
sc

ei
ve

r

Host port 2

U
S

B
 ty

pe
 B

re
ce

pt
ac

le

Transient
suppressor

Transient
suppressor

CLK32K_OUT/USB1.SPEED*
MPU_BOOT/USB1.SUSP*

RST_HOST_OUT/USB1.SE0*
MCBSP3.CLKX/USB1.TXEN*

MCSI1.DOUT/USB1.TXD*
MCSI1.SYNC/USB1.VP*
MCSI1.CLK /USB1.VM*
MCSI1.DIN/USB1.RCV*

MCSI2.CLK** /USB2.SUSP
UART2.RTS /USB2.SE0*

MCSI2.DOUT/USB2.TXEN*
UART2.TX /USB2.TXD*
MCSI2.DIN /USB2.VP*
UART2.RX /USB2.VM*

UART2.CTS / USB2.RCV*

Top-level pin
multiplexing

* Assumes pins have configured for USB functionality.
** Unused USB functional pins can be configured for non-USB functionality.

USB Pin Multiplexing

 14-66

Figure 14–18. OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 12

Host port 1 USB.DP
USB.DM

USB host
controller

Host port 3

UART 1

USB signal
multiplexing

TLL

OMAP5910

HMC_MODE = 12

USB.PUEN

USB
transceiver

VBUS
control

USB
device

transceiver

VP
RCV
VM
TXSE0
TXD
TXEN

U
S

B
 tr

an
sc

ei
ve

r

Host port 2

U
S

B
 ty

pe
 A

re
ce

pt
ac

le

GPIO00/ USB.VBUSI*

USB function
controller

U
S

B
 ty

pe
 B

re
ce

pt
ac

le

Transient
suppressor

Level
translator

Transient
suppressor

On-board

without

CLK32K_OUT/USB1.SPEED*
MPU_BOOT/USB1.SUSP*

RST_HOST_OUT/USB1.SE0*
MCBSP3.CLKX/USB1.TXEN*

MCSI1.DOUT/USB1.TXD*
MCSI1.SYNC/USB1.VP*
MCSI1.CLK /USB1.VM*
MCSI1.DIN/USB1.RCV*

MCSI2.CLK** /USB2.SUSP
UART2.RTS /USB2.SE0*

MCSI2.DOUT/USB2.TXEN*
UART2.TX/USB2.TXD*
MCSI2.DIN /USB2.VP*
UART2.RX /USB2.VM*

UART2.CTS / USB2.RCV*

Top-level pin
multiplexing

* Assumes pins have configured for USB functionality.
** Unused USB functional pins can be configured for non-USB functionality.

USB Pin Multiplexing

14-67Universal Serial Bus Host

Figure 14–19. OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 13

USB.DP
USB.DM

USB host
controller

Host port 1

Host port 3

USB function
controller

UART 1

USB signal
multiplexing

TLL

OMAP5910

HMC_MODE = 13

U
S

B
 ty

pe
 A

re
ce

pt
ac

le

GPIO00 ** /USB.VBUSI

USB.PUEN

USB
transceiver

VBUS
control

USB
host

transceiver

VP
RCV
VM
TXSE0
TXD
TXEN

Host port 2

Transient
suppressor

On-board

without

CLK3 2K _OUT ** /USB1.SPEED
MPU_BOOT** /USB1.SUSP

RST_HOST_OUT**/USB1.SE0
MCBSP3.CLKX**/USB1.TXEN

MCSI1.DOUTUART1_TX
MCSI1.SYNC**/USB1.VP

MCSI1.CLK** /UART1_RX
MCSI1.DIN** /UART1_CTS

MCSI2.CLK**/USB2.SUSP
UART2.RTS /USB2.SE0*

MCSI2.DOUT/USB2.TXEN*
UART2.TX** /USB2.TXD*

MCSI2.DIN /USB2.VP*
UART2.RX /USB2.VM*

UART2.CTS /USB2.RCV*

Top-level pin
multiplexing

* Assumes pins have configured for USB functionality.
** Unused USB functional pins can be configured for non-USB functionality.

USB Pin Multiplexing

 14-68

Figure 14–20. OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 14

USB.DP
USB.DM

USB host
controller

Host port 1

Host port 3

USB function
controller

UART 1

USB signal
multiplexing

TLL

OMAP5910

HMC_MODE = 14

U
S

B
 ty

pe
 B

re
ce

pt
ac

le

GPIO00 ** /USB.VBUSI

USB.PUEN

USB
transceiver

VBUS
control

USB
host

transceiver

VP
RCV
VM
TXSE0
TXD
TXEN

Host port 2

Transient
suppressor

On-board

without

CLK3 2K _OUT ** /USB1.SPEED
MPU_BOOT** /USB1.SUSP

RST_HOST_OUT**/USB1.SE0
MCBSP3.CLKX**/USB1.TXEN

MCSI1.DOUTUART1_TX
MCSI1.SYNC**/USB1.VP

MCSI1.CLK** /UART1_RX
MCSI1.DIN** /UART1_CTS

MCSI2.CLK**/USB2.SUSP
UART2.RTS /USB2.SE0*

MCSI2.DOUT/USB2.TXEN*
UART2.TX** /USB2.TXD*

MCSI2.DIN /USB2.VP*
UART2.RX /USB2.VM*

UART2.CTS /USB2.RCV*

Top-level pin
multiplexing

* Assumes pins have configured for USB functionality.
** Unused USB functional pins can be configured for non-USB functionality.

USB Pin Multiplexing

14-69Universal Serial Bus Host

Figure 14–21. OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 15

USB.DP
USB.DM

USB host
controller

Host port 1

Host port 3

USB function
controller

UART 1

USB signal
multiplexing

TLL

OMAP5910

HMC_MODE = 15

U
S

B
 ty

pe
 A

re
ce

pt
ac

le

GPIO00 **/USB.VBUSI

USB.PUEN

USB
transceiver

VBUS
control

USB
host

transceiver

VP
RCV
VM
TXSE0
TXD
TXEN

Host port 2

U
S

B
 tr

an
sc

ei
ve

r

U
S

B
 ty

pe
 A

re
ce

pt
ac

le

Transient
suppressor

Transient
suppressor

On-board

without

CLK32K_OUT/USB1.SPEED*
MPU_BOOT/USB1.SUSP*

RST_HOST_OUT/USB1.SE0*
MCBSP3.CLKX/USB1.TXEN*

MCSI1.DOUT/USB1.TXD*
MCSI1.SYNC/USB1.VP*
MCSI1.CLK /USB1.VM*
MCSI1.DIN/USB1.RCV*

MCSI2.CLK** /USB2_SUSP
UART2.RTS /USB2.SE0*

MCSI2.DOUT/USB2.TXEN*
UART2.TX/USB2.TXD*
MCSI2.DIN /USB2.VP*
UART2.RX /USB2.VM*

UART2.CTS / USB2.RCV*

Top-level pin
multiplexing

* Assumes pins have configured for USB functionality.
** Unused USB functional pins can be configured for non-USB functionality.

USB Pin Multiplexing

 14-70

Figure 14–22. OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 16

USB.DP
USB.DM

USB host
controller

Host port 1

Host port 3

UART 1

USB signal
multiplexing

OMAP5910

HMC_MODE = 16

U
S

B
 ty

pe
 A

re
ce

pt
ac

le

GPIO00 ** /USB.VBUSI

USB.PUEN

USB
transceiver

VBUS
control

Host port 2

TLL

USB function
controller

Transient
suppressor

CLK3 2K _OUT ** /USB1.SPEED
MPU_BOOT** /USB1.SUSP

RST_HOST_OUT**/USB1.SE0
MCBSP3.CLKX**/USB1.TXEN

MCSI1.DOUT**/USB1.TXD
MCSI1.SYNC**/USB1.VP
MCSI1.CLK** /USB1.VM

MCSI1.DIN** /USB1.RCV

MCSI2.CLK** /USB2.SUSP
UART2.RTS** /USB2.SE0

MCSI2.DOUT**/USB2.TXEN
UART2.TX** /USB2.TXD

MCSI2.DIN**/USB2.VP
UART2.RX** /USB2.VM

UART2.CTS**/USB2.RCV

Top-level pin
multiplexing

* Assumes pins have configured for USB functionality.
** Unused USB functional pins can be configured for non-USB functionality.

USB Pin Multiplexing

14-71Universal Serial Bus Host

Figure 14–23. OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 17

USB.DP
USB.DM

USB host
controller

Host port 1

Host port 3

UART 1

USB signal
multiplexing

OMAP5910

HMC_MODE = 17

U
S

B
 ty

pe
 A

re
ce

pt
ac

le

GPIO00 ** /USB.VBUSI

USB.PUEN

USB
transceiver

VBUS
control

Host port 2

U
S

B
 tr

an
sc

ei
ve

r

U
S

B
 ty

pe
 A

re
ce

pt
ac

le

TLL

USB function
controller

Transient
suppressor

Transient
suppressor

CLK32K_OUT/USB1.SPEED*
MPU_BOOT/USB1.SUSP*

RST_HOST_OUT/USB1.SE0*
MCBSP3.CLKX/USB1.TXEN*

MCSI1.DOUT/USB1.TXD*
MCSI1.SYNC/USB1.VP*
MCSI1.CLK /USB1.VM*
MCSI1.DIN/USB1.RCV*

MCSI2.CLK**/USB2.SUSP
UART2.RTS** /USB2.SE0

MCSI2.DOUT**/USB2.TXEN
UART2.TX**/USB2.TXD
MCSI2.DIN**/USB2.VP
UART2.RX**/USB2.VM

UART2.CTS**/USB2.RCV

Top-level pin
multiplexing

* Assumes pins have configured for USB functionality.
** Unused USB functional pins can be configured for non-USB functionality.

USB Pin Multiplexing

 14-72

Figure 14–24. OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 18

USB.DP
USB.DM

USB host
controller

Host port 1

Host port 3

USB signal
multiplexing

OMAP5910

HMC_MODE = 18

U
S

B
 ty

pe
 A

re
ce

pt
ac

le

GPIO00 **/USB.VBUSI

USB.PUEN

USB
transceiver

VBUS
control

Host port 2

TLL

USB function
controller

UART 1

Serial transceiver
Serial
device

Transient
suppressor

CLK3 2K _OUT ** /USB1.SPEED
MPU_BOOT** /USB1.SUSP

RST_HOST_OUT**/USB1.SE0
MCBSP3.CLKX**/USB1.TXEN

MCSI1.DOUT/UART1_TX*
MCSI1.SYNC**/USB1.VP

MCSI1.CLK** /UART1_RX*
MCSI1.DIN** /UART1_CTS*

MCSI2.CLK** /USB2.SUSP
UART2.RTS** /USB2.SE0

MCSI2.DOUT**/USB2.TXEN
UART2.TX** /USB2.TXD

MCSI2.DIN**/USB2.VP
UART2.RX** /USB2.VM

UART2.CTS**/USB2.RCV

Top-level pin
multiplexing

* Assumes pins have configured for USB functionality.
** Unused USB functional pins can be configured for non-USB functionality.

USB Pin Multiplexing

14-73Universal Serial Bus Host

Figure 14–25. OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 19

GPIO00/ USB.VBUSI*

USB.DP
USB.DM

USB host
controller

Host port 1

Host port 3

UART 1

USB signal
multiplexing

OMAP5910

HMC_MODE = 19

U
S

B
 ty

pe
 A

re
ce

pt
ac

le

Transient
suppressor

USB.PUEN

USB
transceiver

VBUS
control

Host port 2

TLL

USB function
controller U

S
B

 tr
an

sc
ei

ve
r

U
S

B
 ty

pe
 B

re
ce

pt
ac

le

Transient
suppressor

Level
translator

CLK32K_OUT/USB1.SPEED*
MPU_BOOT/USB1.SUSP*

RST_HOST_OUT/USB1.SE0*
MCBSP3.CLKX/USB1.TXEN*

MCSI1.DOUT/USB1.TXD*
MCSI1.SYNC/USB1.VP*
MCSI1.CLK /USB1.VM*
MCSI1.DIN/USB1.RCV*

MCSI2.CLK**/USB2.SUSP
UART2.RTS** /USB2.SE0

MCSI2.DOUT**/USB2.TXEN
UART2.TX**/USB2.TXD
MCSI2.DIN**/USB2.VP
UART2.RX**/USB2.VM

UART2.CTS**/USB2.RCV

Top-level pin
multiplexing

* Assumes pins have configured for USB functionality.
** Unused USB functional pins can be configured for non-USB functionality.

USB Pin Multiplexing

 14-74

Figure 14–26. OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 20

USB function
control

USB.DP
USB.DM

USB host
controller

Host port 1

Host port 3

UART 1

USB signal
multiplexing

OMAP5910

HMC_MODE = 20

USB.PUEN

USB
transceiver

VBUS
control

Host port 2

U
S

B
 tr

an
sc

ei
ve

r

U
S

B
 ty

pe
 A

re
ce

pt
ac

le

Transient
suppressor

TLL

GPIO00/ USB.VBUSI*

U
S

B
 ty

pe
 B

re
ce

pt
ac

le

Transient
suppressor

Level
translator

CLK32K_OUT/USB1.SPEED*
MPU_BOOT/USB1.SUSP*

RST_HOST_OUT/USB1.SE0*
MCBSP3.CLKX/USB1.TXEN*

MCSI1.DOUT/USB1.TXD*
MCSI1.SYNC/USB1.VP*
MCSI1.CLK /USB1.VM*
MCSI1.DIN/USB1.RCV*

MCSI2.CLK**/USB2.SUSP
UART2.RTS** /USB2.SE0

MCSI2.DOUT**/USB2.TXEN
UART2.TX**/USB2.TXD
MCSI2.DIN**/USB2.VP
UART2.RX**/USB2.VM

UART2.CTS**/USB2.RCV

Top-level pin
multiplexing

* Assumes pins have configured for USB functionality.
** Unused USB functional pins can be configured for non-USB functionality.

USB Pin Multiplexing

14-75Universal Serial Bus Host

Figure 14–27. OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 21

USB.DP
USB.DM

USB host
controller

Host port 1

Host port 3

UART 1

USB signal
Multiplexing

OMAP5910

HMC_MODE = 21

U
S

B
 ty

pe
 A

re
ce

pt
ac

le

Transient
suppressor

GPIO00 **/USB.VBUSI

USB.PUEN

USB
transceiver

VBUS
control

Host port 2

TLL

USB function
controller

CLK3 2K _OUT ** /USB1.SPEED
MPU_BOOT** /USB1.SUSP

RST_HOST_OUT**/USB1.SE0
MCBSP3.CLKX**/USB1.TXEN

MCSI1.DOUT**/USB1.TXD
MCSI1.SYNC**/USB1.VP
MCSI1.CLK** /USB1.VM

MCSI1.DIN** /USB1.RCV

MCSI2.CLK** /USB2.SUSP
UART2.RTS** /USB2.SE0

MCSI2.DOUT**/USB2.TXEN
UART2.TX** /USB2.TXD

MCSI2.DIN**/USB2.VP
UART2.RX** /USB2.VM

UART2.CTS**/USB2.RCV

Top-level pin
multiplexing

* Assumes pins have configured for USB functionality.
** Unused USB functional pins can be configured for non-USB functionality.

USB Pin Multiplexing

 14-76

Figure 14–28. OMAP5910 Configured for HMC_MODEs 22, 26-31

USB.DP
USB.DM

USB host
controller

Host port 1

Host port 3

UART 1

USB signal
multiplexing

OMAP5910

HMC_MODE = 22
HMC_MODE = 26
HMC_MODE = 27
HMC_MODE = 28
HMC_MODE = 29
HMC_MODE = 30
HMC_MODE = 31

GPIO00 **/USB.VBUSI

USB.PUEN

USB
transceiverHost port 2

TLL

USB function
controller

CLK3 2K _OUT ** /USB1.SPEED
MPU_BOOT** /USB1.SUSP

RST_HOST_OUT**/USB1.SE0
MCBSP3.CLKX**/USB1.TXEN

MCSI1.DOUT**/USB1.TXD
MCSI1.SYNC**/USB1.VP
MCSI1.CLK** /USB1.VM

MCSI1.DIN** /USB1.RCV

MCSI2.CLK** /USB2.SUSP
UART2.RTS** /USB2.SE0

MCSI2.DOUT**/USB2.TXEN
UART2.TX** /USB2.TXD

MCSI2.DIN**/USB2.VP
UART2.RX** /USB2.VM

UART2.CTS**/USB2.RCV

Top-level pin
multiplexing

* Assumes pins have configured for USB functionality.
** Unused USB functional pins can be configured for non-USB functionality.

USB Pin Multiplexing

14-77Universal Serial Bus Host

Figure 14–29. OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 23
(Transceiverless Connection Uses TXD+, TXD- Signaling)

USB.DP
USB.DM

USB host
controller

Host port 1

Host port 3

USB function
controller

UART 1

USB signal
multiplexing

TLL

OMAP5910

HMC_MODE = 23

U
S

B
 ty

pe
 A

re
ce

pt
ac

le

Transient
suppressor

GPIO00 **/USB.VBUSI

USB.PUEN

USB
transceiver

VBUS
control

USB
device

without
transceiver

VP
RCV
VM
TXD–
TXD
TXEN
U

S
B

 tr
an

sc
ei

ve
r

Host port 2

U
S

B
 ty

pe
 A

re
ce

pt
ac

le

Transient
suppressor

On-board

CLK32K_OUT/USB1.SPEED*
MPU_BOOT/USB1.SUSP*

RST_HOST_OUT/USB1.SE0*
MCBSP3.CLKX/USB1.TXEN*

MCSI1.DOUT/USB1.TXD*
MCSI1.SYNC/USB1.VP*
MCSI1.CLK /USB1.VM*
MCSI1.DIN/USB1.RCV*

MCSI2.CLK** /USB2.SUSP
UART2.RTS /USB2.SE0*

MCSI2.DOUT/USB2.TXEN*
UART2.TX /USB2.TXD*
MCSI2.DIN /USB2.VP*
UART2.RX /USB2.VM*

UART2.CTS / USB2.RCV*

Top-level pin
multiplexing

* Assumes pins have configured for USB functionality.
** Unused USB functional pins can be configured for non-USB functionality.

USB Pin Multiplexing

 14-78

Figure 14–30. OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 24
(Transceiverless Connection Uses TXD+, TXD- Signaling)

USB.DP
USB.DM

USB host
controller

Host port 1

Host port 3

USB function
controller

USB signal
multiplexing

TLL

OMAP5910

HMC_MODE = 24

U
S

B
 ty

pe
 A

re
ce

pt
ac

le

Transient
suppressor

GPIO00 **/USB.VBUSI

USB.PUEN

USB
transceiver

VBUS
control

USB
device

transceiver

VP
RCV
VM
TXD–
TXD+
TXEN

Host port 2

UART 1

Serial transceiver
Serial
device

On-board

without

CLK3 2K _OUT ** /USB1.SPEED
MPU_BOOT** /USB1.SUSP

RST_HOST_OUT**/USB1.SE0
MCBSP3.CLKX**/USB1TXEN

MCSI1.DOUTUART1_TX*
MCSI1.SYNC**/USB1.VP

MCSI1.CLK** /UART1_RX*
MCSI1.DIN** /UART1_CTS*

MCSI2.CLK**/USB2.SUSP
UART2.RTS /USB2.SE0*

MCSI2.DOUT/USB2.TXEN*
UART2.TX** /USB2.TXD*

MCSI2.DIN /USB2.VP*
UART2.RX /USB2.VM*

UART2.CTS /USB2.RCV*

Top-level pin
multiplexing

* Assumes pins have configured for USB functionality.
** Unused USB functional pins can be configured for non-USB functionality.

USB Pin Multiplexing

14-79Universal Serial Bus Host

Figure 14–31. OMAP5910 With CONF_MOD_USB_HOST_HMC_MODE_R Set to 25
(Transceiverless Connection Uses TXD+, TXD- Signaling)

USB function
controller

GPIO00/ USB.VBUSI*

USB.DP
USB.DM

USB host
controller

Host port 1

Host port 2

Host port 3

UART 1

USB signal
multiplexing

TLL

OMAP5910

HMC_MODE = 25

U
S

B
 ty

pe
 A

re
ce

pt
ac

le

Transient
suppressor

USB.PUEN

USB
transceiver

VBUS
control

USB
device

transceiver

VP
RCV
VM
TXD–
TXD
TXEN
U

S
B

 T
ra

ns
ce

iv
er

U
S

B
 ty

pe
 B

re
ce

pt
ac

le

Transient
suppressor

Level
translator

On-board

without

CLK32K_OUT/USB1.SPEED*
MPU_BOOT/USB1.SUSP*

RST_HOST_OUT/USB1.SE0*
MCBSP3.CLKX/USB1.TXEN*

MCSI1.DOUT/USB1.TXD*
MCSI1.SYNC/USB1.VP*
MCSI1.CLK /USB1.VM*
MCSI1.DIN/USB1.RCV*

MCSI2.CLK** /USB2.SUSP
UART2.RTS /USB2.SE0*

MCSI2.DOUT/USB2.TXEN*
UART2.TX /USB2.TXD*
MCSI2.DIN /USB2.VP*
UART2.RX /USB2.VM*

UART2.CTS / USB2.RCV*

Top-level pin
multiplexing

* Assumes pins have configured for USB functionality.
** Unused USB functional pins can be configured for non-USB functionality.

USB Pin Multiplexing

 14-80

14.5.5 Ports Shown as Unconnected

Many of the multiplexing modes show cases where a USB host port or the USB
function controller are not connected to pins. When a USB signal multiplexing
mode is selected that does not connect to a USB host controller port, that host
controller port sees signaling that implies no external device is connected.
When a USB signal multiplexing mode is selected that does not connect to the
USB function controller port, the USB function controller port sees USB single-
ended 0 signaling, which implies a USB reset.

14.5.6 Conflicts Between USB Signal Multiplexing and Top-Level Multiplexing

When OMAP5910 top-level signal multiplexing selects non-USB functionality
for a pin but USB signal multiplexing is set to use that pin as an output, the
signal from the USB signal multiplexing is ignored and the source selected by
the OMAP5910 top-level signal multiplexing is used.

When OMAP5910 top-level signal multiplexing selects non-USB functionality
for a pin but the USB signal multiplexing is set to use that pin as an input, the
OMAP5910 top-level signal multiplexing presents a low level to the USB signal
multiplexer.

It may be useful to select a CONF_MOD_HOST_HMC_MODE_R value that
brings some USB signals to the OMAP5910 top-level signal multiplexing, but
then set the top-level signal multiplexing to ignore those USB signals.

USB Host Controller Access to System Memory

14-81Universal Serial Bus Host

14.6 USB Host Controller Access to System Memory

The USB host controller must have access to system memory to read and write
the OHCI data structures and data buffers associated with USB traffic. The
OMAP5910 local bus controller allows the USB host controller to access
OMAP5910 system memory, as shown in Figure 14–32.

Figure 14–32. OMAP5910 USB Host Controller Data Path to System Memory

U
S

B
 s

ig
na

l m
ul

tip
le

xi
ng

Local bus
interface

MPU

MPU public
peripheral

bus
interface

USB host controller

Peripheral

Peripheral

U
S

B
tr

an
sc

ei
ve

r

U
S

B
tr

an
sc

ei
ve

r,
E

S
D

pr
ot

ec
tio

n

MPU’s
MMU

O
H

C
I c

on
tr

ol
le

r

OMAP5910
U

S
B

co
nn

ec
to

r

ESD
protection

U
S

B
tr

an
sc

ei
ve

r,
E

S
D

pr
ot

ec
tio

n

Internal
memory

External
memory

USB
function
controller

USB power
switching

GPIO

Memory
controller

Local bus
controller

LB
MMU

MPU public
peripheral bus

To
p–

le
ve

l p
in

Signals to/from other

peripherals

INTH2

UART 1
Peripheral

m
ul

tip
le

xi
ng

U
S

B
co

nn
ec

to
r

U
S

B
co

nn
ec

to
r

USB Host Controller Access to System Memory

 14-82

14.6.1 Local Bus Virtual Addressing

The OMAP5910 local bus implementation requires the USB host controller to
use local bus virtual addresses with bits 31-28 set to 0011b, which gives the
USB host controller a usable local bus virtual address range of 0x30000000
to 0x3FFFFFFF (a total range of 256 MBytes). If the local bus MMU is disabled,
the local bus virtual address range from 0x30000000 to 0x3FFFFFFF auto-
matically maps to processor address range 0x00000000 to 0x0FFFFFFF. With
the local bus MMU disabled, it is not possible to access OMAP5910 physical
addresses outside of this range. This is shown in Figure 14–33.

Figure 14–33. Relationships Between Processor Virtual Address, Processor Physical
Address, and Local Bus Virtual Address with Local Bus MMU Disabled

Processor
physical
address

Local bus
virtual

address

Local bus
MMU

(disabled)

0x00000000

0x30000000
0x3FFFFFFF

0x2FFFFFFF

0x40000000

0xFFFFFFFF

0x00000000

0xFFFFFFFF
Processor

virtual
address

Processor
MMU

0x00000000

0xFFFFFFFF

0x0FFFFFFF
0x10000000

When the OMAP5910 local bus MMU is enabled, the USB host controller is
not limited to processor physical addresses between 0x00000000 and
0x0FFFFFFF. The local bus MMU can be programmed to devirtualize the
local bus addresses in the local bus virtual address range
0x30000000-0x3FFFFFFF to any processor physical address. The relation-
ships between local bus virtual addresses, processor virtual addresses, and
processor physical addresses is shown in Figure 14–34.

USB Host Controller Access to System Memory

14-83Universal Serial Bus Host

Figure 14–34. Relationships Between Processor Virtual Address, Processor Physical
Address, and Local Bus Virtual Address with Local Bus MMU Enabled

Processor

physical

address

Local Bus

virtual

address

Local bus
MMU

0x00000000

0x30000000
0x3FFFFFFF

0x2FFFFFFF

0x40000000

0xFFFFFFFF

0x00000000

0xFFFFFFFF

Processor

virtual

address

Processor
MMU

0x00000000

0xFFFFFFFF

If any portion of the USB host controller data structures are stored in memory
that is not in the physical address range 0x00000000 to 0x0FFFFFFF, then the
local bus MMU must be programmed to provide a different mapping between
local bus virtual addresses and physical addresses. A system implementation
that does not implement any physical RAM in the physical address range
0x00000000 to 0x0FFFFFFF must enable the local bus MMU in order to use
the OMAP5910 USB host controller.

Initialization of the local bus MMU is done using the same sorts of operations
as are used for initializing the MPU MMU, except addressing the local bus
MMU instead of the MPU MMU.

The processor local bus interface ignores any local bus activity in the local bus
virtual address range from 0x0 to 0x2FFFFFFF, and the local bus virtual
address range from 0x40000000 to 0xFFFFFFFF. Should the USB host
request such an access (through improper setup of the USB host controller
registers or improper initialization of endpoint descriptors, transfer descriptors,
or the HCCA), the USB host local bus interface times out and signals an

USB Host Controller Access to System Memory

 14-84

unrecoverable error via the USB host interrupt mechanisms. If the USB host
local bus time-out feature is disabled, the USB host controller instead waits
indefinitely for completion of the local bus access and therefore locks up the
local bus.

14.6.2 Cache Coherency in OHCI Data Structures and Data Buffers

The OMAP5910 traffic controller does not provide mechanisms to flush (or
writeback) the MPU cache when a DMA controller or local bus access to
system memory occurs. Because there is no forced coherency mechanism,
the system implementation must ensure that the OMAP5910 USB host
controller can access the correct data from system memory, and that the MPU
accesses that same data. This requires that any system memory accessed by
the USB host controller be allocated in non-cached system memory.

If the OHCI data structures and/or data buffers are allocated in cached portions
of system memory, a cache coherency problem can exist because the MPU
can read from, and, if in writeback mode, write to the cache; but the USB host
controller accesses are always directly to the physical system memory. If the
data structures are in a cached portion of system memory and writeback mode
is enabled, it is possible the USB host controller could read stale data that has
not been updated by a cache writeback.

Similarly, if the data structure is in memory that is currently in the MPU cache
(either writeback or writethrough mode) and the OHCI controller modifies the
information in physical memory, the MPU can read stale data from the cache.

Cache coherency problems can be avoided by allocating the OHCI data struc-
tures (HCCA, EDs, and TDs) and the USB data buffers in noncacheable
system memory. In this case, every MPU access directly accesses physical
memory, so there is not a coherency issue. Configuration of cacheable
portions of the MPU virtual address space is provided via the MPU memory
management unit. See the description of the MPU MMU in Chapter 2, MPU
Subsystem.

14.6.3 Local Bus Addressing and OHCI Data Structure Pointers

Because of the limitations described in Section 14.6.1, Local Bus Virtual
Addressing, care is needed when programming the USB host controller OHCI
registers that are pointers to data structures and when initializing the pointers
inside those data structures. The USB host controller OHCI registers that point
to the HCCA and the ED lists must be programmed with values that are local
bus virtual addresses that correspond to the physical addresses of the particu-
lar data structure. In most cases, the USB host controller OHCI registers that
point to data structures in system memory are not programmed with the
address that the MPU software uses to access those data structures.

USB Host Controller Access to System Memory

14-85Universal Serial Bus Host

The USB host controller driver software must also be able to examine the list
of completed transfer descriptors that the host controller creates as it retires
transfer descriptors. This list is pointed to by the HcDoneHead register, which
contains a local bus virtual address that points to the most recent transfer
descriptor that has been retired. As such, the host controller driver software
must be able to convert from the local bus virtual address back to a MPU virtual
address.

Several address conversion functions are helpful to enable proper addressing
by the MPU software and the USB host controller. The functionality required
for proper addressing depends on the settings used in the MPU MMU and local
bus MMU; that is, functionality is system-dependent. The conversion functions
are described in general terms in the next section.

14.6.3.1 MPUVAtoLBVA()—MPU Virtual Address to Local Bus Virtual Address Conversion
Function

This function converts a MPU virtual address to the local bus virtual address
that points to the same physical address in system memory. This output from
this function is needed in programming the USB host controller registers that
point to data structures in system memory and in programming pointers within
the ED, TD, and HCCA data structures.

This function must understand the MPU MMU and local bus MMU program-
ming and local bus virtual address restrictions. This routine is generally imple-
mented in a two-step process—MPU virtual address to physical address, then
physical address to local bus virtual address. Those two steps are described
in section 14.6.3.3, MPUVAtoPA()—MPU Virtual Address to Physical Address
Conversion Function and section 14.6.3.5, PAtoLBVA()—Physical Address to
Local Bus Virtual Address Conversion Function.

It is advisable to implement a checking function in this routine that verifies that
the resulting local bus virtual address is in the usable local bus virtual address
range of 0x30000000 to 0x3FFFFFFF. If the USB host controller attempts to
access a local bus virtual address outside of the valid range, an OHCI unrecov-
erable error occurs if the USB host controller local bus time-out feature is
enabled. If the time-out feature is disabled and the USB host controller
attempts an access outside of the valid range, the USB host controller local
bus interface locks up and the USB host controller is not able to access the
system memory data structures needed to issue USB packets.

Take care when converting null pointers. The OHCI USB host controller uses
null pointers to indicate the end of lists. Some convention must be used to indi-
cate an MPU null pointer and properly convert that MPU null pointer to a local
bus virtual address of 0x00000000.

USB Host Controller Access to System Memory

 14-86

14.6.3.2 LBVAtoMPUVA()—Local Bus Virtual Address to MPU Virtual Address Conversion
Function

This function converts a local bus virtual address to a MPU virtual address.
This function is used when the host controller driver must traverse the ED and
TD linked lists in system memory, or in traversing the done TD list.

This function must understand both the MPU MMU and local bus MMU
programming and local bus virtual address restrictions. This routine is general-
ly implemented in a two step process—local bus virtual address to physical
address, then physical address to MPU virtual address. Those two steps are
described in section 14.6.3.4, LBVAtoPA()—Local Bus Virtual Address to
Physical Address Conversion Function and section 14.6.3.6,
PAtoMPUVA()—Physical Address to MPU Virtual Address Conversion
Function.

Take care when converting null pointers. The OHCI USB host controller uses
null pointers to indicate the end of lists. Some convention must be used to
indicate an MPU null pointer and properly convert a local bus virtual address
of 0x000000 to that MPU null pointer value.

14.6.3.3 MPUVAtoPA()—MPU Virtual Address to Physical Address Conversion Function

This function converts an MPU virtual address to the equivalent system physi-
cal address. This function must understand the way that the system software
has configured the MPU MMU. This function must provide a conversion that
has a result that is identical to the conversion done in hardware by the MPU
MMU.

14.6.3.4 LBVAtoPA()—Local Bus Virtual Address to Physical Address Conversion Function

This function converts a local bus virtual address to the equivalent system
physical address. This function must understand the way that the system soft-
ware has configured the local bus MMU. This function must provide a conver-
sion that has a result that is identical to the conversion done in hardware by
the local bus MMU.

This function must also understand the OMAP5910 local bus limitation that
requires local bus virtual addresses to be in the range 0x30000000 to
0x3FFFFFFF.

USB Host Controller Access to System Memory

14-87Universal Serial Bus Host

14.6.3.5 PAtoLBVA()—Physical Address to Local Bus Virtual Address Conversion Function

This function is a reverse version of the local bus virtual address to physical
address conversion function. It accepts a processor physical address as its
argument and returns the equivalent local bus virtual address.

It is possible to program the local bus MMU to allow two (or more) different local
bus virtual addresses to map to the same physical address. System software
implementers must be careful to avoid that situation.

It is advisable to implement a checking function in this routine that verifies that
the resulting local bus virtual address is in the usable local bus virtual address
range of 0x30000000 to 0x3FFFFFFF. If the USB host controller attempts to
access a local bus virtual address outside of the valid range, an OHCI unrecov-
erable error occurs if the USB host controller local bus time-out feature is
enabled. If the time-out feature is disabled and the USB host controller
attempts an access outside of the valid range, the USB host controller local
bus interface locks up and the USB host controller is not able to access the
system memory data structures needed to issue USB packets.

14.6.3.6 PAtoMPUVA()—Physical Address to MPU Virtual Address Conversion Function

This function is a reverse version of the MPU virtual address to physical
address conversion. It accepts a physical address as an argument and returns
the equivalent MPU virtual address.

It is possible to program the MPU MMU to allow two (or more) different MPU
virtual addresses to map to the same physical address. This is especially
common in systems that use linear addressing within a task. System software
implementers must be careful to avoid that situation or to perform the conver-
sion in a way that understands the task-specific conversion requirements.

14.6.3.7 Physical, MPU Virtual, and Local Bus Virtual Addresses—an Example

An example helps show the requirements. Consider a system where the MPU
places the HCCA and ED and TD lists in SRAM on OMAP5910 CS0 and where
the USB data buffers are in external SDRAM. The MPU MMU is set up, in part,
as shown in Table 14–31.

Table 14–31. MPU MMU Programming for Address Conversion Example

MPU Virtual Address Physical Address Page Size

0x00000000 to 0x000000FFF 0x0005E000 to 0x0005EFFF Small (4K bytes)

0x00010000 to 0x0001FFFF 0x10170000 to 0x1017FFFF Large (64K bytes)

USB Host Controller Access to System Memory

 14-88

Assume that the system software has allocated the following MPU addresses
for some OHCI data structures, as shown in Table 14–32.

Table 14–32. MPU Memory Allocations for Address Conversion Example

OHCI Structure MPU Virtual Address

HHCA base address 0x00000700

First bulk ED on the ED list 0x00000140

First control ED on the ED list 0x00000150

First TD for first ED on bulk list 0x00000D90

First TD for first ED on control ED list 0x00000DA0

Data buffer start for first TD on first ED of bulk list 0x00010007

Data buffer start for first TD on first ED of control list 0x00013423

The corresponding physical addresses for these OHCI structures are shown
in Table 14–33.

Table 14–33. Physical Addresses for Address Conversion Example

OHCI Structure MPU Virtual Address Physical Address

HHCA base address 0x00000700 0x0005E700

First bulk ED on the ED list 0x00000140 0x0005E140

First control ED on the ED list 0x00000150 0x0005E150

First TD for first ED on bulk list 0x00000D90 0x0005ED90

First TD for first ED on control ED list 0x00000DA0 0x0005EDA0

Data buffer start for first TD on first ED of bulk list 0x00010007 0x10170007

Data buffer start for first TD on first ED of control list 0x00013423 0x10173423

Note: Assumes the MPU MMU initialization shown in Table 14–31 and the MPU memory allocations shown in Table 14–32.

USB Host Controller Access to System Memory

14-89Universal Serial Bus Host

Because the USB data buffers are to be stored outside of the physical address
range that may be reached by the USB host controller when the local bus MMU
is disabled, it is necessary to enable and program the local bus MMU. A
possible way to program the local bus MMU is shown in Table 14–34.

Table 14–34. Local Bus MMU Programming for Address Conversion Example

Local Bus Virtual Address Physical Address Page Size

0x30F00000 to 0x30F0FFFF 0x0005E000 to 0x0005EFFF Small (4 KBytes)

0x32100000 to 0x3210FFFF 0x10170000 to 0x1017FFFF Large (64 KBytes)

Given this local bus MMU virtual address to physical address mapping, the
local bus virtual addresses in Table 14–35 are needed to program the USB
host controller OHCI registers and some of the pointers in the ED and TD
structures.

Table 14–35. Local Bus Virtual Addresses for Address Conversion Example

OHCI Structure
MPU Virtual

Address
Physical
Address

Local Bus
Virtual

Address

HHCA base address 0x00000700 0x0005E700 0x30F00700

First bulk ED on the ED list 0x00000140 0x0005E140 0x30F00140

First control ED on the ED list 0x00000150 0x0005E150 0x30F00150

First TD for first ED on bulk list 0x00000D90 0x0005ED90 0x30F00D90

First TD for first ED on control ED list 0x00000DA0 0x0005EDA0 0x30F00DA0

Data buffer start (CBP) for first TD on first ED of bulk
list

0x00010007 0x10170007 0x32100007

Data buffer start (CBP) for first TD on first ED of
control list

0x00013423 0x10173423 0x32103423

USB Host Controller Access to System Memory

 14-90

Given all of the information in Table 14–35, the MPU performs the initializa-
tions described in Table 14–36.

Table 14–36. Some Data Structure Initializations for Address Conversion Example

Item initialized Value Type of Value

HcHCCA register 0x30F00700 Local bus virtual address

HcBulkHeadED register 0x30F00140 Local bus virtual address

HcControlHeadED register 0x30F00150 Local bus virtual address

TDQueueHeadPointer for first bulk ED 0x30F00D90 Local bus virtual address

TDQueueHeadPointer for first control ED 0x30F00DA0 Local bus virtual address

CBP for first TD of first bulk ED 0x32100007 Local bus virtual address

CBP for first TD of first control ED 0x32103423 Local bus virtual address

To properly initialize the EDs and TDs mentioned here, the MPU software must
allocate memory for the data structure and initialize the various fields. To initial-
ize the address pointers in the structure, it begins by getting the MPU virtual
address of the item that is pointed to by the data structure pointer. It converts
that value to the corresponding local bus virtual address and places that value
into the data structure pointer field.

For example, if the USB host controller driver must add a TD to the TD list in
the first bulk ED, it must locate the last TD on the TD list and update it with the
new TD information. It must then change the NextP pointer of the last TD to
point to the local bus virtual address of a newly allocated empty TD. To traverse
the TD list to find the last TD, the host controller driver perhaps starts by
traversing the ED list. It would start by reading the HcBulkHeadED register,
which returns a local bus virtual address. It converts this value to the corre-
sponding MPU virtual address and reads the ED. If the ED is for a different
function number or different endpoint number or direction, the driver reads the
NextED pointer, converts the value from a local bus virtual address to a MPU
virtual address, and checks this new ED for function number and endpoint
number. Once it finds an ED that matches in function number and endpoint
number (and perhaps endpoint direction), it begins traversing the TD list asso-
ciated with the ED.

To traverse the TD list, the driver begins by saving a copy of the TailP value
from the ED and by reading the HeadP value from the ED, which is a local bus
virtual address. The driver converts this to a MPU virtual address, and reads

USB Host Controller Access to System Memory

14-91Universal Serial Bus Host

the TD. If the NextTD pointer is not the same as the saved copy of the TailP
value, the TD is the not last TD in the list, and the driver converts the NextTD
local bus virtual address to a MPU virtual address, fetches that TD, and
compares the NextTD pointer to the saved TailP value. This process continues
until the driver finds a TD with a NextTD value that matches the saved TD
value.

Once the last TD on the correct list has been found, the driver copies the new
TD information into the last TD, allocates memory for a new TD, converts the
address of the new TD to a local bus virtual address, and updates the NextTD
value in the last TD to point to the newly allocated TD. It also updates the TailP
value in the ED to the local bus virtual address of the newly allocated TD.

14.6.4 NULL Pointers

The OHCI Specification for USB uses NULL pointers to indicate the end of a
list. The OMAP USB host controller compares the ED and TD pointers against
the value 0x00000000 to determine if the pointer is a null pointer. Address
conversion routines must understand this usage and must not mistake
0x00000000, the null pointer, for local bus virtual address 0x30000000, which
may point to a valid location in physical system memory.

14.6.5 Endianism and USB Host Controller Access to System Memory

The OHCI Specification for USB defines a little-endian controller. Since the
OMAP5910 USB host controller is OHCI-compliant, it is defined for use in little-
endian systems. The OMAP5910 MPU core and subsystem are also little
endian.

14.6.5.1 Endianism and OHCI Endpoint and Transfer Descriptors

OHCI endpoint and transfer descriptors are implemented as shown in the
OHCI Specification for USB, with the bit positions in the endpoint and transfer
descriptor data structures representing bit positions on the physical 32-bit data
bus.

If using C structures for the EDs and TDs, be careful of data alignment of the
structures and the implications of the MPU’s little endianism. The OHCI Speci-
fication for USB requires that EDs and TDs be aligned at 32-bit boundaries in
system memory (local bus virtual address LS 4 bits must be 0). It may be useful
to validate that your data structures are being properly initialized in memory
by performing 32-bit reads to the initialized data structures and comparing the
32-bit read values to the intended values within the bit-fields. However,
because the USB host controller and the MPU core both use little endian
addressing, this should not arise any issues on the OMAP5910 device.

USB Host Controller Access to System Memory

 14-92

14.6.5.2 Endianism and OHCI Data Buffers

The OMAP5910 MPU subsystem only supports little endian operation. The
USB host controller assumes little-endian data addressing.

Little endian addressing imposes the following data positions within a 32-bit
aligned, 32-bit data value in memory, as shown in Table 14–37.

Table 14–37. Little Endian Data Alignment Within 32-Bit Word

Bit Position Within 32-Bit Word

Address Offset Data Size 31 24 23 16 15 8 7 0

0x0 1 First byte

0x0 2 Second byte First byte

0x0 3 Third byte Second byte First byte

0x0 4 Fourth byte Third byte Second byte First byte

0x1 1 First byte

0x1 2 Second byte First byte

0x1 3 Third byte Second byte First byte

0x2 1 First byte

0x2 2 Second byte First byte

0x3 1 First byte

OMAP5910 Local Bus

14-93Universal Serial Bus Host

14.7 OMAP5910 Local Bus

The OMAP5910 local bus supports both slave and master peripherals. This
bus allows the MPU, DSP, and DMA controller to access local bus slave
peripherals and allows local bus master peripherals to move data to and from
system memory.

The OMAP5910 device does not implement any local bus slave peripherals.
The local bus interface of the OMAP5910 USB host controller implements a
local bus master peripheral which enables the USB host controller to access
system memory via the OMAP5910 local bus and the OMAP5910 traffic
controller.

14.7.1 LB Register Descriptions

Table 14–38 lists the registers associated with local bus (LB) control and
status. Table 14–39 through Table 14–47 describe specific register bits.

The LB_CLOCK_DIV register has a direct impact on the ability of the USB host
controller to access OMAP5910 system memory. The remaining OMAP5910
local bus control and status registers have no direct effect, because they con-
trol MPU, DSP, and DMA controller accesses to slave peripherals addressed
via local bus and there are no slave peripherals on the OMAP5910 local bus.

The local bus memory management unit and its registers are discussed
separately in section 14.8, OMAP5910 Local Bus MMU.

Table 14–38. Local Bus Control Registers

Name Description R/W Size† Address

LB_MPU_TIMEOUT LB MPU time-out R/W 32 FFFE:C100h

LB_HOLD_TIMER LB hold timer R/W 32 FFFE:C104h

LB_PRIORITY_REG LB priority R/W 32 FFFE:C108h

LB_CLOCK_DIV LB clock divider R/W 32 FFFE:C10Ch

LB_ABORT_ADD LB abort address R 32 FFFE:C110h

LB_ABORT_DATA LB abort data R 32 FFFE:C114h

LB_ABORT_STATUS LB abort status R 32 FFFE:C118h

LB_IRQ_OUTPUT LB IRQ output R/W 32 FFFE:C11Ch

LB_IRQ_INPUT LB IRQ input R 32 FFFE:C120h

† Access to these registers must be by 32-bit reads or 32-bit writes. Use of other access sizes may result in undefined operation.

OMAP5910 Local Bus

 14-94

14.7.2 LB MPU Time-out Register (LB_MPU_TIMEOUT)

This register controls the maximum number of local bus clocks allowed for an
access by the OMAP5910 MPU, DSP, or DMA controller to a local bus slave
device before signaling a local bus abort. This register has no effect on
OMAP5910 USB host controller accesses to system memory.

Table 14–39. LB MPU Time-out Register (LB_MPU_TIMEOUT)

Bit Name Description Type
Reset
Value

31–8 Reserved Reserved R 0

7–0 TIMEOUT Local bus slave access time-out

Number of local bus clocks to wait for completion of a local
bus cycle initiated by the MPU, DSP, or DMA before signaling
a local bus abort. This time-out does not apply to local bus
cycles initiated by the OMAP5910 USB host controller.

Because there are no local bus slave peripherals in the
OMAP5910 device, this register can be set to a low value like
3. This causes the local bus controller to issue a local bus
abort interrupt if the DSP, MPU, or DMA controller mistakenly
attempts to access a physical address associated with the
local bus slave memory space.

R/W 0xFF

OMAP5910 Local Bus

14-95Universal Serial Bus Host

14.7.3 LB Hold Timer Register (LB_HOLD_TIMER)

This register configures the local bus controller bus request and bus hold func-
tions. This register has no effect on OMAP5910 USB host controller accesses
to system memory.

Table 14–40. LB Hold Timer Register (LB_HOLD_TIMER)

Bit Name Description Type
Reset
Value

31–10 Reserved Reserved R 0

9 BREQ_TIMER_EN Local bus request timer enable

Because there are no local bus slave peripherals on
OMAP5910, it is recommended that this register be set to
1 to enable the request timer. This helps prevent lockup
of the local bus.

