
OMAP5910

Dual-Core Processor

Silicon Errata

SPRZ016
August 2002

Copyright 2002, Texas Instruments Incorporated

SPRZ016OMAP5910 Silicon Errata

2

Contents
1 Introduction 5.

1.1 Quality and Reliability Conditions 5.

TMX Definition 5.
TMP Definition 5.
TMS Definition 5.

1.2 Revision Identification 6.

2 Important Notices and Information About OMAP5910 7.

2.1 Useful Information Regarding C55x Assembler Diagnostic Messages 7.

2.1.1 ERROR Diagnostics 7.
2.1.2 WARNING Diagnostics 7.
2.1.3 REMARK Diagnostics 7.

3 DSP Subsystem Advisories 9.

3.1 DSP Processor Core Advisories 9.

DSP_DSP_CPU_73 Certain Instructions not Pipeline-Protected From Resets 9.

DSP_DSP_CPU_76 DELAY Smem Does Not Work With Circular Addressing 10.

DSP_DSP_CPU_82 ‘if(cond true) goto’ at the End of Local Repeat Fails 10.

DSP_DSP_CPU_83 BRAF Updated Incorrectly in Certain Cases of Conditional Execution 11.

DSP_DSP_CPU_84 SPI/SSP Access Followed by a Conditional Execute is not Protected
Against Interrupts 12.

DSP_DSP_CPU_85 Local Repeat with C54CM = 1 may be Corrupted on its Last Iteration 13.

DSP_DSP_CPU_86 Corruption of CSR or BCRx Register Read When Executed in Parallel
With Write 14.

DSP_DSP_CPU_87 Context Restore Just Before Return Instruction Sometimes Fail 15.

DSP_DSP_CPU_88 Incorrect Context Store of BRAF During Interrupt Servicing 16.

DSP_DSP_CPU_89 Internal Overflow Not Detected When Using the Left Shift Command 17.

DSP_DSP_CPU_91 C16, XF, and HM Bits Not Reinitialized by Software Reset 18.

DSP_DSP_CPU_94 Interrupted Conditional Execution After Long Memory-Mapped Register Write is
Executed Unconditionally in the D Unit / AD Unit 19.

DSP_DSP_CPU_95 BRCx May Not Decrement When a gotoP24 is Put At End of Blockrepeat
With C54CM = 0 21.

DSP_DSP_CPU_96 BRCx Decrement May Not Work WHen GotoP24 Within Blockrepeat
Exits the Loop 22.

DSP_DSP_CPU_97 LCRPC = Lmem � Lmem = LCRPC May Not Work 23.

DSP_DSP_CPU_98 BANZ at the End of Inner Loop in Native Mode May Corrupt Porgram Flow 24.

DSP_DSP_CPU_99 Return-int (Uander a Fast – return Configuration) May Cause Improper
Operation of SIngle Repeats and Conditional Executions 25.

DSP_DSP_CPU_100 Interrupted Single Repeat Is Not Resumed After RETI 26.

DSP_DSP_CPU_102 Page Register Update and CPU Bypass Corrupts Following Memory Read 27.

SPRZ016OMAP5910 Silicon Errata

3

3.2 DSP DMA Advisories 29.

DSP_DMA_1DSP EMIF/DMA Port Hangs During EMIF Bus Error 29.

DSP_DMA_2DSP DMA IDLE PRevents Transfer Completion 29.

DSP_DMA_3Potential Deadlock in Burst Accesses 29.

4 MPU Subsystem Advisories 30.

4.1 MPU Data-Cache Advisories 30.

MPU_DCACHE_1 Data Cache Transparent Mode Restriction During Copy-Back Operation 30.

4.2 System DMA Advisories 30.

SYS_DMA_1DMA Clocks Turned Off During Transfers Allows Corruption 30.

5 Traffic Controller Subsystem Advisories 31.

5.1 EMIF Slow (EMIFS) Advisories 31.

EMIFS_1 FLASH.RDY Should Not Be Used With Intel BUrst Flash WAIT Signal 31.

EMIFS_2 Burst Writes in EMIFS Causes Latency of Two TC Clock Cycles Extra
From Second Data Write in the Data Path () 32.

EMIFS_3 WELEN = 0 and FDIV = 1 With 16-Bit Memory 32.

EMIFS_4 EMIFS Wait States 33.

5.2 EMIF Fast (EMIFF) Advisories 34.

EMIFF_1 EMIFF Configuration Preventing Deep Sleep Entry 34. .

6 OMAP5910 Peripheral Advisories 36.

6.1 LCD Advisories 36.

LCD_1 Missing The Palette Loading Interrupt 36.

6.2 UART Advisories 37.