R/W 0

8 HOLD_TIMER_EN Local bus hold timer enable

Because there are no local bus slave peripherals on
OMAP5910, it is recommended that this register be set to
1 to enable the HOLD timer. This helps prevent lockup of
the local bus.

R/W 0

7–0 HOLD_TIMER Local bus hold timer value

Because there are no local bus slave peripherals on
OMAP5910, it is recommended that this register be set to
a small number like 5 so that the hold timer does not
need to wait a long time before signaling an abort. This
speeds return of the local bus abort interrupt should the
DSP, MPU, or DMA controller accidentally access the
local bus.

R/W 0

14.7.4 LB Priority Register (LB_PRIORITY_REG)

The priority register is not used in OMAP5910.

Table 14–41. LB Priority Register (LB_PRIORITY_REG)

Bit Name Description Type
Reset
Value

31–0 Reserved Reserved for future expansion. These bits should always
be written as 0.

R 0

OMAP5910 Local Bus

 14-96

14.7.5 LB Clock Divider Register (LB_CLOCK_DIV)

This register controls local bus clocking. This clocking affects accesses by the
USB host controller to system memory, as well as DMA controller, DSP, and
MPU accesses to local bus slave peripherals. Because OMAP5910 does not
implement any local bus slave peripherals, the local bus clock rate mainly
affects the USB host controller accesses to system memory.

This register also provides masks for external local bus interrupts and local bus
abort interrupts that can be routed to the MPU level 1 interrupt controller.

The clock division register can be read in user and supervisor modes and can
be written in supervisor mode only.

Table 14–42. LB Clock Divider Register (LB_CLOCK_DIV)

Bit Name Value Description Type
Reset
Value

31–8 Reserved Reserved R 0

7 LB_ABORT_MASK Local bus abort interrupt mask R/W 1

0 Local bus abort interrupt is enabled.

1 Local bus abort interrupt is disabled.

When enabled and the DSP, MPU, or DMA
controller attempts to access a local bus
slave peripheral, the local bus time-out
counter counts down to zero and then signal
a local bus abort. When disabled and the
DSP, MPU, or DMA controller attempts to
access a local bus slave peripheral, the local
bus time-out counter does not count and the
cycle locks up the local bus.

Since OMAP5910 does not implement any
local bus slave peripherals, it is
recommended that this bit be cleared and that
system software trap the local bus interrupt at
MPU level 1 interrupt handler IRQ29 input.

6–3 LB_IRQ_IN_MASK Local bus interrupt input mask

These bits enable (when 0) or disable (when
1) local bus interrupt inputs.

OMAP5910 does not provide interrupt
sources for these interrupts, so it is
recommended that these bits remain set to 1
to ensure future compatibility.

R/W 0xF

OMAP5910 Local Bus

14-97Universal Serial Bus Host

Table 14–42. LB Clock Divider Register (LB_CLOCK_DIV) (Continued)

Bit
Reset
ValueTypeDescriptionValueName

2–0 LB_CLK_DIV Local bus clock divisor: R/W 4

010 Local bus clock is transfer controller clock
divided by 2.

100 Local bus clock is transfer controller clock
divided by 4.

110 Local bus clock is transfer controller clock
divided by 6.

Other values: Reserved

These bits control the local bus clock rate.
The clock for the local bus is derived from the
OMAP5910 traffic controller clock. The local
bus clock can be set to be transfer controller
clock divided by 2, divided by 4, or divided by
6. All other values are reserved and must not
be used.

This field must be set to a suitable value to
allow USB host controller access to system
memory. The USB host controller supports a
maximum local bus clock frequency of 50
MHz. Be sure that the divisor you select does
not result in a local bus clock frequency
greater than 50 MHz.

OMAP5910 Local Bus

 14-98

14.7.6 LB Abort Address Register (LB_ABORT_ADD)

This register captures the local bus address if the MPU, DSP, or DMA control-
ler attempts to access a local bus slave peripheral and a local bus time-out
occurs.

This register is not affected by OMAP5910 USB host controller accesses to
system memory.

Table 14–43. LB Abort Address Register (LB_ABORT_ADD)

Bit Name Description Type
Reset
Value

31–0 LB_ABORT_ADD Local bus address of last aborted local bus cycle

When the DMA controller, MPU, or DSP attempts to
access a local bus slave peripheral and a local bus abort
occurs, the address of the cycle is captured to this
register.

R 0xFFFF
FFFF

14.7.7 LB Abort Data Register (LB_ ABORT_DATA)

This register reports the data bus value for the last DMA controller, DSP, or
MPU local bus cycle that was aborted.

This register is not affected by OMAP5910 USB host controller accesses to
system memory.

Table 14–44. LB Abort Data Register (LB_ ABORT_DATA)

Bit Name Description Type
Reset
Value

31–0 LB_ABORT_DATA Data for aborted local bus access attempt

This register reflects the data seen on the local bus when
a local bus access is aborted.

R 0xFFFF
FFFF

OMAP5910 Local Bus

14-99Universal Serial Bus Host

14.7.8 LB Abort Status Register (LB_ABORT_STATUS)

This register provides the local bus cycle status for the last aborted local bus
cycle that was issued by the DMA controller, DSP, or MPU. This register is not
affected by OMAP5910 USB host controller accesses to system memory.

Table 14–45. LB Abort Status Register (LB_ABORT_STATUS)

Bit Name Description Type
Reset
Value

31–8 Reserved Reserved R 0

7–4 LB_BE Byte enables from aborted local bus access

Active-low byte enables seen at the last aborted local bus
access that was issued by the DSP, DMA controller, or MPU.

R 0

3 LB_RD Cycle type from aborted local bus access

Indicates, when 1, that the last aborted local bus access was
a read. When 0, indicates that the last aborted local bus
access was a write.

R 0

2 LB_DMA DMA sourced aborted local bus access

When 1, indicates that the last aborted local bus access was
sourced by the DMA controller.

R 0

1 LB_DSP DSP sourced aborted local bus access

When high, indicates that the last aborted local bus access
was sourced by the DSP.

R 0

0 LB_MPU MPU sourced aborted local bus access

When high, indicates that the last aborted local bus access
was sourced by the MPU controller.

R 0

14.7.9 LB IRQ Output Register (LB_IRQ_OUTPUT)

This register is reserved for future expansion and should be left at 0.

Table 14–46. LB IRQ Output Register (LB_IRQ_OUTPUT)

Bit Name Description Type
Reset
Value

31–0 Reserved Reserved R 0

OMAP5910 Local Bus

 14-100

14.7.10 LB IRQ Input Register (LB_IRQ_INPUT)

This register reports the status of local bus interrupts, including interrupts from
external sources (which are not used in OMAP5910) and the status of the
local bus abort interrupt.

This register has no effect on OMAP5910 USB host controller accesses
to system memory and is not affected by USB host controller accesses to
system memory.

Table 14–47. LB IRQ Input Register (LB_IRQ_INPUT)

Bit Name Description Type
Reset
Value

31–5 Reserved Reserved R 0

4 ABORT_STAT Local bus abort status

0: Local bus abort has occurred since last read of
LB_IRQ_INPUT.

1: Local bus abort has not occurred since last read of
LB_IRQ_INPUT.

Reading this register sets this bit to 1. Writes have no effect.

A local bus abort event causes an interrupt to the MPU level
1 interrupt handler if the LB_ABORT_MASK bit of the
LB_CLOCK_DIV register is set to 0.

Because the DMA controller, DSP, and MPU could
mistakenly attempt to access a local bus slave peripheral
address, it is recommended that system software trap the
local bus abort interrupt and signal a system error should one
occur.

R 1

3–0 IRQ_IN_STAT Reserved for future expansion. These bits can be ignored. R 0xF

14.7.11 Local Bus Initialization

Proper operation of the OMAP5910 local bus (for USB host controller access
to system memory) requires that the FUNC_MUX_CTRL_0 register be prop-
erly initialized. FUNC_MUX_CTRL_0 bits 1:0 must be set either to 00b or to
11b in order to support correct local bus activity.

The local bus clock rate must be chosen to provide a suitable clock to the USB
host controller. The local bus clock rate is controlled by the LB_CLOCK_DIV
register LB_CLK_DIV field and is generated by dividing the OMAP5910 trans-
fer controller clock by 2, 4, or 6. The local bus clock rate must be programmed
to provide a local bus clock frequency that is 50 MHz or slower.

OMAP5910 Local Bus MMU

14-101Universal Serial Bus Host

14.7.12 Local Bus Virtual Addressing

When an MPU, DSP, or DMA access to the local bus causes a local bus abort
interrupt, the interrupt service routine for MPU level 1 interrupt IRQ29 must
read the LB IRQ input register (LB_IRQ_INPUT) to clear the IRQ and then
must clear the IRQ at the MPU level 1 interrupt handler input IRQ29.

14.8 OMAP5910 Local Bus MMU

The local bus memory management unit (MMU) is used by the local bus inter-
face for address management of bus cycles initiated by the OMAP5910 USB
host controller. The local bus MMU manages local bus virtual addresses, in-
cluding conversion of local bus virtual addresses to physical addresses and
monitoring of access permissions. The local bus MMU can be initialized by the
MPU to allow the USB host controller to access the full range of OMAP5910
system memory. A detailed functional description of the MMU architecture can
be found in Chapter 2, MPU Subsystem.

The local bus MMU includes the following basic blocks:

� A 32-entry translation look aside buffer (TLB)
� Walking table logic
� Registers for recording fault status and fault address

When properly configured and enabled, the walking table logic automatically
performs the address conversion from local bus virtual address to physical
address (for USB host controller accesses to system memory). Alternately, the
walking table logic can be disabled, which allows the MPU to perform local bus
virtual address translation under software control.

The local bus MMU is configured via registers which are on the MPU private
peripheral bus. The MPU is responsible for correctly configuring the local bus
MMU memory mapping functions.

The local bus MMU operates much like the MPU and DSP MMUs. The local
bus MMU does not use the upper 4 bits of the local bus virtual address (they
are ignored by the local bus MMU hardware) and does not support the prefetch
feature.

OMAP5910 Local Bus / OMAP5910 Local Bus MMU

OMAP5910 Local Bus MMU

 14-102

14.8.1 OMAP5910 Local Bus MMU Registers

The OMAP5910 local bus MMU registers are listed in Table 14–48.
Table 14–49 through Table 14–67 describe the specific register bits.

Table 14–48. Local Bus MMU Registers

Name Description
User

Access
Supervisor

Access Size Address

Reserved Reserved R R/W 16 FFFE:C200h

LB_MMU_WALKING_
ST_REG

LB MMU walking status R R/W 16 FFFE:C204h

LB_MMU_CNTL_REG LB MMU control R R/W 16 FFFE:C208h

LB_MMU_FAULT_AD_
H_REG

LB MMU fault address high R R 16 FFFE:C20Ch

LB_MMU_FAULT_AD_
L_REG

LB MMU fault address low R R 16 FFFE:C210h

LB_MMU_FAULT_ST_REG LB MMU fault status R R 16 FFFE:C214h

LB_MMU_IT_ACK_REG LB MMU interrupt
acknowledge

W W 16 FFFE:C218h

LB_MMU_TTB_H_REG LB MMU TTB high R R/W 16 FFFE:C21Ch

LB_MMU_TTB_L_REG LB MMU TTB low R R/W 16 FFFE:C220h

LB_MMU_LOCK_REG LB MMU lock counter R/W R/W 16 FFFE:C224h

LB_MMU_LD_TLB_REG LB MMU TLB load/read R/W R/W 16 FFFE:C228h

LB_MMU_CAM_H_REG LB MMU CAM high R/W R/W 16 FFFE:C22Ch

LB_MMU_CAM_L_REG LB MMU CAM low R/W R/W 16 FFFE:C230h

LB_MMU_RAM_H_REG LB MMU RAM high R/W R/W 16 FFFE:C234h

LB_MMU_RAM_L_REG LB MMU RAM low R/W R/W 16 FFFE:C238h

LB_MMU_GFLUSH_REG LB MMU global flush R/W R/W 16 FFFE:C23Ch

LB_MMU_FLUSH_ENTRY_
REG

LB MMU flush entry R/W R/W 16 FFFE:C240h

LB_MMU_READ_CAM_H_
REG

LB MMU CAM read high R/W R/W 16 FFFE:C244h

LB_MMU_READ_CAM_
L_REG

LB MMU CAM read low R/W R/W 16 FFFE:C248h

OMAP5910 Local Bus MMU

14-103Universal Serial Bus Host

Table 14–48. Local Bus MMU Registers (Continued)

Name AddressSize
Supervisor

Access
User

AccessDescription

LB_MMU_READ_RAM_
H_REG

LB MMU RAM read high R/W R/W 16 FFFE:C24Ch

LB_MMU_READ_RAM_
L_REG

LB MMU RAM read low R/W R/W 16 FFFE:C250h

This register reports the local bus MMU walking table status.

Table 14–49. LB MMU Walking Status Register (LB_MMU_WALKING_ST_REG)

Access Hardware
Reset

Bit Name Function User Sup
Reset
Value

15–:2 Reserved Reserved - - -

1 Wtl_working When 1, the walking table is active. R R/W 0

0 Reserved Reserved - - -

OMAP5910 Local Bus MMU

 14-104

The LB MMU control register controls the local bus MMU reset and enable
functions.

Table 14–50. LB MMU Control Register (LB_MMU_CNTL_REG)

Access Hardware
Reset

Bit Name Function User Sup
Reset
Value

15–6 Reserved Reserved - - -

5 Burst_16_mngt_en When 1, enables 16 bit burst access
management

R R/W 0

4–3 Reserved Reserved R R 00

2 Wtl_en When 1, enables the walking table
logic. When 0, the walking table is
disabled and access to the TLB and
lock counter are disabled.

R R/W 0

1 MMU_en Local bus MMU enable
0: Local bus MMU is disabled.

1: Local bus MMU is enabled.

When 0, the local bus MMU is disabled
and local bus virtual addresses in the
range 0000:0000h to 0FFF:FFFF are
mapped directly to physical address
range 0000:0000h to 00FF:FFFFh.

R R/W 0

0 Reset_sw When 0, holds the local bus MMU in
reset. When 1, the local bus MMU is
not held in reset.

Software must set this bit to allow the
MMU to function.

R R/W 0

The LB MMU fault address registers report the local bus virtual address of the
last local bus access which caused a local bus MMU fault.

Table 14–51. LB MMU Fault Address High Register (LB_MMU_FAULT_AD_H_REG)

Access Hardware
Reset

Bit Name Function User Sup
Reset
Value

15–0 Fault_address_MSB Most significant 16 bits of the local bus
address that caused a local bus MMU
fault. The most significant 4 bits are
always 0000.

R R 0x0000

OMAP5910 Local Bus MMU

14-105Universal Serial Bus Host

Table 14–52. LB MMU Fault Address Low Register (LB_MMU_FAULT_AD_L_REG)

Access Hardware
Reset

Bit Name Function User Sup
Reset
Value

15–0 Fault_address_LSB Least significant 16 bits of the local
bus address that caused a local bus
MMU fault

R R 0x0000

The LB MMU fault status register provides information on the type of fault
encountered at the last local bus MMU fault.

Table 14–53. LB MMU Fault Status Register (LB_MMU_FAULT_ST_REG)

Access Hardware
Reset

Bit Name Function User Sup
Reset
Value

15–3 Reserved Reserved - - -

2 Perm_fault Permission fault. Active high R R 0

1 Tlb_miss TLB miss (when WTB disabled). Active
high

R R 0

0 Trans_fault Translation fault (invalid descriptor).
Active high

R R 0

The LB MMU register is used to acknowledge the local bus MMU interrupt at
the local bus MMU interrupt generator. Acknowledging the interrupt at the local
bus MMU interrupt generator causes the generator to deassert its interrupt
indication.

In response to a local bus MMU interrupt, the interrupt service routine must:

1) Read LB_MMU_FAULT_AD_L_REG and LB_MMU_FAULT_AD_H_REG.
2) Read LB_MMU_FAULT_ST_REG.
3) Determine how to respond to the faulty access.
4) Acknowledge the interrupt by writing a 1 to LB_MMU_IT_ACK_REG.
5) Acknowledge the interrupt at MPU level 1 interrupt handler IRQ17.

OMAP5910 Local Bus MMU

 14-106

Table 14–54. LB MMU Interrupt Acknowledge Register (LB_MMU_IT_ACK_REG)

Access Hardware
Reset

Bit Name Function User Sup
Reset
Value

15–1 Reserved Reserved - - -

0 It_ack Write a 1 to this bit to acknowledge the
interrupt. A write of 0 has no effect; a
write of 1 clears the bit automatically.

W W 0

The LB TTB address registers define the physical address of the local bus
MMU translation table base (TTB).

Table 14–55. LB MMU TTB Address High Register (LB_MMU_TTB_H_REG)

Access Hardware
Reset

Bit Name Function User Sup
Reset
Value

15–0 TTB_REG_H Most significant 16 bits of physical
address of translation table base
address

R R/W 0

Table 14–56. LB MMU TTB Address Low Register (LB_MMU_TTB_L_REG)

Access Hardware
Reset

Bit Name Function User Sup
Reset
Value

15–0 TTB_REG_L Least significant 16 bits of physical
address of translation table base
address. Bits 9-0 must always be 0.

R R/W 0

Table 14–57. LB MMU Lock Counter Register (LB_MMU_LOCK_REG)

Access Hardware
Reset

Bit Name Function User Sup
Reset
Value

15–10 Base_value Locked entries base value R/W R/W 0

9–4 Current_victim Current entry pointed to by the WTL.

Base_value <= Current_victim <= 31

R/W R/W 0

3–0 Unused

OMAP5910 Local Bus MMU

14-107Universal Serial Bus Host

To write one entry into the local bus MMU TLB, use the following procedure:

1) Disable the table walking logic (if not already disabled).

2) Write the appropriate value to LB_MMU_CAM_H_REG.

3) Write the appropriate value to LB_MMU_CAM_L_REG.

4) Write the appropriate value to LB_MMU_RAM_H_REG.

5) Write the appropriate value to LB_MMU_RAM_L_REG.

6) Write the TLB entry number to be modified into Current_victim: number
must be equal to or greater than the current value of Base_value and must
be less than or equal to 31.

7) Write the LD_TLB_REG register with the Ld_tlb_item bit set.

8) Enable the table walking logic (if necessary).

To read one local bus MMU TLB entry, use the following procedure:

1) Disable the table walking logic (if not already disabled).

2) Write the TLB entry number of the TLB entry to be read into Current_
victim: number must be equal to or greater than the current value of
Base_value and must be less than or equal to 31.

3) Write the LD_TLB_REG register with the Rd_tlb_item bit set.

4) Read the value from LB_MMU_READ_CAM_H.

5) Read the value from LB_MMU_READ_CAM_L.

6) Read the value from LB_MMU_READ_RAM_H.

7) Read the value from LB_MMU_READ_RAM_L.

8) Enable the table walking logic (if necessary).

This register controls reading and writing to the local bus MMU TLB.

OMAP5910 Local Bus MMU

 14-108

Table 14–58. Local Bus MMU TLB Read/Write Register

Access Hardware
Reset

Bit Name Function User Sup
Reset
Value

15–2 Reserved Reserved – – –

1 Rd_tlb_item When this bit is set, causes the TLB
data pointed to by the lock counter to
be read. Writing a 0 has no effect.
Always reads as 0.

R/W R/W 0

0 Ld_tlb_item When this bit is set, causes the TLB to
be written. Writing a 0 has no effect.
Always reads as 0

R/W R/W 0

The LB MMU content addressable memory (CAM) access registers can be
used to access data in the local bus MMU content addressable memory. The
VA_tag values are compared against the local bus virtual address when a local
bus access occurs. Bits 31-28 of the local bus virtual address are ignored in
the address comparison.

Note:

The USB host controller can malfunction if the local bus MMU is programmed
with tiny pages. See Section 14.8.2.1, Local Bus MMU Page Size and the
USB Host Controller, for more information.

Table 14–59. Local Bus MMU CAM High Register

Access Hardware
Reset

Bit Name Function User Sup
Reset
Value

15–6 Reserved Reserved – – –

5–0 VA_tag_l1_H The most significant six bits of the
local bus virtual address, which are
used for this entry level 1 table index.

Because the local bus MMU ignores
bits 31-28 of the local bus virtual
address, these 6 bits correspond to
bits 27-22 of the 32-bit local bus
virtual address used by the USB host
controller.

R/W R/W 0

OMAP5910 Local Bus MMU

14-109Universal Serial Bus Host

Table 14–60. Local Bus MMU CAM Low Register

Access Hardware
Reset

Bit Name Value Function User Sup
Reset
Value

15–14 VA_tag_l1_L Least significant two bits of the local bus
virtual address to be used for this entry
level 1 table index.

Because the local bus MMU ignores bits
31-28 of the local bus virtual address,
VA_tag_l1_L correspond to bits 21-20 of
the 32-bit local bus virtual address used by
the USB host controller.

R/W R/W 0

13–4 VA_tag_l2 Bits of the local bus virtual address to be
used for the level 2 table index lookup
(depending on page size).

For tiny pages, bits 13:4 of this register are
compared against local bus virtual address
bits 19-10.

For small pages, bits 13:6 are compared
against local bus virtual address bits
19-12.

For large pages, bits 13:10 are compared
against local bus virtual address bits
19-16.

For sections, this field is ignored.

R/W R/W 0

3 P Preserved bit. When 1, CAM entry is
preserved. When 0, CAM entry is not
preserved.

R/W R/W 0

2 V Valid bit. R R 0

0 CAM entry is not valid

1 CAM entry is valid

1–0 SLST Page size associated with CAM entry: R/W R/W 0

00 Section (1MB)

01 Large page (64KB)

10 Small page (4KB)

11 Tiny page (1KB)

OMAP5910 Local Bus MMU

 14-110

The LB MMU RAM registers provide information on the physical address asso-
ciated with a CAM entry that defines a page of memory in the local bus virtual
address space.

Table 14–61. Local Bus MMU RAM High Register

Access Hardware
Reset

Bit Name Function User Sup
Reset
Value

15–0 Ram_MSB Most significant 16 bits of the physical
address that corresponds to a local
bus virtual address

R/W R/W 0

Table 14–62. Local Bus MMU RAM Low Register

Access Hardware
Reset

Bit Name Value Function User Sup
Reset
Value

15–10 Ram_LSB Least significant six bits of the physical
address that corresponds to a local bus virtual
address

R/W R/W 0

9–8 AP Access permission bits R/W R/W 0

00 No access. Any local bus access to this page
causes a permission fault.

01 No access. Any local bus access to this page
causes a permission fault.

10 Read access only. Any local bus write access
to this page causes a permission fault

11 Full access. Any local bus access to this page
can complete without a permission fault.

7–0 Unused

OMAP5910 Local Bus MMU

14-111Universal Serial Bus Host

The LB MMU global flush register allows flushing of all nonprotected TLB
entries.

Note:

Flushing the whole TLB does not change the base_value or the
victim_counter fields of the LB_MMU_LOCK_REG register.

Table 14–63. Local Bus MMU Global Flush Register

Access Hardware
Reset

Bit Name Function User Sup
Reset
Value

15–1 Reserved Reserved – – –

0 Global_flush When written with a 1, all nonprotected
TLB entries are flushed. Has no effect
when written with a 0. Always returns 0
on read.

R/W R/W 0

The LB MMU entry flush register allows flushing of individual local bus MMU
TLB entries.

Table 14–64. Local Bus MMU Entry Flush Register

Access Hardware
Reset

Bit Name Function User Sup
Reset
Value

15–1 Reserved Reserved – – –

0 flush_entry When written with a 1, flushes the TLB
entry pointed to by the virtual address
in LB_MMU_CAM_H_REG and
LB_MMU_CAM_L_REG, even if the
entry is set as a protected entry. Has
no effect when written with a 0. Always
reads as 0.

R/W R/W 0

OMAP5910 Local Bus MMU

 14-112

The LB MMU CAM read registers allow reading of local bus MMU CAM entries.
See the LB_MMU_LD_TLB_REG description.

Table 14–65. Local Bus MMU CAM Read High Register

Access Hardware
Reset

Bit Name Value Function User Sup
Reset
Value

15–6 Reserved Reserved – – –

5–0 VA_tag_l1_H Most significant six bits of the local bus
virtual address to be used for this entry level
1 table index

R/W R/W 0

15–14 VA_tag_l1_L Least significant two bits of the local bus
virtual address which are used for this entry
level 1 table index

R/W R/W 0

13–4 VA_tag_l2 Bits of the local bus virtual address which
may be used for the level 2 table index
lookup (depending on page size).

For tiny pages, bits 13:4 are used.

For small pages, bits 13:6 are used.

For large pages, bits 13:10 are used.

For sections, this field is ignored.

R/W R/W 0

3 P Preserved bit. When 1, CAM entry is
preserved. When 0, CAM entry is not
preserved.

R/W R/W 0

2 V Valid bit. When 1, CAM entry is valid. When
0, CAM entry is not valid

R R 0

1–0 SLST Page size associated with CAM entry: R/W R/W 0

00 Section (1MB)

01 Large page (64KB)

10 Small page (4KB)

11 Tiny page (1KB)

OMAP5910 Local Bus MMU

14-113Universal Serial Bus Host

The LB MMU RAM read registers are used to read the local bus MMU TLB
RAM. See the LB_MMU_LD_TLB_REG description.

Table 14–66. Local Bus MMU RAM Read High Register

Access Hardware
Reset

Bit Name Function User Sup
Reset
Value

15–0 Ram_MSB Most significant 16 bits of the physical
address that corresponds to a local
bus virtual address

R/W R/W 0

Table 14–67. Local Bus MMU RAM Read Low Register

Access Hardware
Reset

Bit Name Function User Sup
Reset
Value

15–10 Ram_LSB Least significant six bits of the physical
address that corresponds to a local bus
virtual address

R/W R/W 0

9–8 AP Access permission bits R/W R/W 0

00 No access. Any local bus access to this
page causes a permission fault.

01 No access. Any local bus access to this
page causes a permission fault.

10 Read access only. Any local bus write
access to this page causes a permission
fault.

11 Full access. Any local bus access to this
page can complete without a permission
fault.

7–0 Unused

OMAP5910 Local Bus MMU

 14-114

14.8.2 Local Bus MMU Programming for USB Host Controller Operation

14.8.2.1 Local Bus MMU Page Size and the USB Host Controller

The OHCI USB host controller assumes that page size is no smaller than 4K
bytes. The OHCI USB host controller allows a transfer descriptor data buffer
to split between two non-contiguous 4K byte pages in local bus virtual address
space. If a transfer descriptor current buffer pointer is in a different 4K-byte
page of local bus virtual address space than the transfer descriptor buffer end,
the OHCI USB host controller reads from or writes to that buffer starting at the
current buffer pointer and increasing until it gets to the last byte of the 4K
aligned block of local bus virtual address space. It then switches to a local bus
virtual address, which has the same 20 upper bits as the transfer descriptor
buffer end register, with 12 lower bits at 0.

Because of this behavior, it is strongly preferred that the mapping of local bus
virtual addresses to processor physical addresses be done via 4K-byte pages
(or larger). If tiny pages (1K byte per page) are used, they must be used in
groups of four tiny pages that are contiguous both in local bus virtual address
space and in processor physical address space, with the first of the tiny pages
aligned on a 4K-byte boundary in both processor physical address space and
local bus virtual address space. When using local bus MMU tiny pages, failure
to allocate and align groups of four tiny pages as described here results in
malfunction of the USB host controller memory access operations.

14.8.2.2 Local Bus MMU and Page Protection

The access protection features of the local bus MMU are similar to the protec-
tion mechanisms provided by the MPU MMU. If a local bus access attempts
to access a local bus virtual address within a local bus MMU page that is
marked as protected or attempts to write to a page that is marked as read-only,
an interrupt is issued to the MPU level 1 interrupt handler.

14.8.2.3 Local Bus MMU Page Miss

A local bus access that has an address within the valid local bus address range
but does not have a corresponding page mapping in the local bus MMU causes
the local bus MMU to issue an interrupt to the MPU level 1 interrupt handler.

The MPU can make use of the local bus MMU page miss interrupt to allow soft-
ware-based conversion between local bus virtual addresses and physical
addresses. If using such a software mechanism, be aware that the software
overhead must be considered in relation to the local bus time-out counter. If
the software cannot provide the converted physical address to the local bus
MMU quickly enough for the USB host controller local bus access to complete

USB Host Controller Reset and Clock Control

14-115Universal Serial Bus Host

before the local bus time-out counter completes its count, the unrecoverable
error OHCI interrupt is signaled and the USB host controller stops performing
USB packet transactions. It is possible to disable the USB host controller local
bus time-out counter, but then there is no protection against the local bus lock-
up that occurs if the USB host controller attempts to access a local bus virtual
address that is outside of the valid local bus virtual address range of
3000:0000h to 3FFF:FFFFh.

14.9 USB Host Controller Reset and Clock Control

14.9.1 USB Host Controller Clock Control

The OMAP5910 clock generation and system reset management module
(ULPD) provides a 48-MHz clock to the USB host controller. This clock can be
stopped by software to reduce USB host controller power consumption when
USB host controller operation is not needed.

Clocking for the local bus is controlled by a different mechanism. When the
USB host controller needs to access system memory, the local bus must be
operating.

14.9.2 Initializing ULPD to Generate the 48-MHz Clock

The ULPD module generates 48 MHz for the USB host controller using either
a digital PLL (DPLL) or an analog PLL (APLL). The USB host controller
receives a clock from the ULPD module when the CONF_MOD_USB_HOST_
HHC_UHOST_EN_R bit is set. This register bit provides the clock request
from the USB host controller to the ULPD.

The ULPD resets to a mode where the 48-MHz clock is generated by the
DPLL. This sequence can be used to disable the DPLL and enable the APLL:

1) Clear the ULPD DPLL enable bit.

2) Wait until the DPLL lock bit goes to 0 to indicate that the DPLL is no longer
locked (ULPDs DPLL_CTRL_REG register LOCK bit).

3) Set the APLL enable bit (ULPDs APLL_CTRL_REG register,
APLL_NDPLL_SWITCH bit). (When this bit is 0, the DPLL output is
selected rather than the APLL output).

4) Wait until the APLL global lock bit is 1 (ULPDs register, GLOBAL_LOCK
bit).

When the ULPD module selects the APLL, the DPLL is shut off and all
OMAP5910 modules that use 48 MHz receive 48 MHz from the APLL. When
the ULPD module selects the DPLL, the APLL is shut off and all OMAP5910
modules that use 48 MHz receive 48 MHz from the DPLL.

OMAP5910 Local Bus MMU / USB Host Controller Reset and Clock Control

USB Host Controller Reset and Clock Control

 14-116

14.9.3 USB Host Controller Hardware Reset

Reset of the USB host controller is provided by the ULPD module. The
PER_EN bit in the MPU reset control 2 register controls the reset to many
OMAP5910 peripherals, including the USB host controller. When held in reset,
the USB host controller does not generate any USB activity on its USB ports.
The USB host controller requires that its 48-MHz clock input (from the
OMAP5910 ULPD module) be active and that the OMAP5910 configuration
register CONF_MOD_USB_HOST_HHC_UHOST_EN_R bit be set in order
to complete its reset sequence.

There is a delay of approximately 72 cycles of the ULPD USB host controller
48-MHz clock before the USB host controller is successfully reset. This delay
starts at the latest of PER_EN bit set, CONF_MOD_USB_HOST_HHC_
UHOST_EN_R bit set, or 48-MHz clock start. When the USB host controller
is in hardware reset, read or write accesses to its registers have no effect. It
is recommended that USB host controller software read the HcRevision and
HcHCCA registers after deasserting reset to verify the proper reset values. If
the read values for both HcRevision and HcHCCA are not the correct, reset
the values and continue reading until the proper reset values are seen.

The CONF_MOD_USB_HOST_HHC_UHOST_EN_R bit, when cleared, also
holds the USB host controller in a hardware reset. While the USB host control-
ler is in reset, reads from the USB host controller registers do not return valid
data and writes to the USB host controller registers have no effect.

Software that initializes the USB host controller must ensure that the reset is
turned off, that the ULPD 48-MHz clock for the USB host controller is enabled,
and that the MOD_CONF_CTRL_0 register CONF_MOD_USB_HOST_HHC
_UHOST_EN_R bit is set. It must then wait until reads of both the HcRevision
register and the HcHCCA register return their correct reset default values.

14.9.4 USB Host Controller OHCI Reset

The OHCI Specification for USB provides the HCR bit in the HCCommand
Status register, which resets the OHCI controller. This reset may be used to
reset the OHCI functionality and has no effect on the USB host controller local
bus and MPU public peripheral bus interfaces.

USB Host Controller Reset and Clock Control

14-117Universal Serial Bus Host

14.9.5 USB Host Controller Power Management

Power management of the OMAP5910 USB host controller is limited to disab-
ling the clock to the USB host controller using the MOD_CONF_CTRL_0 regis-
ter CONF_MOD_USB_HOST_HHC_UHOST_EN_R bit. When this bit is 0,
the USB host controller clocks are disabled and the USB host controller is held
in reset. The USB signal multiplexing controlled by CONF_MOD_USB_HOST
_HMC_MODE_R is not affected, so a CONF_MOD_USB_HOST_HMC
_MODE_R setting that multiplexes USB function controller and/or UART1
signals to OMAP5910 top-level multiplexing can still make use of the USB
function controller and/or UART1.

When the OMAP5910 host controller’s 48-MHz clock is disabled, all USB host
controller OHCI registers and the HostUEAddr, HostUEStatus, Host-
TimeoutCtrl, and HostRevision registers are inaccessible.

14.9.6 Local Bus Clock

Proper operation of the USB host controller requires that the local bus clock
be enabled. For details, see Section 14.7.11, Local Bus Initialization.

OMAP5910 USB Hardware Considerations

 14-118

14.10 OMAP5910 USB Hardware Considerations

14.10.1 VBUS Power Switching For USB Type A Host Receptacles

The USB specification places several VBUS requirements on USB hosts,
including current capability, droop, and other important characteristics.
Circuits that meet the USB specification requirements can be implemented
using Texas Instruments devices such as the TPS2014 and TSP2015 power
distribution switch devices. Further information, including data sheets and
application notes, can be found at the Texas Instruments web site.

14.10.2 Transient Suppression for USB Connectors

It is important to provide transient suppression for USB connectors. Electro-
static discharge that occurs when a user connects or disconnects a USB cable
can have a dramatic effect on a system if not suppressed. Texas Instruments
offers several devices for transient suppression on USB connections, such as
the SN65220, SN65240, and SN75240 universal serial bus port transient
suppressor devices. Further information, including data sheets and applica-
tion notes, can be found at the Texas Instruments web site.

14.10.3 VBUS Monitoring for USB Function Controller

A USB function controller must be capable of monitoring the VBUS voltage
provided by the upstream USB host controller. The OMAP5910 device pro-
vides the input pin USB_VBUSI, which is provided to the OMAP5910 USB
function controller. This input is a CMOS input that is not rated for the full VBUS
range specified by the USB specification. An external signal level converter is
required to convert the VBUS signal range to a range suitable for the
USB_VBUSI pin.

14.10.4 USB D+ Pullup Enable for USB Function Controller

When using a USB signal multiplexing mode that provides USB function con-
troller signals to OMAP5910 pins, the OMAP5910 top-level pin multiplexing
options lead to several possible USB pullup implementations.

When the USB.PUEN pin is set for top-level multiplexing configuration 0, the
USB.PUEN pin is driven low when the pullup should be active and is driven
high when the pullup should be inactive. In this mode of operation, an external
inverter or an external 3-statable device can be used to provide a nominal
3.3-V signal to the supply end of the USB D+ pullup.

When the USB.PUEN pin is set for top-level multiplexing configuration 1, the
USB.PUEN pin provides a clock output and cannot be used to control the USB
pullup.

OMAP5910 USB Hardware Considerations

14-119Universal Serial Bus Host

When the USB.PUEN pin is set for top-level multiplexing configuration 2, the
USB.PUEN pin is driven high when the pullup should be active and is driven
low when the pullup should be inactive. In this mode of operation, the pullup
resistor may be connected directly between the OMAP5910 USB.PUEN and
the D+ signal.

When the USB.PUEN pin is set for top-level multiplexing configuration 3, the
USB.PUEN pin is driven high when the pullup should be active and is placed
in high impedance mode the pullup should be inactive. In this mode of opera-
tion, the pullup resistor can be connected directly between the OMAP5910
USB.PUEN and the D+ signal.

14.10.5 Port Passthrough Mode

When MOD_CONF_CTRL_0 register CONF_MOD_USB_HOST_HMC_
MODE_R is 7 (with appropriate top level signal multiplexing settings), the
signals from six OMAP5910 input pins are passed to six OMAP5910 output
pins. This mode is described in Table 14–68.

Table 14–68. CONF_MOD_USB_HOST_HMC_MODE_R=7 Internal Connectivity

HMC_MODE 7

Input Pin Name Output Pin Name

MCSI1.DIN/USB2.VP is logically connected to RST_HOST_OUT/USB1_SE0

UART2.CTS/USB2.RCV is logically connected to MCBSP.CLK/USB1_TXEN

UART2.RX/USB2.VM is logically connected to MCSI1.DOUT/USB1.TXD

MCSI1.SYNC/USB1.VP is logically connected to UART2.RTS/USB2_SE0

MCSI1.DIN/USB1.RCV is logically connected to MCSI2.DOUT/USB2.TXEN

MCSI1.CLK/USB1.VM is logically connected to UART2.TX/USB2.TXD

OMAP5910 USB Hardware Considerations

 14-120

14.10.6 UART1 Connectivity when CONF_MOD_USB_HOST_HMC_MODE_R = 2, 10,
18, and 24

The USB signal multiplexing provides modes that allow UART1 signals to be
brought to OMAP5910 pins. This multiplexing is separate from UART1 multi-
plexing that is provided by OMAP5910 top-level pin multiplexing. When
CONF_MOD_USB_HOST_HMC_MODE_R is set to 2, 10, 18, or 24, three
signals to/from UART1 are provided to OMAP5910 pins when the OMAP5910
top-level pin multiplexing for those pins selects the USB signal multiplexer.
These signal assignments are described in Table 14–69.

Table 14–69. CONF_MOD_USB_HOST_HMC_MODE_R = 2, 10, 18, and 24 UART Signal
Assignments

OMAP5910 Pin Name Signal Name Direction

MCSI1.DOUT/USB1.TXD UART1_TX Output

MCSI1.BLK/USB1.VM UART1_RX Input

MCSI1.DIN/USB1.RCV UART1_CTS Input

14.10.7 MPU_BOOT Signal Sharing

The OMAP5910 device implements shared functionality on the MPU_BOOT/
USB1.SUSP pin. The MPU_BOOT pin is sampled at hardware reset. If low, the
MPU processor boots from memory connected to CS0 on the EMIFS; if high,
the MPU processor enters the boot overlay mode, causing it to boot from
memory connected to CS3 on the EMIFS. After reset, the pin may be config-
ured for other functionality, such as the USB1.SUSP output. The MPU_BOOT
signal has an internal pulldown resistor that is enabled by default. The boot
overlay mode requires an external pullup resister. The internal pulldown can
be disabled in the OMAP configuration registers.

14.10.8 USB D+, D– Pulldown for USB Function Controller

System implementations which use the OMAP5910 USB function controller
and are sensitive to supply current requirements may wish to implement weak
pulldown resistors on the USB D+ and D– signals associated with the USB
Type B receptacle. When there is no host controller attached upstream of the
USB Type B receptacle, the undriven D+ and D– wires can float to voltages
that cause excessive current consumption by the USB transceiver. Weak pull-
downs can help prevent this problem. Selection of pulldown resistor depends
on transceiver characteristics, and board layout and must be designed to meet
USB D+ and D– signal requirements.

15-1

Clock Generation and System
Reset Management

This chapter describes clock generation and system reset for the OMAP5910
multimedia processor.

Topic Page

15.1 Introduction 15-2.

15.2 Clock Generation 15-8.

15.3 Power Management 15-21.

15.4 Clock Generation and Reset Control Registers 15-50.

Chapter 15

Introduction

 15-2

15.1 Introduction

The clock generator and reset management module supplies clocks and
resets to the entire OMAP5910 device.

Figure 15–1 shows the OMAP5910 with the clock generator and reset man-
agement area highlighted. Figure 15–2 shows the OMAP5910 clock scheme.

15.1.1 Clock Generation and System Reset Control

In the OMAP5910 device, clock generation and system reset are controlled by
several modules, as shown in Figure 15–3.

There are three major components of this circuitry: the ultralow-power device
(ULPD), the reset management module, and the clock generation and
management module.

Figure 15–1. OMAP5910 Device Clock and Reset Management

MPU core
(TI925T)

(instruction
cache, data

cache, MMU)

System
DMA

controller

TMS320C55x DSP
(Instruction cache, SARAM

 DARAM, DMA,
 H/W accelerators)

MPU
peripheral

bridge

LCD
I/F

MPU
Interface

SRAM

SDRAM
memories

Flash and
SRAM

memories

DSP
MMU

16

16

32

16

32

32

32

32

32

32

16

MPU privatePeripherals bus

DSP public (shared) pheripheral bus

32
MPU public

16

DSP

DSP public peripherals

McBSP1

McBSP3

MPU public peripherals

USB Host I/F

JTAG/
emulation

I/F
OSC

12 MHz Clock

OSC

OMAP5910

ETM9

Timers (3)

MPU/DSP shared peripherals

Mailbox

MPU private peripherals

Timers (3)

16

Memory interface

Reset External clock

MPU Bus

32 kHz

1.5M bits

traffic controller (TC)

Watchdog timer

Level 1/2 interrupt handlers

Configuration registers

Clock and reset management

Watchdog timer
Level 1/2

Private peripherals

GPIO I/F

USB Function I/F

Camera I/F
MPUIO

32-kHz timer
PWT
PWL

M
I
F
S

M
I
F
F

I
M
I
F

MCSI1
MCSI2

Keyboard I/F

request

E

E

TIPB
switch

UART1
UART2

UART3 IrDA

32

MMC/SD
LPG x2

HDQ / 1-WIRE

DSP private
peripheral bus

peripherals bus

McBSP2

Device identification

RTC

interrupt handlers

I2C
µWire

Frame adjstument
counter

32

32

32

32

Introduction

15-3Clock Generation and System Reset Management

Figure 15–2. OMAP5910 Clock Scheme

M
P

U
 T

IP
B

B
ri

dg
e(

In
te

rn a
l)

C
L

K
M

3

C
LK

M
1

O
M

A
P

59
10

C
lo

ck
A

rc
hi

te
ct

ur
e

U
LP

D

os
c1

(1
2

M
H

z)

cm
os

32
k

co
m

_m
ck

o
(m

cl
k)

sd
w

_m
ck

o
(b

cl
k)

ua
rt

_m
ck

o(
12

 M
H

z/
 3

2
kH

z)

cl
k3

2k
(3

2k
H

z)

ca
m

_m
ck

o(
48

M
Hz)

D
P

LL
1

EN

C
K

_R
E

F
 (

12
M

Hz
)

M
ux

M
P

U
 L

ev
el

1
In

tH
an

dl
er

A
R

M
_C

K

M
P

U
 L

ev
el

2
In

tH
an

dl
er

A
R

M
_I

N
T

H
_C

K

O
M

A
P

G
P

IO
/I/

F

A
R

M
_G

P
IO

_C
K

M
P

U
T

im
er

1,
2,

3
A

R
M

T
IM

_C
K

M
P

U
 W

at
ch

D
og

 T
im

er

A
R

M
W

D
_C

K

Ti
m

er
32

K

M
P

U
IO

 I
/F

K
ey

bo
ar

d
i/f

M
P

U
X

O
R

_C
K

CK_GEN1

C
LK

M
2

M
ux

/1
4

D
S

P
_C

K

D
S

P
M

M
U

_C
K

D
S

P
/T

C
F

IF
O

D
S

P
Le

ve
l2

In
tH

an
dl

er

D
S

P
_I

N
T

H
_C

K

D
S

P
T

im
er

1,
2,

3

D
S

P
T

IM
_C

K

CK_GEN2

D
S

P
W

a t
ch

D
og

T
im

er

D
S

P
W

D
_C

K

/4
or

8

D
S

P
_G

P
I O

_C
K

M
P

U
P

E
R

_C
K

I D
LE

ID
L

E
/E

N

Tr
af

fic
 C

on
tr

ol
le

r

T
C

_C
K

P
or

tI
nt

er
fa

ce

A
P

I_
C

K

S
ys

te
m

 D
M

A
C

on
tr

ol
le

r
D

M
A

_C
K

LB

T
IP

B
_C

K

/1
,2

,4
or

8
LC

D
_C

K

A
R

M
_C

K
C

T
L

A
R

M
_T

IM
X

O

A
R

M
_C

K
C

T
L

D
S

P
M

M
U

D
IV

A
R

M
_C

K
C

T
L

T
C

D
IV

A
R

M
_C

K
C

T
L

D
S

P
D

IV

A
R

M
_C

K
C

T
L

A
R

M
D

IV

A
R

M
_C

K
C

T
L

LC
D

D
IV

A
R

M
_C

K
C

T
L

P
E

R
D I

V

A
R

M
_I

D
LC

T
1

ID
LT

IM
_A

R
M

A
R

M
_I

D
LC

T
2

E
N

_T
IM

C
K

A
R

M
_I

D
LC

T
1

ID
LA

P
I_

A
R

M
A

R
M

_I
D

LC
T

2
E

N
_A

P
IC

K

A
R

M
_I

D
LC

T
1

ID
LL

C
D

_A
R

M
A

R
M

_I
D

LC
T

2
E

N
_L

C
D

C
K

A
R

M
_I

D
LC

T
1

ID
LP

E
R

_A
R

M
A

R
M

_I
D

LC
T

2
E

N
_P

E
R

C
K

A
R

M
_I

D
LC

T
1

ID
LW

D
T

_A
R

M
A

R
M

_I
D

LC
T

2
E

N
_W

D
T

C
K

A
R

M
_I

D
LC

T
2

E
N

_G
P

IO
C

K

A
R

M
_I

D
LC

T
1

ID
LX

O
R

P
_A

R
M

A
R

M
_I

D
LC

T
2

E
N

_X
O

R
P

C
K

D
S

P
_C

K
C

T
L

T
IM

X
O

D
S

P
_C

KC
T

L
G

P
IO

D
IV

D
S

P
_I

D
LC

T
1

ID
LT

IM
_D

S
P

D
S

P
_I

D
LC

T
2

E
N

_T
IM

C
K

D
S

P
_I

D
LC

T
1

D
S

P
_I

D
LC

T
2

E
N

_G
P

IO
C

K

A
R

M
_I

D
LC

T
1

ID
LI

F
_A

R
M

A
R

M
_I

D
LC

T
2

D
M

A
C

K
_R

E
Q

A
R

M
_I

D
LE

C
T

1
S

E
TA

R
M

_I
D

LE

A
R

M
_C

K
C

T
L

A
R

M
_I

N
T

H
C

K
_S

E
L

D
S

P
_I

D
LC

T
1

ID
LW

D
T

_D
S

P
D

S
P

_I
D

LC
T

2
E

N
_W

D
TC

K
ID

L
E

/E
N

M
ux

D
S

P
_C

KC
T

L
G

P
IO

X
O

sd
w

_m
cl

k_
re

q
(b

cl
kr

eq
)

co
m

_m
cl

k_
r eq

(m
cl

kr
eq

)

pe
rip

h_
nre

q

ca
m

_d
pl

l_
m

cl
k_

r eq

ID
L

E
/E

N

A
R

M
_I

D
LC

T
1

ID
LL

B
_A

R
M

A
R

M
_I

D
LC

T
2

E
N

_L
B

C
K

LB
_C

K

EN

A
ut

og
at

in
g_on

ID
LE

E
M

IF
S

_C
O

N
F

IG
 P

D
E

E
M

IF
S

_C
O

N
F

IGP
W

D
_E

N

E
M

IF
F

_C
O

N
F

IG
 c

lk
S

D
R

A
M

_C
K

IM
IF

_C
K

M
O

D
_C

O
N

F
_C

T
R

L_
0

D
P

LL
1_

ou
t

m
m

c_
dp

ll_
cl

k(
48

MH
z)

R
E

G
IS

T
E

R
_N

A
M

E
B

IT
_F

IE
LD

ua
rt

1,
2,

3_
dp

ll_re
q

us
b_

ho
st

_c
lk

48
m

(
48

M
H

z)

m
m

c_
dp

ll_
r eq

us
b_

ho
st

_d
pl

l
_r

eq

os
c3

2K
(3

2
kH

z)

/2/1
,2

,4
 o

r 8

EN

A
R

M
_C

K
C

T
L

E
N

_D
S

P
C

K

EN

S
O

F
T

_R
E

Q
S

O
F

T
_S

D
W

_R
E

Q

EN

S
O

F
T

_R
E

Q
S

O
F

T
_C

O
M_

R
E

Q

S
O

F
T

_R
E

Q
_R

E
G

S
O

F
T

_D
P

LL
_R

E
Q

EN ENEN

EN

C
LO

C
K

_C
T

R
L

M
O

D
E

M
_3

2K
_E

N

I D
LE

I D
LE

FA
C

 c
lo

ck

B
Y

P
A

S
S

_o
ut

M
P

U
 T

IP
B

B
ri

dg
e(

E
xt

er n
al

)

CK_GEN3

EN

EN
/1

,2
,4

or
8

us
b_

m
cl

k_
re

q

S
O

F
T

_R
E

Q
S

O
F

T
_U

S
B

_R
E

Q

EN

EN

M
ux

x
1–

31
/

1,
2,

3o
r 4

ID
LE

D
S

P
In

t _
IF

D
S

P
M

M
U

55
x

D
S

P

LP
G

1 ,
2

R
T

C

P
W

L

P
W

T

1W
ire

I/
F

uW
ire

 I/
F

I2
C

I/
F

M
cB

SP
2

TI
92

5T

M
P

U
/T

C
F

IF
O

T
C

_C
K

U
A

R
T

3

U
A

R
T

1

_
M

O
D

E
_

R

M
ux

M
ux

M
ux

T
IP

B
S

w
itc

h1

T
IP

B
S

w
itc

h3

C
O

N
F

_M
O

D
_U

A
R

T
2_

C
LK _
M

O
D

E
_

R

C
O

N
F

_M
O

D
_U

A
R

T
1_

C
LK _
M

O
D

E
_

R

us
b_

w
2f

c_
m

ck
o(4

8M
H

z)

us
b_

dp
ll_

m
cl

k_r
eq

EN
ENC

LO
C

K
_C

T
R

L
D

IS
_U

S
B

_P
V

C
I_C

LK

S
O

F
T

_R
E

Q
_R

E
G

U
S

B
_R

E
Q

_E
N

ID
LE

EN

ID
LE

/E
N

ua
rt

1,
2,

3_
dp

ll_
cl

k(48
M

H
z)

EN

T
C

_C
K

/
1,

2,
o

r 4

EN

EN

M
ux

EN

EN

48
M

H
z

D
P

LL

M
M

C
– S

D

C
am

er
aI/

F

U
S

B
 H

os
t

U
S

B
 F

un
ct

io
n

D
IS

EN

M
ux

/1
4

LC
D

C
on

tr
ol

le
r

FA
C

U
A

R
T

2

D
S

P
_I

D
LC

T
1

ID
LX

O
R

P
_D

S
P

D
S

P
_I

D
LC

T
2

E
N

_X
O

R
PC

K
ID

LE
/E

N

D
S

P
X

O
R

_C
K

M
cB

SP
1

M
cB

SP
3

M
C

S
I1

M
C

S
I2

E
xt

er
na

l P
er

ip
he

ra
ls

In
si

de
 O

M
A

P

ID
LE

/1
,2

,4
 o

r 8

ID
LE

/E
N

ID
LE

/E
N

ID
LE

/E
N

ID
LE

/E
N

ID
LE

/E
N

ID
LE

/E
N

/1
,2

,4
 o

r 8

/1
,2

,4
 o

r 8

(1
2

M
H

z)

(1
2

M
H

z)

M
P

U

Introduction

 15-4

Figure 15–3. Modules Controlling Clock and Reset Management

OSC1_IN

OSC1_OUT

OSC32K_IN

OSC32K_OUT

CLK32K_IN

CLK32K_CTRL

BCLKREQ

BCLK

MCLKREQ

MCLK

USB.CLKO
(6 MHz)

32-kHz crystal

12-MHz crystal

32KHz clock

Battery fail

Power-on reset

Reset (other than
power-on)

DPLL4/APLL
48 MHz
USB and
camera

Clock selection

Reset
management

ULPD

FIQ handler

Sleep mode
state machine

Peripheral clock
requests

48-MHz clock request

48 MHz

48-MHz clock
mode state

machine

CLKIN
(12 MHz)

CHIP_IDLE

Chip reset

WAKEUP_nREQ

CHIP_nWAKEUP

IRQs and
interrupts

Reset

Generator

M
P

U
 r

es
et

D
S

P
 r

es
et

M
P

U
 p

er
ip

he
ra

l r
es

et

D
S

P
 p

er
ip

he
ra

l r
es

et

Power-on reset

M
P

U
 w

at
ch

do
g

re
se

t

D
S

P
 w

at
ch

do
g

re
se

t

Chip idle
&

wakeup
control

DPLL1
CLKM1

Clocks to MPU
and peripherals

CLKM2

Clocks to DSP
and peripherals

CLKM3

Clocks to traffic
controller and
peripherals

USB and camera
peripherals

TCLB_EN
(Flash Power-Down)

SDRAM.CKE
(SDRAM Clock Enable)

CLK32K_OUT /
MPUIO0

Reset

Clock generation and

management

and UARTs

RST_OUT

PWRON_RESET

MPU_RST

BFAIL/EXT_FIQ

FLASH.RP

RST_HOST_OUT

Introduction

15-5Clock Generation and System Reset Management

15.1.1.1 ULPD Module

The ULPD module is an embedded peripheral controlled by the internal MPU
with the following functions:

� Performs the state transition of the different power modes:

� Awake: 32-kHz and 12-MHz clocks are on, and 12 MHz is fed into the
clock generation module (those PLLs can be turned on or off).

� Big sleep mode: 32-kHz and 12-MHz clocks are on, 12 MHz is not fed
into the clock generation module, and PLLs are off.

� Deep sleep mode: 32-kHz clock is on, and 12-MHz clock and PLLs are
off.

� Performs the power-on reset of the chip

� Calibrates an external quartz based oscillator (32 kHz)

� Performs the wake up of the 12-MHz OSC1 oscillator to provide the OSC1
clock to an external device. An external clock request or peripheral wake-
up request turns on the OSC1 oscillator but is not treated as an interrupt.

� Performs a 12-MHz/32-kHz switch for peripherals that need to switch to
32 kHz

� Generates the functional reset signal used by the reset module

� Manages the 48-MHz DPLL and APLL on/off

� Processes battery-failed signal to generate external shutdown signal
(RST_HOST_OUT)

15.1.1.2 Reset Module

The reset module has the following functions:

� Provides internal global reset and software reset

� Performs reset control for peripheral bus peripherals

� Monitors internal and external reset (for example, watchdog timer
time-out)

� Monitors system and reset status

Introduction

 15-6

15.1.1.3 Clock Generation and Management Module

The clock generation and management module provides the following
features:

� Programmable clocking scheme (synchronous and synchronous scalable
modes) and power-up defaults to fully synchronous mode

� Setup and configuration controlled by both the DSP and MPU processors

� A single-reference clock input to one DPLL from an external source
(CLKIN). The PLL modes are configurable: lock, bypass, and idle.

� Programmable clocks, from CLKM1, with clock and idle control capability
to the MPU and its subsystem:

� GPIO
� Timers
� Other peripherals

� Programmable clock, from CLKM2, with clock and idle control capability
to the DSP and its subsystem:

� GPIO
� Timers
� Other peripherals

� Programmable clock, from CLKM3, with clock and idle control capability
to the memory interface traffic controller (TC), including the following
modules:

� MPU interface (MPUI)
� System DMA controller
� LCD controller
� Local bus
� MPU peripheral bridges
� Two internal MPU TI peripheral bridges to minimize access latency

� Programmable power saving and idle mode controls for the MPU, the
DSP, the TC, and their respective subdomains

� Low-frequency clocks (reference clock/14) to supply watchdog timers for
the DSP and MPU

� DMA clock request mechanism (provides DMA clock during data transfer
only)

� Power control for external device reset/power on (flash)

� Idle sequence controls (MPU clock domain, DSP clock domain, and TC
clock domain)

� Programmable idle modes (MPU and DSP) for different applications

Introduction

15-7Clock Generation and System Reset Management

� Wake up initiated by interrupts (MPU, DSP, and TCLB_EN pin) or DMA
requests (TC and peripheral bus) in the idle mode

� Unmasked interrupt events enabled to wake up the device during idle
modes

15.1.1.4 Memory-Mapped Registers

The application program controls the clock generation, reset, and power-
saving modes via a set of memory-mapped registers (nine 16-bit registers for
MPU subsystem and seven 16-bit registers for the DSP subsystem). These
registers are accessible by the MPU or the DSP processors.

The MPU is the master of the OMAP5910 device at all times, and it controls
the activities in the MPU, DSP, and TC domains.

The DSP controls DSP peripheral activities.

15.1.1.5 Clock Domains

The OMAP5910 is partitioned into three clock domains, each with its own clock
manager:

� MPU domain (CLKM1)
� DSP domain (CLKM2)
� TC domain (CLKM3)

Clock domains use a common DPLL to provide a synchronous clock. The
different clocking configurations are discussed in detail later in this chapter.

The external clock source (OSC1_IN) frequency must be 12 MHz to ensure
proper operation for the USB.

Clock Generation

 15-8

15.2 Clock Generation

Figure 15–4 shows the basic building blocks of the clock generators and
system reset module. This module consists of:

� One DPLL—frequency synthesizers (frequency lock but not phase lock)

� Control register file (CLKREG)—clock generator, system reset, idle, and
wake-up controls

� Three CLKMs—clock generation and wake-up controls

Figure 15–4. Clock Generation and System Reset Module

CLKIN
(12-MHz clock)

DPLL1
CLKM1 Clocks to MPU

and peripherals

CLKM2 Clocks to DSP
and peripherals

CLKM3
Clocks to
traffic
controller and
peripherals

Clock Generation

15-9Clock Generation and System Reset Management

15.2.1 Clocking Schemes

The clock generator supports two clocking schemes to provide performance
flexibility and power-saving capabilities to the system. The clocking schemes
are programmable. Power-up mode defaults to fully synchronous mode.
Table 15–1 shows the clocking scheme selection, and Table 15–2 shows the
CLKM source selection.

Table 15–1. Clocking Scheme Selection

Clock_Select Clocking Scheme Remarks

000 Full synchronous Default, bypass FIFO logic. TC=DSPMMU=MPU,
DSP = 1x or 2x of DSPMMU

001 Reserved Do not use this setting

010 Synchronous scalable Use FIFO logic between MPU and TC, DSP MMU and TC

Others Reserved Do not use this settings

Note: In all the above cases, the frequency of the DSP can be 1x or 2x that of DSP MMU.

Table 15–2. CLKM Source Selection—Set via the MPU System Status Register

Clock
Select Operating Mode

CLKM1
Input Clock
Source

CLKM2
Input Clock
Source

CLKM3
Input Clock
Source Remarks

000 Fully synchronous DPLL1/N DPLL1/O DPLL1/N Notes 1, 2, 4

010 Synchronous scalable DPLL1/M DPLL1/N DPLL1/O Notes 3, 4

Notes: 1) If you select the fully synchronous mode, you must program the divide-down bits so that MPUDIV, DSPMMUDIV
and TCDIV are all equal. Further, DSPMMUDIV must be 1x or 1/2x that of DSPDIV.

2) CLKGEN1 = CLKGEN3 = DPLL1/N, CLKGEN2 = CLKGEN1 or 2*CLKGEN1 = DPLL1/O

3) M, N =< O, and O is a multiple (1, 2, 4, 8) of M, N.

4) The DSP MMU cannot run above the maximum speed of TC.

Clock Generation

 15-10

15.2.2 Operating Modes

The OMAP5910 device supports the following operating modes:

� Fully synchronous

MPU, DSP MMU, and TC run at the same clock period, and DSP MMU is
1x or 1/2x of DSP. For example, DPLL1 output can be 120 MHz; MPU,
DSP MMU, and TC can be 60 MHz; and DSP can be 120 MHz.

On power up, the OMAP5910 device is always in synchronous mode,
where MPU, DSP MMU, TC, and DSP are all at the same speed.

� Synchronous scalable

MPU, DSP MMU, and TC are synchronous, but MPU and DSP MMU are
multiples (1x, 2x, 4x, or 8x) of TC. The DSP must be 1x or 2x of the DSP
MMU. For example, DPLL1 clock can be 120 MHz, MPU can run at 120
MHz, DSP MMU can run at 60 MHz, TC can run at 30 MHz, and DSP can
run at 60 MHz or 120 MHz. In this mode, the clock-feeding mechanism (to
each respective domain) is similar to that of the fully synchronous mode,
with the exception that the clocks are synchronous but are multiples of
each other. The input clock is from DPLL1, and the clock is multiplied/
divided by the CLKM (1, 2, 3) as in the following example (assuming the
output of DPLL1 is 120 MHz):

� CLKM1 output: 120 MHz/2
� CLKM2 output: 120 MHz/1
� CLKM3 output: 120 MHz/4

Divider circuitry is implemented in each CLKM.

Note:

In synchronous scalable mode, the traffic controller clock must have the
same or a slower frequency as the MPU and the DSPMMU clock.

At reset, the fully synchronous mode is selected (default). After the
OMAP5910 device is up and running, the application software can write to the
control registers via the CLOCK_SELECT (2:0) bits in the MPU system status
register (ARM_SYSST) to switch to a desired mode of operation. However,
you should use the system software to save the context before switching
modes. For information about the switching procedure, see Appendix B,
Switching Clock Modes.

The DSP_MMU clock must obey all of the following rules:

1) TC clock frequency always must be equal to or less than DSP, DSPMMU,
and MPU clocks.

Clock Generation

15-11Clock Generation and System Reset Management

2) DSP_MMU clock must be 1x or 1/2x of DSP clocks.

3) DSPMMU_DIV can be /1, /2, /4, /8, but TC_DIV and DSP_DIV must obey
1 and 2.

4) DSP_MMU clock frequency cannot be more than the maximum speed of
the TC.

15.2.3 External Master Mode

This mode allows bypass of the 12-Mhz on-chip oscillator in systems where
the 12-MHz clock is provided externally by a master device. The procedure for
utilizing this mode is as follows:

1) During power-on reset, OMAP5910 is in deep sleep:

� 12-MHz on-chip oscillator is disabled.
� MCLKREQ pin is an input.

2) After power-on reset, OMAP5910 is awake.

� 12-MHz oscillator is bypassed.
� MCLKREQ pin is an input.
� 12-Mhz clock is provided externally.

3) Switch to external master mode by setting (FUNC_MUX_CTRL_B(20:18)
= 001.

� The 12-MHz oscillator is bypassed (disabled).
� MCLKREQ pin is now the EXT_MASTER_REQ pin, which drives to 1.
� 12-Mhz clock is provided externally.

4) If OMAP switches into deep sleep:

� EXT_MASTER_REQ drives to 0 to indicate that the external 12-MHz
clock is not needed.

� The 12-MHz clock can then switch off externally.

Clock Generation

 15-12

15.2.4 CLKM1

CLKM1 controls the clock distribution and idle modes of the MPU subsystem,
plus associated private and public peripherals (see Figure 15–5).

Figure 15–5. MPU Clock Distribution

32-kHz timer
I C

MicroWire

ARM_IDLECT1 IDLPER_ARM
ARM_IDLECT2 EN_PERCK

CLKIN
(12 MHz)

DPLL1

* 1–31 /1, 2, 3, or 4

DPLL1 CTL_REG

EN

PLL_MULT PLL_DIVPLL_ENABLE CK_GEN1

ARMDIV
ARM_CKCTL

ARM_TIMXO
ARM_CKCTL

MPUTIM_CK

PERDIV
ARM_CKCTL

ARM_CK

MPUPER_CK

CLKIN

CK_GEN1

CK_GEN1

CK_GEN1

IDLE

SETARM_IDLE
ARM_IDLECT1

IDLE
EN

ARM_IDLECT2 EN_GPIOCLK

ARM_GPIO_CKCK_GEN1
EN

ARM_IDLECT1 IDLXORP_ARM
ARM_IDLECT2 EN_XORPCK

MPUXOR_CKIDLE
EN

GPIO I/F

McBSP

ARM_IDLECT1 IDLWDT_ARM
ARM_IDLECT2 EN_WDTCK

MPUWD_CKIDLE
EN

MPU

watchdog

timer

CLKIN

/ 14
CLKIN 0.857 MHz

ARM_IDLECT1 IDLTIM_ARM
ARM_IDLECT2 EN_TIMCK

IDLE
EN

MPU timer
1, 2, 3

MPU

CLKM1

2

/1, 2, 4, 8

/1, 2, 4, 8

UART1
MPUIO

Clock Generation

15-13Clock Generation and System Reset Management

The MPU clock (see Figure 15–5) has the following domains (CLKM1):

� MPU processor clock: MPU_CK, which is CLK_GEN1 divided by 1, 2, 4,
or 8, as programmed via the ARMDIV bits of the MPU clock control
register (ARM_CKCTL). The idle mode of the MPU is controlled by the
SETARM_IDLE bit of the MPU idle mode entry 1 register (ARM_
IDLECT1).

� MPU peripheral clocks:

� MPUXOR_CK, which is derived from CK_REF

� MPUPER_CK, which is CLK_GEN1 divided by 1, 2, 4 or 8, as
programmed via the PERDIV bits of the MPU clock control register
(ARM_CKCTL)

The MPUPER_CLK clock is enabled by the EN_PERCK bit of the
MPU idle mode entry 2 register (ARM_IDLECT2) and the MPUX-
OR_CK clock by the EN_XORPCK bit.

� MPU watchdog timer clock (low frequency, derived from CK_REF/14):
Called either CK_CLKIN14 or MPUWD_CK. This clock is enabled by the
EN_WDTCK bit of the MPU idle mode entry 2 register (ARM_IDLECT2).
The IDLE mode is controlled by the IDLWDT_ARM bit of the MPU idle
mode entry 1 register (ARM_IDLECT1). The clock cannot be disabled or
idled while in the watchdog mode.

� MPU internal timers clock: MPUTIM_CK, which is derived from either
CK_GEN1 or CK_REF, as selected by the ARM_TIMXO bit of the MPU
clock control register (ARM_CKCTL). The IDLE mode of the MPU timers
is controlled by the IDLTIM_ARM bit of the MPU idle mode entry 1 register
(ARM_IDLECT1) and is enabled by the EN_TIMCK bit of the MPU idle
mode entry 2 register (ARM_IDLECT2).

� MPU GPIO, MPU_GPIO_CLK, which is equal to CK_GEN1. This clock is
enabled by the EN_GPIOCK bit of the the MPU idle mode entry 2 register
(ARM_IDLECT2).

Clock Generation

 15-14

15.2.5 CLKM2

CLKM2 controls clock distribution and idle modes of the DSP subsystem plus
associated private and shared peripherals. As shown in Figure 15–6, the
CLKM2 circuitry provides separate clock signals for the DSP internal peripher-
als (GPIO, watchdog timer, and timers) and public peripherals.

Note:

CK_GEN2 represents the output of DPLL1 or CLK_REF, depending on
clocking mode enabled.

Figure 15–6. DSP Clock Distribution

CLKIN
(12 MHz) CK_GEN2

/ 1,2,4 or 8

ARM_CKCTL
DSPDIV

TIMXO
DSP_CKCTL

DSPTIM_CK

DSP_CK

CLKIN

CK_GEN2

CK_GEN2
EN

DSP_IDLECT1
DSP_IDLECT2 EN_GPIOCK

DSP_GPIO_CKIDLE
EN

DSP_IDLECT1 IDLXORP_DSP
DSP_IDLECT2 EN_XORPCK

DSPXOR_CKIDLE
EN

DSP GPIO

DSP_IDLECT1 IDLWDT_ARM
DSP_IDLECT2 EN_WDTCK

DSPWD_CKIDLE
EN

DSP
watchdog

timer

CLKIN

/ 14
CLKIN 0.857 MHz

DSP_IDLECT1 IDLTIM_DSP
DSP_IDLECT2 EN_TIMCK

IDLE
EN

DSP timer
1, 2, 3

DSP

CLKM2

DPLL1 output

ARM_SYSSR
CLOCK_SELECT

ARM_CKCTL EN_DSPCK

/ 1,2,4 or 8

ARM_CKCTL
DSPMMUDIV

DSP_MMUCKCK_GEN2
EN DSP MMU

ARM_CKCTL EN_DSPCK

GPIOXO
DSP_CKCTL

CLKIN

CK_GEN2
/ 1,2,4 or 8

DSP_CKCTL’s GPIODIV

McBSPs
MCSIs

/2

Clock Generation

15-15Clock Generation and System Reset Management

Clock signals for each clock domain of the DSP subsystem are as follows:

� MPU-controlled:

� DSP processor clock: DSP_CK, which is CK_GEN2 divided by 1, 2, 4,
or 8, as programmed via the DSPDIV bits of the MPU clock control
register (ARM_CKCTL). The enabling of DSP_CK while the DSP is in
the reset state is controlled by the EN_DSPCK bit of the MPU clock
control register (ARM_CKCTL).

� DSP MMU clock: DSPMMU_CK, as derived from CK_GEN2 divided
by 1, 2, 4, 8, as programmed by the DSPMMUDIV bits of the MPU
clock control register (ARM_CKCTL). Take care in selecting clocking
schemes so as to not exceed the maximum frequency of the DSP
MMU. See the OMAP5910 device datasheet for absolute timing
limits.

� DSP-controlled:

� DSP GPIO (DSP_GPIO_CK), as derived from CK_GEN2 divided by
1, 2, 4, 8 (as programmed by DSP_CKCTL GPIODIV) or CLKIN, as
selected by the GPIOXO bit of the DSP clock control register
(DSP_CKCTL). The clock is enabled by the EN_GPIOCLK bit of the
DSP idle mode entry 2 register (DSP_IDLECT2). The IDLE mode is
controlled by the IDLG–PIO_DSP bit of the DSP idle mode entry 1
register (DSP_IDLECT1).

� DSP public peripherals (McBSPs, MCSIs): DSPXOR_CK, which is
derived from CLKIN. The clock is enabled by the EN_XORPCK bit of
the DSP idle mode entry 2 register (DSP_IDLECT2). The IDLE mode
is controlled by the IDLXORP_DSP bit of the DSP idle mode entry 1
register (DSP_IDLECT1).

� DSP internal timers: DSPTIM_CK is selected from either CK_GEN2/2
or CLKIN via the DSP_TIMXO bit of the DSP clock control register
(DSP_CKCTL). The clock is enabled by the EN_TIMCLK bit of the
DSP idle mode entry 2 register (DSP_IDLECT2). The IDLE mode is
controlled by the IDLTIM_DSP bit of the DSP idle mode entry 1
register (DSP_IDLECT1).

� DSP watchdog timers (low frequency, derived from CLKIN divided by
14): DSPWD_CK. The clock is enabled by the EN_WDCLK bit of the
DSP idle mode entry 2 register (DSP_IDLECT2). The IDLE mode is
controlled by the IDLWDT_DSP bit of the DSP idle mode entry 1 regis-
ter (DSP_IDLECT1). The watchdog timer clock can only be disabled
or idled when not in watchdog mode.

Clock Generation

 15-16

After reset, the highest frequency option (CK_GEN2 divided by 1) is selected
for GPIO and DSPPER clocks. The software application program can alter
these divisors at any time during operation by writing to the GPIODIV or
DSP_PERDIV bits in the DSP clock control register (DSP_CKCTL).

The clock generator output (CK_GEN2) delivers a 50% duty cycle to the DSP
subsystem clock distribution module (CLKM2). This module provides addition-
al clock scaling, routing, and idle/reset control to the DSP to individual
components in the DSP clock domain.

The CK_GEN2 clock works in conjunction with the idle and wake-up control
logic to produce the DSP_CK clock signal that drives the DSP subsystem, the
DSP MMU, and the DSP interrupt modules.

At reset, the CK_GEN2 is in the bypass mode, so it supplies (CLKM2) a clock
of the same 12-MHz frequency as CLKIN. After the global reset period, the
MPU application program can change the clock frequency through the
CK_GEN2 control register.

DSP_CK is enabled at reset until the DSP is in reset state. The EN_DSPCK
bit (located in the clock control register ARM_CKCTL) allows the MPU to turn
off the DSP_CK while the DSP is held in a reset state.

A free-running counter/divider receives the CK_GEN2 signal and makes avail-
able four taps where a 50% duty-cycle clock and the clock
divided by 1, 2, 4, and 8 can be selected. A multiplexer set through the DSPDIV
bits in the clock control register (ARM_CKCTL) selects the clock frequency
that applies to the DSP clock domain.

At reset, the higher frequency (divide by 1) is selected. The software applica-
tion program (accessing the control register file) can change the divider ratio
by writing to the DSPDIV [1–0] bits at any time while the OMAP5910 device
is running. A synchronization mechanism is implemented to remove any
spikes while the clock frequency is changing (disable the clock first, change
the DSPDIV bits, and then enable the clock).

Clock Generation

15-17Clock Generation and System Reset Management

15.2.6 CLKM3

CLKM3 controls clock distribution and idle modes of the traffic controller and
various system-level clock domains. The traffic controller clock, CLKM3 (see
Figure 15–7), has the following domains.

Figure 15–7. Traffic Controller Clock Distribution

CLKIN
(12 MHz) CK_GEN3

CLKM3

DPLL1 output

ARM_SYSSR
CLOCK_SELECT

Traffic controller/1, 2, 4, or 8

ARM_CKCTL TCDIV

/1, 2, 4, or 8

ARM_CKCTL LCDDIV

ARM_IDLECT1 IDLIF_ARM

IDLE

TC_CK

TIPB_CK

ARM_IDLECT1 IDLLB_ARM
ARM_IDLECT2 EN_LBCK

IDLE
EN

LB_CK

ARM_IDLECT1 IDLLCD_ARM
ARM_IDLECT2 EN_LCDCK

IDLE
EN

LCD_CK

Local bus

ARM_IDLECT2
DMACK_REQ

EN
DMA_CK

ARM_IDLECT1 IDLAPI_ARM
ARM_IDLECT2 EN_APICK

IDLE
EN

API_CK MPU port
interface

System DMA
controller

LCD
controller

MPU interrupt
handler

MPU peripheral
buses

Clock Generation

 15-18

Many of the following clocks are the same as the traffic controller clock
(TC_CK) in terms of their frequencies, but not their IDLE controls. Each of the
clocks has separate IDLE control logic.

� Traffic controller clock, TC_CK, is derived from CK_GEN3 divided by 1,
2, 4, or 8, as programmed via the TCDIV bits of the MPU clock control reg-
ister (ARM_CKCTL). The MPU interrupt handler uses the TC_CK clock,
as set by the ARM_INTHCK_SEL bit of the MPU clock control register
(ARM_CKCTL). The IDLE mode is controlled by the IDLIF_ARM bit of the
MPU idle mode entry 1 register (ARM_IDLECT1).

� Local bus and local bus MMU clock, LB_CK, is the same as TC_CK. The
IDLE mode is controlled by the IDLLB_ARM bit of the MPU idle mode entry
1 register (ARM_IDLECT1). The LB_CK is enabled by the EN_LBCK bit
of the MPU idle mode entry 2 register (ARM_IDLECT2).

� MPU port interface (MPUI) clock is dependent not only on the
IDLAPI_ARM bit of the MPU idle mode entry 1 register (ARM_IDLECT1),
but also on DSP_IDLE.

� The system DMA controller clock, DMA_CK, is the same as TC_CK. The
IDLE mode is controlled by the IDLIF_ARM bit of the MPU idle mode entry
1 register (ARM_IDLECT1), and the clock is enabled by the DMACK_REQ
bit of the MPU idle mode entry 2 register (ARM_IDLECT2).

� The MPU peripheral bridge clock, TIPB_CK, is the same as TC_CK. The
IDLE mode is controlled by the IDLIF_ARM bit of the MPU idle mode entry
1 register (ARM_IDLECT1).

� LCD controller clock, LCD_CK, is derived from CK_GEN3 divided by 1, 2,
4, or 8, as programmed via the LCDDIV bit of the MPU clock control regis-
ter (ARM_CKCTL). This clock is enabled by the EN_LCDCK bit of the
MPU idle mode entry 2 register (ARM_IDLECT2). The IDLE mode is con-
trolled by the IDLLCD_ARM bit of the MPU idle mode entry 1 register
(ARM_IDLECT1).

Clock Generation

15-19Clock Generation and System Reset Management

15.2.7 Clock Distribution and Synchronization

When any of the clock domains are running at different frequencies with
respect to each other, FIFOs are used to buffer data being transferred between
domains (see Figure 15–8). This is necessary to ensure that data being sent
from a fast domain is buffered as a slow domain receives it. This buffering intro-
duces latencies as data is passed between domains. Thus, this buffering can
be bypassed if it is not needed (that is, when domains are running at the same
speeds).

� For the fully synchronous clocking scheme, MPU_CK = DSPMMU_CK =
TC_CK; the FIFO logic is bypassed between TC and MPU, TC and
DSPMMU.

� For the synchronous scalable clocking scheme, FIFO logic is used for both
processors.

Note:

TC_CK clock must be slower than or equal to the MPU_CK and DSP MMU
clock speed.

Figure 15–8. OMAP5910 Clock Distribution and Synchronization

Clock
generator

DSP

MPU

MPU peripherals, GPIO

DSP peripherals
UART, GPIO

FIFO

FIFO

Clock
gating

Traffic
controller (TC)CLKIN

DSP
MMU

TC clock domain

DSP clock domain

MPU clock domain

MPU_CK

DSPMMU_CK

TC_CK

TC_CK

Clock Generation

 15-20

15.2.8 Low-Power Mode

The OMAP5910 LOW_PWR I/O is an active-high request for LOW_PWR
mode (see Figure 15–9). It automatically requests external regulators to go to
standby (low-power mode) or to lower the VDD core voltage during deep sleep
mode. A software request, through bit 1 of the power control register
(POWER_CTRL_REG), is available for debug and future support of the low
voltage operational mode.

The LOW_PWR signal is multiplexed on the MPUIO5 ball. To get it on this ball,
you must set bits (14:12) of the FUNC_MUX_CTRL_7 register to 001.

Figure 15–9. Low-Voltage Mode

Low_pwr

1.5 V

Awake...big sleep Deep sleep Analog
wait
timer

Big sleep...awake

1.1 V

ULPD state

LOW_PWR

VDD

ULPD analog wait state timer delays
deep sleep to big sleep transition

while regulator changes from
1.1 ~1.5 V.

OMAP5910

ULPD:
If(’deep sleep state’ or SW

low_pwr_req)
and (SW low_pwr_en)

Then
low_pwr=1

else low_pwr=0

Power IC

1.5 V ~1.1 V

Select

VDD regulator
VDD

Power Management

15-21Clock Generation and System Reset Management

15.3 Power Management

There are three clock domains in the OMAP5910 device. Each clock domain
has its own clock management unit and can be put into idle mode (power sav-
ing mode) when unused without affecting the rest of OMAP5910 device
functionality. In addition, the ULPD provides low-power modes that affect the
entire device, not just the individual domains (see Figure 15–10).

A chip idle occurs when the DSP is idled, the MPU requests an idle, and the
TC domain has no remaining transactions. Chip idle causes the ULPD to initi-
ate big sleep mode. In big sleep mode, DPLL 1 is turned off, but the 12-MHz
clock is still active. If the 12-MHz clock is not needed, then the ULPD can
initiate a further transition to deep sleep mode, which turns the 12-MHz clock
off internally.

When an unmasked interrupt event occurs, a request is performed by the
wake-up control module. When receiving the request, if the device is in deep
sleep mode, the ULPD brings the device out of deep sleep mode. Once the
12-MHz clock is stable, the ULPD brings the device into awake mode.

To reduce the wake-up time, a special hardware request is implemented in
parallel to interrupts to wake-up the ULPD whenever an interrupt occurs. This
request is generated by peripherals as USB or UART. When receiving the
hardware request, the ULPD brings the device out of the deep sleep mode to
wakeup the 12-MHz clock. When the clock is awake, the ULPD goes to big
sleep and awakes if a request is received from wake-up control module.
Figure 15–11 shows the wakeup control module.

Deep sleep mode is the entry state of the device when a power-on reset
occurs. Such a reset acts as a wake-up request, causing the device to
transition to the awake state.

The 12-MHz clock may be required to clock signals out of the device (such as
the MCLK pin) or to ULPD DPLL (used for USB and other internal peripherals)
in either the big sleep or awake states. The deep sleep state can not be entered
if there is need for the 12-MHz clock.

The power management state machine runs at 32 kHz. All control signals of
this state machine are resynchronized on the 32-kHz clock. The 32-kHz clock
is always on.

Table 15–3 lists the peripherals and external signals which can wake up
OMAP5910 from deep sleep.

Power Management

 15-22

Figure 15–10. Power Management State Machine

Chip IDLE
request

Awake mode
– 12-MHz, 32-kHz clocks, and DPLLs 1 are on
 (DPLL can be bypassed if desired).
– Internal 12-MHz clock, CK_REF, is on.
– If a 48-MHz clock is requested, it is generated by
 ULPD DPLL or APLL.
– If an external 12-MHz clock is requested, it is
 enabled.

Big sleep mode

– 12-MHz and 32-kHz clocks are on
– DPLLs 1 are off
– Internal 12-MHz clock, CK_REF, is off
– If a 48-MHz clock is requested, it is generated by
 ULPD DPLL or APLL
– If an external 12-MHz clock is requested, it is
 enabled

Deep sleep mode
– 32-kHz clock is on
– 12-MHz and PLLs are off
– Internal 12-MHz clock, CK_REF, is off
– No 48-MHz or external 12-MHz clocks

Wait for
12-MHz clock to

be stable.

PWRON_RESET
(power-on reset)

Wake-up request

No request for
48-MHz or

12-MHz clock

12-MHz clock is
stable

Wake-up
request,

48-MHz clock
request, or

external request
for 12-MHz clock

List of peripherals that requests 48-MHz
from ULPD DPLL or APLL:
– USB host and client
– Camera
– UART1,2,3
– MMC
– External modem

Power Management

15-23Clock Generation and System Reset Management

Figure 15–11. Wake-up Control Module

Peripheral
Request

IRQ

clk_12m Request

ULPD

OMAP

Table 15–3. OMAP5910 Wake-Up Peripherals and External Signals

Requestor Mechanism Transition from Deep Sleep to ?

Power on reset (external signal) Cold reset AWAKE

MPU_RESET (external signal) Warm reset AWAKE

MPUIO keyboard MPU interrupt AWAKE

MPUIO GPIO MPU interrupt AWAKE

Timer32K MPU interrupt AWAKE

UART2 RX detection Peripheral request generated to
ULPD

AWAKE

RTC MPU interrupt AWAKE

USB cable insertion USB request to ULPD which
generates MPU interrupt

BIG SLEEP then AWAKE via the
MPU interrupt

UART1/2/3 (wait for a falling edge
on the RX, DSR or CTS signals)

MPU/DSP interrupt AWAKE

MCLK_REQ (external signal) Request to ULPD BIG SLEEP

BCLK_REQ (external signal) Request to ULPD BIG SLEEP

External DMA request (external
signal)

Asynchronous request from TC AWAKE

Power Management

 15-24

15.3.1 DSP Idle Modes

Two DSP registers are used to configure and check the idle modes for the DSP
subdomains.

� The idle configuration register (ICR) specifies which clock domains get put
into IDLE by the next execution of the IDLE instruction.

� The idle status register (ISR) indicates which subdomains are currently in
IDLE mode.

The six different subdomains are:

� DSP core subdomain (DSP CORE/SARAM/DARAM): ICR and ISR bit 0

� DSP DMA controller subdomain (DMA/SARAM/DARAM): ICR and ISR bit 1

� I-cache subdomain (I-cache): ICR and ISR bit 2

� Peripherals subdomain (peripherals outside the DSP): ICR and ISR bit 3:

Peripherals can be individually controlled (shut off/enabled) by program-
ming the control registers in the clock generation management module
(CLKM). To maximize power conservation, seven different peripheral idle
modes are defined (UART, GPIO, timers, watchdog timer). Each one can
be individually activated and deactivated by software.

Two different strategies are used to control the clock that feeds the DSP
peripherals:

� The clock is shut off/activated according to the DSP idle mode or ap-
plication-specific environment (disable the peripheral clocks when the
DSP in not in idle). Peripherals connected to this clock cannot request
DMA transfers during the DSP idle mode.

� The clock is never shut off (input reference clock).

In either case, the DSP peripheral clocks are directly shut off/activated
by the DSP software.

� DPLL subdomain (DSP input clock + DSP interrupt handler): ICR and ISR
bit 4

Setting up the DSP DPLL idle mode sends a DSP_IDLE signal to the clock
generation management module (CLKM), which disables the input clock
to the DSP.

� DSP EMIF subdomain: ICR and ISR bit 5

Power Management

15-25Clock Generation and System Reset Management

15.3.1.1 Putting the DSP in IDLE

Perform this procedure to put the DSP in idle mode:

1) Turn off the DSP peripheral clocks.

2) Disable the DSP watchdog timer.

3) Enable the desired DSP interrupts (interrupt mask).

4) Enable the DSP global interrupt (INTM bit), if required.

5) Switch the DSP to shared-access mode (SAM) (it is in SAM, but switch
mode to signal the CPU). In SAM, the public peripheral bus is shared
between the MPU and DSP.

6) Write to ICR registers to disable all clock domains or a particular clock
domain (write a 1 to disable).

7) Switch the DSP back to host-only mode (HOM). In HOM, the public periph-
eral bus is owned exclusively by the MPU (usually because the DSP is in
idle mode or about to go to idle mode).

8) Execute the IDLE instruction.

DSP goes to sleep. If INTM is set, ISR is not executed after wake up; the
interrupt simply wakes the DSP up. The program continues just after the
IDLE instruction; otherwise, ISR is executed.

When the DSP is awakened (by an enabled interrupt or an external event such
as reset), perform the following procedure:

1) Disable the global interrupt (INTM), if required.

2) Switch the DSP to SAM. The public peripheral bus is now shared by the
DSP and MPU.

3) Write a 0 to the respective ICR bit to clear the idle bit.

4) Execute the IDLE instruction.

Note:

To set the DPLL subdomain to idle, switch off the other clock domains (CPU,
DMA cache); otherwise, the DSP peripheral cancels the idle request with a
bus error indicating that the configuration is not allowed.

Power Management

 15-26

15.3.2 MPU Idle Modes

A clock management register, the MPU idle mode entry 1 register (ARM_
IDLECT1), controls the different clock domains (clock enables) during the idle
state and allows the user to put different parts of the MPU clock domain into
the idle mode, if desired.

Three different subdomains are defined: the MPU subdomain, the DPLL
subdomain, and the MPU peripheral subdomain.

15.3.2.1 MPU Subdomain (MPU + MPU Interrupt Handler)

MPU can go into the idle mode in two ways:

� By executing the CP15 instruction wait-for-interrupt: Executed by an OS
kernel. By configuration, this instruction provokes an Idle1 or an Idle2
mode.

� By setting the SETMPU_IDLE bit of ARM_IDLECT1 (the idle control regis-
ter in clock generator and system-reset module): Programmed by a
process application. Setting these bits (active) allows the MPU to enter in
an Idle1 or an Idle2 mode. This is the recommended method to use.

The MPU clock restarts upon an enabled interrupt request or system reset.

Wait For Interrupt Instruction

When the MPU CP15 instruction is used, the system software does not need
to take care of adding any extra cycles to wait after the instruction being exe-
cuted (the MPU itself takes care of this). When this instruction is executed, the
MPU stops its ongoing operations and sends a sleep acknowledge signal to
the OMAP clock reset module to request stopping the clock. The MPU does
not execute any other access after executing the wait for interrupt instruction.
The MPU wakes up when an interrupt occurs and executes the subsequent
instructions after servicing the interrupt.

Set Bit 11 of ARM_IDLECT1

After this bit is set through software, the software must wait for a certain num-
ber of cycles to ensure no other MPU requests occur before the MPU is idled.
This is because there is a latency between the MPU TIPB write to the IDLECT1
register and the time when the MPU sleep request to the MPU core actually
goes high. Also, the software must account for the clock cycles required for the
MPU to send an acknowledge signal back to the OMAP clock reset module,
depending on what operations it was performing.

Power Management

15-27Clock Generation and System Reset Management

The following rules ensure that sufficient time is allowed:

� Clock reset module needs at least four reference clock cycles (12-MHz
clock) and two MPU clock cycles to send a sleep request to the MPU.

� The MPU needs at least three MPU clock cycles to send back an acknowl-
edge after receiving the sleep request. This is true even if there are no
access requests coming from MPU before or after the sleep request. The
sleep request is generated from the register write to IDLECT1 Bit 11.

� Add NOP instructions to make sure there is no request coming from the
MPU by considering the worst case scenario. This scenario is: MMU and
I–cache enabled, a MMU TLB miss (requiring a L1 and L2 fetch), and an
I–cache miss, as follows:

� Four read strobes for the instruction fetch (a line load of 4 words)
� One read strobe for TLB Miss L1 descriptor fetch
� One read strobe for TLB Miss L2 descriptor fetch

This requires six read strobes, which need N number of MPU clock cycles.
N depends on the type of memory from which the reads are being made.

� There is a software solution to avoid these extra N MPU clock cycles due
to the read strobes. This solution requires only I-Cache be enabled. By
changing the loop count value (CMP R2) we can increase/decrease
number of cycles, as shown in Figure 15–12.

Power Management

 15-28

Figure 15–12. Code Example

.state16 ; thumb mode

.ref edata ; defined by armas

.global $arm_idle

$arm_idle:

push {lr}

push {r1–r7}

adr r4, into_32_bis

bx r

nop

nop

nop

.state32 ; arm mode

into_32_bis:

LDR R1,ARM_IDLECT1

MOV R3,#1

MOV R3,R3,LSL # 11

MOV R2,#0

LDR R0,[R1]

ORR R0,R0,R3

; This is the loop that will wait for at least 100 cycles

; before issuing next request from ARM. On the first run of the loop only Icache

; gets loaded with the loop and the next 2 instructions but write to SYSST does
not occur

; In the 2nd run of the loop only write to IDLE_CT1 happens and after that ARM
runs the loop from

;Icache so no request goes out

LOOP CMP R2,#1

STREQ R0,[R1]

ADD R2,R2,#1

CMP R2,#16

BNE LOOP

Power Management

15-29Clock Generation and System Reset Management

Figure 15–12. Code Example (Continued)

the_end:

adr r2, into_16_bis + 1

bx r2

.state16

into_16_bis:

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

pop {r1–r7}

pop {pc}

;

CONSTANT TABLE

;

ARM_IDLECT1 .long 0xFFFECE04

Example:

� If the reference clock speed = 12 MHz, then MPU clock speed = 96 MHz

� If the above routine is used after the write to ARM_IDLECT1 register, you
need 4 * 96/12 + 2 + 3 = 37 clock cycles

To achieve this, run the loop seven times.

Power Management

 15-30

15.3.2.2 DPLL Subdomain

DPLL1 is disabled when all of the clock domains using DPLL1 are disabled.

Setting up the IDLDPLL_MPU bit enables DPLL1 to enter the idle mode when
the following conditions are met; otherwise, DPLL1 remains active.

� DSP is set in the global idle mode.

� MPU is set in the idle mode (either from request or from wait-for-interrupt).

� There is no active DMA transaction and there is no activity on the internal
local bus, as indicated by the internal TCLB_EN signal

� No peripheral post write is queued.

� The peripheral clocks are stopped.

� There are no pending interrupts.

15.3.2.3 Peripheral Subdomain

Two clocks feed the MPU peripherals:

� The clock that is shut off/activated according to the MPU idle mode.
Peripherals connected to this clock cannot request DMA transfers during
the MPU idle mode.

� The clock that is never shut off (input reference clock)

In either case, the MPU peripheral clocks are directly shut off/activated by the
MPU software.

15.3.3 Traffic Controller Idle Modes

A clock management register, ARM_IDLECT1, controls different clock subdo-
mains (clock enables) during the idle state and allows the user to put different
parts of the traffic controller into idle mode, if desired.

Several different subdomains are defined.

� System DMA subdomain

To optimize power consumption, the system DMA controller clock
(DMA_CK) can be shut off/activated according to the DMA activity
(provides clock during data transfer only) or it can be shut off only when
MPU goes to idle.

Power Management

15-31Clock Generation and System Reset Management

� Traffic controller subdomain

The traffic controller clock (TC_CK) is shut off if the MPU and the DSP
DPLLs are in idle mode and there is no DMA transfer. When the clock must
be shut off, the memory interface completes the current memory transac-
tion before notifying the CLKM3 to shut off a clock. The SDRAM is placed
in self-refresh mode before shutting off the SDCLK_EN clock, and there is
no internal local bus activity, as indicated by the internal TCLB_EN
signal.

� MPU peripheral bridge domain

The MPU peripheral bridge clock (TIPB_CK) is shut off if the MPU is in idle
mode and there is no DMA transfer.

� LCD domain

The LCD clock (LCD_CK) is shut off/activated according to the traffic
controller idle mode or forced off with the enable bit.

� MPU MPUI domain

The MPUI clock (API_CK) is shut off if the MPU and the DSP DPLLs are in
idle mode and there is no DMA transfer (when the clock is required to be
shut off, the memory interface completes the current memory transaction
before notifying the CLKM3 to shut off the clock). The MPUI clock can also
be forced off with the enable bit (the MPUI clock can only be shut off by the
enable bit in current implementation).

Note:

To idle the traffic controller, the system software must ensure that the current
transfers are completed and their clock domains are turned off before going
to idle.

The traffic controller clock restarts upon either an MPU or DSP interrupt
request, a DMA request, or activity on the internal buses.

15.3.3.1 DPLL Idle Procedure

In the event that only the input reference clock is needed (that is, only timer/
watchdog are active), then the DPLL can be set to idle mode. This procedure
applies to DPLL. The DPLL clock is stopped if all the domains that use it as a
source are stopped.

Setting the IDLDPLL_ARM bits (in ARM_IDLECT1 register) to logic 1 forces
the corresponding DPLL to enter the idle mode whenever the DPLL output
clocks (CK_GEN1, CK_GEN2, CK_GEN3) are not being used.

Power Management

 15-32

The DPLL idle control logic receives signals from clock generation modules,
indicating when the output clock can be stopped. The DPLL idle mode is en-
tered when the IDLDPLL_ARM bits in the MPU idle mode entry 1 register
(ARM_IDLECT1) are set to logic 1.

15.3.4 Chip Idle and Wake-Up Control

In the status request register (STATUS_REQ_REG), both the CHIP_IDLE and
WAKEUP_nREQ signals can be used by the ULPD idle logic to control the in-
put clock source. The CHIP_IDLE signal remains high until the DPLLs ac-
knowledge that they have entered the IDLE mode. The WAKEUP_nREQ sig-
nal goes active as soon as one of the chip wake-up conditions occurs (MPU
or DSP interrupt, DMA request, local bus activity). The CHIP_IDLE signal can
be used by the ULPD to decide when to stop CLKIN (CK_REF) to the clock
generation module, and it uses the WAKEUP_nREQ signal to restart the clock
(see Figure 15–13).

Figure 15–13. Chip Idle and Wake-Up Control

External clock
requests

ULPD
sleep mode

state machine

Internal clock
request

CHIP_IDLE

WAKEUP_nREQ

CHIP_nWAKEUP

IRQs and
interrupts

Clock
management
chip idle and

wakeup controlSDCLK_EN
SDRAM clock

enable

NFRP
flash power

down

Power-on reset
DSP_IDLE

MPU_IDLE

TCLB_EN

In the status request register (STATUS_REQ_REG), the following signals are
used in chip idle and wake-up control:

� CHIP_nWAKEUP: CHIP_nWAKEUP is the acknowledge of ULPD when
CHIP_IDLE signal is active. It indicates to the clock management module
that the ULPD has left the awake mode and the 12-MHz clock, CLKIN, is
off.

� When CHIP_IDLE becomes inactive, the ULPD the releases CHIP_nWA-
KEUP signal to indicate that the ULPD is in awake mode and CLKIN is
back on. This signal provides the ULPD with more control of the
OMAP5910 device wake up.

Power Management

15-33Clock Generation and System Reset Management

� When the MPU idle mode entry 1 register (ARM_IDLECT1)
WKUP_MODE field = 0, the OMAP5910 device does not wake up, even
if one of the above wake-up conditions occurs, until the CHIP_nWAKEUP
goes active.

� MPU interrupt
� DSP interrupt
� Internal local bus activity (TCLB_EN signal = 1)

In chip idle, if this signal is inactive (high), the OMAP5910 device does not
wake up (prevent from waking up), even if one of the above wake-up
conditions has occurred. This signal has no effect when the OMAP5910
device is not in chip idle. When the MPU idle mode entry 1 register
(ARM_IDLECT1) WKUP_MODE = 0, the OMAP5910 device does not
wake up, even if one of the above wake-up conditions has occurred.

� WAKEUP_nREQ: request to the ULPD to wake up the chip. This signal is
looked at only when the CHIP_IDLE signal is high. Note that
WAKEUP_nREQ is asserted by OMAP whenever there any wake-up
condition occurs, even when OMAP is not in CHIP_IDLE.

� FLASH.RP and SDRAM.CKE: Power control for external devices (for
example, flash and SDRAM)

� Power-on reset: Must be valid until power and input clock are stable

� CHIP_IDLE: Chip idle mode. Indicates that all internal clocks are stopped.
This internal signal is active regardless the state of the external wake-up
control feature. This pin is asserted (high) when all DPLL ACKs are
returned and all the peripherals using CK_REF are disabled.

� TCLB_EN: TC local bus enable, enables restart of the clock to the TC
when the idle mode is set.

� DSP interrupts (internal signal is DSP_nIRQ): Interrupt request from the
DSP interrupt handler. Asserts when an unmasked interrupt has been
asserted.

� MPU IRQ (internal signal is nIRQ_SET): Interrupt request from the MPU
interrupt handler. Asserts when an unmasked interrupt has been asserted.
When MPU is awake, must remain low until MPU clock restart.

� DSP_IDLE—DSP idle command

� MPU_IDLE—MPU idle command

Power Management

 15-34

15.3.4.1 Chip Idle Mode

In the event that no clock signal is necessary (chip idle), all clock domains
generated either from CK_GEN (1,2,3) or CK_REF (CLKIN) are stopped. The
external reference clock source can be stopped as well.

The CHIP_IDLE signal is asserted when all internal system clocks are dis-
abled and after the DPLL idle state has been acknowledged. It is deasserted
when a wake-up condition is detected (CHIP_nWAKEUP and one of the wake-
up conditions are active when external wake-up control is enabled or just one
of the wake-up conditions is active when wake-up control is not enabled). It
takes some synchronization CK_REFs for CHIP_IDLE to go low after a wake-
up condition is detected.

Note:

In addition to the DPLL timing, the clock source start-up time can affect the
OMAP5910 system response. Use deep sleep mode for long sleep periods
only.

15.3.4.2 Chip Idle Procedure

1) Set TC_EMIF_SLOW_IF_CONFIG_REG = 0x0000000C and
TC_EMIF_FAST_SDRAM_CONFIG_REG = 0x0C618800

2) Disable the MPU watchdog timer by first writing 0x00f5 to the WDTIM-
ER_TIMER_MODE_REG and then writing 0x00A0 (this is to prevent a
watchdog reset from being generated that results in a global reset.)

3) Set up the MPU interface (write to the MPUI control setup and DSP boot
registers).

4) Set API_SIZE_REG = 0x0000 (only need to set the bits that correspond
to the SARAMs with DSP code to 0).

5) Enable the MPU interrupts and unmask these interrupts by writing a 0 to
the corresponding bit in the MIR-mask interrupt register in the MPU inter-
rupt handler. Write to the corresponding interrupt interrupt-level register
(ILR) to set the priority, edge sensitivity, and whether the interrupt is routed
to the IRQ or FIQ. Besides the interrupt that is used to wake up the MPU
out of idle, you also can enable a DSP mailbox interrupt to the MPU. This
DSP2MPU mailbox interrupt service routine is used to put the MPU into
idle. The reason to use this mailbox interrupt is that the MPUI clock is
needed by the DSP to switch between SAM/HOM. The MPU cannot go to
idle until this is done, because only the MPU can write to the EN_APICK
bit of the MPU idle mode entry 2 register (ARM_IDLECT2).

Power Management

15-35Clock Generation and System Reset Management

6) Take the DSP out of reset. First, write the MPU reset control 1 register
(ARM_RSTCT1) DSP_RST field = 1. Set the MPU reset control 1 register
(ARM_RSTCT1) DSP_EN to = 1. The DSP_RST bit controls the MCU
reset, and the DSP_EN bit controls the reset signal of the DSP.

7) In the DSP code, enable and unmask the DSP interrupts.

8) Disable the DSP watchdog timer (that is, take it out of watchdog mode) and
disable the DSP peripheral clocks setting the DSP idle mode entry 2
register (DSP_IDLECT2) to 0x0000.

9) Write to the DSP mailbox registers to generate the interrupt to the MPU.
In the corresponding MPU interrupt service routine, add a wait loop to
make sure the DSP has gone to idle before disabling the MPUI clock.

10) In the MPU interrupt service routine, clear the DSP2MPU mailbox inter-
rupt, then disable the ARMGPIO_CK, LB_CK, and LCD_CK by writing the
MPU idle mode entry 2 register (ARM_IDLECT2) = 0x0087 (can also write
0x0000, which disables the MPU peripheral clocks instead of letting them
go to IDLE, only after MPU goes to IDLE using the MPU idle mode entry
1 register (ARM_IDLECT1) IDL_ARM). Put the MPU into IDLE by writing
MPU idle mode entry 1 register (ARM_IDLECT1) = 0x0FFF, which sets the
SETARM_IDLE bit. This also sets the IDLIF bits, which allow the MPU
peripherals to go to IDLE when the MPU goes to idle, and sets the
IDLDPLL_ARM bit, which allows the DPLLs to go to idle.

11) Back in the DSP code, after writing to the DSP mailbox register in step 10,
switch the DSP TIPB and MPUI to SAM. Then, write 0xFF to the DSP ICR
register. Switch the DSP back to HOM and execute the idle instruction.
See the section on putting the DSP in idle mode for descriptions of the
SAM and HOM.

The DSP and MPU domains go to idle, and then the TC also goes to idle.
Then all 3 DPLLs go to idle, and the CHIP_IDLE signal goes active high,
which indicates to the external system that the OMAP5910 input clock can
be disabled, assuming there are no wake-up conditions at that time
indicated by the WAKEUP_nREQ signal.

Power Management

 15-36

15.3.4.3 Wake-Up Procedure

An interrupt request (not masked) (either to the MPU or to the DSP), a DMA
clock request, or a logical 1 at the TCLB_EN signal exits the idle mode. In
addition, when all internal clocks are stopped (chip-idle mode), the wake-up
procedure can be controlled via the ULPD. The WKUP_MODE bit of the MPU
idle mode entry 1 register (ARM_IDLECT1) defines this wake-up option.

To give the ULPD wake-up control, the WKUP_MODE bit must be cleared to
0 before entering the idle mode.

In the OMAP5910 device, the WKUP_MODE bit is controlled by the MPU in
the MPU idle mode entry 1 register (ARM_IDLECT1). The DSP has no control
of this bit.

When the WKUP_MODE bit value is set to logic 1, a single wake-up condition
(as defined in the following list) initiates a chip wake-up procedure.

1) nIRQ_SET: Upon an interrupt request, the MPU interrupt handler initiates
the restart of the ARM_CK, ARM_INTH_CK, TIPB_CKs, DMA_CK, and
TC_CK clocks (depending on the setting of the MPU idle mode entry 1/2
registers (ARM_IDLECT1/2), peripherals clocks can also restart). If the
idle mode was entered from the SETARM_IDLE bit, then the bit is cleared
to 0.

2) DSP_nIRQ: Upon an interrupt request, the DSP interrupt handler initiates
the restarting of the MPUI clock (if MPUICK_EN is not set to 0), DSP_CK,
DSP_INTH_CK, TC_CK clocks (depending on the setting of the MPU idle
mode entry 1/2 registers (ARM_IDLECT1/2), peripheral clocks can also
restart).

3) TCLB_EN signal: When the internal TCLB_EN signal goes active, the
TC_CK and LB_CK clocks restart. The TC_CK/LB_CK clocks keep
running as long local bus activity occurs.

4) When the system DMA controller receives an asynchronous request from
the traffic controller, DMA_CK/TC_CK/LB_CK and DMA_CK/TC_CK/
LB_CK are enabled to keep running as long as the DMA operates.

5) When the system DMA controller receives a request from the TIPB bridge,
it enables TC_CK/TIPB_CKs/DMA_CK and TC_CK/TIPB_CKs/DMA_CK
to keep running as long as the DMA operates.

Power Management

15-37Clock Generation and System Reset Management

Note:

The internal signals that cause the wake-ups are asynchronous and do not
need a running clock to be activated. When the WKUP_MODE bit value is
a logical 0 and the CHIP_IDLE signal is active, this condition indicates the
entire chip is in deep sleep mode. The combination of one of the above condi-
tions and a CHIP_nWAKEUP request from the ULPD is required to exit the
chip-idle mode. If WKUP_MODE = 1, then the ULPD is not required to exit
the chip-idle mode, only one of the above wake-up conditions.

If the CHIP_IDLE signal is inactive (and at least one of the internal clocks is
running), the CHIP_nWAKEUP signal is disabled and a single wake-up con-
dition (not ULPD controlled) brings the DSP or MPU system out of idle mode.
A global system reset brings the OMAP5910 device out of idle mode, regard-
less of the WAKEUP_MODE bit value, ULPD control, or the interrupt status.

Figure 15–14 illustrates an ULPD-controlled wake-up sequence (assuming
the DSP and the MPU clock domains have the same clock frequency,
CK_REF). The wake-up is initiated from an interrupt to the MPU, whereas the
DSP remains in idle mode.

Figure 15–14. ULPD Controlled Wake-Up Sequences

DSP_CK

TCLB_CK

ARM_CK

ARM_INTH_CK

IRQ_SET

SETARM_IDLE bit

ARMIDLE_REQ

ARMIDLE_ACK

ARMIDLE_INTH

TCIDLE_REQ

TCIDLE_ACK

IRQ or FIQ request

CHIP_IDLE

WKUP_REQ

CHIP_WKUP

DPLL acknowledge delay

ULPD analog delay

Power Management

 15-38

15.3.5 Power-Saving Capability

The OMAP5910 device has several power-saving modes that help to reduce
the operating current by stopping the clock signals of the unused (inactive)
domain(s). The idle controls to the DSP, the MPU, and the traffic controller
provide a flexible and an efficient power-saving mechanism. The following list
of power-saving modes is given as an example only, because other modes are
possible. The system software can program the OMAP5910 device to operate
in any of these modes for a specific application.

� Mode 0: The DSP is partially in the idle mode (see DSP idle protocol).

� Mode 1: The DSP is in the global idle mode.

� Mode 2: The MPU is in the idle mode (DSP is still running) for both:

� System DMA controller is active.
� System DMA controller is not active.

� Mode 3: Both MPU and DSP are set in the idle mode (peripherals are still
active) for both:

� System DMA controller is active.
� System DMA controller is not active.

� Mode 4: The MPU, the DSP, and traffic controller are stopped (the traffic
controller can be stopped only if both the MPU and the DSP are in idle) for
both:

� Peripheral modules are individually stopped.
� All peripherals are stopped.

� Mode 5: The MPU, the DSP, peripherals, and DPLL (1) are stopped; how-
ever, the timer/watchdog (or OS-timer) is still active.

� Mode 6 (chip idle): The MPU, the DSP, peripherals, DPLL (1), and timers
are stopped, while the ULPD clock source remains the only active clock
signal.

� Mode 7 (deep sleep): All internal system clocks (the MPU, the DSP,
peripherals, DPLL (1) and timers) and the ULPD reference clock source
are stopped, leaving the OMAP5910 device in a static state in which it
consumes the lowest possible power.

In all power-saving modes, the OMAP5910 device retains all RAM data (keeps
the memory data), and the register configuration values (for example, the
frequency selection is maintained, etc.). The data to output terminals is also
maintained, and input terminals are set to logic low or logic high (not floating)
to reduce the current from flowing through the input logic.

Power Management

15-39Clock Generation and System Reset Management

The OMAP5910 device exits from the power-saving modes by means of a
reset or any interrupt (with or without additional external control from the
CHIP_nWAKEUP pin). A wake-up interrupt must be enabled (not masked off)
to bring the OMAP5910 device out of the power-saving mode.

15.3.6 ULPD Power Management State Machine

The power management function of the ultralow-power module (ULPD),
handles the high-frequency oscillator on/off sequences. It is a state machine
that can stop the oscillator and restart it on a wake-up signal. Set-up times of
the oscillator are taken into account in order to stop/restart internal clocks in
a clean manner. The ULPD state-machine uses the 32-kHz clock.

� The ULPD DPLL and APLL for the 48-MHz USB clock is handled in the
ULPD module.

� ULPD DPLL is a x4 digital PLL.

� APLL is a x48 analog PLL. The input clock ref is 1 MHz, based on either
a 12-MHz system clock divided by 12 or optionally on a 13-MHz system
clock divided by 13.

� The switch between DPLL and APLL is controlled by software through a
TIPB register of ULPD.

15.3.6.1 Gauging the 32-kHz Oscillator

As the 32-kHz oscillator exact frequency is unknown, it can be gauged by
comparing the 32-kHz oscillator with a high-frequency clock (12-MHz oscilla-
tor, ULPD DPLL, or external clock) during any active period. Gauging is only
necessary in specific applications where it is important to know the exact
frequency of the 32-kHz oscillator.

There is a software limitation: the counter is not resynchronized on the TIPB
strobe. Therefore, the value is not readable while the counter is running (when
gauging is enabled). You must first disable the gauging (GAUG-
ING_CTRL_REG[0] = 0), then read the high-frequency counter and the
32-kHz counter value.

Power Management

 15-40

15.3.6.2 Gauging Versus High-Frequency Clock

To gauge the 32-kHz oscillator, two counters clocked on the 32-kHz clock and
the high-frequency clock are concurrently running during the gauging period.
The high1–frequency clock is selected among the 12-MHz clock, the DPLL,
and the external clock. At the end of the gauging period, the number of 32-kHz
clocks and the number of high-frequency clocks are calculated as follows:

� Nb_32kHz = counter_32_msb * 65536 + counter_32_lsb:

� counter_32_msb is the MSB value of 32-kHz counter.
� counter_32_lsb is the LSB value of 32-kHz counter.

� Nb_hi_freq = counter_hi_freq_msb * 65536 + counter_hi_freq_lsb:

� counter_hi_freq_msb is the MSB value of high-frequency counter.
� counter_hi_freq_lsb is the LSB value of high-frequency counter.

Use the following procedure to gauge the 32-kHz clock versus the
high-frequency clock:

1) Select gauging versus high-frequency clock:

� Write gauging_ctrl[0] = 0 to select gauging versus 12-MHz clock.

or

� Write gauging_ctrl[0] = 1 to select gauging versus external or DPLL
clock.

2) Start gauging by writing gauging_ctrl[1] = 0.

3) Wait a few seconds.

4) On reception of the gauging interrupt (low-level sensitive interrupt), stop
gauging by writing gauging_ctrl[1] = 0.

5) Check the overflow of the 32-kHz counter:

Read it_status[2].

6) Check the overflow of the high frequency counter:

Read it_status[1].

7) If an overflow occurred during the process, then return to step 3 to restart
the gauging and reduce the waiting time. Else continue to next step.

8) Read 32-kHz counter value:

Read counter_32_msb and counter_32_lsb registers.

Power Management

15-41Clock Generation and System Reset Management

9) Read hi_freq counter value:

Read counter_hi_freq_msb and counter_hi_freq_lsb registers.

10) Compare values of the counter and proceed with calibration of the 32-kHz
counter.

At the end of the gauging operation, an END_GAUGING interrupt informs the
MCU that gauging is stopped and values of the counters are ready to be read.
This interrupt is low-level sensitive. It is cleared on the reading of these
registers.

Two other low-level-sensitive interrupts indicate whether an overflow occurred
on one of the two counters during the gauging operation. One interrupt is dedi-
cated for the 32-kHz counter, the second one for the high-frequency counter.
They are also cleared on the read of the interrupt status register.

15.3.6.3 Control of 32-kHz Oscillator

The 32-kHz oscillator start-up time is configurable via the bits
MOD_32KOSC_SW_R bits of the module configuration control 0 register
(MOD_CONF_CTRL_0) in OMAP5910 configuration.

The 32kHz clock source can come from either the on-chip 32-kHz oscillator
or from an external 32-kHz clock oscillator providing a clock onto the
CLK32K_IN input pin. Clock source selection depends upon the state of the
CLK32K_CTRL input pin. If this pin is driven (or tied) high, the on-chip 32-kHz
oscillator is enabled as the clock source. If the pin is driven (or tied) low, then
the clock must be provided externally on the CLK32K_IN pin.

MOD_32KOSC_SW_R is a 4-bit field that sets the performance control
switches of the oscillator 32-kHz (SW1, SW2, SW3, SW4). Table 15–4 lists the
recommended control switch settings:

Table 15–4. Recommended Control Switch Settings

Oscillator Performance SW4 SW3 SW2 SW1

Least current 1 0 0 0

Fast startup 1 0 1 1

Power Management

 15-42

15.3.6.4 Battery Failed

A battery-failed event is indicated via the BFAIL/EXT_FIQ signal connected to
the ULPD, which performs a power-down action. The ULPD processes the in-
coming BFAIL/EXT_FIQ signal to an external device (via RST_HOST_OUT)
to decrease a programmable counter and to generate a shutdown signal when
the counter reaches zero. It also creates an interrupt on MPU level 1. The
release of RST_HOST_OUT is controlled by software. You can use the
SW_NSHUTDOWN bit in the power control register (POWER_CTRL_REG)
to toggle the state of the RST_HOST_OUT pin to high or low level. A power-on
reset condition also causes RST_HOST_OUT to be active low.

15.3.6.5 Big Sleep and Deep Sleep Mode

To go into deep sleep mode, the MPU and DSP must release and unmask all
interrupts that can awake the chip during this mode and they must mask all
interrupts that do not awake the chip during deep sleep mode. Then the MPU
enters big sleep mode. When the device reaches the idle state, it informs
power management to enter into sleep mode by setting the CHIP_IDLE signal.
The state machine cuts the 12-MHz OSC1 oscillator only if external devices
do not request the oscillator clock.

15.3.6.6 Power-On Reset

The PWRON_RESET signal is used to reset the entire device. This signal is
resynchronized on the 32-kHz to achieve a clean reset. Then the ULPD
module initiates the internal reset sequence (minimum of two full 32-kHz clock
periods is recommended). The 32-kHz logic within the ULPD module is reset
asynchronously.

15.3.6.7 Interrupt Wake-Up

When at least one unmask interrupt has occurred during deep sleep, a wake-
up sequence is performed. In this case, the chip must leave the deep-sleep
mode as soon as possible to process this interrupt. To respect the schedule
of the clock enables, the following wake-up sequence is processed:

1) When the clock management interrupt handlers detect an interrupt, the
internal WAKEUP_nREQ signal is asserted.

2) The 12-MHz OSC1 oscillator is enabled and the setup counter is loaded
with the setup_oscillator value.

3) When the setup counter reaches zero, the CHIP_nWAKEUP signal is
used to inform the device to leave big sleep mode.

Power Management

15-43Clock Generation and System Reset Management

15.3.6.8 Functional Reset Generation

The ULPD generates the functional reset of the device internally from the
PWRON_RESET signal and holds it active low for a minimum of 20 REF_CK
(12-MHz) clock cycles.

15.3.7 32-kHz Oscillator

The 32-kHz oscillator is always on and uses a 32-kHz external quartz. The
modules working with the 32-kHz clock are:

� 32-kHz timer
� Power management
� UART communication with communication processor
� PWL
� MPUIO (debouncing)/keyboard (keypad)

15.3.8 12-MHz Oscillator

This oscillator is to be used with a 12-MHz external quartz, which is used by
the clock and reset management module and is provided to the clock ref of
DPLL1 for MPU, DSP, TC, and peripherals. It allows the generation of the
48 MHz required by USB, camera, MMC, and UARTs. The ULPD DPLL and
APLL, located in the ULPD, provide the 48 MHz. By default, the USB uses the
APLL. This 12-MHz clock is used as the input clock of the ULPD. The 12-MHz
oscillator is on during awake and big sleep mode. It is off during deep-sleep
mode. The power management module handles the wake-up sequence.

When using the on-chip oscillator (normal mode), either a 12-MHz crystal or
a 13-MHz crystal can be connected to the OSC1_IN and OSC1_OUT pins so
that the on-chip oscillator generates a 12-MHz or a 13-MHz clock reference
to the OMAP device. In external master mode, the on-chip oscillator is disabled
and a 12-MHz or 13-MHz reference clock must be provided by an external
oscillator connected to the OSC1_IN pin.

In both of these cases, the APLL can be configured to generate the 48-MHz
clock from either a 12-MHz or a 13-MHz reference clock. If a 13-MHz reference
clock is used, then use the APLL to generate the 48-MHz clock, as opposed
to using the ULPD DPLL. The ULPD DPLL can only generate a 48-MHz clock
when the reference is 12 MHz.

Note: 13-MHz Clock

If a 13-MHz reference clock is used, then any timings detailed in this docu-
ment (peripheral clocks, etc.) which are calculated based on the 12-MHz
reference clock must be recalculated using the 13-MHz value.

Power Management

 15-44

15.3.9 Reset Protocol

The OMAP5910 device system reset is accomplished with a combination of
hardware and software control. Individual components (or modules) can be
reset by software.

There are five different sources that can cause a system reset. Three of them
are internally generated, and two of them are input from the external pin.
These sources are: the cold reset (PWRON_RESET reset pin), the warm reset
(from either the MPU_RST pin or software-generated), and the watchdog
reset (MPU and DSP).

� The PWRON_RESET signal must be asserted for at least two 32-kHz
clock periods to be recognized. PWRON_RESET indicates a power-on
reset of the device. When PWRON_RESET is asserted low, the internal
power on reset and warm reset of MPU are active low until the 12-MHz
clock (REF_CK) is on. Then power-on reset is released after 20 REF_
CK cycles, and warm reset is released after 30 additional cycles.

� When the device is awake, MPU_RST controls the warm reboot of the
MPU. The external reset signal must be asserted for 30 REF_CK cycles
to be recognized. The reset signal is synchronized before feeding to the
reset manager module (RSTM) that generates the internal reset signals
within the OMAP5910 device. The internal reset is asserted for at least
64 REF_CK cycles, and that clock must be running when MPU_RST is
asserted.

Some configuration registers are only reset to their default values by certain
types of resets:

The following registers are only reset by power-on reset:

� ULPD
� Functional multiplexing configuration
� MPU level 2 interrupt handler
� MPUIO (the output register (OUTPUT_REG)
� Input/output control register (IO_CNTL))
� MCSI (the main parameters register (MAIN_PARAMETERS__REG))

DPLL registers are reset by all the resets, both hardware and software

The OMAP5910 device global reset sequence with the behavior of the
FLASH.RP pin is shown in Figure 15–15.

Power Management

15-45Clock Generation and System Reset Management

Figure 15–15. External Power Control During A Reset Sequence

Optional warm reset

VDD/VDDSHV

CLK_32K

CLK_12M

NRESET

OMAPNRST

CTRL_INITZ

30 x clk12m

2 x clk12m

20 x clk12m2 x clk32k min

1024 x clk32k

Optional warm reset

In
te

rn
al

8 cycles
of

clk12m

FLASH.RP

PWRON_RESET

MPU_RST

15.3.9.1 Cold Reset

Cold reset is in response to the assertion of the external reset signal
(PWRON_RESET). When the reset is initiated from the pin, the OMAP5910
device is held in reset until the pin goes inactive. The reset module generates
reset signals to the respective modules. All modules are put to a known state,
and the RAM data is in an unknown state.

During the power-up reset, the DSP and the DSP subsystem are held in reset
mode (by hardware). The MPU boots from CS0 or CS3. Software then writes
to the control registers to release the reset of the DSP subsystem once the
MPU is up and running.

Power Management

 15-46

15.3.9.2 Warm Reset

A warm reset can be generated from either the MPU_RST pin or through
system software. There are several types of warm reset:

� Global: Resets the DSP, the MPU, and all internal modules through the
SW_RST field, the ARM_RST field, or the DSP_EN field of the MPU reset
control 1 register (ARM_RSTCT1).

� DSP: Resets the DSP system, with the exception of the configuration
setting. The reset of the associated internal peripherals (DSP interrupt
handler, timers, UART, GPIO, etc.) is controlled from the peripheral reset
signal issued by the DSP. This is done through the SW_RST field, the
DSP_RST field, or the DSP_EN field of the MPU reset control 1 register
(ARM_RSTCT1).

� MPU: Resets the MPU subsystem. The signal_reset causes an MPU
reset, as does the ARM_RST field of the MPU reset control 1 register
(ARM_RSTCT1).

� MCU: Resets the peripheral interrupt priority encoder registers and part
of the MPUI control logic.

15.3.9.3 Watchdog Reset (DSP and MPU)

� MPU watchdog: A system reset (global reset) is generated when the
down-counter underflows (assuming the MPU watchdog timer is
configured as a watchdog timer).

� DSP watchdog: A DSP reset (reset the DSP and the DSP MMU) is gener-
ated when the down-counter underflows (assuming the DSP watchdog
timer is configured as a watchdog timer)

15.3.9.4 Warm Reset via MPU_RST

As mentioned earlier, one type of warm reset (also called warm boot) is caused
by the MPU_RST input pin being driven active low. In a portable application
initiating a warm-boot via MPU_RST is a very convenient feature since the
removal of battery sourced power is sometimes difficult or impossible within
the application. Such a warm reset is also useful in line–powered systems
when a system restart is desired without cycling power.

The MPU_RST input pin has the following characteristics:

� When driven active low, this pin activates a warm reset, forcing the MPU
processor to reboot.

Power Management

15-47Clock Generation and System Reset Management

� The MPU_RST input pin has a hysteresis type input buffer.

� De-bouncing is not implemented

� The pin has a minimum pulse width requirement (refer to appropriate data-
sheet all timing requirements).

When a warm reset condition occurs, the RST_OUT output pin is asserted
active low. The RST_OUT output pin is always enabled (the RST_OUT
function cannot be disabled). Refer to the appropriate device datasheet for
complete timing characteristics of RST_OUT relative to MPU_RST.

The assertion of MPU_RST (warm reset) has the following effects:

� Always forces a re-boot of the MPU processor

� Shared GPIO logic and registers are reset.

� ULPD registers are reset except for the following cases:

� IT_STATUS_REG: pending interrupts could possibly survive the
warm-reset and become posted again after the reset condition.

� DPLL register is not reset.

� SETUP_ANALOG_CELL3_ULPD1_REG is not reset.

� ARMIO_CTL and DATA_OUT registers associated with MPUIO logic are
NOT reset and retain their previous values.

� The appropriate bits within the ARM_SYSST register are set to indicate
that the reset event was due to a warm-boot (the MPU can read
ARM_SYSST to differentiate a warm-boot from a power on reset).

� Self-refresh of external SDRAM is initiated if this function is enabled via
the appropriate Traffic Controller registers.

The following registers /logic are unaffected by a warm reset condition and
retain their previous state:

� OMAP5910 Configuration Registers associated with device pin
multiplexing

� OMAP5910 Configuration Registers which enable/disable pullup/
pulldown resistors on the device pins.

� MPU Level 2 interrupt handler registers

� MPUIO control and data registers

� MCSI1 and MCSI2’s MAIN_PARAMETERS_REG registers.

Power Management

 15-48

� RTC (on–chip Real–time–clock) registers and logic.

Since only selective peripheral registers are reset by a warm-reset via
MPU_RST assertion, it is recommended that the safest approach in using the
MPU_RST signal for warm-reset is to always perform a complete system
re-initialization at re-boot.

The OMAP5910 device implements a single low power pin (LOW_PWR) that
indicates to external logic that the device is in low power mode or deep sleep
mode. The LOW_PWR signal is multiplexed on the same pin as the MPUIO5
signal, so to utilize the low power function, user software needs to configure
the pin appropriately as LOW_PWR. A warm reset condition (MPU_RST
active) has the following effects on the LOW_PWR output pin:

Given a warm reset condition when OMAP5910 is awake:

� Multiplexing logic responsible for driving LOW_PWR onto the correct pin
is not reset.

� The LOW_PWR pin remains low

Given a warm reset condition when OMAP5910 is in low power or deep sleep
mode:

� Multiplexing logic responsible for driving LOW_PWR onto the correct pin
is not reset.

� The LOW_PWR pin transitions from high to low.

OMAP5910 implements a deep sleep mode wherein the 12 MHz oscillator is
powered down. A MPU_RESET event will alert the ULPD module, which will
turn on the 12 MHz oscillator. When this oscillator’s clock is stable, the re-boot
of the ARM9 can begin. The time required for oscillator stability is defined by
the value programmed in the analog delay counter.

15.3.10 Power Control for External Devices

The idle and wake-up control module implements a power control for external
devices through the FLASH.RP output pin. The FLASH.RP signal is asserted
low for eight input clock cycles (Trl) when a global reset occurs.

Before an idle/wake-up sequence entry, the external power control can be
enabled/disabled and the time can be programmed depending on the system
application. When a global reset is asserted, the timing of the FLASH.RP
signal is fixed as shown in Figure 15–15. The eight cycle count starts from
when the MPU_RST pin is detected high (OMAPNRST). This means that there

Power Management

15-49Clock Generation and System Reset Management

are actually a few extra cycles after the MPU_RST pin is deasserted high for
synchronization before the cycle count starts.

Note:

The FLASH.RP signal is low when either PWRON_RESET or MPU_RST is
low, and it stays low for an additional ~8 CLKINs after PWRON_RESET and
MPU_RST are released.

In addition, FLASH.RP goes low if the TC is in IDLE mode and
ARM_EWUPCT REPWR_EN field = 0.

15.3.11 Configuring Clocks After a Reset

After a reset, the device is in the fully synchronous clocking mode. DPLL1 is
selected as the source for CLK_GEN1, CLK_GEN2, and CLK_GEN3. The
DPLL1 is disabled, so the device is running at the CK_REF frequency. Set the
domains to operate at the desired frequencies as follows:

� Select the desired clocking mode via the CLOCK_SELECT bit of the MPU
system status register (ARM_SYSST).

� Program each of the division modes for the DPLLs for the clock domains.

� Program the DPLLs and enable them.

� Program each domain-defined enable bit (discussed in section 15.4,
Clock Generation and Reset Control Registers). Some peripherals have
additional enables for their local clocks (discussed in various peripheral
chapters).

After a reset, the application software can write to the control registers via
CLOCK_SELECT (2:0) bits of the MPU system status register (ARM_SYSST)
to switch to a desired mode of operation. However, use the system software
to save the context before switching modes. For information about the switch-
ing procedure, see Appendix B, Switching Clock Modes.

Clock Generation and Reset Control Registers

 15-50

15.4 Clock Generation and Reset Control Registers

The clock generation and system reset module contains 16-bit registers for the
following functions:

� Reset control
� System clocks
� Power-saving mode
� Wake-up control
� Operations
� CLKOUT pins

These registers are partitioned into MPU (see Table 15–5) and DSP (see
Table 15–17) groups.

Note:

All MPU clock generator and system reset control registers are 32-bit ac-
cessed and all are 32-bit word aligned. All DSP control registers are 16-bit
accessed by the DSP and 32-bit word aligned.

� The MPU address for these registers starts at address(hex): FFFFCE80.

Note:

All registers dedicated to the MPU are write-accessed in supervisor mode
only.

� Some registers are dedicated to the DSP subsystem and can be moni-
tored by the DSP only. Those registers are mapped to the DSP memory
space starting at DSP word address (hex): 004000. They can also be
accessed by the MPU through the MPUI interface.

The remaining registers are controlled by the MPU only. They are memory
mapped to the MPU memory space starting at address (hex): FFFECE00.

The physical address of a register is the starting address (defined by the
system) plus the offset address (given in Table 15–5 and following registers).

Each processor can read its associated registers at any time without affecting
ongoing operations, and the registers can be written via their bits.

Table 15–5 lists the MPU clock/reset/power mode control registers.

Bit Width: 32

In the OMAP5910 device, the MPU is the master at all times; it has complete
control of the clock generator and system reset module.

Clock Generation and Reset Control Registers

15-51Clock Generation and System Reset Management

Table 15–5. MPU Clock/Reset/Power Mode Control Registers – Base Address: FFFE:CE00

Register Name Descriptions R/W Size Offset
Reset
Value

ARM_CKCTL Defines frequency for MPU, LCD, LCLB,
MPUPER clocks

R/W 16 bits x00 0x0000 3000

ARM_IDLECT1 Enables and defines idle mode entry for
each clock domain

R/W 16 bits x04 0x0000 0400

ARM_IDLECT2 Controls clock domains individually R/W 16 bits x08 0x0000 0100

ARM_EWUPCT Delay from external device restore
power with reference to MPU clock

R/W 16 bits x0C 0x0000 003F

ARM_RSTCT1 Initiates S/W reset to MPU and DSP R/W 16 bits x10 0x0000 0000

ARM_RSTCT2 Set PER_EN signal R/W 16 bits x14 0x0000 0000

ARM_SYSST Contains system information such as
reset status flags, processor state

R/W 16 bits x18 0x0000 0038

ARM_CKOUT2 Reserved 0x20

The MPU clock control register (ARM_CKCTL) defines the frequency for
ARM_CK, DSPMMU_CK, TC_CK, DSP_CK, LCD_CK, and MPUPER_CK.

Table 15–6. MPU Clock Control Register (ARM_CKCTL)

Bit Name Value Description Type
Reset
Value

15 RESERVED Reading this bit gives an undefined value, and
writing to it has no effect.

14 ARM_INTHCK_SEL This bit controls which clock is used for
ARM_INTH_CK.

R/W 0

0 TC_CK (this is default and must not be changed)

1 Reserved

Note: If you select the fully synchronous mode, then it is your responsibility to program the divide-down bits so that ARMDIV,
DSPDIV DSPMMUDIV, and TCDIV are all equal. At reset, these divide-down bits are all defaulted to divide by 1.

In any mode, the DSPDIV and DSPMMUDIV must be set so that the DSPMMU_CK is either = to DSP_CK or
DSP_CK/2.

In synchronous scalable mode, you must make sure that the DSPMMUDIV and ARMDIV are greater than or equal to
TCDIV.

Clock Generation and Reset Control Registers

 15-52

Table 15–6. MPU Clock Control Register (ARM_CKCTL) (Continued)

Bit
Reset
ValueTypeDescriptionValueName

13 EN_DSPCK This bit allows turning on DSP_CK while DSP is
still in a reset state.

R/W 1

0 Disable DSP_CK to be turned off during reset
state.

1 Enable DSP_CK to be turned on during reset
state.

12 ARM_TIMXO Selects either CK_GEN1 or input reference clock
(CLKIN) to supply internal MPU timers.

R/W 1

0 The ARMTIM_CK clock frequency is input
reference clock.

1 ARMTIM_CK frequency is issued from
CK_GEN1.

11–10 DSPMMUDIV (1:0) These read/write bits define prescaler value from
frequency of CK_GEN2 to DSPMMU clock
domain clock (DSPMMU_CK).

R/W 0

9–8 TCDIV (1:0) These read/write bits define prescaler value from
frequency of CK_GEN3 to TC clock domain
clock (TC_CK).

R/W 0

7–6 DSPDIV (1:0) These read/write bits define prescaler value from
frequency of CK_GEN2 to DSP clock domain
clock (DSP_CK).

R/W 0

5–4 ARMDIV (1:0) These read/write bits define prescaler value from
frequency of CK_GEN1 to MPU clock domain
clock (ARM_CK).

R/W 0

Note: If you select the fully synchronous mode, then it is your responsibility to program the divide-down bits so that ARMDIV,
DSPDIV DSPMMUDIV, and TCDIV are all equal. At reset, these divide-down bits are all defaulted to divide by 1.

In any mode, the DSPDIV and DSPMMUDIV must be set so that the DSPMMU_CK is either = to DSP_CK or
DSP_CK/2.

In synchronous scalable mode, you must make sure that the DSPMMUDIV and ARMDIV are greater than or equal to
TCDIV.

Clock Generation and Reset Control Registers

15-53Clock Generation and System Reset Management

Table 15–6. MPU Clock Control Register (ARM_CKCTL) (Continued)

Bit
Reset
ValueTypeDescriptionValueName

3–2 LCDDIV (1:0) These read/write bits define prescaler value from
frequency of CK_GEN3 to LCD controller clock
signal (LCD_CK).

R/W 0

1–0 PERDIV (1:0) These read/write bits define prescaler value from
frequency of CK_GEN1 to peripheral clock
domain (MPUPER_CK)

R/W 0

Note: If you select the fully synchronous mode, then it is your responsibility to program the divide-down bits so that ARMDIV,
DSPDIV DSPMMUDIV, and TCDIV are all equal. At reset, these divide-down bits are all defaulted to divide by 1.

In any mode, the DSPDIV and DSPMMUDIV must be set so that the DSPMMU_CK is either = to DSP_CK or
DSP_CK/2.

In synchronous scalable mode, you must make sure that the DSPMMUDIV and ARMDIV are greater than or equal to
TCDIV.

Table 15–7 lists the frequency selections for TC_CK and LCD_CK clocks.

Table 15–7. TC_CK and LCD_CK Frequency Selections

TCDIV(1)
LCDDIV(1)

TCDIV(0)
LCDDIV(0)

TC_CK Frequency
LCD_CK Frequency

0 0 CK_GEN3/1

0 1 CK_GEN3/2

1 0 CK_GEN3/4

1 1 CK_GEN3/8

Table 15–8 lists the frequency selection for DSP_CK clocks.

Table 15–8. DSP_CK Frequency Selections

DSPDIV(1) DSPDIV(0) DSP_CK Frequency

0 0 CK_GEN2/1

0 1 CK_GEN2/2

1 0 CK_GEN2/4

1 1 CK_GEN2/8

Clock Generation and Reset Control Registers

 15-54

Table 15–9 lists the frequency selection for ARM_CK and MPUPER_CK
clocks.

Table 15–9. ARM_CK and MPUPER_CK Frequency Selections

ARMDIV(1)
PERDIV(1)

ARMDIV(0)
PERDIV(0)

ARM_CK Frequency
MPUPER_CK Frequency

0 0 CK_GEN1/1

0 1 CK_GEN1/2

1 0 CK_GEN1/4

1 1 CK_GEN1/8

The MPU idle mode entry 1 register (ARM_IDLECT1) enables and defines the
idle mode entry to each clock domain.

Table 15–10. MPU Idle Mode Entry 1 Register (ARM_IDLECT1)

Bit Name Value Description Type
Reset
Value

15–12 RESERVED Reading these bits gives undefined value. Writing
them has no effect.

11 SETARM_IDLE Initiates MPU idle mode when written to a logical 1
and is cleared by a global reset or an interrupt
request (nIRQ_SET) from interrupt handler to MPU
processor:

R/W 1

0 MPU active (or in idle mode, set via
wait-for-interrupt instruction)

1 MPU in idle mode

Note: When the timer/watchdog is configured as watchdog timer, the clock is never shutdown, regardless of the value of the
IDLWDT_ARM bit.

Clock Generation and Reset Control Registers

15-55Clock Generation and System Reset Management

Table 15–10. MPU Idle Mode Entry 1 Register (ARM_IDLECT1) (Continued)

Bit
Reset
ValueTypeDescriptionValueName

10 WKUP_MODE Enables MPU to exit idle mode from an interrupt
and triggers an event on CHIP_nWAKEUP signal:

R/W 1

0 After interrupt asserted, MPU idle mode is exited
upon a low level at CHIP_nWAKEUP pin. The
wake-up conditions wake up OMAP5910 device out
of CHIP_IDLE only if CHIP_nWAKEUP is active.

1 Idle mode exited upon an MPU interrupt (regardless
of CHIP_nWAKEUP signal). Also, any wake-up
condition wakes up OMAP5910 device out of
CHIP_IDLE, regardless of value on
CHIP_nWAKEUP signal.

9 IDLTIM_ARM Selects idle entry mode for internal MPU timer
clock:

R/W 0

0 Clock supplied to timers remains active when MPU
enters idle mode (ARM_CK stopped)

1 Timer clock stopped in conjunction with MPU clock
when idle mode entered

8 RESERVED Reserved. To prevent errant behavior, always write
this bit as 0.

R/W 0

7 IDLDPLL_ARM Enables DPLL1 to enter idle mode when following
conditions are met:

� DSP set in global-idle mode

� MPU set in idle mode (either from request or wait-
for-interrupt)

� No active DMA transaction or TCLB_EN signal
inactive

� No peripheral bus posted write queued

� Peripheral clocks stopped

R/W 0

0 DPLL1 remains active when above conditions
occur.

1 DPLL1 enters idle mode when above conditions are
met.

Note: When the timer/watchdog is configured as watchdog timer, the clock is never shutdown, regardless of the value of the
IDLWDT_ARM bit.

Clock Generation and Reset Control Registers

 15-56

Table 15–10. MPU Idle Mode Entry 1 Register (ARM_IDLECT1) (Continued)

Bit
Reset
ValueTypeDescriptionValueName

6 IDLIF_ARM Enables local-bus, peripheral bridge, system DMA
controller, and traffic controller of the MPU
subsystem to enter idle mode whenever the MPU
sets SET_IDLE bit or executes a wait-for-interrupt
instruction:

R/W 0

0 Clocks TIPB_CK, DMA_CK, and TC_CK remain
active when the MPU enters idle mode.

1 Clocks TIPB_CK, DMA_CK, and TC_CK are
stopped in conjunction with the MPU clock when
idle mode is entered.

5–3 RESERVED Reserved. To prevent errant behavior, always write
this bit as 0.

R/W 0

2 IDLPER_ARM Selects idle entry mode for peripheral clock
(MPUPER_CK)

R/W 0

0 Clock remains active when MPU enters idle mode.

1 Clock stopped in conjunction with MPU idle mode
entry.

1 IDLXORP_ARM Selects idle entry mode for 32-k or gp timer (MPU
TIPB) and peripheral clock (MPUXOR_CK):

R/W 0

0 OS timer and MPUXOR_CK clock remain active
when MPU enters idle mode.

1 OS timer and MPUXOR_CK clock are stopped in
conjunction with MPU clock when idle mode is
entered.

0 IDLWDT_ARM Selects idle entry mode for internal timer/watchdog
connected to MPU peripheral bus:

R/W 0

0 Clock supplied to timer/watchdog remains active
when MPU enters idle mode.

1 Timer/watchdog clock stopped in conjunction with
MPU clock when idle mode is entered.

Note: When the timer/watchdog is configured as watchdog timer, the clock is never shutdown, regardless of the value of the
IDLWDT_ARM bit.

Clock Generation and Reset Control Registers

15-57Clock Generation and System Reset Management

The MPU idle mode entry 2 register (ARM_IDLECT2) controls the clock
domains independently of the MPU state.

Table 15–11. MPU Idle Mode Entry 2 Register (ARM_IDLECT2)

Bit Name Value Description Type
Reset
Value

15–11 RESERVED Reading these bits gives undefined values. Writing
to them has no effect.

0x08

10 RESERVED Reserved. This bit should always be written as 0. R/W 0

9 EN_ GPIOCK Enables clock of MPU GPIO connected to MPU
TIPB:

R/W 0

0 MPU GPIO clock stopped—bit must be set to logic
1 to enable clock activity

1 MPU GPIO clock active

8 DMACK_REQ Disables permanently-supplied-clock to system
DMA controller to function on a clock request basis:

R/W 1

0 DMA clock shutdown when idle mode is entered if
IDLIF_ARM = 1

1 DMA clock stopped by default (reactivated upon
DMA requests only)

7 EN_ TIMCK Enables clock of MPU timer connected to MPU
TIPB:

R/W 0

0 MPU timer clock is stopped—bit must be set to
logic 1 to enable clock activity

1 MPU timer clock active and can be stopped
depending on IDLTIM_ARM bit of MPU idle mode
entry 1 register (ARM_IDLECT1)

6 EN_ APICK Enables clock of MPUI clock: R/W 0

0 MPUI clock stopped—bit must be set to logic 1 to
enable clock activity

1 MPUI clock active

5 RESERVED Reserved. This bit should always be written as 0. P R/W 0

Note: When the timer/watchdog is configured as watchdog timer, the clock is never shutdown, regardless the value of the
IDLWDT_ARM bit or the EN_WDTCK bit.

Clock Generation and Reset Control Registers

 15-58

Table 15–11. MPU Idle Mode Entry 2 Register (ARM_IDLECT2) (Continued)

Bit
Reset
ValueTypeDescriptionValueName

4 EN_ LBCK Enables clock of local bus clock: P R/W 0

0 Clock stopped—it must be set to logic 1 to enable
clock activity.

1 Clock active

3 EN_ LCDCK Enables clock of LCD controller connected to MPU
TIPB:

P R/W 0

0 Clock stopped—bit must be set to logic 1 to enable
clock activity

1 Clock active

2 EN_PERCK Enables peripheral clock (MPUPER_CK): P R/W 0

0 Clock stopped—bit must be set to logic 1 to
authorize clock activity

1 Clock active and can be stopped depending on
IDLTIM_ARM bit of MPU idle mode entry 1 register
(ARM_IDLECT1)

1 EN_XORPCK Enables clock of OS timer connected to MPU TIPB
and CLKIN reference peripheral clock (XORP_CK):

P R/W 0

0 OS timer clock and external XORP_CK clock
stopped—bit must be set to logic 1 to authorize
clock activity

1 OS timer clock and external XORP_CK clock active
and can be stopped depending on IDLXORP_ARM
bit of MPU idle mode entry 1 register
(ARM_IDLECT1)

0 EN_WDTCK Enables clock of timer/watchdog connected to
MPU TIPB:

P R/W 0

0 Clock stopped—bit must be set to logic 1 to
authorize clock activity

1 Clock supplied to timer/watchdog is active and can
be stopped depending on IDLWDT_ARM bit of
MPU idle mode entry 1 register (ARM_IDLECT1)

Note: When the timer/watchdog is configured as watchdog timer, the clock is never shutdown, regardless the value of the
IDLWDT_ARM bit or the EN_WDTCK bit.

Clock Generation and Reset Control Registers

15-59Clock Generation and System Reset Management

The MPU external wake-up register (ARM_EWUPCT) enables the WAKEUP
signal and defines the delay from the external device to restore power with
reference to the MPU clock restarting when the idle mode is exited.

Table 15–12. MPU External Wake-up Register (ARM_EWUPCT)

Bit Name Value Description Type
Reset
Value

15–6 RESERVED Reading these bits gives undefined values.
Writing them has no effect.

5 REPWR_EN Enables external power control feature: R/W 1

0 FLASH.RP pin is set to logic low (Vol) when traffic
controller (TC) is in idle mode.

1 FLASH.RP pin is not activated when TC idle
mode is entered

4–0 EXTPW(4:0) Define delay from PWRON_RESET pin going
high to clocks restarting:

Delay is calculated as follows:

tw (Wake-up time) = [EXTPWR(field value) ± 1] x
CLKIN (period) With EXTPWR = 0 to 31

R/W 1

Clock Generation and Reset Control Registers

 15-60

The MPU reset control 1 register (ARM_RSTCT1) initiates the software reset
to the DSP and to the MPU.

Table 15–13. MPU Reset Control 1 Register (ARM_RSTCT1)

Bit Name Value Description Type
Reset
Value

15–4 RESERVED Reading these bits gives undefined values. Writing
to them has no effect.

3 SW_RST Resets both DSP, MPU, and peripherals (bit is
always read 0):

R/W 0

0 DSP, MPU, and peripheral clock domain enabled

1 DSP, MPU, and peripherals reset—once set to logic
1 by MPU processor, this bit returns to logic 0 once
reset completes.

2 DSP_RST Resets priority registers (TIPB module), EMIF
configuration registers, and MPUI control logic
(partially) in DSP. This bit is set by external reset
pins and is released by writing a logic 1 in register
(use for MPUI boot).

R/W 0

0 Priority, EMIF configuration registers, and MPUI are
reset.

1 Priority and EMIF configuration registers can be
programmed.

1 DSP_EN Resets DSP: R/W 0

0 Resets DSP, excluding configuration setting, and
maintains reset state as long as this bit is asserted
low

1 Enables DSP—after global reset, bit must be set to
a logical 1 to enable DSP.

0 ARM_RST Resets MPU (bit is always read 0): R/W 0

0 MPU clock domain enabled

1 MPU reset—once set to logic 1 by MPU processor,
bit returns to logic 0 on next cycles.

Note: Writing the DSP_EN bit to 0 and ARM_RST bit to 1 together initiate a global software reset.

Clock Generation and Reset Control Registers

15-61Clock Generation and System Reset Management

The MPU reset control 2 register (ARM_RSTCT2) sets the PER_EN signal
that resets peripherals attached to the MPU.

Table 15–14. MPU Reset Control 2 Register (ARM_RSTCT2)

Bit Name Value Description Type
Reset
Value

15–1 RESERVED Reading these bits gives undefined values. Writing
to them has no effect.

0 PER_EN Controls MPUPER_nRST signal used to reset and/
or enable peripherals connected to MPU TIPB:

R/W 0

0 ARMPER_nRST signal active

1 ARMPER_nRST signal inactive

The MPU system status register (ARM_SYSST) contains the system informa-
tion such as processor state, chip configuration, and reset status flags.

Table 15–15. MPU System Status Register (ARM_SYSST)

Bit Name Value Description Type
Reset
Value

15–14 RESERVED Reading these bits gives undefined values. Writing
to them has no effect.

13–11 CLOCK_SELECT
(2–0)

The CLOCK_SELECT bits indicate the current
clocking scheme selection: the application can
switch OMAP5910 clocking scheme by writing to
these bits. These bits are at logic 0 after reset
(select fully synchronous clocking scheme) (see
Table 15–16).

R/W 0

10–7 RESERVED

6 IDLE_DSP Indicates DSP state: R 0

0 DSP active

1 DSP in global idle state

5 POR Indicates (in conjunction with EXT_RST bit) whether
or not a power-on reset (cold start) has occurred.
Writing it to logic 0 clears this bit. This bit cannot be
written to logic 1 from TIPB interface:

R/C 0

0 No power-on reset detected

1 A power-on reset occurred

Clock Generation and Reset Control Registers

 15-62

Table 15–15. MPU System Status Register (ARM_SYSST) (Continued)

Bit
Reset
ValueTypeDescriptionValueName

4 EXT_RST Indicates that external reset has been asserted.
Writing it to logic 0 clears this bit. This bit cannot be
written to logic 1 from TIPB:

R/C 0

0 No external reset detected

1 An external reset asserted

3 ARM_MCRST Indicates whether or not an MPU reset has
occurred. This bit is cleared to 0 upon a reset pulse
asserted at CHIP_nRESET signal, or by writing to it
a logic 0. This bit cannot be written to logic 1 from
TIPB interface:

R/C 0

0 MPU has not been reset.

1 MPU has been reset.

2 ARM_WDRST Indicates whether or not reset has been asserted
due to an MPU timer/watchdog underflow. This bit is
cleared to logic 0 upon a reset pulse asserted at
CHIP_nRESET signal, or by writing it to logic 0.
This bit cannot be written to logic 1 from peripheral
bus interface:

R/C 0

0 MPU timer/watchdog underflow has not occurred.

1 MPU timer/watchdog underflow has generated
reset.

1 GLOB_SWRST Indicates whether or not reset has been asserted
due to a global software reset (DSP_EN and
ARM_RST set together). This bit is cleared to logic
0 upon an external reset pulse asserting at
CHIP_nRESET signal, or by writing it to logic 0.
This bit cannot be written to logic 1 from peripheral
bus interface:

R/C 0

0 A global software reset has not been requested.

1 A global software reset has been requested.

Clock Generation and Reset Control Registers

15-63Clock Generation and System Reset Management

Table 15–15. MPU System Status Register (ARM_SYSST) (Continued)

Bit
Reset
ValueTypeDescriptionValueName

0 DSP_WDRST Indicates whether or not reset has been asserted
due to a DSPs timer/watchdog underflow. This bit is
cleared to logic 0 upon an reset pulse asserting at
CHIP_nRESET signal, or by writing it to logic 0.
This bit cannot be written to logic 1 from peripheral
bus interface:

R/C 0

0 DSP timer/watchdog underflow has not occurred.

1 DSP timer/watchdog underflow has generated
reset.

Table 15–16 lists the clocking schemes for the MPU system status register
(ARM_SYSST).

Table 15–16. Clocking Schemes for OMAP5910

CLOCK_SELECT (2) CLOCK_SELECT (1) CLOCK_SELECT (0) CLOCK SCHEME

0 0 0 Fully synchronous

0 0 1 Reserved

0 1 0 Synchronous scalable

0 1 1 Reserved

1 x x Reserved

Clock Generation and Reset Control Registers

 15-64

DSP Base word address: 0x4000 – Bit Width: 16

Table 15–17. DSP Clock/Reset/Power Mode Control Registers

Register Name Descriptions R/W Size
DSP

Address
MPU

Address
Reset
Value

DSP_IDLECT1 DSP idle select 1 R/W 16 bits 00:4002 E100:8004 0x0000

DSP _IDLECT2 DSP idle select 2 R/W 16 bits 00:4004 E100:8008 0x0000

Reserved 00:4006 0x0000

Reserved 00:4008 0x0000

DSP _RSTCT2 DSP reset control R/W 16 bits 00:400A E100:8014 0x0000

DSP _SYSST DSP system status R/W 16 bits 00:400C E100:8018 0x0000

Reserved 00:400E 0x0000

Reserved 00:4010 0x0000

The DSP domain peripheral clock setup and the external module reset
functions are controlled by the DSP through these registers.

The DSP clock control register (DSP_CKCTL) defines the frequency selection
for the DSP_GPIO_CK and the DSPTIM_CK.

Table 15–18. DSP Clock Control Register (DSP_CKCTL) – Offset Address: 0x00

Bit Name Value Description Type
Reset
Value

15–9 RESERVED Reading these bits gives an undefined value.
Writing to them has no effect.

8 TIMXO Selects either a CK_GEN2 frequency clock or input
reference clock (CLKIN) to supply DSP timer
peripherals.

R/W 1

0 The DSPTIM_CK clock frequency is the input
reference clock.

1 DSPTIM_CK frequency is issued from CK_GEN2/2.

Clock Generation and Reset Control Registers

15-65Clock Generation and System Reset Management

Table 15–18. DSP Clock Control Register (DSP_CKCTL) – Offset Address: 0x00 (Continued)

Bit
Reset
ValueTypeDescriptionValueName

7 GPIOXO Selects either a subfrequency issued from
CK_GEN2 or input reference clock (CLKIN) to
supply GPIO peripheral.

R/W 1

0 The DSP_GPIO_CK clock frequency is the input
reference clock.

1 DSP_GPIO_CK frequency is issued from CK_GEN2
and defined by the GPIODIV field value.

6–5 GPIODIV(1:0) These read/write bits define prescaler value from
CK_GEN2 to the GPIO clock signal (GPIO_CK).

R/W 0

4–0 RESERVED Reserved. These bits should always be written as 0.

Table 15–19 lists the selection for the DSP_GPIO_CK (GPIOXO = 1).

Table 15–19. GPIO_CK Selections

GPIODIV(1) GPIODIV(0) DSP_GPIO_CK Frequency

0 0 CK_GEN2/1

0 1 CK_GEN2/2

1 0 CK_GEN2/4

1 1 CK_GEN2/8

Clock Generation and Reset Control Registers

 15-66

The DSP idle mode entry 1 register (DSP_IDLECT1) enables and defines the
idle mode entry/exit to each clock domain.

Table 15–20. DSP Idle Mode Entry 1 Register (DSP_IDLECT1) – Offset Address: 0x04

Bit Name Value Description Type
Reset
Value

15–9 RESERVED Reading these bits gives undefined values. Writing
to them has no effect.

8 IDLTIM_DSP Selects idle entry mode for internal DSP timer clock
(DSPTIM_CK).

R/W 0

0 The DSPTIM_CK clock remains active when DSP
enters idle mode.

1 The DSPTIM_CK clock is stopped in conjunction
with DSP clock when idle mode is set (DSP_IDLE
signal asserted high).

7 RESERVED R/W 0

6 RESERVED Reserved. To prevent errant behavior, this bit should
always be written as 1.

R/W 1

5–2 RESERVED Reserved. To prevent errant behavior, these bits
should always be written as o.

R/W 0

1 IDLXORP_DSP Selects idle entry mode for reference peripheral
clock (DSPXOR_CK).

R/W 0

0 The DSPXOR_CK clock remains active when DSP
enters idle mode.

1 The DSPXOR_CK clock is stopped in conjunction
with DSP clock when idle mode is entered.

0 IDLWDT_DSP Selects idle entry mode for timer/watchdog
connected to DSP TIPB.

R/W 0

0 The clock supplied to timer/watchdog remains
active when the DSP enters idle mode.

1 The timer/watchdog clock is stopped in conjunction
with the DSP clock when idle mode is entered.

Note: When the timer/watchdog is configured as watchdog timer, the clock is never shutdown, regardless of the value of the
IDLWDT_DSP bit.

Clock Generation and Reset Control Registers

15-67Clock Generation and System Reset Management

The DSP idle mode entry 2 register (DSP_IDLECT2) disables the clock
domains individually and independently of the DSP state.

Table 15–21. DSP Idle Mode Entry 2 Register (DSP_IDLECT2) – Offset Address: 0x08

Bit Name Value Description Type
Reset
Value

15–6 RESERVED Reading these bits gives undefined values. Writing
to them has no effect.

5 EN_TIMCK Enables DSP timer clock (DSPTIM_CK) R/W 0

0 DSPTIM_CK clock is stopped. This bit must be set
to logic 1 to enable clock activity.

1 DSPTIM_CK clock is active and can be stopped,
depending on DSP_IDLECT1 IDLTIM_DSP bit.

4 EN_GPIOCK Enables GPIO peripheral clock (GPIO_CK). R/W 0

0 GPIO_CK clock is stopped. The bit must be set to
logic 1 to enable clock activity.

1 GPIO_CK clock is active. The GPIO_CK clock must
be disabled by setting EN_GPIOCK = 0 before
sleep modes can be entered.

3–2 RESERVED Reserved. These bits should always be written as 0.

1 EN_XORPCK Enables DSPXOR_CK reference clock. R/W 0

0 The DSPXOR_CK clock is stopped. The bit must be
set to logic 1 to enable clock activity.

1 The DSPXOR_CK clock is active and can be
stopped, depending on DSP_IDLECT1
IDLXORP_DSP bit.

0 EN_WDTCK Enables DSPWDT_CK reference clock. R/W 0

0 The DSPWDT_CK clock is stopped. The bit must be
set to logic 1 to enable clock activity.

1 The DSPWDT_CK clock is active and can be
stopped, depending on DSP_IDLECT1
IDLWDT_DSP bit.

Clock Generation and Reset Control Registers

 15-68

The DSP reset control 2 register (DSP_RSTCT2) sets the PER_EN signal that
resets peripherals attached to the DSP.

Table 15–22. DSP Reset Control 2 Register (DSP_RSTCT2) – Offset Address: 0x14

Bit Name Value Description Type
Reset
Value

15–1 RESERVED Reading these bits gives undefined values. Writing to
them has no effect.

0 PER_EN This read/write bit controls the DSPPER_nRST signal
that can be used to reset and/or enable peripherals
connected to the DSP.

R/W 0

0 Writing a logic 0 sets DSPPER_nRST signal to active.

1 Writing a logic 1 sets DSPPER_nRST signal to inactive.

The DSP system status register (DSP_SYSST) contains the system
information.

Table 15–23. DSP System Status Register (DSP_SYSST) – Offset Address: 0x18

Bit Name Value Description Type
Reset
Value

15–14 RESERVED Reading these bits gives undefined values. Writing to
them has no effect.

13–11 CLOCK_SELECT
(2–0)

These read-only bits reflect CLOCK_SELECT and
indicate current clocking scheme selection.

R 0

10–7 RESERVED

6 IDLE_ARM This read-only bit indicates MPU state. R 0

0 MPU active

1 MPU in idle state

Notes: 1) This bit is only to be used for test/debug purposes only.

2) In the OMAP5910 device, the DSP_EN and ARM_RST bits (located in ARM_RSTCT1) must be set together to
activate the global software reset. Setting the SW_RST bit only (DSP_RSTCT1) results in global software reset
flag.

Clock Generation and Reset Control Registers

15-69Clock Generation and System Reset Management

Table 15–23. DSP System Status Register (DSP_SYSST) – Offset Address: 0x18
(Continued)

Bit
Reset
ValueTypeDescriptionValueName

5 POR This read/clear-only status bit indicates (in
conjunction with EXT_RST bit) whether or not a
power-on reset (cold start) has occurred. Writing it to
logic 0 clears this bit. This bit cannot be written to logic
1 from peripheral bus interface.

R/C 0

0 No power-on reset has been detected.

1 A power-on reset has occurred.

4 EXT_RST This read/clear-only status bit indicates whether or not
an external reset has been asserted. Writing it to logic
0 clears this bit. This bit cannot be written to logic 1
from TIPB interface.

R/C 0

0 No external reset detected.

1 An external reset has been asserted.

3 DSP_ARM_RST This read/write bit is used by DSP to hold MPU in
reset.

R/C 0

0 The MPU is enabled. This is default value after reset.

1 Reset MPU

2 ARM_WDRST This read/clear-only status bit indicates whether or not
reset has been asserted due to a MPU
timer/watchdog underflow. This bit is cleared to logic
0 upon an external reset pulse asserting at
CHIP_nRESET signal, or by writing it to logic 0. This
bit cannot be written to logic 1 from peripheral bus
interface.

R/C 0

0 MPU timer/watchdog underflow has not occurred.

1 MPU timer/watchdog underflow has generated reset.

Notes: 1) This bit is only to be used for test/debug purposes only.

2) In the OMAP5910 device, the DSP_EN and ARM_RST bits (located in ARM_RSTCT1) must be set together to
activate the global software reset. Setting the SW_RST bit only (DSP_RSTCT1) results in global software reset
flag.

Clock Generation and Reset Control Registers

 15-70

Table 15–23. DSP System Status Register (DSP_SYSST) – Offset Address: 0x18
(Continued)

Bit
Reset
ValueTypeDescriptionValueName

1 GLOB_SWRST This read/clear-only status bit indicates whether or not
reset has been asserted due to a global software
reset. This bit is cleared to logic 0 upon an external
reset pulse asserting at CHIP_nRESET signal, or by
writing it to logic 0. This bit cannot be written to logic
1 from TIPB interface. See Note 2.

R/C 0

0 A global software reset has not been requested.

1 A global software reset has been requested.

0 DSP_WDRST This read/clear-only status bit indicates whether or not
reset has been asserted due to a DSP timer/watchdog
underflow. This bit is cleared to logic 0 upon an
external reset pulse at CHIP_nRESET signal or by
writing it to logic 0. This bit cannot be written to logic
1 from peripheral bus interface.

R/C 0

0 DSP timer/watchdog underflow has not occurred.

1 DSP timer/watchdog underflow has generated reset.

Notes: 1) This bit is only to be used for test/debug purposes only.

2) In the OMAP5910 device, the DSP_EN and ARM_RST bits (located in ARM_RSTCT1) must be set together to
activate the global software reset. Setting the SW_RST bit only (DSP_RSTCT1) results in global software reset
flag.

15.4.1 DPLL Operation Mode Registers

The digital phase-locked loop (DPLL) can be operated either in bypass mode,
in lock mode, or in idle mode.

� In lock mode, the DPLL synthesizes a frequency clock (CLKOUT) from a
fixed reference clock signal (CLKREF). The output frequency is an integer
multiple or fractional multiple (m/n, respectively PLL_MULT and PLL_DIV
bit field) of the input reference. With 1 < m < 31 and 1 < n < 4, the frequency
output ranges from CLKREF /4 to 31x CLKREF.

� In bypass mode, the DPLL output clock in bypass mode can be CLKREF
(input clock), CLKREF/2, or CLKREF/4 depending on the BYPASS_DIV
bit field value.

� In idle mode, the DPLL circuitry is disabled. The output clock is held in a
high static level and the configuration data is maintained.

Clock Generation and Reset Control Registers

15-71Clock Generation and System Reset Management

The mode (bypass or lock) and the frequency selections are defined via
memory mapped control register bits. Programming is performed through the
TIPB and is initiated the MPU.

The idle mode is entered upon an asynchronous idle signal request (idle).

Note:

The DPLL idle mode entry/exit timing is dependent upon the input/output
frequency ratio selection.

The input reference clock signal must be active for (at least) 24 input clock
cycles from the idle request (idle rising edge) before the DPLL idle setup has
completed (idle_ack high).

Once in idle mode, the clock source can be stopped (either in a high or a low
level), but the reference clock source must be restarted before releasing the
idle mode.

When the idle mode is exited, the DPLL is set in bypass mode and the output
clock signal is valid after a maximum of 10 input reference clock cycles. If the
DPLL was synthesizing a frequency prior to enter the idle state, then the
DPLL switches from the bypass mode (frequency set /BYPASS_DIV) to the
synthesizer mode (frequency set/PLL_MULT and PLL_DIV) when the lock
state is reacquired.

Table 15–24 lists the DPLL control registers. Table 15–25 describes the
register bits.

The MPU base addresses for the DPLL control registers are:

DPLL1: 0xFFFE:CF00
Bit width: 16 bits

Writing to the control register (CTL_REG) causes the DPLL to immediately
switch to the bypass mode if not in idle state. If the PLL_ENABLE bit of the
control register is set, it begins its sequence to enter the locked mode. This
prevents being able to change the multiple or divide values without reentering
the DPLL lock sequence.

Table 15–24. DPLL Control Registers

Register Name Descriptions R/W Size Offset Reset Value

CTL_REG DPLL control register R/W 16 bits x00 0x2002

Clock Generation and Reset Control Registers

 15-72

Table 15–25. DPLL Control Register (CTL_REG)

Bit Name Description Type
Reset
Value

15–14 RESERVED This bit is reserved and set to 0.

13 IOB Initialize on break. When high, DPLL switches to bypass
mode and starts a new locking sequence if DPLL core
indicates that it lost lock. When set low, DPLL continues
to output synthesized clock even if core indicates it has
lost lock, but BREAKLN is active low. The power-on
value is 1.

12 RESERVED This bit is reserved and set to 0.

11–7 PLL_MULT(4–0) The DPLL multiply value. The maximum clock out
frequency is 31*CLKREF.

6–5 PLL_DIV(1:0) The DPLL divide value.

PLL_DIV(1:0) = 00: CLKOUT = CLKREF
01: CLKOUT = CLKREF/2
10: CLKOUT = CLKREF/3
11: CLKOUT = CLKREF/4

The minimum CLKOUT frequency is 0.25 * CLKREF.
When PLL_MULT(4:0) is equal to 0 or 1, CLKOUT is not
synthesized by DPLL but by simply a divided down
version of CLKREF. Affects lock mode only.

4 PLL_ENABLE Setting PLL_ENABLE bit to 1 requests DPLL to enter
LOCK mode. It enters LOCK mode only after it has
synthesized desired frequency. Clearing bit to 0 causes
DPLL to switch back to bypass mode.

3–2 BYPASS_DIV(1:0) Determines clkout frequency when in BYPASS mode.

BYPASS_DIV(1:0) = 00: CLKOUT = CLKREF
01: CLKOUT = CLKREF/2
1X: CLKOUT = CLKREF/4

1 BREAKLN When BREAKLN = 0, DPLL has broken lock for some
unknown reason. If and when lock condition is restored
or a write to control register occurs, BREAKLN returns to
1.

0 LOCK When LOCK = 1, DPLL is in lock mode and clkout is
desired synthesized clock frequency. When LOCK = 0,
DPLL is in bypass mode and clkout contains a divided
down output clock.

If PLL_MULT = 0 or 1, oscillators in DPLL_core are not
activated and duty cycle is not ensured.

Clock Generation and Reset Control Registers

15-73Clock Generation and System Reset Management

Table 15–26 lists the ULPD registers. Table 15–27 through Table 15–41
describe the register bits.

Bit Width: 32

Table 15–26. ULPD Registers – MPU Base Address: FFFE:0800

Name Descriptions R/W Size Offset
Reset
Value

COUNTER_32_LSB Lower value of number of
ticks from 32-kHz clock

R 16 bits x00 0x0001

COUNTER_32_MSB Upper value of number of
ticks from 32-kHz clock

R 16 bits x04 0x0000

COUNTER_HIGH_FREQ_LSB Lower value of number of
ticks from high frequency
clock

R 16 bits x08 0x0001

COUNTER_ HIGH_FREQ _MSB Upper value of number of
ticks from high frequency
clock

R 16 bits x0C 0x0000

GAUGING_CTRL_REG Drives gauging functionality R/W 16 bits 0x10 0x0000

IT_STATUS_REG Interrupt status register R 16 bits 0x14 0x0000

Reserved 8 bits 0x18 0x01

Reserved 8 bits 0x1C 0x01

Reserved 8 bits 0x20 0x01

SETUP_ANALOG_CELL3_ULPD1_REG Number of 32-kHz clocks to
wake up

R/W 16 bits 0x24 0x03FF

Reserved 8 bits 0x2C 0x01

Reserved 8 bits 0x28 0x01

CLOCK_CTRL_REG Manages clock output and
inactive values

R/W 16 bits 0x30 0x0000

SOFT_REQ_REG Manage software clock
requests

R/W 16 bits X34 0x0000

COUNTER_32_FIQ_REG Number of 32-kHz clocks to
delay active modem shut
down signal after receiving
an active EXT_FIQ signal

R/W 16 bits X38 0x0001

DPLL_CTRL_REG 48-MHz DPLL R/W 16 bits X3C 0x2211

STATUS_REQ_REG Status of hardware requests R 16 bits 0x40 U

Clock Generation and Reset Control Registers

 15-74

Table 15–26. ULPD Registers – MPU Base Address: FFFE:0800 (Continued)

Name
Reset
ValueOffsetSizeR/WDescriptions

LOCK_TIME_REGISTER Defines lock time when APLL
is selected

R/W 16 bits 0x48 0x960

APLL_CTRL_REG This register allows switch
between APLL and DPLL
and controls all input of
APLL.

R/W 16 bits 0x4C U

POWER_CTRL_REG Power control register R/W 16 bits 0x50 0x8

The counter 32 LSB register (COUNTER_32_LSB_REG) represents the
lower value of the number of ticks from the 32-kHz clock during gauging time.

Table 15–27. Counter 32 LSB Register (COUNTER_32_LSB_REG)

Bit Name Type
Reset
Value

15–0 COUNTER_32_LSB R 0x0001

The counter 32 MSB register (COUNTER_32_MSB_REG) represents the
upper value of the number of ticks from the 32-kHz clock during gauging time.

Table 15–28. Counter 32 MSB Register (COUNTER_32_MSB_REG)

Bit Name Type
Reset
Value

15–0 COUNTER_32_LSB R 0x0000

The counter high frequency LSB register (COUNTER_HIGH_FREQ_LSB_REG)
represents the lower value of the number of ticks of the high-frequency clock
during gauging time.

Table 15–29. Counter High Frequency LSB Register (COUNTER_HIGH_FREQ_LSB_REG)

Bit Name Type
Reset
Value

15–0 COUNTER_HIGH_FREQ_LSB R 0x0001

Clock Generation and Reset Control Registers

15-75Clock Generation and System Reset Management

The counter high frequency MSB register (COUNTER_HIGH_FREQ_MSB_REG)
represents the upper value of the number of ticks from the high-frequency
clock during gauging time.

Table 15–30. Counter High Frequency MSB Register (COUNTER_HIGH_FREQ_MSB_REG)

Bit Name Type
Reset
Value

15–0 COUNTER_HIGH_FREQ_LSB R 0x0000

The gauging control register (GAUGING_CTRL_REG) controls the gauging
activity. It start/stops it and selects the clock used as the high-frequency clock.

Table 15–31. Gauging Control Register (GAUGING_CTRL_REG)

Bit Name Value Description Type
Reset
Value

1 SELECT_HI_
FREQ_CLOCK

0 Use 12-MHz clock for high frequency clock R/W 0

1 Reserved. Do not use this setting.

0 GAUGING_EN 0 Stop gauging R/W 0

1 Enable gauging

The setup analog cell3 ULPD1 register (SETUP_ANA-
LOG_CELL3_ULPD1_REG) provides the number of 32-kHz clock periods
until the ULPD wakes up the device when a wake-up request is made. See
Figure 15–14 (page 15-37).

Table 15–32. Setup Analog Cell3 ULPD1 Register (SETUP_ANALOG_CELL3_ULPD1_REG)

Bit Name Type
Reset
Value

15–0 SETUP_ANALOG_CELL3 R/W 0x3FF

Clock Generation and Reset Control Registers

 15-76

The interrupt status register (IT_STATUS_REG) provides the status and
source of ULPD interrupts.

Table 15–33. Interrupt Status Register (IT_STATUS_REG)

Bit Name Description Type
Reset
Value

3 IT_WAKEUP_USB Wake-up interrupt from USB function is shared with
ULPD gauging interrupt (MPU level 2 interrupt IRQ_24).

R 0x0

2 OVERFLOW_32 Overflow occurred on 32-kHz counter during gauging. R 0x0

1 OVER-
FLOW_HI_FREQ

Overflow occurred in high-frequency counter during
gauging versus high frequency clock.

R 0x0

0 IT_GAUGING End of gauging interrupt. Informs the MPU that gauging
is stopped and that it can read value of high and low
frequency counters.

R 0x0

The clock control register (CLOCK_CTRL_REG) manages clock output and
inactive values.

Table 15–34. Clock Control Register (CLOCK_CTRL_REG)

Bit Name Value Description Type
Reset
Value

5 DIS_USB_PVCI_
CLK

0 Enables USB function clock for FAC counter R/W 0x0

1 Disables USB function clock for FAC counter

4 USB_MCLK_EN 0 Disables USB.CLKO R/W 0

1 Enables USB.CLO

3 RESERVED Reserved. This bit should always be written as 0. R/W 0x0

2 SDW_MCLK_INV 0 BCLK is low when inactive. R/W 0

1 BCLK is high when inactive.

1 COM_MCLK_ INV 0 MCLK is low when inactive. R/W 0

1 MCLK is high when inactive

0 MODEM_32K_ EN 0 Disables 32-kHz on UART clock R/W 0

1 Enables 32-kHz on UART clock

Clock Generation and Reset Control Registers

15-77Clock Generation and System Reset Management

The software clock request register (SOFT_REQ_REG) manages software
clock requests.

Table 15–35. Software Clock Request Register (SOFT_REQ_REG)

Bit Name Value Description Type
Reset
Value

4 USB_REQ_EN 0 Disables USB function hardware DPLL request R/W 0x1

1 Enables USB function hardware DPLL request

3 SOFT_USB_REQ 0 No software request for clocking on USB.CLK0 R/W 0

1 Software request for clocking on USB.CLK0

2 SOFT_SDW_REQ 0 No software request for clocking on BCLK R/W 0

1 Software request for clocking on BCLK

1 SOFT_COM_REQ 0 No software request for clocking on MCLK R/W 0

1 Software request for clocking on MCLK

0 SOFT_DPLL_REQ 0 Software request for clocking on 48-MHz DPLL R/W 0

1 Software request for clocking on 48-MHz DPLL
(except no software request possible when
PLL_ENABLE = 0 in DPLL_CTRL_REG)

The counter 32 FIQ register (COUNTER_32_FIQ_REG) represents the
number of 32-kHz clocks to delay before activating RST_HOST_OUT after
receiving an active BFAIL/EXT_FIQ signal.

Table 15–36. Counter 32 FIQ Register (COUNTER_32_FIQ_REG)

Bit Name Type
Reset
Value

7–0 COUNTER_32_FIQ R/W 0x01

Clock Generation and Reset Control Registers

 15-78

This is the control register for the 48-MHz DPLL.

The reset multiply and divide settings are fixed for x4 operation to achieve a
48-mHz clock. The DPLL must always remain enabled when it is used to gen-
erate the 48-mHz clock for USB, UARTs, or other peripherals

Writing to the DPLL control register (DPLL_CTRL_REG) causes the DPLL to
switch immediately to the bypass mode if not in idle state. If the PLL_ENABLE
bit of the control register is set, it begins its sequence to enter the locked mode.
This prevents being able to change the multiple or divide values without
reentering the DPLL lock sequence.

Table 15–37. DPLL Control Register (DPLL_CTRL_REG)

Bit Name Description Type
Reset
Value

15–14 RESERVED This bit is reserved and set to 0.

13 IOB Initialize on break. When high, DPLL switches to bypass
mode and starts a new locking sequence if DPLL core
ever indicates that it lost lock. When set low, DPLL
continues to output synthesized clock, even if core
indicates it has lost lock, but BREAKLN is active low.
The power-on value is 1.

R/W 1

12 RESERVED This bit is reserved and set to 0.

11–7 PLL_MULT(4:0) This bit is reserved and always written to its reset value. R/W 0x0

6–5 PLL_DIV(1:0) This bit is reserved and always written to its reset value. R/W 0x0

4 PLL_ENABLE Setting PLL_ENABLE bit to 1 requests DPLL to enter
LOCK mode. It enters lock mode only after it has
synthesized desired frequency. Clearing bit to 0 causes
DPLL to switch back to the bypass mode.

R/W 1

3–2 BYPASS_DIV(1:0) This bit is reserved and always written to its reset value. R/W 0x0

1 BREAKLN When BREAKLN = 0 , DPLL has broken lock for some
unknown reason. If and when lock condition is restored
or a write to control register occurs, BREAKLN returns to
1.

R 0x1

0 LOCK When LOCK = 1, DPLL is in lock mode and clkout is
desired synthesized clock frequency. When LOCK = 0,
DPLL is in bypass mode and clkout contains a divided
down output clock.

R 0x0

Clock Generation and Reset Control Registers

15-79Clock Generation and System Reset Management

The status request register (STATUS_REQ_REG) indicates the status of
hardware requests. The reset value of these registers depends on what
requests are being made.

Table 15–38. Status Request Register (STATUS_REQ_REG)

Bit Name Value Description Type
Reset
Value

13 MODEM_
NSHUTDOWN

Status of RST_HOST_OUT output pin R

12 MMC_DPLL_REQ DPLL wake-up request from MMC R

11 UART3_DPLL_REQ DPLL wake-up request for UART3 R

10 UART2_DPLL_REQ DPLL wake-up request for UART2 R

9 UART1_DPLL_REQ DPLL wake-up request for UART1 R

8 USB_HOST_
DPLL_REQ

12-MHz clock for DPLL wake-up requested by USB
host

R

7 CAM_DPLL_
MCLK_REQ

0 No request for 48-MHz DPLL wake-up by camera
interface

R

1 Indicates request for 48-MHz DPLL wake-up by
camera interface

6 USB_DPLL_
MCLK_REQ

0 No request for 48-MHz DPLL wake-up by USB
interface

R

1 Indicates request for 48-MHz DPLL wake-up by
USB interface

5 USB_ MCLK_REQ 0 No clock request by USB host R

1 Indicates clock request by USB host

4 SDW_ MCLK_REQ 0 No clock request by BCLKREQ R

1 Indicates clock request by BCLKREQ

3 COM_ MCLK_REQ 0 No clock request by MCLKREQ R

1 Indicates clock request by MCLKREQ

2 PERIPH_nREQ Indicates status of internal peripheral clock request
signal. This is an active-low signal.

R

1 WAKEUP_nREQ Indicates status of internal WAKEUP_nREQ signal.
This is an active-low signal.

R

0 CHIP_IDLE Indicates status of internal CHIP_IDLE signal R

Clock Generation and Reset Control Registers

 15-80

The lock time register (LOCK_TIME) allows fixing the lock time when the APLL
is used. It represents the number of CLK (12-MHz or 13-MHz) periods required
to activate the APLL lock.

Table 15–39. Lock Time Register (LOCK_TIME)

Bit Name Description Type
Reset
Value

15–0 LOCK_TIME Indicates number of CLK (12-MHz or 13-MHz) periods to
wait for activate lock when APLL is used. The reset value
corresponds at a lock of 200 µs for a 12-MHz CLK.

R/W 0x960

APLL control register (APLL_CTRL_REG) allows the switch between the
APLL and the DPLL. It controls all the input of the APLL.

Table 15–40. APLL Control Register (APLL_CTRL_REG)

Bit Name Function R/W Reset Value

15:4 Reserved Reserved. These bits should always be writ-
ten as 0.

R 0xx

3 SEL Bit used to select correct divider so the APLL
can generate a 48-mHz clock from either a
12-mHz or 13-mHz reference source. Bit de-
faults to the 12-mHz reference setting.

0: Divide by 13 provides 1-mHz clock to APLL
for 48-mHz generation (if reference clock is
13-mHz)

1: Divide by 12 provides 1-mHz clock to APLL
for 48-mHz generation (if reference clock is
12-mHz)

R/W 0x1

2-1 RESERVED Reserved. These bits should always be writ-
ten as 0.

R/W 0x0

0 APLL_NDPLL_SWITCH It allows switch between APLL and DPLL.
When 0, use DPLL; when 1, use APLL. By
default, use DPLL.

R/W 0x0

Clock Generation and Reset Control Registers

15-81Clock Generation and System Reset Management

Table 15–41. Power Control Register (POWER_CTRL_REG)

Bit Name Value Description Type
Reset
Value

15–4 RESERVED Reserved R Unknown

3 SW_NSHUTDOWN Software generation of RST_HOST_OUT.
This bit controls the state of
RST_HOST_OUT pin when SW_RST bit is
1.

R/W 0x1

0 RST_HOST_OUT is active low

1 RST_HOST_OUT is inactive high

2 SW_RST Released hardware generation of
RST_HOST_OUT

R/W 0x0

0 State of RST_HOST_OUT pin depends on
BFAIL/EXT_FIQ and 32k counter.

1 State of RST_HOST_OUT pin is equal to
level of SW_NSHUTDOWN bit.

1 LOW_PWR_REQ Low power software request. When this bit
and the LOW_PWR_EN bit are high, the
LOW_PWR pin is driven active high.

R/W 0x0

0 LOW_PWR_EN Low power enable bit. Disable by default.
This bit enables the usage of the
LOW_PWR output pin.

R/W 0x0

0 During deep sleep, or if LOW_PWR_REQ is
high, the LOW_PWR pin is driven active
high.

1 LOW_PWR pin is always driven low.

Clock Generation and Reset Control Registers

 15-82

Table 15–42 lists the DSP idle registers. Table 15–43 and Table 15–44
describe the register bits.

Table 15–42. DSP Idle Registers

Register Name Descriptions R/W Size Offset Reset Value

ICR DSP idle configuration register R/W 16 bits x01 0x0000

ISR DSP idle status register R 16 bits x02 0x0000

The DSP idle configuration register (ICR) indicates the DSP subdomains that
are placed in idle mode.

Table 15–43. DSP Idle Configuration Register (ICR)

Bit Name Value Description Type
Reset
Value

15–6 RESERVED 0

5 EMIF_IDLE_DOMAIN 0 No request to idle DSP EMIF R/W 0

1 Request to place DSP EMIF in idle

4 DPLL_IDLE_DOMAIN 0 No request to idle DSP DPLL R/W 0

1 Request to place DSP DPLL in idle

3 PER_IDLE_DOMAIN 0 No request to idle DSP peripherals R/W 0

1 Request to place DSP peripherals in idle

2 CACHE_IDLE_DOMAIN 0 No request to idle DSP I-cache R/W 0

1 Request to place DSP I-cache in idle

1 DMA_IDLE_DOMAIN 0 No request to idle DSP DMA controller R/W 0

1 Request to place DSP DMA controller in idle

0 CPU_IDLE_DOMAIN 0 No request to idle DSP core and memory R/W 0

1 Request to place DSP core, SARAM, and
DARAM in idle

Clock Generation and Reset Control Registers

15-83Clock Generation and System Reset Management

The DSP idle status register (ISR) indicates the DSP subdomains that have
been placed in idle mode.

Table 15–44. DSP Idle Status Register (ISR)

Bit Name Value Description Type
Reset
Value

15–6 RESERVED

5 EMIF_IDLE_STATUS 0 DSP EMIF not in idle R 0

1 DSP EMIF in idle

4 DPLL_IDLE_STATUS 0 DSP DPLL not in idle R 0

1 DSP DPLL in idle

3 PER_IDLE_STATUS DSP peripherals not in idle R 0

1 DSP peripherals in idle

2 CACHE_IDLE_STATUS 0 No request to idle DSP I-cache not in idle R 0

1 DSP I-cache in idle

1 DMA_IDLE_STATUS 0 DSP DMA controller not in idle R 0

1 DSP DMA controller in idle

0 CPU_IDLE_STATUS 0 DSP core and memory not in idle R 0

1 DSP core, SARAM and DARAM in idle

A-1

Appendix A

Input/Output Descriptions

This appendix describes OMAP5910 inputs and outputs (I/O) and OMAP5910
functional multiplexing, which include:

� I/O signals ordered by their functions (Table A–1)
� Functional multiplexing control bits for each ball (Table A–2)

Consult the OMAP5910 Data Manual (literature number SPRS197) for addi-
tional information, including I/O pad reset status, buffer types and boundary
scan, pullup/pulldown and gating/inhibiting information.

Topic Page

A.1 I/O Signals A-2.

A.2 I/O Functional Multiplexing A-15.

Appendix A

I/O Signals

 A-2

A.1 I/O Signals

Table A–1 identifies the input and output signals for the OMAP5910 device.

Some signals are available on multiple pins via pin multiplexing configuration
settings.

Table A–1. Input and Output Signals for the OMAP5910 Device

Signals Description Ballout

FLASH

FLASH.WP FLASH write protect V4

FLASH.WE FLASH write enable W2

FLASH.RP FLASH power down for TI/reset for Intel W1

FLASH.OE FLASH output enable U4

FLASH.D[15] FLASH data bit 15 V3

FLASH.D[14] FLASH data bit 14 T4

FLASH.D[13] FLASH data bit 13 U3

FLASH.D[12] FLASH data bit 12 U1

FLASH.D[11] FLASH data bit 11 P8

FLASH.D[10] FLASH data bit 10 T3

FLASH.D[9] FLASH data bit 9 T2

FLASH.D[8] FLASH data bit 8 R4

FLASH.D[7] FLASH data bit 7 R3

FLASH.D[6] FLASH data bit 6 R2

FLASH.D[5] FLASH data bit 5 P7

FLASH.D[4] FLASH data bit 4 P4

FLASH.D[3] FLASH data bit 3 P2

FLASH.D[2] FLASH data bit 2 N7

FLASH.D[1] FLASH data bit 1 N2

FLASH.D[0] FLASH data bit 0 N4

FLASH.CLK FLASH clock N3

FLASH.CS3 FLASH chip select bit 3 N8

FLASH.CS2 FLASH chip select bit 2 M4

I/O Signals

A-3Input/Output Descriptions

Table A–1. Input and Output Signals for the OMAP5910 Device (Continued)

Signals BalloutDescription

FLASH (continued)

FLASH.CS1 FLASH chip select bit 1 M3

FLASH.CS0 FLASH chip select bit 0 M7

FLASH.BE[1] FLASH byte enable bit 1 M8

FLASH.BE[0] FLASH byte enable bit 0 L3

FLASH.ADV FLASH address valid L4

FLASH.A[24] FLASH address bit 24 L7

FLASH.A[23] FLASH address bit 23 K3

FLASH.A[22] FLASH address bit 22 K4

FLASH.A[21] FLASH address bit 21 L8

FLASH.A[20] FLASH address bit 20 J1

FLASH.A[19] FLASH address bit 19 J3

FLASH.A[18] FLASH address bit 18 J4

FLASH.A[17] FLASH address bit 17 J2

FLASH.A[16] FLASH address bit 16 K7

FLASH.A[15] FLASH address bit 15 H3

FLASH.A[14] FLASH address bit 14 H4

FLASH.A[13] FLASH address bit 13 K8

FLASH.A[12] FLASH address bit 12 G2

FLASH.A[11] FLASH address bit 11 G3

FLASH.A[10] FLASH address bit 10 G4

FLASH.A[9] FLASH address bit 9 F3

FLASH.A[8] FLASH address bit 8 J7

FLASH.A[7] FLASH address bit 7 E3

FLASH.A[6] FLASH address bit 6 F4

FLASH.A[5] FLASH address bit 5 D2

FLASH.A[4] FLASH address bit 4 E4

I/O Signals

 A-4

Table A–1. Input and Output Signals for the OMAP5910 Device (Continued)

Signals BalloutDescription

FLASH (continued)

FLASH.A[3] FLASH address bit 3 C1

FLASH.A[2] FLASH address bit 2 D3

FLASH.A[1] FLASH address bit 1 J8

FLASH.RDY FLASH ready for TI/wait for Intel H7

FLASH.BAA FLASH burst advance acknowledge M4

SDRAM

SDRAM.WE SDRAM write enable C3

SDRAM.RAS SDRAM row address srtobe A2

SDRAM.DQMU SDRAM upper byte mask D4

SDRAM.DQML SDRAM lower byte mask B3

SDRAM.D[15] SDRAM data bit 15 D5

SDRAM.D[14] SDRAM data bit 14 C4

SDRAM.D[13] SDRAM data bit 13 B4

SDRAM.D[12] SDRAM data bit 12 D6

SDRAM.D[11] SDRAM data bit 11 C5

SDRAM.D[10] SDRAM data bit 10 H8

SDRAM.D[9] SDRAM data bit 9 C6

SDRAM.D[8] SDRAM data bit 8 B6

SDRAM.D[7] SDRAM data bit 7 D7

SDRAM.D[6] SDRAM data bit 6 C7

SDRAM.D[5] SDRAM data bit 5 D8

SDRAM.D[4] SDRAM data bit 4 B8

SDRAM.D[3] SDRAM data bit 3 G8

SDRAM.D[2] SDRAM data bit 2 C8

SDRAM.D[1] SDRAM data bit 1 G9

SDRAM.D[0] SDRAM data bit 0 B9

I/O Signals

A-5Input/Output Descriptions

Table A–1. Input and Output Signals for the OMAP5910 Device (Continued)

Signals BalloutDescription

SDRAM (continued)

SDRAM.CKE SDRAM power down control signal D9

SDRAM.CLK SDRAM clock C9

SDRAM.CAS SDRAM column address srtobe H9

SDRAM.BA[1] SDRAM bank select 1 D10

SDRAM.BA[0] SDRAM bank select 0 C10

SDRAM.A[12] SDRAM address bit 12 G10

SDRAM.A[11] SDRAM address bit 11 H10

SDRAM.A[10] SDRAM address bit 10 C11

SDRAM.A[9] SDRAM address bit 9 D11

SDRAM.A[8] SDRAM address bit 8 G11

SDRAM.A[7] SDRAM address bit 7 C12

SDRAM.A[6] SDRAM address bit 6 D12

SDRAM.A[5] SDRAM address bit 5 H11

SDRAM.A[4] SDRAM address bit 4 C13

SDRAM.A[3] SDRAM address bit 3 D13

SDRAM.A[2] SDRAM address bit 2 G12

SDRAM.A[1] SDRAM address bit 1 C14

SDRAM.A[0] SDRAM address bit 0 B14

LCD Interface

LCD.VS LCD vertical synchronization D14

LCD.HS LCD horizental synchronization H12

LCD.AC LCD ac-bias or output enable for connection to LCD B15

LCD.PCLK LCD pixel clock C15

LCD.P[15] LCD pixel data bit 15 D15

LCD.P[14] LCD pixel data bit 14 C16

LCD.P[13] LCD pixel data bit 13 A17

I/O Signals

 A-6

Table A–1. Input and Output Signals for the OMAP5910 Device (Continued)

Signals BalloutDescription

LCD Interface (continued)

LCD.P[12] LCD pixel data bit 12 G13

LCD.P[11] LCD pixel data bit 11 B17

LCD.P[10] LCD pixel data bit 10 C17

LCD.P[9] LCD pixel data bit 9 D16

LCD.P[8] LCD pixel data bit 8 D17

LCD.P[7] LCD pixel data bit 7 C18

LCD.P[6] LCD pixel data bit 6 B19

LCD.P[5] LCD pixel data bit 5 A20

LCD.P[4] LCD pixel data bit 4 H13

LCD.P[3] LCD pixel data bit 3 G14

LCD.P[2] LCD pixel data bit 2 C19

LCD.P[1] LCD pixel data bit 1 B21

LCD.P[0] LCD pixel data bit 0 D18

McBSP1 Interface

MCBSP1.CLKS McBSP1 clock input G20

MBSP1.CLKX McBSP1 bit clock G21

MCBSP1.FSX McBSP1 frame synchronization H15, H18

MCBSP1.DX McBSP1 data ouput H18, H15

MCBSP1.DR McBSP1 data input H20

MCSI1 Interface

MCSI1.DOUT MCSI1 data output W14

MCSI1.SYNC MCSI1 frame synchronization V13

MCSI1.CLK MCSI1 bit clock AA13

MCSI1.DIN MCSI1 data input W13

I/O Signals

A-7Input/Output Descriptions

Table A–1. Input and Output Signals for the OMAP5910 Device (Continued)

Signals BalloutDescription

McBSP2 Interface

MCBSP2.DR McBSP2 data input P10, AA5

MCBSP2.FSX McBSP2 transmit frame synchronization W7

MCBSP2.CLKR McBSP2 receive clock V7

MCBSP2.CLKX McBSP2 transmit clock Y6

MCBSP2.FSR McBSP2 receive frame synchronization W6

MCBSP2.DX McBSP2 data output AA5, P10

MCSI2 interface

MCSI2.CLK MCSI2 clock Y10

MCSI2.DIN MCSI2 data input AA9

MCSI2.DOUT MCSI2 data output W9

MCSI2.SYNC MCSI2 frame synchronization V9

UART1 Interface

UART1.RX UART1 receive data V14

UART1.TX UART1 transmit data Y14

UART1.RTS UART1 request to send AA15

UART1.CTS UART1 clear to send R14

UART1.DSR UART1 data set ready U18, R13

UART1.DTR UART1 data terminal ready W21, Y13

UART3 Interface

UART3.RX UART3 receive data L14, K19

UART3.TX UART3 transmit data M18, K18

UART3.RTS UART3 request to send in UART mode SD_MODE in
IRDA mode.

Y13, R19, K14

UART3.CTS UART3 clear to send R13, K15

UART3.DSR UART3 data set ready U18

UART3.DTR UART3 data terminal ready W21

I/O Signals

 A-8

Table A–1. Input and Output Signals for the OMAP5910 Device (Continued)

Signals BalloutDescription

UART2 Interface

UART2.RX UART2 receive data R9, L14

UART2.TX UART2 transmit data V6, M18

UART2.RTS UART2 request to send W5, M19

UART2.CTS UART2 clear to send Y5,L15

UART2.BCLK UART2 baud clock Y4

Clock COM Interface

MCLK M-CLK (master clock) output (12/48 MHz) Y9

MCLKREQ Request for the M-CLK R10

BCLK BCLK general-purpose clock output Y13

BCLKREQ BCLK request input R13

GPIO

GPIO15 General purpose I/O 15 M20

GPIO14 General purpose I/O 14 N21

GPIO13 General purpose I/O 13 N19

GPIO12 General purpose I/O 12 N18, W6

GPIO11 General purpose I/O 11 N20, V7

GPIO9 General purpose I/O 9 W8

GPIO8 General purpose I/O 8 Y8

GPIO7 General purpose I/O 7 M15, Y5, V9

GPIO6 General purpose I/O 6 P19

GPIO4 General purpose I/O 4 P20

GPIO3 General purpose I/O 3 P18

GPIO2 General purpose I/O 2 M14

GPIO1 General purpose I/O 1 R19

GPIO0 General purpose I/O 0 R18

I/O Signals

A-9Input/Output Descriptions

Table A–1. Input and Output Signals for the OMAP5910 Device (Continued)

Signals BalloutDescription

MPU I/O

MPUIO12 MPU input/output 12 L19

MPUIO11 MPU input/output 11 W10

MPUIO7 MPU input/output 7 V10

MPUIO6 MPU input/output 6 W11

MPUIO5 MPU input/output 5 T20, W5

MPUIO4 MPU input/output 4 T19

MPUIO3 MPU input/output 3 V8

MPUIO2 MPU input/output 2 N15

MPUIO1 MPU input/output 1 U19

MPUIO0 MPU input/output 0 Y12

I2C Interface

SCL I2C master serial clock T18

SDA I2C serial bidirectional data V20

UWIRE Interface

UWIRE.SDI UWIRE serial data input U18, J14

UWIRE.SDO UWIRE serial data output W21, H19

UWIRE.SCLK UWIRE serial clock V19, J15

UWIRE.CS0 UWIRE serial chip select 0 N14, J18

UWIRE.CS3 UWIRE serial chip select 3 P15, J19

McBSP3 Interface

MCBSP3.DR McBSP3 data input AA17, U18

MCBSP3.DX McBSP3 data output P14, W21

MCBSP3.FSX McBSP3 frame synchronization N18, P18, P19,
P20

MCBSP3.CLKX McBSP3 clock W16, N14

I/O Signals

 A-10

Table A–1. Input and Output Signals for the OMAP5910 Device (Continued)

Signals BalloutDescription

Miscelleanous

MPU_BOOT MPU boot mode AA17

RST_HOST_OUT Reset signal P14

CLK32K_IN 32 kHz clock input P13

CLK32K_OUT 32 kHz clock output Y12

CLK32K_CTRL 32 kHz clock Selection AA20

RST_OUT Global reset output of MPU subsystem W15

PWRON_RESET Power on reset G19

MPU_RST Warm boot reset to TI925T only V15

EXT_DMA_REQ1 External DMA request 1 T19

EXT_DMA_REQ0 External DMA request 0 N15

LOW_PWR Low power request T20

BFAIL/EXT_FIQ Battery voltage failure detection and/or external FIQ input W19

IRQ_OBS Interrupt observability output M18

DMA_REQ_OBS DMA request observability output L14

USB Integrated Transceiver Pins

USB.DP USB differential (+) line P9

USB.DM USB differential (–) line R8

USB.PUEN USB clock output (6 MHz) W4

USB.CLKO USB pullup enable W4

USB.VBUS USB VBUS detect input R18

Camera Interface

CAM.EXCLK Camera clock output H19

CAM.LCLK Camera image data latch clock J15

CAM.D[7] Camera digital image data bit 7 J18

CAM.D[6] Camera digital image data bit 6 J19

CAM.D[5] Camera digital image data bit 5 J14

I/O Signals

A-11Input/Output Descriptions

Table A–1. Input and Output Signals for the OMAP5910 Device (Continued)

Signals BalloutDescription

Camera Interface (continued)

CAM.D[4] Camera digital image data bit 4 K18

CAM.D[3] Camera digital image data bit 3 K19

CAM.D[2] Camera digital image data bit 2 K15

CAM.D[1] Camera digital image data bit 1 K14

CAM.D[0] Camera digital image data bit 0 L19

CAM.VS Camera vertical synchronization L18

CAM.HS Camera horizontal synchronization L15

CAM.RSTZ Camera module reset M19

MMC/SD Interface

MMC.DAT3 SD card data bit 3 W11

MMC.DAT2 SD card data bit 2 W10, M15

MMC.DAT1 SD card data bit 1 V10

MMC.DAT0_SPI.DI MMC or SD card data bit 0/SPI serial input R11

MMC.CLK MMC/SD clock V11

MMC.CMD_SPI.DO MMC/SD command/SPI serial output P11

SPI.CS3 SPI chip select 3 P18

SPI.CS2 SPI chip select 2 P20

SPI.CS1 SPI chip select 1 P19

SPI.RDY SPI ready R18

SPI.CLK SPI clock M14

Oscillators

OSC1_IN 12 MHz quartz connection (XI) Y2

OSC1_OUT 12 MHz quartz connection (XO) W3

OSC32K_IN 32 kHz quartz connection (XI) W12

OSC32K_OUT 32 kHz quartz connection (XO) R12

I/O Signals

 A-12

Table A–1. Input and Output Signals for the OMAP5910 Device (Continued)

Signals BalloutDescription

Configuration Interface

CONF OMAP5910 configuration Input V18

STAT_VAL/WKUP MMC slect/wakeup input Y17

Keyboard Interface

KB.C[7] Keyboard matrix column 7 V19

KB.C[6] Keyboard matrix column 6 P15

KB.C[5] Keyboard matrix column 5 C20

KB.C[4] Keyboard matrix column 4 C21

KB.C[3] Keyboard matrix column 3 E18

KB.C[2] Keyboard matrix column 2 D19

KB.C[1] Keyboard matrix column 1 D20

KB.C[0] Keyboard matrix column 0 F18

KB.R[7] Keyboard matrix row 7 M20

KB.R[6] Keyboard matrix row 6 N21

KB.R[5] Keyboard matrix row 5 N19

KB.R[4] Keyboard matrix row 4 E19

KB.R[3] Keyboard matrix row 3 E20

KB.R[2] Keyboard matrix row 2 H14

KB.R[1] Keyboard matrix row 1 F19

KB.R[0] Keyboard matrix row 0 G18

JTAG Interface

TDI Test data input Y19

TDO Test data output AA19

TMS Test mode select V17

TCK Test clock W18

TRST Test reset Y18

I/O Signals

A-13Input/Output Descriptions

Table A–1. Input and Output Signals for the OMAP5910 Device (Continued)

Signals BalloutDescription

JTAG Interface (continued)

EMU0 Test emulation 0 V16

EMU1 Test emulation 1 W17

Trace Interface

ETM.SYNC ETM9 trace synchronization H19

ETM.CLK ETM9 trace clock J15

ETM.D[7] ETM9 trace packet bit 7 J18

ETM.D[6] ETM9 trace packet bit 6 J19

ETM.D[5] ETM9 trace packet bit 5 J14

ETM.D[4] ETM9 trace packet bit 4 K18

ETM.D[3] ETM9 trace packet bit 3 K19

ETM.D[2] ETM9 trace packet bit 2 K15

ETM.D[1] ETM9 trace packet bit 1 K14

ETM.D[0] ETM9 trace packet bit 0 L19

ETM.PSTAT[2] ETM9 trace pipe state bit 2 L18

ETM.PSTAT[1] ETM9 trace pipe state bit 1 L15

ETM.PSTAT[0] ETM9 trace pipe state bit 0 M19

HDQ/1-Wire Interface

HDQ HDQ 1-Wire interface pin N20

LED Pulse Generators

LED1 LED pulse generator 1 output P18

LED2 LED pulse generator 2 output T19

PWM Interface

PWT Pulse width tone M18

PWL Pulse width light L14

I/O Signals

 A-14

Table A–1. Input and Output Signals for the OMAP5910 Device (Continued)

Signals BalloutDescription

USB Pin Group #1

USB1.SUSP USB 1 bus segment suspend control AA17

USB1.VM USB 1 Vminus receive data AA13

USB1.SE0 USB 1 single ended zero P14

USB1.TXEN USB 1 transmit enable W16

USB1.SPEED USB 1 bus segment speed control Y12

USB1.VP USB 1 Vplus receive data V13

USB1.TXD USB 1 transmit data W14

USB1.RCV USB 1 receive data W13

USB Pin Group #2

USB2.VP USB 2 Vplus receive data AA9

USB2.VM USB 2 Vminus receive data R9

USB2.SE0 USB 2 single ended zero W5

USB2.TXEN USB 2 transmit enable W9

USB2.SUSP USB 2 bus segment suspend control Y10

USB2.RCV USB 2 receive data Y5

USB2.TXD USB 2 transmit data V6

I/O Functional Multiplexing

A-15Input/Output Descriptions

A.2 I/O Functional Multiplexing

Table A–2 provides the input/output configuration programming for signal
multiplexing on each pin and for enabling/disabling internal pullup and pull-
down resistors on each pin.

Table A–2. Configuration Programming

Ballout

Pin-by-Pin
Multiplexing
OMAP5910

Configuration
Register

Register
Offset

Register
Field Value

Signal on
the Top

Pin-by-Pin
Pullup/Down
OMAP5910

Configuration
Register

Register
Offset

Register
Field

A1

B2

C3

A2

D4

B3

A3

D5

C4

B4

D6

C5

B5

A5

H8

C6

B6

D7

C7

B7

Note: When a row is empty, it means that there is no:
– Functional multiplexing on this pin
– Software configurable pullup/pulldown on this pin

I/O Functional Multiplexing

 A-16

Table A–2. Configuration Programming (Continued)

Ballout
Register

Field
Register
Offset

Pin-by-Pin
Pullup/Down
OMAP5910

Configuration
Register

Signal on
the TopValue

Register
Field

Register
Offset

Pin-by-Pin
Multiplexing
OMAP5910

Configuration
Register

A7

G8

D8

B8

C8

G9

B9

D9

A9

C9

B10

H9

D10

C10

G10

H10

A11

C11

D11

G11

C12

D12

H11

Note: When a row is empty, it means that there is no:
– Functional multiplexing on this pin
– Software configurable pullup/pulldown on this pin

I/O Functional Multiplexing

A-17Input/Output Descriptions

Table A–2. Configuration Programming (Continued)

Ballout
Register

Field
Register
Offset

Pin-by-Pin
Pullup/Down
OMAP5910

Configuration
Register

Signal on
the TopValue

Register
Field

Register
Offset

Pin-by-Pin
Multiplexing
OMAP5910

Configuration
Register

B12

A13

C13

D13

B13

G12

C14

B14

A15

D14

H12

B15

C15

D15

B16

C16

A17

G13

B17

C17

D16

B18

D17

Note: When a row is empty, it means that there is no:
– Functional multiplexing on this pin
– Software configurable pullup/pulldown on this pin

I/O Functional Multiplexing

 A-18

Table A–2. Configuration Programming (Continued)

Ballout
Register

Field
Register
Offset

Pin-by-Pin
Pullup/Down
OMAP5910

Configuration
Register

Signal on
the TopValue

Register
Field

Register
Offset

Pin-by-Pin
Multiplexing
OMAP5910

Configuration
Register

A19

C18

B19

A20

H13

G14

A21

B20

C19

B21

D18

C20

C21

E18

D19

D20

F18

E19

E20

E21

H14

F19

F20

Note: When a row is empty, it means that there is no:
– Functional multiplexing on this pin
– Software configurable pullup/pulldown on this pin

I/O Functional Multiplexing

A-19Input/Output Descriptions

Table A–2. Configuration Programming (Continued)

Ballout
Register

Field
Register
Offset

Pin-by-Pin
Pullup/Down
OMAP5910

Configuration
Register

Signal on
the TopValue

Register
Field

Register
Offset

Pin-by-Pin
Multiplexing
OMAP5910

Configuration
Register

G18

G19

G20

G21

H15 FUNC_MUX_
CTRL_4

0x14 14:12 000 MCBSP1.
FSX

001 MCBSP1.DX

H18 FUNC_MUX_
CTRL_4

0x14 17:15 000 MCBSP1.DX

001 MCBSP1.
FSX

H20 PULL_DOWN_
CTRL_0

0x40 16

H19 FUNC_MUX_
CTRL_4

0x14 23:21 000 CAM.EXCLK

001 ETM.SYNC

010 UWIRE.SDO

J15 FUNC_MUX_
CTRL_4

0x14 26:24 000 CAM.LCLK

001 ETM.CLK

010 UWIRE.
SCLK

J20

J18 FUNC_MUX_
CTRL_4

0x14 29:27 000 CAM.D[7]

001 ETM.D[7]

010 UWIRE.CS0

Note: When a row is empty, it means that there is no:
– Functional multiplexing on this pin
– Software configurable pullup/pulldown on this pin

I/O Functional Multiplexing

 A-20

Table A–2. Configuration Programming (Continued)

Ballout
Register

Field
Register
Offset

Pin-by-Pin
Pullup/Down
OMAP5910

Configuration
Register

Signal on
the TopValue

Register
Field

Register
Offset

Pin-by-Pin
Multiplexing
OMAP5910

Configuration
Register

J21

J19 FUNC_MUX_
CTRL_5

0x18 2:0 000 CAM.D[6]

001 ETM.D[6]

010 UWIRE.CS3

K20

J14 FUNC_MUX_
CTRL_5

0x18 5:3 000 CAM.D[5] PULL_DOWN_
CTRL_0

0x40 21

001 ETM.D[5]

010 UWIRE.SDI

K18 FUNC_MUX_
CTRL_5

0x18 8:6 000 CAM.D[4]

001 ETM.D[4]

010 UART3.TX

K19 FUNC_MUX_
CTRL_5

0x18 11:9 000 CAM.D[3] PULL_DOWN_
CTRL_0

0x40 23

001 ETM.D[3]

010 UART3.RX

K15 FUNC_MUX_
CTRL_5

0x18 14:12 000 CAM.D[2] PULL_DOWN_
CTRL_0

0x40 24

001 ETM.D[2]

010 UART3.CTS

K14 FUNC_MUX_
CTRL_5

0x18 17:15 000 CAM.D[1]

001 ETM.D[1]

010 UART3.RTS

Note: When a row is empty, it means that there is no:
– Functional multiplexing on this pin
– Software configurable pullup/pulldown on this pin

I/O Functional Multiplexing

A-21Input/Output Descriptions

Table A–2. Configuration Programming (Continued)

Ballout
Register

Field
Register
Offset

Pin-by-Pin
Pullup/Down
OMAP5910

Configuration
Register

Signal on
the TopValue

Register
Field

Register
Offset

Pin-by-Pin
Multiplexing
OMAP5910

Configuration
Register

L21

L19 FUNC_MUX_
CTRL_5

0x18 20:18 000 CAM.D[0]

001 ETM.D[0]

010 MPUIO12

L18 FUNC_MUX_
CTRL_5

0x18 23:21 000 CAM.VS

001 ETM.PSTAT
[2]

L15 FUNC_MUX_
CTRL_5

0x18 26:24 000 CAM.HS PULL_DOWN_
CTRL_0

0x40 28

001 ETM.PSTAT
[1]

010 UART2.CTS

M19 FUNC_MUX_
CTRL_5

0x18 29:27 000 CAM.RSTZ

001 ETM.PSTAT
[0]

010 UART2.RTS

M18 FUNC_MUX_
CTRL_6

0x1C 2:0 000 UART3.TX

001 UART3.TX

010 PWT

011 Reserved

100 UART2.TX

Note: When a row is empty, it means that there is no:
– Functional multiplexing on this pin
– Software configurable pullup/pulldown on this pin

I/O Functional Multiplexing

 A-22

Table A–2. Configuration Programming (Continued)

Ballout
Register

Field
Register
Offset

Pin-by-Pin
Pullup/Down
OMAP5910

Configuration
Register

Signal on
the TopValue

Register
Field

Register
Offset

Pin-by-Pin
Multiplexing
OMAP5910

Configuration
Register

L14 FUNC_MUX_
CTRL_6

0x1C 5:3 000 UART3.RX

001 PWL

010 Reserved

011 UART2.RX

M20 FUNC_MUX_
CTRL_6

0x1C 8:6 000 GPIO15 PULL_DOWN_
CTRL_1

0x44 0

001 KB.R[7]

N21 FUNC_MUX_
CTRL_6

0x1C 11:9 000 GPIO14 PULL_DOWN_
CTRL_1

0x44 1

001 KB.R[6]

N19 FUNC_MUX_
CTRL_6

0x1C 14:12 000 GPIO13 PULL_DOWN_
CTRL_1

0x44 2

001 KB.R[5]

N18 FUNC_MUX_
CTRL_6

0x1C 17:15 000 GPIO12 PULL_DOWN_
CTRL_1

0x44 3

001 MCBSP3.
FSX

N20 FUNC_MUX_
CTRL_6

0x1C 20:18 000 GPIO11 PULL_DOWN_
CTRL_1

0x44 4

001 HDQ

M15 FUNC_MUX_
CTRL_6

0x1C 23:21 000 GPIO7 PULL_DOWN_
CTRL_1

0x44 5

001 MMC.DAT2

Note: When a row is empty, it means that there is no:
– Functional multiplexing on this pin
– Software configurable pullup/pulldown on this pin

I/O Functional Multiplexing

A-23Input/Output Descriptions

Table A–2. Configuration Programming (Continued)

Ballout
Register

Field
Register
Offset

Pin-by-Pin
Pullup/Down
OMAP5910

Configuration
Register

Signal on
the TopValue

Register
Field

Register
Offset

Pin-by-Pin
Multiplexing
OMAP5910

Configuration
Register

P19 FUNC_MUX_
CTRL_6

0x1C 26:24 000 GPIO6 PULL_DOWN_
CTRL_1

0x44 6

001 SPI.CS1

010 MCBSP3.
FSX

P20 FUNC_MUX_
CTRL_6

0x1C 29:27 000 GPIO4 PULL_DOWN_
CTRL_1

0x44 7

001 SPI.CS2

010 MCBSP3.
FSX

R21

P18 FUNC_MUX_
CTRL_7

0x20 2:0 000 GPIO3 PULL_DOWN_
CTRL_1

0x44 8

001 SPI.CS3

010 MCBSP3.
FSX

011 LED1

M14 FUNC_MUX_
CTRL_7

0x20 5:3 000 GPIO2 PULL_DOWN_
CTRL_1

0x44 9

001 SPI.CLK

R20

R19 FUNC_MUX_
CTRL_7

0x20 8:6 000 GPIO1 PULL_DOWN_
CTRL_1

0x44 10

001 UART3.RTS

Note: When a row is empty, it means that there is no:
– Functional multiplexing on this pin
– Software configurable pullup/pulldown on this pin

I/O Functional Multiplexing

 A-24

Table A–2. Configuration Programming (Continued)

Ballout
Register

Field
Register
Offset

Pin-by-Pin
Pullup/Down
OMAP5910

Configuration
Register

Signal on
the TopValue

Register
Field

Register
Offset

Pin-by-Pin
Multiplexing
OMAP5910

Configuration
Register

R18 FUNC_MUX_
CTRL_7

0x20 11:9 000 GPIO0 PULL_DOWN_
CTRL_1

0x44 11

001 SPI.RDY

010 USB.VBUS

T20 FUNC_MUX_
CTRL_7

0x20 14:12 000 MPUIO5 PULL_DOWN_
CTRL_1

0x44 12

001 LOW_PWR

T19 FUNC_MUX_
CTRL_7

0x20 17:15 000 MPUIO4 PULL_DOWN_
CTRL_1

0x44 13

001 EXT_DMA_
REQ0

010 LED2

U21

N15 FUNC_MUX_
CTRL_7

0x20 20:18 000 MPUIO2 PULL_DOWN_
CTRL_1

0x44 14

001 EXT_DMA_
REQ0

U20

U19

T18

V20

U18 FUNC_MUX_
CTRL_8

0x24 2:0 000 UWIRE.SDI PULL_DOWN_
CTRL_1

0x44 18

001 UART3.DSR

010 UART1.DSR

011 MCBSP3.DR

Note: When a row is empty, it means that there is no:
– Functional multiplexing on this pin
– Software configurable pullup/pulldown on this pin

I/O Functional Multiplexing

A-25Input/Output Descriptions

Table A–2. Configuration Programming (Continued)

Ballout
Register

Field
Register
Offset

Pin-by-Pin
Pullup/Down
OMAP5910

Configuration
Register

Signal on
the TopValue

Register
Field

Register
Offset

Pin-by-Pin
Multiplexing
OMAP5910

Configuration
Register

W21 FUNC_MUX_
CTRL_8

0x24 5:3 000 UWIRE.SDO

001 UART3.DTR

010 UART1.DTR

011 MCBSP3.DX

V19 FUNC_MUX_
CTRL_8

0x24 8:6 000 UWIRE.
SCLK

001 KB.C[7]

W20

Y21

N14 FUNC_MUX_
CTRL_8

0x24 11:9 000 UWIRE.CS0

001 UWIRE.CS0

010 MCBSP3.
CLKX

P15 FUNC_MUX_
CTRL_8

0x24 14:12 000 UWIRE.CS3

001 UWIRE.CS3

010 KB.C[6]

AA21

Y20

W19

AA20

V18 PULL_DOWN_
CTRL_3

0x4C 9

Note: When a row is empty, it means that there is no:
– Functional multiplexing on this pin
– Software configurable pullup/pulldown on this pin

I/O Functional Multiplexing

 A-26

Table A–2. Configuration Programming (Continued)

Ballout
Register

Field
Register
Offset

Pin-by-Pin
Pullup/Down
OMAP5910

Configuration
Register

Signal on
the TopValue

Register
Field

Register
Offset

Pin-by-Pin
Multiplexing
OMAP5910

Configuration
Register

Y19 PULL_DOWN_
CTRL_3

0x4C 10

AA19

V17 PULL_DOWN_
CTRL_3

0x4C 11

W18 PULL_DOWN_
CTRL_3

0x4C 12

Y18 PULL_DOWN_
CTRL_3

0x4C 13

V16 PULL_DOWN_
CTRL_1

0x44 25

W17 PULL_DOWN_
CTRL_1

0x44 26

Y17

AA17 FUNC_MUX_
CTRL_8

0x24 29:27 000 MPU_BOOT PULL_DOWN_
CTRL_1

0x44 27

001 MCBSP3.DR

010 USB1_SUSP

P14 FUNC_MUX_
CTRL_9

0x28 2:0 000 RST_HOST_
OUT

001 MCBSP3.DX

010 USB1_SE0

W16 FUNC_MUX_
CTRL_9

0x28 5:3 000 MCBSP3.
CLKX

PULL_DOWN_
CTRL_1

0x44 29

001 MCBSP3.
CLKX

010 USB1_TXEN

Y16

Note: When a row is empty, it means that there is no:
– Functional multiplexing on this pin
– Software configurable pullup/pulldown on this pin

I/O Functional Multiplexing

A-27Input/Output Descriptions

Table A–2. Configuration Programming (Continued)

Ballout
Register

Field
Register
Offset

Pin-by-Pin
Pullup/Down
OMAP5910

Configuration
Register

Signal on
the TopValue

Register
Field

Register
Offset

Pin-by-Pin
Multiplexing
OMAP5910

Configuration
Register

V15

W15

Y15

AA15 FUNC_MUX_
CTRL_9

0x28 14:12 000 UART1.RTS

001 UART1.RTS

R14 PULL_DOWN_
CTRL_2

0x48 1

V14 PULL_DOWN_
CTRL_2

0x48 2

Y14 FUNC_MUX_
CTRL_9

0x28 23:21 000 UART1.TX

001 UART1.TX

W14 FUNC_MUX_
CTRL_9

0x28 26:24 000 MCSI1.
DOUT

001 USB1.TXD

R13 FUNC_MUX_
CTRL_9

0x28 29:27 000 UART3.
CLKREQ

PULL_DOWN_
CTRL_2

0x48 5

001 UART3.CTS

010 UART1.DSR

Y13 FUNC_MUX_
CTRL_A

0x2C 2:0 000 UART3.
BCLK

001 UART3.RTS

010 UART1.
DTR

Note: When a row is empty, it means that there is no:
– Functional multiplexing on this pin
– Software configurable pullup/pulldown on this pin

I/O Functional Multiplexing

 A-28

Table A–2. Configuration Programming (Continued)

Ballout
Register

Field
Register
Offset

Pin-by-Pin
Pullup/Down
OMAP5910

Configuration
Register

Signal on
the TopValue

Register
Field

Register
Offset

Pin-by-Pin
Multiplexing
OMAP5910

Configuration
Register

V13 FUNC_MUX_
CTRL_A

0x2C 5:3 000 MCSI1.
SYNC

PULL_DOWN_
CTRL_2

0x48 7

001 USB1.VP

AA13 FUNC_MUX_
CTRL_A

0x2C 8:6 000 MCSI1.CLK PULL_DOWN_
CTRL_2

0x48 8

001 USB1.VM

W13 FUNC_MUX_
CTRL_A

0x2C 11:9 000 MCSI1.DIN PULL_DOWN_
CTRL_2

0x48 9

001 USB1.RCV

Y12 FUNC_MUX_
CTRL_A

0x2C 14:12 000 CLK32K_
OUT

001 MPUIO0

010 USB1.
SPEED

P13

V12

W12

R12

P12

AA11

W11 FUNC_MUX_
CTRL_D

0x38 14:12 000 MMC.DAT3 PULL_DOWN_
CTRL_3

0x4C 8

001 ms_remove

010 MPUIO6

V11

R11

Note: When a row is empty, it means that there is no:
– Functional multiplexing on this pin
– Software configurable pullup/pulldown on this pin

I/O Functional Multiplexing

A-29Input/Output Descriptions

Table A–2. Configuration Programming (Continued)

Ballout
Register

Field
Register
Offset

Pin-by-Pin
Pullup/Down
OMAP5910

Configuration
Register

Signal on
the TopValue

Register
Field

Register
Offset

Pin-by-Pin
Multiplexing
OMAP5910

Configuration
Register

W10 FUNC_MUX_
CTRL_A

0x2C 20:18 000 MMC.DAT2 PULL_DOWN_
CTRL_2

0x48 12

001 VSS (Forced
to ’Z’)

010 MPUIO11

V10 FUNC_MUX_
CTRL_A

0x2C 26:24 000 MMC.DAT1 PULL_DOWN_
CTRL_2

0x48 14

001 ms_ins

010 MPUIO7

P11 PULL_DOWN_
CTRL_2

0x48 15

Y10 FUNC_MUX_
CTRL_B

0x30 5:3 000 MCSI2.CLK PULL_DOWN_
CTRL_2

0x48 17

001 USB2.SUSP

AA9 FUNC_MUX_
CTRL_B

0x30 8:6 000 MCSI2.DIN PULL_DOWN_
CTRL_2

0x48 18

001 USB2.VP

W9 FUNC_MUX_
CTRL_B

0x30 11:9 000 MCSI2.
DOUT

001 USB2.TXEN

V9 FUNC_MUX_
CTRL_B

0x30 14:12 000 MCSI2.
SYNC

PULL_DOWN_
CTRL_2

0x48 20

001 GPIO7

Y9

Note: When a row is empty, it means that there is no:
– Functional multiplexing on this pin
– Software configurable pullup/pulldown on this pin

I/O Functional Multiplexing

 A-30

Table A–2. Configuration Programming (Continued)

Ballout
Register

Field
Register
Offset

Pin-by-Pin
Pullup/Down
OMAP5910

Configuration
Register

Signal on
the TopValue

Register
Field

Register
Offset

Pin-by-Pin
Multiplexing
OMAP5910

Configuration
Register

R10 FUNC_MUX_
CTRL_B

0x30 20:18 000 UART2.
CLKREQ

PULL_DOWN_
CTRL_2

0x48 22

001 EXT_
MASTER_

REQ

W8 PULL_DOWN_
CTRL_2

0x48 23

Y8 PULL_DOWN_
CTRL_2

0x48 24

AA7

V8 PULL_DOWN_
CTRL_2

0x48 25

P10 FUNC_MUX_
CTRL_C

0x34 2:0 000 MCBSP2.DR PULL_DOWN_
CTRL_2

0x48 26

001 MCBSP2.DX

Y7

W7 PULL_DOWN_
CTRL_2

0x48 27

V7 FUNC_MUX_
CTRL_C

0x34 8:6 000 MCBSP2.
CLKR

PULL_DOWN_
CTRL_2

0x48 28

001 GPIO11

Y6 PULL_DOWN_
CTRL_2

0x48 29

W6 FUNC_MUX_
CTRL_C

0x34 14:12 000 MCBSP2.
FSR

PULL_DOWN_
CTRL_2

0x48 30

001 GPIO12

Note: When a row is empty, it means that there is no:
– Functional multiplexing on this pin
– Software configurable pullup/pulldown on this pin

I/O Functional Multiplexing

A-31Input/Output Descriptions

Table A–2. Configuration Programming (Continued)

Ballout
Register

Field
Register
Offset

Pin-by-Pin
Pullup/Down
OMAP5910

Configuration
Register

Signal on
the TopValue

Register
Field

Register
Offset

Pin-by-Pin
Multiplexing
OMAP5910

Configuration
Register

AA5 FUNC_MUX_
CTRL_C

0x34 17:15 000 MCBSP2.DX PULL_DOWN_
CTRL_2

0x48 31

001 MCBSP2.DR

R9 FUNC_MUX_
CTRL_C

0x34 20:18 000 UART2.RX PULL_DOWN_
CTRL_3

0x4C 0

001 USB2.VM

Y5 FUNC_MUX_
CTRL_C

0x34 23:21 000 UART2.CTS PULL_DOWN_
CTRL_3

0x4C 1

001 USB2.RCV

010 GPIO7

W5 FUNC_MUX_
CTRL_C

0x34 26:24 000 UART2.RTS

001 UART2.RTS

010 USB2.SE0

011 MPUIO5

V6 FUNC_MUX_
CTRL_C

0x34 29:27 000 UART2.TX

001 UART2.TX

010 USB2.TXD

Y4

V5

AA3

W4 FUNC_MUX_
CTRL_D

0x38 5:3 000 USB.PUEN

001 USB.CLKO

Y3

Note: When a row is empty, it means that there is no:
– Functional multiplexing on this pin
– Software configurable pullup/pulldown on this pin

I/O Functional Multiplexing

 A-32

Table A–2. Configuration Programming (Continued)

Ballout
Register

Field
Register
Offset

Pin-by-Pin
Pullup/Down
OMAP5910

Configuration
Register

Signal on
the TopValue

Register
Field

Register
Offset

Pin-by-Pin
Multiplexing
OMAP5910

Configuration
Register

AA2

P9

R8

AA1

Y2

W3

Y1

V4

W2

W1

U4

V3

V2

T4

U3

U2

U1

P8

T3

T2

R4

R3

R2

Note: When a row is empty, it means that there is no:
– Functional multiplexing on this pin
– Software configurable pullup/pulldown on this pin

I/O Functional Multiplexing

A-33Input/Output Descriptions

Table A–2. Configuration Programming (Continued)

Ballout
Register

Field
Register
Offset

Pin-by-Pin
Pullup/Down
OMAP5910

Configuration
Register

Signal on
the TopValue

Register
Field

Register
Offset

Pin-by-Pin
Multiplexing
OMAP5910

Configuration
Register

R1

P7

P4

P2

P3

N7

N2

N4

N1

N3

M2

N8

M4 FUNC_MUX_
CTRL_D

0x38 8:6 000 FLASH.CS2

001 FLASH.BAA

M3

M7

M8

L1

L3

L4

L7

K3

K4

Note: When a row is empty, it means that there is no:
– Functional multiplexing on this pin
– Software configurable pullup/pulldown on this pin

I/O Functional Multiplexing

 A-34

Table A–2. Configuration Programming (Continued)

Ballout
Register

Field
Register
Offset

Pin-by-Pin
Pullup/Down
OMAP5910

Configuration
Register

Signal on
the TopValue

Register
Field

Register
Offset

Pin-by-Pin
Multiplexing
OMAP5910

Configuration
Register

L8

K2

J1

J3

J4

J2

K7

H3

H2

G1

H4

K8

G2

G3

G4

F2

F3

E1

J7

E2

E3

F4

D2

Note: When a row is empty, it means that there is no:
– Functional multiplexing on this pin
– Software configurable pullup/pulldown on this pin

I/O Functional Multiplexing

A-35Input/Output Descriptions

Table A–2. Configuration Programming (Continued)

Ballout
Register

Field
Register
Offset

Pin-by-Pin
Pullup/Down
OMAP5910

Configuration
Register

Signal on
the TopValue

Register
Field

Register
Offset

Pin-by-Pin
Multiplexing
OMAP5910

Configuration
Register

E4

C1

D3

C2

B1

J8

H7

E5

Note: When a row is empty, it means that there is no:
– Functional multiplexing on this pin
– Software configurable pullup/pulldown on this pin

B-1

Appendix A

Switching Clock Modes

This appendix describes the programming guidelines for switching clock
modes in the OMAP5910 device.

Topic Page

B.1 Switching Procedure B-2.

B.2 Main Code B-3.

B.3 Delay Procedure B-4.

Appendix B

Switching Procedure

 B-2

B.1 Switching Procedure

Perform the following procedure to switch OMAP5910 clock modes:

1) Make sure the DSP clock is enabled.

2) Make sure there are no active transfers on interfaces (EMIFS, EMIFF,
TIPB, IMIF, MPUI, etc.).

3) Make sure there are no active DSP transactions being performed.

4) Disable the MPU D-cache/MMU.

5) Make sure the MPU clock control register (ARM_CKCTL), clock dividers,
and the DPLL_REG have correct contents for the clock mode the system
is being switched to.

a) Switch from SYNC mode to SYNCSCALE mode:

i) Make sure that the frequency of the traffic controller is always less
than the maximum frequency of the traffic controller.

ii) Change the clock mode.

iii) Program the clock dividers.

iv) Program DPLL to frequency desired.

b) Switch from SYNCSCALE to SYNC mode:

i) Program the DPLL to the desired frequency in synchronous
mode.

ii) Program all clock dividers to be equal.

iii) Change the clock mode to SYNC mode.

6) After the MPU write to the MPU system status register (ARM_SYSST)
(0x18) to switch modes, there must be no requests from the MPU to the
traffic controller for the next 100 MPU cycles (see Section B.2, Main Code,
and Section B.3, Delay Procedure).

7) Make sure all read and write accesses to the clock reset registers are
16-bit accesses.

Main Code

B-3Switching Clock Modes

B.2 Main Code

The following is the main code for switching modes:

main()

{

…

…..

// Enable Icache

INT_SetSupervisor();

ARM_WRITE_REG1(I_bit);

INT_SetUser();

// Enable DSP Clock

MCU_CKCTL = 0x2000;

switch_mode(CLOCK_MODE_SYNC_SCALE);

// Passing in 0x1000

….

….

}

Delay Procedure

 B-4

B.3 Delay Procedure

Use the following software routine to create a delay of 100 clock cycles after
a switch mode write.

Ensure the I-cache is enabled during switching modes.

state16 ; thumb mode

.ref edata ; defined by armas

.global $switch_mode

$switch_mode:

push {lr}

push {r1-r7}

adr r4, into_32_bis

bx r4

nop

nop

nop

.state32 ; arm mode

into_32_bis:

;

LDR R1,ARM_SYSST

MOV R3,#0

MOV R2,#0

; This is the loop that will wait for at least 100 cycles

; before issuing next request from MPU. On the first run
of the loop only Icache

; gets loaded with the loop and the next 2 instructions
but write to SYSST does not occur

; In the 2nd run of the loop only write to SYSST happens
and after that MPU runs the loop from

;Icache so no request goes out

LOOP CMP R2,#1

STREQ R0,[R1]

ADD R2,R2,#1

CMP R2,#16

BNE LOOP

the_end:

Delay Procedure

B-5Switching Clock Modes

adr r2, into_16_bis + 1

bx r2

.state16

into_16_bis:

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

pop {r1-r7}

pop {pc}

;***

;* CONSTANT TABLE *

;***

ARM_SYSST .long 0xFFFECE18

Index

Index-1

Index

1-wire protocol, MPU public peripherals 7-185

32-bit timers
DSP private peripherals

characteristics 8-5
functions 8-3
PTV divisors 8-4

MPU private peripherals 6-3

32-kHz timer
interrupt period 7-47
MPU public peripherals 7-46

loading 7-47
overriding normal counting 7-47

synchronization 7-48

A
abort

CPU 2-39
external 2-46
interrupt 2-67
TIPB bridge 2-67
UART, IrDA 12-85

ac-bias line, transactions per interrupt 11-43

ac-bias pin, frequency 11-44

access
coprocessor 15 2-10
factor, TIPB 2-66
mode, traffic controller 4-4
permissions, MPU MMU 2-27
time-out, MPU TIPB 2-66

ACK See acknowledged 13-54

acknowledged, transaction
OUT 13-54
USB IN 13-59

active
color display 11-19
display mode 11-17

address
checking, UART IrDA 12-87
index management, DMA controller 5-13
spaces, TI925T 4-7
translation, MPU MMU 2-28

addressing
algorithm, LCD 5-27
mode

DMA controller constant 5-15
DMA controller double-indexed 5-16
DMA controller generic channels 5-13
DMA controller post-incremented 5-16
DMA controller single-indexed 5-16

units, LCD 5-27
alignment fault 2-44
allocation, TIPB bridge 2-66
arbitration, I2C 7-62
architecture

C55x DSP 3-8
camera interface 7-3

buffer 7-3
clock divider 7-3
interrupt generator 7-3

DSP subsystem 3-2
OMAP1510 1-8

asynchronous
read operation

description 4-18
page mode 4-19

write, with WE operation 4-23
autoinitialization

DMA controller, generic channels 5-12
mode (DMA channel)

configuration 5-12
continuous operation 5-12
description 5-12
repetitive operation 5-12

autorestart, 32-kHz timer, MPU public
peripherals 7-47

Index

Index-2

autostart, public peripherals, MPU 7-6
autotransit mode protocol 7-43

B
bandwidth, break, LCD 5-28
battery, failure, ULPD 15-42
baud rate

data confirmation 12-45
generator

UART IrDA 12-96
UART/autobaud 12-45

big sleep, ULPD 15-42
Bluetooth interface See MCSI1 9-2
boot

mode, system operation 3-40
overlay mode 4-6

bootloader, MPU 3-44
break conditions

UART 12-45
UART IrDA 12-96

buffer
architecture, camera interface 7-3
translation look-aside (289 pin) 2-26

buffered writes, MPU MMU 2-46
burst

flash operational modes, TI 4-21
mode, MCSI 9-29
read protocol, TI 4-21

C
C55x DSP, traffic controller, connected hosts 4-4
cache

coherency
in data buffers 14-84
in OHCI data structures 14-84

operations 2-19
cam_exclk switch protocol 7-16
cam_lclk switch protocol 7-16
camera interface

architecture 7-3
buffer 7-3
clock divider 7-3
interrupt generator 7-3

clock divider 7-9
data validation 7-5

DMA procedure 7-10
FIFO buffer 7-8
interrupt generator 7-10
MPU public peripherals 7-3
registers 7-12
set of order 7-7

channel
configuration constraint, DMA controller 5-21
MCSI, multichannel enable 9-29
usage restrictions 5-28

characteristics, 32-bit timers 8-5

chip idle
power management 15-32, 15-34
procedure 15-34

clear commands, DSP private peripherals,
level-sensitive interrupts 8-31

CLKM1, clock generation 15-12

CLKM2, clock generation 15-14

CLKM3, clock generation 15-17

clock
configuration after reset, ULPD 15-49
control, DSP subsystem 3-38
disable, EMIFF SDRAM 4-30
divider, MPU public camera interface 7-9
domains 15-7

MPU 15-13
power management 15-21
traffic controller 15-17

frequency, MCSI transmit 9-30
generation

CLKM1 15-12
CLKM2 15-14
CLKM3 15-17
control 15-2
distribution 15-19
fully synchronous mode 15-10
I2C 7-63
low-power mode 15-20
module 15-6
operation 15-8
overview 15-2
schemes 15-9
synchronization 15-19
synchronous scalable mode 15-10

management
components 1-7
DPLL and clock units 1-7
module 15-6
system power 1-7

Index

Index-3

clock (continued)
MMC/SD, host controller 7-124
modes, switching B-2
MPU, I/O 7-17
polarity, MCSI (normal/inverted) 9-29
real-time, MPU 7-169
switching

cam_exclk protocol 7-16
cam_lclk protocol 7-16
MPU public camera interface 7-16

synchronization, I2C 7-63
USB function 13-5

code register, device identification, MPU private
peripherals 6-70

cold reset 15-45

color dithering 11-15

command, level-sensitive interrupt clear 8-31

command flow, MMC/SD 7-161

communication
interface, McBSP2 7-108
interprocessor 10-3
protocol 9-28

compatibility
OMAP1510/OMAP1509 6-24
software 1-11

components
DSP 1-6

megacell 3-4
peripherals 3-4
subsystem 3-4

TI925T 1-6

configuration
autoinitialization mode, DMA channel 5-12
DMA channel 13-126
McBSP1 9-7
module, MPU private peripherals 6-24
synchronous flash burst protocol 4-16
UART FIFO 12-102

connected hosts
C55x DSP 4-4
features 4-5
local bus interface 4-4
system DMA 4-4
TI925 4-4

connections, external, system DMA controller 5-8

constant addressing mode, DMA controller, generic
channels 5-15

continuous mode, MCSI 9-29

control
read transfer

autodecoded 13-70
non-autodecoded 13-73

transfer
data stage length 13-78
endpoint 0 13-65

write transfer
autodecoded 13-69
non-autodecoded 13-71
required local host actions for

non-autodecoded 13-72

coprocessor See coprocessor 15 2-10

coprocessor 15
access 2-10
cache operations 2-19
DSP subsystem

DCT/DCT 3-7
half-pixel interpolation 3-7
motion estimation calculator 3-7

MPU subsystem 2-10
TI operations 2-23
translation look-aside buffer, operations 2-21

core
DSP 3-5
MPU 2-4

CP15 See coprocessor 15 2-10

CPU
aborts, overview 2-39
overview 3-6, 3-7
reference documents, architecture and

instruction set 3-8

D
D+ pulldown, USB function controller 14-120

D+ pullup enable, USB function controller 14-118

D-Cache See data cache 2-6

D- pulldown, USB function controller 14-120

DARAM
DSP memory 3-9
DSP memory capability 3-10

data
access

error 2-43
illegal 2-41

alignment, DMA controller transfer 5-21
bursting, DMA controller generic channels 5-17

Index

Index-4

data (continued)
cache

configuration 2-6
description 2-6
operation 2-6
validity 2-7

packing
DMA controller generic channels 5-17
transfer rate 5-17

stage length, control transfer 13-78
validation, MPU public camera interface 7-5
width, traffic controller 4-4

decoder, UART, IrDA 12-87

deep sleep, ULPD 15-42

destination, system DMA, generic channel
transfers 5-9

detection, USB 13-6

device identification
code register, MPU private peripherals 6-70
MPU private peripherals 6-70

die identification 6-71

digital phase-locked loop See DPLL 1-7

direct memory access See DMA 3-16, 5-2

display specifications 11-7

distribution, clock generation 15-19

dithering
color/grayscale 11-15
generator 11-15

DMA
channel

deconfiguration 13-126
modes 5-12
operation (DSP) 9-36

events, I2C 7-66
mapping, DSP 3-26
MMC

receive mode 7-166
transmit mode 7-167

operation 7-166
USB 13-114

procedure, MPU public camera interface 7-10
public peripherals

receive 9-37
transmit 9-36

receive
channels (USB) 13-114
public peripherals 9-37

request
limit on active requests (USB) 13-124
MMC/SD host controller 7-124
USB function 13-5

system, generic channels 5-9
transfer, threshold level 7-166
transmit, public peripherals 9-36
USB

isochronous IN transactions 13-124
isochronous OUT transactions 13-119
non-isochronous IN transactions 13-120
non-isochronous OUT transactions 13-114
transmit channels 13-120

DMA controller
channel, physical 5-4
components 1-6
data alignment 5-21
DSP

read synchronization 3-20
write synchronization 3-20

DSP subsystem 3-16
endianism 5-22
features 3-16, 5-5
general-purpose ports 5-4
generic channels

addressing modes 5-13
autoinitialization 5-12
constant addressing mode 5-15
data packing and bursting 5-17
double-indexed addressing mode 5-16
priorities between channels 5-13
post-incremented addressing mode 5-16
single-indexed addressing mode 5-16
transfer control 5-10
transfer start 5-11
transfer suspension 5-11

hardware resource ports 5-5
interrupt generation 5-23
memory space protection 5-25
MPU subsystem 2-55
overview 5-2
packing and bursting 5-18
physical channel transfers 5-4
programmable

generic channels 5-13
interrupt sources 5-23

request mapping 5-32
system

external connections 5-8
functional features 5-6

Index

Index-5

DMA controller (continued)
transfer

channel configuration constraint 5-21
control 5-10
sizes and types 5-7
start 5-11
suspension 5-11

domain
access control, MPU MMU 2-42
clock 15-7
fault 2-45
MPU MMU 2-27

double-indexed addressing mode, DMA controller,
generic channels 5-16

double-mapped space, MPU subsystem, data
cache 2-8

DPLL, idle procedure 15-31

DSP
architecture 3-2
clock and reset control, overview 3-38
components 1-6, 3-4
core

description 3-5
subsystem 3-5

CPU, overview 3-6
DMA, mapping 3-26
DMA controller

features 3-16
overview 3-16
read synchronization 3-20
write synchronization 3-20

DMA public peripherals, receive 9-37
EMIF, overview 3-36
hardware acceleration modules, overview 3-7
idle mode

power management 15-24
procedure 15-25

interrupt
handlers 8-15
level 1 8-16
level 2 8-17

management of MCSI 9-32
memory

connections 3-10
instruction cache 3-11
internal memory 3-10
peripheral register addresses 3-14
system 3-12
types 3-9

MMU
endianism conversion 2-72
overview 2-47
translation 3-37

MPU interface
HOM/SAM mode change 3-34
overview 3-33

MPUI port 2-55
onchip memory

overview 3-6
power conservation 3-7

peripherals 1-8
public peripherals 3-39

description 9-2
DMA channel operation 9-36
DMA transmit 9-36

subsystem
overview 3-2
peripherals 3-4

system
boot mode 3-40
memory 3-12
operation 3-39
private peripherals 3-39

timers
characteristics 8-5
interrupt levels 8-4

TIPB bridge, overview 3-27

DSP private peripherals
32-bit timers 8-5
edge-sensitive interrupt 8-17
edge-triggered interrupts 8-26
interrupt handler, maskable interrupt 8-15
interrupt interface, description 8-26
interrupt sequence 8-19
level 2 interrupt mapping 8-25
level-sensitive interrupt 8-17
level-sensitive interrupts 8-28

clear commands 8-31
maskable interrupt 8-15
program in timer mode 8-12
program in watchdog mode 8-12
PTV divisors 8-4
timers 8-2, 8-3

programming 8-5
registers 8-6

watchdog timer 8-10
program in timer mode 8-12
program in watchdog mode 8-12

Index

Index-6

DSP public peripherals
communication, protocol 9-28
McBSP 9-3
McBSP1, overview 9-4
McBSP3, overview 9-11
MCSI, overview 9-27
MCSI1, overview 9-52
MCSI2 9-54

DSP/MPU, communication 10-3

dual-frame, LCD operation 5-28

dual-panel mode, LCD controller 11-2

dual-port RAM interface mode, EMIFS 4-24

E
edge-sensitive interrupt, DSP private peripherals,

interrupt handler 8-17

edge-triggered interrupts, DSP private
peripherals 8-26

EEPROM interface, protocol, MicroWire
interface 7-39

elastic buffering 1-7

embedded trace macrocell See ETM 2-75

EMIF
connections 1-6
defined 3-36

EMIFF
autorefresh, initialization 4-28
endianism conversion 4-30
initialization 4-28
memory interfaces, traffic controller 4-25
operation 4-26
priority handler 4-25
SDRAM

clock disable 4-30
self-refresh 4-29

traffic controller, external memory 4-4
video memory source 5-26

EMIFS
configuration registers 4-16
description 4-13
devices driven 4-15
dual-port RAM interface mode 4-24
initialization 4-16
memory timing control 4-17
not ready 4-24
operation 4-15

priority handler 4-14
signal list 4-13
traffic controller, external memory 4-4

encoder, UART, IrDA 12-86

endianism
and OHCI data buffers 14-92
and USB host controller access to system

memory 14-91
conversion

big endian format 2-71
DSP data format 2-72
EMIFF 4-30
little endian format 2-71
MPU subsystem 2-71
through DSP MMU 2-72
through MPUI 2-74

DMA controller 5-22

endpoint 0
control, transfer 13-65
interrupt handler

receive 13-91
transmit 13-91

error, conditions
autodecoded control read 13-70
autodecoded control write 13-69
isochronous IN 13-65
isochronous IN endpoint FIFO 13-65
isochronous OUT 13-63
isochronous OUT endpoint FIFO 13-63
non-autodecoded control read transfer 13-75
non-autodecoded control write transfer 13-73
non-isochronous IN 13-60
non-isochronous IN endpoint FIFO 13-61
non-isochronous, non-control OUT 13-55
non-isochronous, non-control OUT endpoint

FIFO 13-56

ETM environment
MPU 2-75
operation 2-77

event capture, MPU I/O, MPU public
peripherals 7-25

example, protocol
autotransit mode 7-43
LCD controller 7-42
serial EEPROM 7-39

external aborts
MPU MMU 2-46
TI925T 2-46

external connections, system DMA controller 5-8

Index

Index-7

external memory
interconnection

Hitachi flash memory 4-59
Intel flash memory 4-58

traffic controller 4-4
external memory interface See EMIF 3-36
external memory interface fast See EMIFF 4-25
external memory interface slow See EMIFS 4-13

F
fault

address, MMU 2-41
alignment 2-44
checking sequence, MMU 2-43
domain 2-45
MMU 2-39
permission 2-45
status, MMU 2-41
translation 2-45

features
DMA controller 5-5

DSP 3-16
ETM 2-75
MPU

ETM environment 2-75
interface 2-56

MPU subsystem, MPU interface 2-56
OMAP1510 1-6
traffic controller, connected hosts 4-5

FIFO
camera interface, MPU public peripherals 7-8
DMA mode

UART 12-42
UART IrDA 12-93

interrupt mode, UART IrDA 12-91
out of data, LCD 5-28
output 11-16
polled mode

UART 12-42
UART IrDA 12-92

reset, MPU public peripherals 7-6
status, UART IrDA 12-100

filter, noise, I2C prescaler 7-65
flash memory

Hitachi 4-59
Intel 4-57

flip-flop, edge-triggered interrupts, DSP private
peripherals 8-26

flow control
hardware, UART 12-46
software, UART 12-47

FOSCMOD, clock dividers, MPU public
peripherals 7-9

frame
buffer, LCD controller 11-9
duration error, MCSI 9-34
exclusive, LCD 5-28
mode (MCSI), continuous/burst 9-29
size, MCSI 9-30
structure (MCSI)

multichannel 9-28
single-channel 9-28

synchronization, MPU public peripherals 7-199
synchronization (MCSI)

normal/alternate 9-29
normal/inverted 9-29
short/long frame 9-28

frequency
ac-bias pin 11-44
range, traffic controller 4-50

functional blocks, architecture, MPU public
peripherals 7-3

functional features, system DMA controller 5-6
functional reset, generation, ULPD 15-43
functions, DSP private peripherals, 32-bit

timers 8-3

G
general-purpose

ports, DMA controller 5-4
UART See UART3 10-11

generic channels
addressing modes 5-13
autoinitialization 5-11
constant addressing mode 5-15
data packing and bursting 5-17
double-indexed addressing mode 5-16
post-incremented addressing 5-16
priorities between channels 5-13
single-indexed addressing mode 5-16
system DMA 5-9

GPIO
event capture, MPU public peripherals 7-21,

7-24
interface 7-20
interrupt masking, MPU public peripherals 7-22
shared peripherals 10-7

Index

Index-8

grayscale dithering 11-15

H
handshaking

autodecoded control write 13-69
control read transfer, autodecoded 13-70
isochronous IN endpoint 13-65
isochronous OUT endpoint 13-62
non-autodecoded control read 13-74
non-autodecoded control write transfers 13-72
non-isochronous IN endpoint 13-59
USB, non-isochronous, non-control OUT

endpoint 13-54

hardware
acceleration modules, CPU 3-7
flow control

UART 12-46
UART IrDA 12-97

reset, USB host controller 14-116
resource ports, DMA controller 5-5

HDQ, MPU, description 7-185

Hitachi flash memory 4-59

HOM/SAM mode change, DSP subsystem, MPU
interface 3-34

horizontal, signal ports, camera interface 7-3

horizontal back porch, description 11-33

horizontal front porch, description 11-33

horizontal synchronization pulse width See
HSW 11-35

host, controller
clock control 14-115
connectivity with USB transceivers 14-48
description 7-185
MMC/SD 7-120
MMC/SD clocks 7-124
MMC/SD DMA request 7-124
MMC/SD features 7-122
MMC/SD interrupt 7-124
MMC/SD reset 7-124
MMC/SD signal pads 7-122
OHCI reset 14-116
power management 14-117
USB 14-2
USB access to system memory 14-81
USB hardware reset 14-116
USB reset 14-115

host-only mode See HOM 3-29

HSW, description 11-35

I
I/O

clocks, MPU 7-17
configuration, USB function 13-2
interrupts, MPU 7-17
MPU, keyboard interface 7-19
reset, MPU 7-17

I2C
arbitration 7-62
clock

generation 7-63
synchronization 7-63

controller
features 7-64
master 7-64
slave 7-64

DMA events 7-66
interrupt, types 7-65
master

receiver 7-61
transmitter 7-61

operation 7-60
prescaler

description 7-65
noise filter 7-65

programming 7-87
receiver, slave 7-62
reset 7-65
serial data formats 7-60
transmitter, slave 7-61

I2S audio interface See McBSP1 9-2
identification code 6-70
idle

modes
DSP 15-24
MPU 15-26
traffic controller 15-30

procedure
DPLL 15-31
DSP 15-25

illegal data access 2-41
image data, ports, camera interface 7-3
IMIF

operation 4-13
priority handler 4-12
traffic controller, memory interfaces 4-12
video memory source 5-26

Index

Index-9

initialization
EMIFF, SDRAM autorefresh 4-28
EMIFF mode 4-28
EMIFS 4-16
SDRAM mode 4-28
USB 13-79

instruction cache
DSP, memory 3-11
MPU subsystem 2-5

instruction rate cycle 3-7

Intel
flash memory 4-57, 4-58
protocol 4-16
Smart3 protocol, restrictions 4-47

inter-integrated circuit See I2C 7-57

interface
activation, MCSI 9-38
camera 7-3
DSP interrupt 8-26
EMIFF 4-25
EMIFS 4-13
ETM 2-75
I2S audio codec, McBSP1 9-7
IMIF 4-12
management, MCSI 9-32
McBSP1 9-4, 9-7
MCSI 9-27
MCSI1 9-52
MCSI2 9-54
memory, OMAP1510 device 4-57
MicroWire 7-30
MPU 2-55, 3-33

ETM environment 2-75

internal memory
DARAM, SARAM, PDROM 3-10
DSP subsystem, DARAM, SARAM,

PDROM 3-10
interface See IMIF 4-12

internal organization, SDRAM 4-49

interprocessor communication
mailboxes 10-3
overview 10-3

interrupt
aborts 2-67
associations, MCSI 9-32
DSP

level 1 8-16
level 2 8-17

DSP private peripherals
edge-triggered 8-26
level-sensitive 8-28

generation, DMA controller 5-23
generator

camera interface architecture 7-3
camera interface interrupts 7-10

handler
DSP private peripherals overview 8-15
endpoint 0 receive 13-91
endpoint 0 transmit 13-91
MPU private peripherals 6-14
non-isochronous, non-control IN endpoint

transmit 13-105
non-isochronous, non-control OUT endpoint

receive 13-105
SOF 13-105
USB reset 13-100
USB resume 13-100
USB setup 13-87
USB suspend 13-100

handler (level 1)
DSP private peripherals 8-16
MPU private peripherals 6-14

handler (level 2)
DSP private peripherals 8-17
MPU private peripherals 6-16

I2C 7-65
interface

DSP private peripherals 8-26
functional description 8-26

management, RTC 7-174
mapping

McBSP1 9-6
McBSP3 9-14
MCSI1 9-52
MCSI2 9-54

mapping (level 1)
DSP private peripherals 8-16
MPU private peripherals 6-17

mapping (level 2)
DSP private peripherals 8-25
MPU private peripherals 6-17

MMC/SD, host controller 7-124
MMU, local bus 14-47
MPU, I/O 7-17
OHCI 14-46
parsing

non-isochronous endpoint-specific 13-100
USB 13-87

Index

Index-10

interrupt (continued)
period, 32-kHz timer 7-47
program, MCSI 9-35
sequence (level 2), DSP private

peripherals 8-19
sources, USB host controller 14-46
UART 12-39
UART IrDA 12-89
USB

function 13-2
operation 13-86
summary 13-113

wake-up, ULPD 15-42
IrDA, UART

abort 12-85
address checking 12-87
asynchronous transparency 12-85
baud rate generator 12-96
break conditions 12-96
decoder 12-87
encoder 12-86
FIFO DMA mode 12-93
FIFO polled mode 12-92
hardware flow control 12-97
interrupts 12-89
pulse shaping 12-86
receiver overrun 12-100
sleep mode 12-95
software flow control 12-98
status FIFO 12-100
time-out condition 12-96
transmission underrun 12-100
trigger levels 12-88

J
JTAG port 1-7

K
keyboard interface, MPU I/O 7-19

L
large page access 2-26
LCD

ac-bias pin, frequency 11-44
active color panels 11-19
active mode 11-7

addressing
algorithm 5-27
units 5-27

bandwidth break 5-28
channel usage restrictions 5-28
color passive mode 11-7
constant register values 5-28
dedicated channel description 5-26
display, specifications 11-7
dual-frame operation 5-28
enable 11-31
exclusive frames 5-28
FIFO out of data 5-28
horizontal back porch 11-33
horizontal front porch 11-33
lines per panel 11-39
mono passive mode 11-7
mono passive panels 11-18
panel signals, reset 11-49
passive color panels 11-18
pixels per line 11-35
TFT

alternate signal 11-28
selection 11-29

transfer 5-26
vertical back porch 11-37
vertical front porch 11-37
vertical synchronization pulse width 11-38

LCD controller 11-9
active display mode 11-17
bias frequency control 11-17
dual panel mode 11-2
frame buffer 11-9

memory organization 11-11
hsync/vsync rise and fall,

programmability 11-42
lookup palette 11-14
output FIFO 11-16
overview 11-2
palette entries 11-9
panel size 11-2
pins 11-17
pixel clock

divider 11-44
frequency 11-5

programming options 11-17
protocol 7-42
register fields 11-23
single panel mode 11-2
transactions per interrupt, ac-bias line 11-43

Index

Index-11

LED pulse generator See LPG 7-100

level 1
interrupt handler, MPU private peripherals 6-14
interrupt mapping, MPU private

peripherals 6-17

level 2
interrupt handler, MPU private peripherals 6-16
interrupt mapping

DSP private peripherals 8-25
MPU private peripherals 6-17

level-sensitive interrupt, DSP private
peripherals 8-28
interrupt handler 8-17

liquid crystal display See LCD 5-26

little endian mode, MPU 11-13

local bus
addressing, and data structure pointers 14-84
interface, internal 4-4
MMU

interrupts 14-47
programming 14-114

overview 14-93
virtual addressing, USB 14-82

local host, required actions, non-autodecoded
control write transfers 13-72

lookup palette 11-14
palette entries 11-14

LPG
description 7-100
design 7-101
features 7-100
power management 7-101

M
mailbox interrupt 10-3

software setup 10-4

mailboxes, OMAP1510 1-7

manufacturer, identity, identification code 6-70

mapping
DMA request 5-32
peripherals, DSP 3-14

maskable interrupt, DSP private peripherals,
interrupt handler 8-15

master
I2C controller 7-64
mode (MCSI) 9-28

master/slave control, MCSI 9-28
McBSP

memory mapping 9-56
overview 9-3
peripheral mapping 9-56

McBSP1
application 9-7
I2S audio codec interface 9-7
interrupt, mapping 9-6
overview 9-4
request, mapping 9-6

McBSP2
communication interface 7-108
description 7-104

McBSP3
application 9-14
interrupt, mapping 9-14
optical audio interface 9-14, 9-15
overview 9-11
request, mapping 9-14

MCSI
chronograms 9-39
clock, normal/inverted polarity 9-29
communication protocol 9-28
configuration

example 9-30
frame size 9-30
parameters 9-28
word size 9-30

features 9-27
frame structure

multichannel 9-28
single-channel 9-28

frame-synchronization
normal/alternate 9-29
normal/inverted 9-29

interface
activation 9-38
management 9-32

interrupt
associations 9-32
frame duration error 9-34
generation 9-32
programming 9-35
receive 9-32
reset 9-36
transmit 9-33
unmasking 9-35
validating 9-35

memory mapping 9-56

Index

Index-12

MCSI (continued)
multichannel mode, channel enable 9-29
peripheral mapping 9-56
received data loading 9-31
registers, write protection 9-44
short/long framing 9-28
slave/master control 9-28
software reset 9-38
start sequence 9-38
stop 9-31
stop sequence 9-38
transmission

baud rate 9-45
clock frequency 9-45

transmission clock, frequency 9-30
transmit data loading 9-31

MCSI1
interrupt, mapping 9-52
overview 9-52
request, mapping 9-52

MCSI2
interrupt, mapping 9-54
overview 9-54
request, mapping 9-54

memory
and peripheral mapping, MCSI 9-57
capability

PDROM 3-10
SARAM 3-10

connections, DSP subsystem 3-10
interface traffic controller See traffic

controller 4-2
map

McBSP 9-56
MCSI 9-56
MPU 1-9
TI925T 4-7
traffic controller 4-6

space protection, DMA controller 5-25
timing control, EMIFS 4-17
types, DSP subsystem 3-9

memory management unit See MMU 2-26, 2-39,
3-37

microprocessing unit interface See MPUI 2-55

MicroWire interface, MPU public peripherals 7-30

MMC, DMA
receive mode 7-166
transmit mode 7-167

MMC/SD
command flow 7-161
host controller

clocks 7-124
description 7-120
DMA request 7-124
features 7-122
interrupt 7-124
reset 7-124
signal pads 7-122

internal pullups 7-125
pin multiplexing 6-26

MMU
accessible registers 2-28
domain access control 2-42
DSP, overview 2-47, 3-37
fault checking sequence 2-43
faults 2-39
interrupts, local bus 14-47
permission access 2-43
programming, USB local bus 14-114

modem interface See MCSI2 9-2

monochrome passive mode 11-7

MPU
bootloader 3-44
clock, domains 15-13
components, defined 2-2
coprocessor 15

access 2-10
introduction 2-10
register description terms 2-10

core, description 2-4
data cache

double-mapped space 2-8
operation 2-6
validation 2-7
overview 2-6

endianism conversion 2-71
through DSP MMU 2-72
through MPUI 2-74

ETM environment
features 2-75
interface 2-75
overview 2-75

GPIO interface 7-20
I/O

clocks 7-17, 7-19, 7-20
keyboard interface 7-19
public peripherals 7-17
reset 7-17

Index

Index-13

MPU (continued)
idle mode, power management 15-26
instruction cache

operation 2-5
overview 2-5
validation 2-5

interface
DSP subsystem 3-33
features 2-56
overview 2-55

interrupt handlers
level 1 6-14
level 2 6-16
overview 6-14

interrupt mapping
level 1 6-17
level 2 6-17

interrupts, I/O 7-17
little endian mode 11-13
memory map 1-9
MMU

accessible registers 2-28
address translation 2-28
buffered writes 2-46
components 2-26
CPU aborts 2-39
defined 2-26
domain access control 2-42
domains and access permissions 2-27
external aborts 2-46
fault address 2-41
fault checking sequence 2-43
fault status 2-41
faults 2-39
permission access 2-43
translation look-aside buffer (289-pin) 2-26
translation process 2-29
translation table 2-27

overview 2-2
peripherals 1-7
posted write, TIPB 2-67
public peripherals 7-2

autostart 7-6
frame adjustment counter 7-198
frame synchronization 7-199
loading 32-kHz clock 7-47
overriding 32-kHz timer 7-47
reset FIFO 7-6

real-time clock, oscillator drift
compensation 7-175

TIPB
access factor 2-66
access time-out 2-66
strobe frequencies 2-66
time-out 2-66

TIPB bridge
abort 2-67
allocation 2-66
overview 2-65
pipeline mode 2-67
posted write 2-67
word accesses 2-65

write buffer
operation 2-9
overview 2-8
SWAP instruction 2-9

MPU private peripherals
32-bit timer 6-3
configuration module

description 6-24
functionality 6-24

device identification 6-70
interrupt handlers 6-14
interrupt mapping

level 1 6-17
level 2 6-17

level 1 interrupt handler 6-14
level 1/level 2 interrupt mapping 6-17
level 2 interrupt handler 6-16
overview 6-2
program in timer mode 6-11
program in watchdog mode 6-10
programming timers 6-5
timer 6-3

registers 6-6
watchdog timer 6-8

description 6-8
program in timer mode 6-11
program in watchdog mode 6-10

MPU public peripherals
1-wire protocol, description 7-185
32-kHz timer 7-46

overview 7-46
architecture, functional blocks 7-3
camera interface

architecture 7-3
clock divider 7-9
clock switching 7-16
data validation 7-5

Index

Index-14

MPU public peripherals (continued)
camera interface

DMA procedure 7-10
FIFO buffer 7-8
interrupt generator 7-10
overview 7-3
registers 7-12
set of order 7-7

clock
divider 7-9
switching 7-16

data validation 7-5
DMA procedure 7-10
event capture 7-25
FOSCMOD 7-9
HDQ, description 7-185
horizontal/vertical signal ports 7-3
image data ports 7-3
MicroWire interface

protocol 7-38
registers 7-30

MPU I/O
GPIO event capture 7-21, 7-24
GPIO interrupt masking 7-22
overview 7-17

real time clock 7-169
scalable time-tick interrupt 7-46
set of order 7-7

MPU/DSP
communication 10-3
shared peripherals

GPIOs 10-7
overview 10-2

MPUI
access modes 2-56
endianism conversion 2-74
features 2-56

mu-law interface See MCSI1, MCSI2 9-52

multichannel
enable, MCSI 9-29
frame structure 9-28
serial interface See MCSI 9-27

multiplexing, conflicts 14-80

N
NAK See non-acknowledged 13-55
noise, filter, I2C prescaler 7-65
non-acknowledged, transaction

OUT 13-55
USB IN 13-59

not ready, EMIFS functionality 4-24
null pointers 14-91

O
OHCI

controller, overview 14-5
data buffers, and endianism 14-92
differences from OMAP1510 14-5
interrupts 14-46
null pointers 14-91
OMAP1510 implementation 14-7
reset, USB host controller 14-116

OMAP1510
289-pin package, diagram 1-3
architecture 1-8
clock management, defined 1-7
description 1-2, 1-4
device identification 6-70
die identification 6-71
elastic buffering 1-7
enabling 6-25
features 1-6
mailboxes 1-7
memory interfaces 4-57
MPU memory map 1-9
OMAP1509 compatibility 6-24
overview 1-2
pin multiplexing, generic 6-25
pulldown, control 6-25
pullup, control 6-25
software, compatibility 1-11
SRAM memory, defined 1-7
traffic controller, defined 1-7
transceiverless link logic 14-50

onchip memory, DSP subsystem, CPU
overview 3-6

operating system, scheduling, Microsoft Windows
CE 7-46

Index

Index-15

operation
asynchronous page mode read 4-19
asynchronous read 4-18
asynchronous write with WE 4-23
DMA 7-166
EMIFF 4-26
EMIFS 4-15
ETM 2-77
I2C 7-60
IMIF 4-13
LCD controller 11-9
MPU subsystem

data cache 2-6
instruction cache 2-5
write buffer 2-9

TI burst read 4-21
TLB 2-21

optical audio interface See McBSP3 9-2

oscillator, power management 15-43

oscillator drift compensation, MPU, real-time
clock 7-175

overrun, receiver, UART IrDA 12-100

P
packet error

USB IN 13-61
USB OUT 13-56

page crossing 4-47

panel size, LCD controller 11-2

parsing
interrupts, non-isochronous

endpoint-specific 13-100
USB, interrupt 13-87

part, number, identification code 6-70

passive
color display 11-18
monochrome display 11-18

PDROM
DSP memory 3-9
DSP memory capability 3-10

peripheral
DSP 1-8
mapping

McBSP 9-56
MCSI 9-56

MPU 1-7

shared 1-8
DSP/MPU 3-40

permission
access, MPU MMU 2-43
fault 2-45

physical channel 5-24
status register 5-24
transfers, DMA controller 5-4

pin multiplexing
generic 6-25
MMC/SD 6-26
USB 14-48

pipeline mode, TIPB bridge 2-67
pixel clock

divider 11-44
frequency 11-5
refresh rate 11-44

pixels, per line 11-35
port, passthrough mode, USB 14-119
post-incremented addressing mode, DMA controller,

generic channels 5-16
posted write, TIPB bridge 2-67
power

conservation, onchip memory (DSP) 3-7
management

chip idle control 15-32
chip idle mode 15-34
chip idle procedure 15-34
clock configuration after reset 15-49
clock domains 15-21
cold reset 15-45
DSP idle modes 15-24
external devices 15-48
LPG 7-101
MPU idle modes 15-26
oscillators 15-43
power-saving modes 15-38
state machine 15-22
traffic controller idle modes 15-30
ULPD reset protocol 15-44
ULPD state machine 15-39
USB 13-127
USB host controller 14-117
wake-up control 15-32
wake-up procedure 15-36
warm reset 15-46
watchdog reset 15-46

saving, modes 15-38
power-on, reset, ULPD 15-42

Index

Index-16

prescale clock timer value See PTV 8-4

prescaler, I2C
description 7-65
noise filter 7-65

priorities between channels, DMA controller, generic
channels 5-13

priority
algorithms

EMIFF 4-25
EMIFS 4-14
IMIF 4-12

handler
EMIFF 4-25
EMIFS 4-14
IMIF 4-12
scheme 4-14

private peripherals, DSP subsystem, system
operation 3-39

processor, MPU/DSP communication 10-3

programmability, hsync/vsync rise and fall, LCD
controller 11-42

programmable
generic channels, DMA controller 5-4
interrupt sources, DMA controller 5-23

programming
architecture, maximum performance 3-9
I2C 7-87
timers

DSP private peripherals 8-5
MPU private peripherals 6-5

watchdog timer (DSP)
timer mode 8-12
watchdog mode 8-12

watchdog timer (MPU)
timer mode 6-11
watchdog mode 6-10

protocol
autotransit mode, example 7-43
burst read (TI) 4-21

operational modes 4-21
cam_exclk switch, clock switching 7-16
cam_lclk switch, clock switching 7-16
communication, DSP public peripherals 9-28
Intel 4-16
LCD controller, example 7-42
MicroWire interface 7-38
serial EEPROM, example 7-39
synchronous flash burst, configuration 4-16

PTV divisors, 32-bit timers, DSP private
peripherals 8-4

public peripherals
DSP subsystem

overview 9-2
system operation 3-39

MPU 7-2
autostart 7-6
frame adjustment counter 7-198
frame synchronization 7-199
reset FIFO 7-6

pulldown, control 6-25
pullup

control 6-25
internal, MMC/SD 7-125

pulse shaping, UART, IrDA 12-86
pulse-width tone 7-52
PWL

description 7-50
registers 7-51

PWT
programming 7-54
registers 7-53

R
read synchronization, DSP DMA controller 3-20
receive, interrupt, MCSI 9-32
receiver, I2C

master 7-61
slave 7-62

refresh rate, pixel clock 11-44
request

mapping
DMA controller 5-32
McBSP1 9-6
McBSP3 9-14
MCSI1 9-52
MCSI2 9-54

USB, autodecoded vs. non-autodecoded 13-75
reset

cold, ULPD 15-45
control, DSP subsystem 3-38
FIFO, MPU public peripherals 7-6
hardware, USB host controller 14-116
I2C 7-65
interrupt handler, USB 13-100
LCD panel, signals 11-49
management, overview 15-2

Index

Index-17

reset (continued)
MMC/SD, host controller 7-124
module, description 15-5
MPU, I/O 7-17
OHCI, USB host controller 14-116
power-on, ULPD 15-42
protocol, ULPD 15-44
software

MCSI 9-38
UART 12-101

system, control 15-2
USB

function 13-5
host controller 14-115

warm, ULPD 15-46
watchdog, ULPD 15-46

restrictions
channel usage, LCD 5-28
Intel Smart3 protocol 4-47

resume, interrupt handler, USB 13-100

rise and fall programmability
hsync/vsync, LCD controller 11-42
LCD controller 11-42

S
SARAM, DSP memory 3-9, 3-10

scalable time-tick interrupt, MPU public
peripherals 7-46

schemes, clocking 15-9

SDRAM
clock disable, EMIFF 4-30
initialization 4-28
self-refresh, EMIFF 4-29

section access 2-26

self-refresh, SDRAM, EMIFF 4-29

sequence bit error, USB OUT 13-56

serial EEPROM protocol 7-39

set of order, MPU public peripherals, camera
interface 7-7

shared access mode See SAM 3-29

shared memory space (MPU and DSP) 10-3

shared peripherals 1-8
DSP/MPU 3-40
MPU/DSP

description 10-2
GPIOs 10-7

short/long framing (MCSI) 9-28
signal pads, MMC/SD, host controller 7-122
signal sharing, ARM_BOOT 14-120
single-channel frame structure, MCSI 9-28
single-indexed addressing mode, DMA controller,

generic channels 5-16
single-panel mode, LCD controller 11-2
single-transfer mode, DMA channel,

description 5-12
SIR mode, UART IrDA 12-83
slave, I2C controller 7-64
slave mode, MCSI 9-28
slave/master control, MCSI 9-28
sleep

mode, UART IrDA 12-95
UART 12-44

small page access 2-26
SOF, interrupt handler, USB 13-105
software

compatibility 1-11
flow control

UART 12-47
UART IrDA 12-98

reset, UART 12-101
USB disconnect 13-8

source, system DMA, generic channel
transfers 5-9

SRAM, traffic controller, internal memory 4-4
stalled, transaction

USB IN 13-60
USB OUT 13-55

state machine, ULPD power management 15-39
states

attached handler 13-99
changed handler 13-96
unattached handler 13-99

status FIFO, UART IrDA 12-100
strobe frequencies, TIPB, MPU 2-66
suspend, interrupt handler, USB 13-100
SWAP instruction, write buffer, MPU

subsystem 2-9
synchronization

clock generation 15-19
frame, MPU public peripherals 7-199
signals, vertical and horizontal, camera

interface 7-3
synchronous burst read protocol, Intel 4-16

Index

Index-18

system
DMA, generic channels 5-9
DMA controller components, defined 1-6
DMA generic channel transfers

destinations 5-9
sources 5-9

DMA traffic controller, connected hosts 4-4
memory, DSP subsystem 3-12
operation

DSP private peripherals 3-39
DSP public peripherals 3-39
DSP subsystem 3-39
shared peripherals 3-40

system operation, DSP subsystem, boot
mode 3-40

T
TC See traffic controller 4-4

thin filter transistor mode 11-7

threshold level, DMA transfer 7-166

TI burst flash, operational modes 4-21

TI peripheral bus See TIPB 2-65, 2-67

TI925T
aborts 2-46
address spaces 4-7
components 1-6
memory map 4-7
traffic controller, connected hosts 4-4

time-out
conditions

UART 12-45
UART IrDA 12-96

TIPB 2-66

timer
characteristics, DSP timers 8-5
DSP private peripherals 8-2, 8-3
interrupt levels, DSP 8-4
programming

DSP private peripherals 8-5
MPU private peripherals 6-5

registers
DSP private peripherals 8-6
MPU private peripherals 6-6

watchdog
DSP private peripherals 8-10
MPU private peripherals 6-8

tiny page access 2-26

TIPB
access time-out, MPU 2-66
MPU

access factor 2-66
strobe frequencies 2-66
time-out 2-66

pipeline mode 2-67
private 2-65
public 2-65
switch for UARTs 12-13

TIPB bridge
aborts 2-67
allocation 2-66
components 3-27
DSP subsystem 3-27
MPU subsystem 2-65
posted write 2-67
private 3-27
public 3-27

TLB See translation look-aside buffer 2-21

traffic controller
access mode and data width 4-4
clock domains 15-17
connected hosts

C55x DSP 4-4
features 4-5
system DMA 4-4
TI925T 4-4

functions 4-2
idle modes, power management 15-30
internal memory, SRAM 4-4
memory interfaces 4-12

EMIFF 4-25
IMIF 4-12

memory map 4-6
device types/chip-select 4-6

overview 4-2
registers 4-42

transaction
acknowledged

USB IN 13-59
USB OUT 13-54

non-acknowledged
USB IN 13-59
USB OUT 13-55

stalled
USB IN 13-60
USB OUT 13-55

Index

Index-19

transaction (continued)
USB

isochronous IN 13-63
isochronous OUT 13-61
non-isochronous IN 13-57
non-isochronous, non-setup OUT 13-52
overview 13-52

transactions per interrupt, ac-bias line, LCD
controller 11-43

transceiverless, connection, OMAP1510 link 14-50

transfer
autodecoded control read, USB 13-70
autodecoded control write, USB 13-69
control

data stage length 13-78
DMA controller 5-10
endpoint 0 13-65
non-autodecoded read 13-73
non-autodecoded write 13-71
required local host actions for

non-autodecoded write 13-72
data alignment 5-21
generic channels, system DMA 5-9
LCD 5-26
size, DMA controller 5-7
start, DMA controller 5-11
suspension 5-11

DMA controller 5-11
system DMA, generic channels 5-9
type, DMA controller 5-7
USB, preparation 13-83

transient suppression, USB connectors 14-118

translation
fault 2-45
page

large 2-39
small 2-38
tiny 2-36

process, MPU MMU 2-29
section 2-34
table, MPU MMU 2-27

translation look-aside buffer
289-pin, MPU MMU 2-26
lockdown operations 2-22
operation 2-21

transmission
baud rate, MCSI 9-45
clock frequency, MCSI 9-30, 9-45

transmit, interrupt, MCSI 9-33

transmitter, I2C
master 7-61
slave 7-61

trigger levels, UART 12-39
IrDA 12-88

U
UART

autobauding mode 12-48
break conditions 12-45
FIFO

configuration 12-102
DMA mode 12-42
polled mode 12-42

hardware, flow control 12-46
interrupts 12-39
IrDA

abort 12-85
address checking 12-87
asynchronous transparency 12-85
baud rate generator 12-96
break conditions 12-96
decoder 12-87
encoder 12-86
FIFO DMA mode 12-93
FIFO interrupt mode 12-91
FIFO polled mode 12-92
hardware flow control 12-97
interrupts 12-89
pulse shaping 12-86
receiver overrun 12-100
SIR mode 12-83
sleep mode 12-95
software flow control 12-98
status FIFO 12-100
time-out conditions 12-96
transmission underrun 12-100
trigger levels 12-88
UART mode 12-83

mode 12-37
sleep mode 12-44
software

flow control 12-47
reset 12-101

time-out conditions 12-45
trigger levels 12-39
with autobauding mode 12-38

Index

Index-20

UART1, description 12-6
UART2, description 12-8
UART3, description 12-11
ULPD

32-kHz clock
control 15-41
gauging 15-39

battery failed event 15-42
big sleep 15-42
deep sleep 15-42
description 15-5
functional reset generation 15-43
initializing, to generate 48-MHz clock 14-115
interrupt, wake-up 15-42
power-on reset 15-42
reset

cold 15-45
protocol 15-44

warm reset 15-46
watchdog reset 15-46

underrun, transmitter, UART IrDA 12-100
USB

connectors, transient suppression 14-118
detection 13-6
DMA

isochronous IN transactions 13-124
isochronous OUT transactions 13-119
non-isochronous IN transactions 13-120
non-isochronous OUT 13-114
operation 13-114
receive channels 13-114
transmit channels 13-120

DMA requests, limit on active requests 13-124
function

clocks 13-5
DMA requests 13-5
I/O configuration 13-2
interrupts 13-2
module 13-2
overview 7-117
reset 13-5

function controller
connectivity with USB transceivers 14-49
D+ pulldown 14-120
D+ pullup enable 14-118
D- pulldown 14-120
VBUS monitoring 14-118

host controller 14-2
interrupt sources 14-46
access to system memory 14-81

clock control 14-115
description 7-185
hardware reset 14-116
null pointers 14-91
OHCI reset 14-116
power management 14-117
reset 14-115

host controller access to system memory, and
endianism 14-91

interrupt
operation 13-86
parsing 13-87
parsing non-isochronous

endpoint-specific 13-100
summary 13-113

interrupt handler
setup 13-87
SOF 13-105

initialization 13-79
local bus, virtual addressing 14-82
local host, MMU programming 14-114
pin multiplexing 14-48
port passthrough mode 14-119
power management 13-127
requests, autodecoded vs.

non-autodecoded 13-75
reset, interrupt handler 13-100
resume, interrupt handler 13-100
signal multiplexing 14-52
software disconnect 13-8
suspend, interrupt handler 13-100
transactions

isochronous IN 13-63
isochronous OUT 13-61
non-isochronous IN 13-57
Non-isochronous, non-setup OUT 13-52
overview 13-52

type A host, VBUS power switching 14-118

V
validation, MPU subsystem

data cache 2-7
instruction cache 2-5

VBUS
monitoring, USB function controller 14-118
power switching, for USB type A host 14-118

version, number, identification code 6-70
vertical, signal ports, camera interface 7-3
vertical back porch 11-37

Index

Index-21

vertical front porch 11-37
vertical synchronization pulse width 11-38
video frame buffer, LCD 5-26
virtual addresses, double-mapped space, data

cache 2-8

W
wake-up

control 15-32
interrupt, ULPD 15-42
procedure 15-36

warm reset 15-46
watchdog

reset 15-46

timer
DSP private peripherals 8-10
interrupt 8-10
MPU private peripherals 6-8
program in timer mode 8-12
program in timer mode (MPU) 6-11
program in watchdog mode 8-12
program in watchdog mode (MPU) 6-10

word
access, TIPB bridge 2-65
size, MCSI 9-30

write
asynchronous, with WE operation 4-23
buffer, MPU subsystem 2-8
synchronization, DSP DMA controller 3-20

	OMAP5910 Dual-Core Processor Technical Reference Manual
	IMPORTANT NOTICE
	Preface
	Read This First
	About This Manual
	Notational Conventions
	Information About Cautions and Warnings
	Related Documentation From Texas Instruments
	Trademarks

	Table of Contents
	Contents
	Figures
	Tables

	Chapter 1: Introduction
	1.1 Overview
	1.2 Description
	1.3 Features
	1.4 Architecture
	1.5 Memory Maps
	1.6 Software Compatibility
	1.6.1 OMAP Driver Compatibility Conventions

	Chapter 2: MPU Subsystem
	2.1 Introduction
	2.2 MPU Core
	2.3 Instruction Cache
	2.3.1 Operation
	2.3.2 Validity

	2.4 Data Cache
	2.4.1 D-Cache Operation
	2.4.2 Validity
	2.4.3 Double-Mapped Space

	2.5 Write Buffer
	2.5.1 Operation
	2.5.2 SWAP Instruction

	2.6 Coprocessor 15
	2.6.1 CP15 Access
	2.6.2 Register Descriptions
	2.6.2.1 ID Register and Cache Information Register
	2.6.2.2 Cache Operations
	2.6.2.3 TLB Operations
	2.6.2.4 TLB Lock-Down Registers
	2.6.2.5 Context Switch (or PID: Process Identifier) Register
	2.6.2.6 TI Operations

	2.7 MPU Memory Management Unit
	2.7.1 Translation Look-Aside Buffer
	2.7.2 Translation Table
	2.7.3 Domains and Access Permissions
	2.7.4 MMU Program-Accessible Registers
	2.7.5 Address Translation
	2.7.6 Translation Process
	2.7.6.1 Translation Table Base
	2.7.6.2 Level 1 Fetch
	2.7.6.3 Level 1 Descriptor
	2.7.6.4 Translating Section References
	2.7.6.5 Level 2 Descriptor
	2.7.6.6 Translating Tiny Pages References
	2.7.6.7 Translating Small Page References
	2.7.6.8 Translating Large Page References

	2.7.7 MMU Faults and MPU Aborts
	2.7.8 Fault Address and Fault Status Registers (FAR and FSR)
	2.7.9 Domain Access Control
	2.7.10 Permission Access
	2.7.11 Fault Checking Sequence
	2.7.11.1 Alignment Fault
	2.7.11.2 Translation Fault
	2.7.11.3 Domain Fault
	2.7.11.4 Permission Fault

	2.7.12 External Aborts
	2.7.13 Buffered Writes

	2.8 DSP Memory Management Unit
	2.9 MPU Interface
	2.9.1 Functional Features
	2.9.2 MPUI Registers

	2.10 MPU TI Peripheral Bus Bridges
	2.10.1 8-Bit, 16-Bit, and 32-Bit Word Access
	2.10.2 TIPB Allocation
	2.10.3 Access Factor and Time-Out
	2.10.4 MPU Posted Write
	2.10.5 Pipeline Mode
	2.10.6 Abort
	2.10.7 TIPB Bridge Registers

	2.11 Endianism Conversion
	2.11.1 Conversion Through the DSP MMU
	2.11.2 Conversion Through the MPUI

	2.12 ETM Environment
	2.12.1 ETM Features
	2.12.2 ETM Interface
	2.12.3 Operation
	2.12.4 Additional Reference Materials

	Chapter 3: DSP Subsystem
	3.1 Architecture Overview
	3.1.1 DSP Core

	3.2 TMS320C55x DSP CPU Overview
	3.2.1 On-Chip Memory
	3.2.1.1 Power Conservation

	3.2.2 Hardware Acceleration Modules
	3.2.3 CPU Overview

	3.3 DSP Memory
	3.3.1 Internal Memory
	3.3.2 Instruction Cache
	3.3.3 System Memory
	3.3.4 Memory Map
	3.3.5 Peripheral Register Addresses

	3.4 DMA Controller
	3.4.1 Key Features of the DMA Controller
	3.4.1.1 DMA Channel Read Synchronization vs. Write Synchronization

	3.4.2 DMA Controller Configuration Registers
	3.4.3 DSP DMA Event Mapping

	3.5 TIPB Bridge
	3.5.1 Control Mode Register (CMR)
	3.5.2 Idle Control and Idle Status Registers (ICR and ISTR)

	3.6 MPU Interface
	3.6.1 HOM/SAM Change Outside of Reset
	3.6.2 ST3—HOM_P Bit (Bit 8)
	3.6.3 ST3—HOM_R Bit (Bit 9)

	3.7 EMIF
	3.7.1 EMIF Global Control Register (EMIF_GCR)
	3.7.2 EMIF Global Reset Register (EMIF GRR)

	3.8 DSP Memory Management Unit
	3.9 DSP Subsystem Clocking and Reset Control
	3.10 System Operating Details
	3.10.1 DSP Private Peripherals
	3.10.2 DSP Public Peripherals
	3.10.3 DSP/MPU Shared Peripherals
	3.10.4 Boot Mode for DSP Subsystem
	3.10.4.1 Boot Modes
	3.10.4.2 Boot Table Formats
	3.10.4.3 Bootloader Description

	Chapter 4: Memory Interface Traffic Controller
	4.1 Introduction
	4.2 Memory Map
	4.3 Memory Interfaces
	4.3.1 Internal Memory Interface
	4.3.1.1 IMIF Priority Handler
	4.3.1.2 IMIF Operation

	4.3.2 External Memory Interface Slow
	4.3.2.1 EMIFS Priority Handler
	4.3.2.2 EMIFS Operation
	4.3.2.3 Device Initialization
	4.3.2.4 EMIFS Memory Timing Control
	4.3.2.5 Asynchronous Read Operation
	4.3.2.6 Asynchronous Page Mode Read Operation
	4.3.2.7 Burst Read Operation
	4.3.2.8 Asynchronous Write With WE Operation
	4.3.2.9 EMIFS Not-Ready Functionality
	4.3.2.10 EMIFS Dual-Port RAM Interface Mode

	4.3.3 External Memory Interface Fast
	4.3.3.1 EMIFF Priority Handler
	4.3.3.2 EMIFF Operation
	4.3.3.3 SDRAM Mode and Extended Mode Register Initialization
	4.3.3.4 SDRAM Autorefresh Initialization
	4.3.3.5 SDRAM Self-Refresh Protection
	4.3.3.6 SDRAM Clock Disable
	4.3.3.7 Endianism Conversion Control
	4.3.3.8 SDRAM Access Timing Diagrams

	4.4 Traffic Controller Memory Interface Registers
	4.5 Interfacing Memories With the OMAP5910 Device

	Chapter 5: System DMA Controller
	5.1 Introduction
	5.2 External Connections
	5.3 Generic Channels
	5.3.1 Transfers
	5.3.1.1 Transfer Sources and Destination
	5.3.1.2 Transfer Control
	5.3.1.3 Transfer Start
	5.3.1.4 Transfer Suspension
	5.3.1.5 Autoinitialization
	5.3.1.6 Priorities Between Channels

	5.3.2 Addressing Modes
	5.3.2.1 Constant Addressing Mode
	5.3.2.2 Post-Incremented Addressing Mode
	5.3.2.3 Single-Indexed Addressing Mode
	5.3.2.4 Double-Indexed Addressing Mode

	5.3.3 Data Packing and Bursting
	5.3.4 Data/Address Alignment
	5.3.5 Constraint on Channel Configuration Parameters
	5.3.6 Endianism
	5.3.7 Interrupt Generation
	5.3.8 Memory Space Protection

	5.4 LCD Dedicated Channel
	5.4.1 Functional Description
	5.4.2 Addressing Units
	5.4.2.1 LCD Addressing

	5.4.3 LCD Channel Usage Restrictions
	5.4.3.1 Exclusive Frames
	5.4.3.2 Both Frames Must Belong to a Single Source
	5.4.3.3 LCD Registers Must Remain Steady From One Transfer to Another
	5.4.3.4 FIFO Out of Data (Bandwidth Break)

	5.4.4 LCD Transfer Examples
	5.4.4.1 EMIFF to LCD, One Frame
	5.4.4.2 IMIF to LCD, Two Frames

	5.5 DMA Request Mapping
	5.6 Registers
	5.6.1 Generic Channel Registers
	5.6.1.1 LCD Top Address for Frame Buffer 1 Registers (DMA_LCD_TOP_F1_L \and DMA_LCD_TOP_F1_U)
	5.6.1.2 LCD Bottom Address for Frame Buffer 1 Registers (DMA_LCD_BOT_F1_L and DMA_LCD_BOT_F1_
	5.6.1.3 LCD Top Address for Frame Buffer 2 Registers (DMA_LCD_TOP_F2_L \and DMA_LCD_TOP_F2_U)
	5.6.1.4 LCD Bottom Address for Frame Buffer 2 Registers (DMA_LCD_BOT_F2_L and DMA_LCD_BOT_F2_U)

	Chapter 6: MPU Private Peripherals
	6.1 Overview
	6.2 Timer Description
	6.2.1 Programming the Timer
	6.2.2 Timer Registers

	6.3 Watchdog Timer
	6.3.1 Introduction
	6.3.2 Programming the Watchdog Timer in Watchdog Mode
	6.3.3 Programming the Watchdog Timer in Timer Mode
	6.3.4 Watchdog Timer Registers

	6.4 MPU Interrupt Handlers
	6.4.1 MPU Level 1 Interrupt Handler
	6.4.2 MPU Level 2 Interrupt Handler

	6.5 Level 1 and Level 2 Interrupt Mapping
	6.6 Interrupt Handler Level 1 and Level 2 Registers
	6.7 Configuration Module
	6.7.1 Configuration Register Capabilities
	6.7.2 OMAP5910 Native and Compatibility Modes
	6.7.3 OMAP5910 Generic Pin Multiplexing and Pullup/Pulldown Control
	6.7.4 OMAP5910 MMC/SD Pin Multiplexing
	6.7.5 OMAP5910 Pullups and Pulldowns

	6.8 OMAP5910 Configuration Registers
	6.9 Device Identification
	6.9.1 Identification Code Register
	6.9.2 Die Identification (ID)

	Chapter 7: MPU Public Peripherals
	7.1 MPU Public Peripherals
	7.2 Camera Interface
	7.2.1 Functional Architecture
	7.2.1.1 Camera Data Validation
	7.2.1.2 Autostart
	7.2.1.3 Reset FIFO
	7.2.1.4 Set of Order
	7.2.1.5 FIFO Buffer (128 x 32)
	7.2.1.6 Clock Divider
	7.2.1.7 Interrupt Generator
	7.2.1.8 DMA Procedure
	7.2.1.9 TIPB Registers
	7.2.1.10 Camera Interface Registers (FFFB:6800)

	7.2.2 Clock Switching Procedures
	7.2.2.1 CAM.EXCLK Switch Protocol
	7.2.2.2 CAM.LCLK Switch Protocol

	7.3 MPU I/O
	7.3.1 MPU I/O Interrupts
	7.3.2 MPU I/O Clocks and Reset
	7.3.3 MPUIO Keyboard Interface
	7.3.4 MPUIO General-Purpose I/O Interface
	7.3.5 GPIO Interrupt Reset
	7.3.6 GPIO Interrupt Masking
	7.3.7 Event Capture Module
	7.3.8 MPU I/O Registers

	7.4 MicroWire Interface
	7.4.1 MicroWire Registers
	7.4.2 Protocol Description
	7.4.3 Example of Protocol Using a Serial EEPROM (XL93LC66)
	7.4.3.1 Read Cycle
	7.4.3.2 Write Cycle

	7.4.4 Example of Protocol Using an LCD Controller (COP472-3)
	7.4.4.1 Loading Sequence

	7.4.5 Example of Protocol Using Autotransmit Mode
	7.4.6 Example of Autotransmit Mode With DMA Support

	7.5 32-kHz Timer
	7.5.1 Operating System Scalable Clock-Tick Interrupt Function
	7.5.1.1 Overriding Normal Counting
	7.5.1.2 Loading/Autorestart of the Timer
	7.5.1.3 Timer Interrupt Period

	7.5.2 32-kHz Timer Registers
	7.5.2.1 Synchronization Issues

	7.6 Pseudonoise Pulse-Width Light Modulator
	7.6.1 PWL Functional Description
	7.6.2 PWL Registers

	7.7 Pulse-Width Tone
	7.7.1 Overview
	7.7.2 PWT Features
	7.7.3 PWT Registers
	7.7.4 PWT Programming
	7.7.4.1 Buzzer Frequency
	7.7.4.2 Buzzer Volume

	7.8 Inter-Integrated Circuit Controller
	7.8.1 I2C Protocol Description
	7.8.1.1 Functional Overview
	7.8.1.2 I2C Controller Signals Pads
	7.8.1.3 I2C Bus Base Principal
	7.8.1.4 I2C Operation
	Serial Data Formats
	Master Transmitter
	Master Receiver
	Slave Transmitter
	Slave Receiver
	Arbitration
	I2C Clock Generation and I2C Clock Synchronization

	7.8.2 OMAP5910 I2C (Master/Slave I2C Controller)
	7.8.2.1 I2C Controller Features
	7.8.2.2 Data Format
	7.8.2.3 I2C Reset
	7.8.2.4 Prescaler (ICLK)
	Noise Filter

	7.8.2.5 I2C Interrupts
	7.8.2.6 DMA Events
	7.8.2.7 I2C Registers
	Single Byte Data (SBD)
	Bus Busy (BB)
	Receive Overrun (ROVR)
	Transmit Underflow (XUDF)
	Address As Slave (AAS)
	Address Zero Status (AD0)/General Call
	Transmit Data Ready (XRDY)
	Receive Data Ready (RRDY)
	Register Access Ready (ARDY)
	No Acknowledgment (NACK)
	Arbitration Lost (AL)
	Interrupt Code (INTCODE)
	Receive DMA Channel Enable (RDMA_EN)
	Transmit DMA Channel Enable (XDMA_EN)
	Data Count (DCOUNT)
	I2C Module Enable (I2C_EN)
	I2C Big Endian (BE)
	Start Byte (STB)
	Master/Slave Mode (MST)
	Transmitter/Receiver Mode (TRX)
	Expand Address (XA)
	Repeat Mode (RM)
	Stop Condition (STP)
	Start Condition (STT)
	System Test Enable (ST_EN)
	Free Running Mode After Breakpoint (FREE)
	Test Mode Select (TMODE)
	SCL Line Sense Input Value (SCL_I)
	SCL Line Drive Output Value (SCL_O)
	SDA Line Sense Input Value (SDA_I)
	SDA Line Drive Output Value (SDA_O)

	7.8.3 Programming
	7.8.3.1 Main Program

	7.8.4 Flowcharts

	7.9 LED Pulse Generator
	7.9.1 Features
	7.9.2 LPG Design
	7.9.3 LPG Power Management
	7.9.4 LPG Registers

	7.10 McBSP2
	7.10.1 McBSP2 Application Example: Communication Interface
	7.10.1.1 Serial Port Control Register Configuration
	7.10.1.2 Pin Control Register Configuration
	7.10.1.3 Receive Control Register Configuration
	7.10.1.4 Transmit Control Register Configuration
	7.10.1.5 Sample Rate Generator Configuration (SRGR[1,2])
	7.10.1.6 Interrupt Flag Configuration and Clear (ILR, ITR, MIR)
	7.10.1.7 Take out of Reset for Transmit and Receive Starting (SPCR[1,2]\)
	7.10.1.8 Transmit Data Loading (TX_INT Handling in Interrupt Survive Ro\utine)
	7.10.1.9 Received Data Loading (RX_INT Handling in Interrupt Survive Ro\utine)
	Waveform Example

	7.10.1.10 Serial Port Control Register Configuration
	7.10.1.11 Pin Control Register Configuration
	7.10.1.12 Receive Control Register Configuration
	7.10.1.13 Transmit Control Register Configuration
	7.10.1.14 Sample Rate Generator Configuration (SRGR[1,2])
	7.10.1.15 DMA Configuration
	7.10.1.16 Interrupt Flag Configuration and Clear (ILR, MIR)
	7.10.1.17 Take out of Reset for Transmit and Receive Starting (SPCR[1,2\])
	7.10.1.18 Data Transfer (DMA Channel)
	Waveform Example

	7.11 USB Function Overview
	7.12 MMC/SD Host Controller
	7.12.1 MMC/SD Host Controller Features
	7.12.2 MMC/SD Host Controller Signals Pads
	7.12.3 MMC/SD Host Controller Clocks and Reset
	7.12.4 MMC/SD Host Controller DMA Request
	7.12.5 MMC/SD Host Controller Interrupt
	7.12.6 MMC/SD Internal Pullups
	7.12.7 MMC/SD Registers
	Data Direction (DDir)
	Stream Command or Broadcast Host Response (SHR)
	Command Type (Type)
	Command With Busy Response (Busy)
	Command Response (Response)
	Send Initialization Stream (Init)
	Card Open Drain Mode (OD)
	Command Index (Cmd_index)
	Bus Width During Data Phase (DW)
	Mode Select (Mode)
	Power Up-Control (Power_Up)
	Clock Divider (Clk_div)
	Card Status Error (Card_Err)
	Card IRQ (Card_IRQ)
	OCR Busy (OCR_busy)
	Buffer Almost Empty (A_Empty)
	Buffer Almost Full (A_Full)
	Command CRC Error (Cmd_CRC)
	Command Time-out Error (Cmd_timeout)
	Data CRC Error (Dat_CRC)
	Data Time-out Error (Dat_timeout)
	Card Exit Busy State (EOF_Busy)
	Block Received/Sent (Block_RS)
	Card Enter Busy State (Card_Busy)
	End of Command (End_of_Cmd)
	Command Time-out Value (CTO)
	Data Time-out Value (DTO)
	Transmit/Receive FIFO Data Value (DATA)
	Block Length (BLEN)
	Number of Blocks (NBLK)
	Receive DMA Channel Enable (RX_DMA_En)
	Buffer Almost Full Level (AF_Level)
	Transmit DMA Channel Enable (TX_DMA_En)
	Buffer Almost Empty Level (AE_Level)
	Start SPI Transfer (Start)
	Write/Not Read (WnR)
	Chip-Select Hold Time Control (TCSH)
	Chip-Select Setup Time Control (TCSS)
	Chip-Select Control (CS)
	Chip-Select Mode (CSM)
	Chip-Select Disable (CSD)
	Clock Phase (PHA)
	Clock Polarity (POL)
	Card Status Error on Bit 3 of Response R1 Enable (CER1_3_En)
	Data Time-out Prescaler Enable (DTO_PS_En)
	Ready/Busy Data (RDY_dat)
	DAT[3:0] Direction (DAT_dir)
	DAT[3:0] Data (DATn_dat)
	CMD Direction (CMD_dir)
	CMD Data (CMD_dat)
	MMC_CLK Data (MMC_CK_dat)
	SPI_CLK Data (SPI_CK_dat)
	CS[3:1] Data (CSn_dat)
	Module Version Number (REV)

	7.12.8 Command Flow
	7.12.9 DMA Operation
	7.12.9.1 MMC DMA Receive Mode
	7.12.9.2 MMC DMA Transmit Mode

	7.12.10 Local Host (IRQ/Polling) Mode
	7.12.10.1 MMC Local Host (IRQ/Polling) Receive Mode

	7.13 Real-Time Clock
	7.13.1 Register Descriptions
	7.13.2 Register Access
	7.13.2.1 Time and Calendar Registers/Alarm Registers
	7.13.2.2 General Registers
	7.13.2.3 Compensation Registers
	7.13.2.4 Modify Time and Calendar Registers
	7.13.2.5 Rounding Seconds
	7.13.2.6 Interrupts Management
	7.13.2.7 Timer Interrupt
	7.13.2.8 Alarm Interrupt
	7.13.2.9 Oscillator Drift Compensation

	7.13.3 Register Descriptions and Mapping

	7.14 USB Host Controller Overview
	7.15 HDQ and 1-Wire Protocols
	7.15.1 Functional Description
	7.15.1.1 Receive and Transmit Operation
	HDQ Mode (Default)
	1-Wire Mode
	1-Wire Bit Mode Operation

	7.15.1.2 Timing Diagrams
	7.15.1.3 Write State Diagram
	7.15.1.4 Read State Diagram
	7.15.1.5 Status Flags
	7.15.1.6 Interrupts

	7.15.2 Power-Down Mode
	7.15.3 HDQ and 1-Wire Battery Monitoring Serial Interface
	7.15.4 Software Interface

	7.16 Frame Adjustment Counter
	7.16.1 Features
	7.16.2 Synchronization and Counter Control
	7.16.3 FAC Interrupt
	7.16.4 FAC Clocks and Reset
	7.16.5 Software Interface

	Chapter 8: DSP Private Peripherals
	8.1 DSP Private Peripherals
	8.2 Timers
	8.2.1 Timer Interrupt Levels
	8.2.2 Timer Characteristics
	8.2.3 Programming the Timer
	8.2.4 Timer Registers

	8.3 Watchdog Timer
	8.3.1 Programming the Watchdog Timer in Watchdog Mode
	8.3.2 Programming the Watchdog Timer in Timer Mode
	8.3.3 Watchdog Timer Registers

	8.4 Interrupt Handlers
	8.4.1 Level 1 Interrupts
	8.4.2 Level 2 Interrupts
	8.4.2.1 Interrupt Sequence
	8.4.2.2 DSP Accessible Registers
	8.4.2.3 Level 2 Interrupt Mapping

	8.5 DSP Interrupt Interface
	8.5.1 Functional Description
	8.5.2 Edge-Triggered Interrupts
	8.5.3 Level-Sensitive Interrupts
	8.5.4 Internal Registers
	8.5.4.1 Level-Sensitive Clear Commands (Write Only)

	Chapter 9: DSP Public Peripherals
	9.1 Introduction
	9.2 McBSPs
	9.3 McBSP1
	9.3.1 McBSP1 Pin Descriptions
	9.3.2 McBSP1 Interrupt Mapping
	9.3.3 McBSP1 DMA Request Mapping
	9.3.4 McBSP1 Application Example: I2S Interface
	9.3.4.1 Serial Port Control Register Configuration
	9.3.4.2 Pin Control Register Configuration
	9.3.4.3 Receive Control Register Configuration
	9.3.4.4 Transmit Control Register Configuration
	9.3.4.5 Sample Rate Generator Configuration (SRGR[1,2])
	9.3.4.6 DMA Configuration
	9.3.4.7 Interrupt Flag Configuration and Clear (ILR, MIR)
	9.3.4.8 Take out of Reset for Transmit and Receive Starting (SPCR[1,2])\
	9.3.4.9 Data Transfer (DMA channel)

	9.4 McBSP3
	9.4.1 McBSP3 Pin Descriptions
	9.4.2 McBSP3 Interrupt Mapping
	9.4.3 McBSP3 DMA Request Mapping
	9.4.4 McBSP3 Application Example: Optical Interface
	9.4.4.1 Serial Port Control Register Configuration
	9.4.4.2 Pin Control Register Configuration
	9.4.4.3 Receive Control Register Configuration
	9.4.4.4 Transmit Control Register Configuration
	9.4.4.5 Sample Rate Generator Configuration (SRGR[1,2])
	9.4.4.6 Start Sample Rate Generator (SPCR2)
	9.4.4.7 Interrupt Flag Configuration and Clear (ILR, ITR, MIR) on Leve\l 2 Handler
	9.4.4.8 Interrupt Flag Configuration MASK Release on Level 2 Handler
	9.4.4.9 Take Out of Reset for Transmit and Receive Starting (SPCR[1,2])\
	9.4.4.10 Transmit and Received Data Loading (TX_INT Handling in Interru\pt Survive Routine)
	9.4.4.11 Register Setup GPIO Mode
	9.4.4.12 Read From GPI
	9.4.4.13 Serial Port Control Register Configuration
	9.4.4.14 Pin Control Register Configuration
	9.4.4.15 Receive Control Register Configuration
	9.4.4.16 Transmit Control Register Configuration
	9.4.4.17 Sample Rate Generator Configuration (SRGR[1,2])
	9.4.4.18 DMA Configuration
	9.4.4.19 Interrupt Flag Configuration and Clear (ILR, MIR)
	9.4.4.20 Take out of Reset for Transmit and Receive Starting (SPCR[1,2]\)
	9.4.4.21 Data Transfer (DMA Channel)

	9.5 Multichannel Serial Interfaces
	9.5.1 Communication Protocol
	9.5.1.1 Configuration Parameters
	Slave/Master Control
	Single-Channel/Multichannel
	Short/Long Framing
	Normal/Alternate Frame Synchronization
	Continuous/Burst Mode
	Normal/Inverted Clock
	Normal/Inverted Frame Synchronization
	Channel Used
	Word Size
	Frame Size
	Transmission Clock Frequency

	9.5.1.2 Sample Setup for Communication u-Law Interface Using Interrupts
	MCSI Configuration
	Transmit Data Loading (TX_INT ISR)
	Received Data Loading (RX_INT ISR)
	Stop MCSI

	9.5.1.3 Interface Management
	Interrupts Generation
	Receive Interrupt
	Transmit Interrupt
	Frame Duration Error Interrupt

	9.5.1.4 Interrupt Programming
	9.5.1.5 DMA Channel Operation
	Transmit DMA Transfers
	Receive DMA Transfers

	9.5.1.6 Interface Activation
	Start Sequence
	Stop Sequence
	Software Reset

	9.5.1.7 Functional Mode Timing Diagrams
	Single-Channel/Alternate Long Framing
	Single-Channel/Alternate Long Framing/Burst
	Single-Channel/Alternate Short Framing/Continuous/Burst
	Multichannel/Normal Short Framing/Channel4 Disable
	Multichannel/Alternate Long Framing/Continuous/Burst
	Multichannel/Normal Short Framing/Burst
	Single-Channel/Normal Short Framing
	Single-Channel/Normal Short Framing/Burst
	Single-Channel/Normal Long Framing
	Single-Channel/Normal Long Framing/Burst
	Single-Channel/Normal Long Framing/Continuous
	Single-Channel/Alternate Short Framing
	Single-Channel/Alternate Short Framing/Burst

	9.5.2 MCSI Register Descriptions

	9.6 MCSI1
	9.6.1 MCSI1 Pin Description
	9.6.2 MCSI1 Interrupt Mapping
	9.6.3 MCSI1 DMA Request Mapping

	9.7 MCSI2
	9.7.1 MCSI2 Pin Description
	9.7.2 MCSI2 Interrupt Mapping
	9.7.3 MCSI2 DMA Request Mapping

	9.8 McBSP and MCSI Memory and Peripheral Mapping
	9.8.1 MCSI Addresses and Mapping

	Chapter 10: MPU/DSP Shared Peripherals
	10.1 Introduction
	10.2 Interprocessor Communication
	10.2.1 Mailbox Register Data Structure

	10.3 General-Purpose I/O
	10.3.1 Input/Outputs of the GPIO Module
	10.3.2 GPIO Port Registers

	10.4 UART1, UART2, and UART3/IrDA

	Chapter 11: LCD Controller
	11.1 Module Overview
	11.2 Display Specifications
	11.3 LCD Controller Operation
	11.3.1 Frame Buffer

	11.4 Lookup Palette
	11.5 Color/Grayscale Dithering
	11.6 Output FIFO
	11.7 LCD Controller Pins
	11.7.1 Passive Monochrome Panels
	11.7.2 Passive Color (STN) Panels
	11.7.3 Active Color (TFT) Panels

	11.8 LCD Controller Registers
	11.8.1 LCD Control Register 1 (LCDControl)
	Bits Per Pixel STN Mode (5-6-5 STN)
	16 Bits Per Pixel STN Mode
	TFT Alternate Signal Mapping (TFT Map)
	LCD Control Bit 1
	LCD TFT (LCDTFT)
	LCD Monochrome (LCDBW)
	LCD Enable (LCDEN)

	11.8.2 LCD Timing 0 Register (LcdTiming0)
	Horizontal Back Porch (HBP)
	Horizontal Front Porch (HFP)
	Horizontal Synchronization Pulse Width (HSW)
	Pixels-Per-Line (PPL)

	11.8.3 LCD Timing 1 Register (LcdTiming1)
	Vertical Back Porch (VBP)
	Vertical Front Porch (VFP)
	Vertical Synchronization Pulse Width (VSW)
	Lines Per Panel (LPP)

	11.8.4 LCD Timing 2 Register (LcdTiming2)
	HSYNC/VSYNC Rise or Fall Programmability
	ac-Bias Line Transactions Per Interrupt (ACBI)
	ac-Bias Pin Frequency (ACB)
	Pixel Clock Divider (PCD)

	11.8.5 LCD Status Register (LcdStatus)

	11.9 Interface to LCD Panel Signal Reset Values

	Chapter 12: UART Devices
	12.1 UART Introduction
	12.1.1 Main UART Features (UART1/2/3)
	12.1.1.1 UART/Modem Functions (UART1/2/3)
	12.1.1.2 IrDA Functions (UART3 Only)
	12.1.1.3 UART Signals

	12.2 UART Environments
	12.2.1 UART1 Environment
	12.2.2 UART2 Environment
	12.2.3 UART3 Environment
	12.2.4 TIPB Switch
	12.2.5 Switching Procedures

	12.3 UART/Autobaud Control and Status Registers
	12.3.1 UART/Autobaud Modem Register Mapping

	12.4 UART/Autobaud Modes of Operation
	12.4.1 UART Mode
	12.4.2 UART Mode With Autobauding

	12.5 UART/Autobaud Functional Description
	12.5.1 UART/Autobaud Functional Block Diagram
	12.5.2 Trigger Levels
	12.5.3 Interrupts
	12.5.3.1 Generic Interrupts Description
	12.5.3.2 Wake-Up Interrupt
	12.5.3.3 FIFO Interrupt Mode

	12.5.4 FIFO Polled Mode
	12.5.5 FIFO DMA Mode
	12.5.5.1 DMA Signalling
	12.5.5.2 DMA Transfers

	12.5.6 Sleep Mode
	12.5.7 Break and Time-out Conditions
	12.5.8 Programmable Baud Rate Generator
	12.5.9 Hardware Flow Control
	12.5.10 Software Flow Control
	12.5.10.1 RX
	12.5.10.2 TX

	12.5.11 Autobauding Mode

	12.6 UART/Autobaud Configuration Example
	12.6.1 UART SW Reset
	12.6.2 UART FIFO Configuration
	12.6.3 Baud Rate Data and Stop Configurations

	12.7 UART/IrDA Control and Status Registers
	12.8 UART/IrDA Modes of Operation
	12.8.1 UART Mode
	12.8.2 SIR Mode
	12.8.2.1 CRC Generation
	12.8.2.2 Asynchronous Transparency
	12.8.2.3 Abort Sequence
	12.8.2.4 Pulse Shaping
	12.8.2.5 Encoder
	12.8.2.6 Decoder
	12.8.2.7 Address Checking

	12.9 UART/IrDA Functional Description
	12.9.1 UART/IrDA Functional Block Diagram
	12.9.2 Trigger Levels
	12.9.3 Interrupts
	12.9.3.1 Interrupts in MODEM Mode
	12.9.3.2 Interrupts in SIR Mode
	12.9.3.3 Wake-Up Interrupt

	12.9.4 FIFO Interrupt Mode
	12.9.5 FIFO Polled Mode Operation
	12.9.6 FIFO DMA Mode Operation
	12.9.6.1 DMA Signaling
	12.9.6.2 DMA Transfers (DMA Mode 1, 2, or 3)

	12.9.7 Sleep Mode
	12.9.7.1 UART Mode
	12.9.7.2 IrDA Mode

	12.9.8 Break and Time-Out Conditions
	12.9.9 Programmable Baud Rate Generator
	12.9.10 Hardware Flow Control
	12.9.11 Software Flow Control
	12.9.11.1 RX
	12.9.11.2 TX

	12.9.12 Frame Closing
	12.9.13 Store and Controlled Transmission
	12.9.14 Underrun During Transmission
	12.9.15 Overrun During Receive
	12.9.16 Status FIFO

	12.10 UART/IrDA Configuration Example
	12.11 UART Software Reset
	12.12 UART FIFO Configuration
	12.12.1 Baud Rate Data and Stop Configuration

	Chapter 13: USB Function Module
	13.1 Overview
	13.1.1 OMAP5910 Inputs/Outputs
	13.1.2 USB Function Interrupts
	13.1.3 USB Function Clocks and Reset
	13.1.4 USB Function DMA Requests
	13.1.5 USB Detection
	13.1.5.1 Software Detection
	13.1.5.2 Hardware Detection
	GPIO0 Detection
	I/O Power Supply Detection

	13.1.6 Software Disconnect

	13.2 Register Map
	13.2.1 Revision Register (REV)
	13.2.1.1 REV_NB

	13.2.2 Endpoint Selection Register (EP_NUM)
	13.2.2.1 Setup FIFO Select (Setup_Sel)
	13.2.2.2 TX/RX FIFO Select (EP_Sel)
	13.2.2.3 Endpoint Direction (EP_Dir)
	13.2.2.4 Endpoint Number (EP_Num)

	13.2.3 Data Register (DATA)
	13.2.3.1 Transmit/Receive FIFO Data (DATA)

	13.2.4 Control Register (CTRL)
	13.2.4.1 Clear Halt Endpoint (Clr_Halt)
	13.2.4.2 Set Halt Endpoint (Set_Halt)
	13.2.4.3 Set FIFO Enable (Set_FIFO_En)
	13.2.4.4 Clear Endpoint (Clr_EP)
	13.2.4.5 Endpoint Reset (Reset_EP)

	13.2.5 Status Register (STAT_FLG)
	13.2.5.1 Isochronous Missed IN Token (Miss_In)
	13.2.5.2 Isochronous Receive Data Flush (Data_Flush)
	13.2.5.3 Isochronous Receive Data Error (ISO_Err)
	13.2.5.4 Isochronous FIFO Empty (ISO_FIFO_Empty)
	13.2.5.5 Isochronous FIFO Full (ISO_FIFO_Full)
	13.2.5.6 Endpoint Halted Flag (EP_Halted)
	13.2.5.7 Transaction Stall (STALL)
	13.2.5.8 Transmit Non-Acknowledge (NAK)
	13.2.5.9 Transaction Acknowledge (ACK)
	13.2.5.10 FIFO Enable (FIFO_En)
	13.2.5.11 Non-Isochronous FIFO Empty (Non_ISO_FIFO_Empty)
	13.2.5.12 Non-Isochronous FIFO Full (Non_ISO_FIFO_Full)

	13.2.6 Receive FIFO Status Register (RXFSTAT)
	13.2.6.1 Receive FIFO Byte Count (RXF_Count)

	13.2.7 System Configuration Register 1 (SYSCON1)
	13.2.7.1 Device Configuration Locked (Cfg_lock)
	13.2.7.2 NAK Enable (Nak_En:)
	13.2.7.3 Self-Powered (Self_Pwr)
	13.2.7.4 Shutoff Disable (SOFF_Dis)
	13.2.7.5 External Pullup Enable (Pullup_En)

	13.2.8 System Configuration Register 2 (SYSCON2)
	13.2.8.1 Remote Wakeup (Rmt_Wkp)
	13.2.8.2 Stall Command (Stall_Cmd)
	13.2.8.3 Device Configured (Dev_Cfg)
	13.2.8.4 Clear Configured (Clr_Cfg)

	13.2.9 Device Status Register (DEVSTAT)
	13.2.9.1 Remote Wakeup Enabled (R_WK_OK)
	13.2.9.2 USB Reset Signaling (USB_Reset)
	13.2.9.3 Suspended State (SUS)
	13.2.9.4 Configured State (CFG)
	13.2.9.5 Addressed State (ADD)
	13.2.9.6 Default State (DEF)
	13.2.9.7 Attached State (ATT)

	13.2.10 Start of Frame Register (SOF)
	13.2.10.1 Frame Timer Locked (FT_Lock)
	13.2.10.2 Time Stamp OK(TS_OK)
	13.2.10.3 Time Stamp Number(TS)

	13.2.11 Interrupt Enable Register (IRQ_EN)
	13.2.12 Interrupt Source Register (IRQ_SRC)
	13.2.12.1 Transmit DMA CH.n Done Interrupt Flag (TXn_Done)
	13.2.12.2 RX DMA CH.n Transactions Count Interrupt Flag (RXn_Cnt)
	13.2.12.3 Receive DMA CH.n EOT Interrupt Flag (RXn_EOT)
	13.2.12.4 Start Of Frame Interrupt Flag (SOF)
	13.2.12.5 OUT Transaction Endpoint n Interrupt Flag (EPn_RX)
	13.2.12.6 IN Transaction Endpoint n Interrupt Flag (EPn_TX)
	13.2.12.7 Device State Changed Interrupt Flag (DS_Chg)
	13.2.12.8 Setup Transaction Interrupt Flag (Setup)
	13.2.12.9 OUT Transaction Endpoint 0 Interrupt Flag (EP0_RX)
	13.2.12.10 IRQ_SRC[0].EP0_TX: IN Transaction Endpoint 0 Interrupt Flag

	13.2.13 Non-Isochronous Endpoint Interrupt Status Register (EPN_STAT)
	13.2.13.1 Receive Endpoint Interrupt Source (EPn_RX_IT_src)
	13.2.13.2 Transmit Endpoint Interrupt Source (EPn_TX_IT_src)

	13.2.14 Non-Isochronous DMA Interrupt Status Register (DMAN_STAT)
	13.2.14.1 DMA Receive Single Byte (DMAn_RX_SB)
	13.2.14.2 DMA Receive Interrupt Source (DMAn_RX_IT_src)
	13.2.14.3 DMA Transmit Interrupt Source (DMAn_TX_IT_src)

	13.2.15 Receive DMA Channels Configuration Register (RXDMA_CFG)
	13.2.15.1 Receive Endpoint Number for DMA Channel 2 (RXDMA2_EP)
	13.2.15.2 Receive Endpoint Number for DMA Channel 1 (RXDMA1_EP)
	13.2.15.3 Receive Endpoint Number for DMA Channel 0 (RXDMA0_EP)

	13.2.16 Transmit DMA Channels Configuration Register (TXDMA_CFG)
	13.2.16.1 Transmit Endpoint Number for DMA Channel 2 (TXDMA2_EP)
	13.2.16.2 Transmit Endpoint Number for DMA Channel 1 (TXDMA1_EP)
	13.2.16.3 Transmit Endpoint Number for DMA Channel 0 (TXDMA0_EP)

	13.2.17 DMA FIFO Data Register (DATA_DMA)
	13.2.17.1 DMA FIFO Data(DATA_DMA)

	13.2.18 Transmit DMA Control Registers (TXDMA0...TXDMA2)
	13.2.18.1 Transmit DMA Ch.n End of Transfer (TXn_EOT)
	13.2.18.2 Transmit DMA Ch.n Start (TXn_Start)
	13.2.18.3 Transmit DMA Ch.n Transfer Size Counter (TXn_TSC)

	13.2.19 Receive DMA Control Registers (RXDMA...RXDMA2)
	13.2.19.1 Receive DMA Ch.n Transfer Stop (RXn_Stop)
	13.2.19.2 Receive DMA Ch.n Transactions Count (RXn_TC)

	13.2.20 Endpoint 0 Configuration Register (EP0)
	13.2.20.1 Endpoint 0 FIFO Size (EP0_Size)
	13.2.20.2 Endpoint 0 Pointer (EP0_ptr)

	13.2.21 Receive Endpoint Configuration Registers (EP1_RX...EP15_RX)
	13.2.21.1 Receive Endpoint n Valid (EPn_RX_Valid)
	13.2.21.2 Receive Endpoint n Double-Buffer (EPn_RX_Db)
	13.2.21.3 Receive Endpoint n Size (EPn_RX_Size)
	13.2.21.4 Receive Isochronous Endpoint n(EPn_RX_Iso)
	13.2.21.5 Receive Endpoint n Pointer (EPn_RX_ptr)

	13.2.22 Transmit Endpoint Configuration Registers (EP1_TX...EP15_TX)
	13.2.22.1 EPn_TX[15].EPn_TX_Valid: Transmit Endpoint n Valid
	13.2.22.2 Transmit Endpoint n Double-Buffer(EPn_TX_Db)
	13.2.22.3 Transmit Endpoint n Size (EPn_TX_Size)
	13.2.22.4 Transmit Isochronous Endpoint n (EPn_TX_Iso)
	13.2.22.5 Transmit Endpoint n Pointer (EPn_TX_ptr)

	13.3 USB Transactions
	13.3.1 Non-Isochronous, Non-Setup OUT (USB HOST –> LH) Transactions
	13.3.1.1 Non-Isochronous, Non-Control OUT Endpoint Handshaking Condition\s
	Acknowledged Transactions (ACK)
	Non-Acknowledged Transactions (NAK)

	13.3.1.2 Non-Isochronous, Non-Control OUT Transaction Error Conditions
	STALLed Transactions
	Packet Errors
	Sequence Bit Errors

	13.3.1.3 Non-Isochronous, Non-Control OUT Endpoint FIFO Error Conditions\

	13.3.2 Non-Isochronous IN (LH–>USB HOST) Transactions
	13.3.2.1 Non-Isochronous IN Endpoint Handshaking
	Acknowledged Transactions (ACK)
	Non-must Transactions (NAK)

	13.3.2.2 Non-Isochronous IN Transaction Error Conditions
	STALLed Transactions
	Packet Errors

	13.3.2.3 Non-Isochronous IN Endpoint FIFO Error Conditions

	13.3.3 Isochronous OUT (USB HOST–> LH) Transactions
	13.3.3.1 Isochronous OUT Endpoint Handshaking
	13.3.3.2 Isochronous OUT Transaction Error Conditions
	13.3.3.3 Isochronous OUT Endpoint FIFO Error Conditions

	13.3.4 Isochronous IN (LH–>USB HOST) Transactions
	13.3.4.1 Isochronous IN Endpoint Handshaking
	13.3.4.2 Isochronous IN Transaction Error Conditions
	13.3.4.3 Isochronous IN Endpoint FIFO Error Conditions

	13.3.5 Control Transfers on Endpoint 0
	13.3.5.1 Autodecoded Control Write Transfers
	Autodecoded Control Write Transfer Handshaking
	Autodecoded Control Write Transfer Error Conditions

	13.3.5.2 Autodecoded Control Read Transfers
	Autodecoded Control Read Transfer Handshaking
	Autodecoded Control Read Transfer Error Conditions

	13.3.5.3 Non-Autodecoded Control Write Transfers
	Specific Local Host Required Actions
	Non-Autodecoded Control Write Transfer Handshaking
	Non-Autodecoded Control Write Transfer Error Conditions

	13.3.5.4 Non-Autodecoded Control Read Transfers
	Non-Autodecoded Control Read Transfer Handshaking
	Non-Autodecoded Control Read Transfer Error Conditions

	13.3.5.5 Autodecoded Versus Non-Autodecoded Control Requests
	13.3.5.6 Note on Control Transfers Data Stage Length

	13.4 Device Initialization
	13.5 Preparing for Transfers
	13.6 Interrupt Service Routine (ISR) Flowcharts
	13.6.1 Important Note on USB Interrupts
	13.6.2 Parsing the General USB Interrupt
	13.6.3 Setup Interrupt Handler
	13.6.4 Endpoint 0 RX Interrupt Handler
	13.6.5 Endpoint 0 TX Interrupt Handler
	13.6.6 Device States Changed Handler
	13.6.7 Device States Attached/Unattached Handler
	13.6.8 USB Reset Interrupt Handler
	13.6.9 Suspend/Resume Interrupt Handler
	13.6.10 Parsing the Non-Isochronous Endpoint-Specific Interrupt
	13.6.11 Non-Isochronous, Non-Control OUT Endpoint Receive Interrupt Hand\ler
	13.6.12 Non-Isochronous, Non-Control IN Endpoint Transmit Interrupt Hand\ler
	13.6.13 SOF Interrupt Handler
	13.6.14 Summary of USB-Related Interrupts

	13.7 DMA Operation
	13.7.1 Receive DMA Channels Overview
	13.7.2 Non-Isochronous OUT (USB HOST -> LH) DMA Transactions
	13.7.3 Isochronous OUT (USB HOST -> LH) DMA Transactions
	13.7.4 Transmit DMA Channels Overview
	13.7.5 Non-Isochronous IN (LH -> USB HOST) DMA Transactions
	13.7.6 Isochronous IN (USB HOST -> LH) DMA Transactions
	13.7.7 Important Note on DMA Requests
	13.7.8 Note on DMA Channel Deconfiguration

	13.8 Power Management

	Chapter 14: Universal Serial Bus Host
	14.1 USB Host Controller
	14.2 USB Open Host Controller Interface Functionality
	14.2.1 OHCI Controller Overview
	14.2.2 OMAP5910 USB Host Controller Differences from OHCI Specification \for USB
	14.2.2.1 Power Switching Output Pins Not Supported
	14.2.2.2 Overcurrent Protection Input Pins Not Supported
	14.2.2.3 HMC_MODE and Top-Level Pin Multiplexing and OHCI Registers
	14.2.2.4 No Ownership Change Interrupt
	14.2.2.5 Valid Address Ranges for Pointers to Data Structures

	14.2.3 OMAP5910 Implementation of OHCI Specification for USB
	14.2.3.1 Isochronous TD OFFSETX/PSWX Values
	14.2.3.2 OMAP5910 USB Host Controller Endpoint Descriptor (ED) List He\ad Pointers

	14.3 USB Host Controller Registers
	14.3.1 USB Host Controller Reserved Registers and Reserved Bit Fields
	14.3.2 Endianism and USB Host Controller Registers
	14.3.3 USB Host Controller Registers, USB Reset, and USB Clocking

	14.4 USB Host Controller Interrupt Sources
	14.4.1 OHCI Interrupts
	14.4.1.1 OHCI Scheduling Overrun Interrupt
	14.4.1.2 OHCI HcDoneHead Writeback Interrupt
	14.4.1.3 OHCI Start Of Frame Interrupt
	14.4.1.4 OHCI Resume Detect Interrupt
	14.4.1.5 OHCI Unrecoverable Error Interrupt
	14.4.1.6 OHCI Frame Number Overflow
	14.4.1.7 OHCI Root Hub Status Change
	14.4.1.8 OHCI Ownership Change Interrupt

	14.4.2 Local Bus MMU Interrupts

	14.5 USB Pin Multiplexing
	14.5.1 Host Controller Connectivity With USB Transceivers
	14.5.2 USB Function Controller Connectivity With USB Transceivers
	14.5.3 On-Board Transceiverless Connection Using OMAP5910 Transceiverles\s Link Logic
	14.5.4 USB Signal Multiplexing Mode Diagrams
	14.5.5 Ports Shown as Unconnected
	14.5.6 Conflicts Between USB Signal Multiplexing and Top-Level Multiplex\ing

	14.6 USB Host Controller Access to System Memory
	14.6.1 Local Bus Virtual Addressing
	14.6.2 Cache Coherency in OHCI Data Structures and Data Buffers
	14.6.3 Local Bus Addressing and OHCI Data Structure Pointers
	14.6.3.1 MPUVAtoLBVA()—MPU Virtual Address to Local Bus Virtual Addres\s Conversion Function
	14.6.3.2 LBVAtoMPUVA()—Local Bus Virtual Address to MPU Virtual Addres\s Conversion Function
	14.6.3.3 MPUVAtoPA()—MPU Virtual Address to Physical Address Conversio\n Function
	14.6.3.4 LBVAtoPA()—Local Bus Virtual Address to Physical Address Conv\ersion Function
	14.6.3.5 PAtoLBVA()—Physical Address to Local Bus Virtual Address Conv\ersion Function
	14.6.3.6 PAtoMPUVA()—Physical Address to MPU Virtual Address Conversio\n Function
	14.6.3.7 Physical, MPU Virtual, and Local Bus Virtual Addresses—an Examp\le

	14.6.4 NULL Pointers
	14.6.5 Endianism and USB Host Controller Access to System Memory
	14.6.5.1 Endianism and OHCI Endpoint and Transfer Descriptors
	14.6.5.2 Endianism and OHCI Data Buffers

	14.7 OMAP5910 Local Bus
	14.7.1 LB Register Descriptions
	14.7.2 LB MPU Time-out Register (LB_MPU_TIMEOUT)
	14.7.3 LB Hold Timer Register (LB_HOLD_TIMER)
	14.7.4 LB Priority Register (LB_PRIORITY_REG)
	14.7.5 LB Clock Divider Register (LB_CLOCK_DIV)
	14.7.6 LB Abort Address Register (LB_ABORT_ADD)
	14.7.7 LB Abort Data Register (LB_ ABORT_DATA)
	14.7.8 LB Abort Status Register (LB_ABORT_STATUS)
	14.7.9 LB IRQ Output Register (LB_IRQ_OUTPUT)
	14.7.10 LB IRQ Input Register (LB_IRQ_INPUT)
	14.7.11 Local Bus Initialization
	14.7.12 Local Bus Virtual Addressing

	14.8 OMAP5910 Local Bus MMU
	14.8.1 OMAP5910 Local Bus MMU Registers
	14.8.2 Local Bus MMU Programming for USB Host Controller Operation
	14.8.2.1 Local Bus MMU Page Size and the USB Host Controller
	14.8.2.2 Local Bus MMU and Page Protection
	14.8.2.3 Local Bus MMU Page Miss

	14.9 USB Host Controller Reset and Clock Control
	14.9.1 USB Host Controller Clock Control
	14.9.2 Initializing ULPD to Generate the 48-MHz Clock
	14.9.3 USB Host Controller Hardware Reset
	14.9.4 USB Host Controller OHCI Reset
	14.9.5 USB Host Controller Power Management
	14.9.6 Local Bus Clock

	14.10 OMAP5910 USB Hardware Considerations
	14.10.1 VBUS Power Switching For USB Type A Host Receptacles
	14.10.2 Transient Suppression for USB Connectors
	14.10.3 VBUS Monitoring for USB Function Controller
	14.10.4 USB D+ Pullup Enable for USB Function Controller
	14.10.5 Port Passthrough Mode
	14.10.6 UART1 Connectivity when CONF_MOD_USB_HOST_HMC_MODE_R = 2, 10, 18\, and 24
	14.10.7 MPU_BOOT Signal Sharing
	14.10.8 USB D+, D– Pulldown for USB Function Controller

	Chapter 15: Clock Generation and System Reset Management
	15.1 Introduction
	15.1.1 Clock Generation and System Reset Control
	15.1.1.1 ULPD Module
	15.1.1.2 Reset Module
	15.1.1.3 Clock Generation and Management Module
	15.1.1.4 Memory-Mapped Registers
	15.1.1.5 Clock Domains

	15.2 Clock Generation
	15.2.1 Clocking Schemes
	15.2.2 Operating Modes
	15.2.3 External Master Mode
	15.2.4 CLKM1
	15.2.5 CLKM2
	15.2.6 CLKM3
	15.2.7 Clock Distribution and Synchronization
	15.2.8 Low-Power Mode

	15.3 Power Management
	15.3.1 DSP Idle Modes
	15.3.1.1 Putting the DSP in IDLE

	15.3.2 MPU Idle Modes
	15.3.2.1 MPU Subdomain (MPU + MPU Interrupt Handler)
	Wait For Interrupt Instruction
	Set Bit 11 of ARM_IDLECT1

	15.3.2.2 DPLL Subdomain
	15.3.2.3 Peripheral Subdomain

	15.3.3 Traffic Controller Idle Modes
	15.3.3.1 DPLL Idle Procedure

	15.3.4 Chip Idle and Wake-Up Control
	15.3.4.1 Chip Idle Mode
	15.3.4.2 Chip Idle Procedure
	15.3.4.3 Wake-Up Procedure

	15.3.5 Power-Saving Capability
	15.3.6 ULPD Power Management State Machine
	15.3.6.1 Gauging the 32-kHz Oscillator
	15.3.6.2 Gauging Versus High-Frequency Clock
	15.3.6.3 Control of 32-kHz Oscillator
	15.3.6.4 Battery Failed
	15.3.6.5 Big Sleep and Deep Sleep Mode
	15.3.6.6 Power-On Reset
	15.3.6.7 Interrupt Wake-Up
	15.3.6.8 Functional Reset Generation

	15.3.7 32-kHz Oscillator
	15.3.8 12-MHz Oscillator
	15.3.9 Reset Protocol
	15.3.9.1 Cold Reset
	15.3.9.2 Warm Reset
	15.3.9.3 Watchdog Reset (DSP and MPU)

	15.3.10 Power Control for External Devices
	15.3.11 Configuring Clocks After a Reset

	15.4 Clock Generation and Reset Control Registers
	15.4.1 DPLL Operation Mode Registers

	Appendix A: Input/Output Descriptions
	A.1 I/O Signals
	A.2 I/O Functional Multiplexing

	Appendix B: Switching Clock Modes
	B.1 Switching Procedure
	B.2 Main Code
	B.3 Delay Procedure

	Index

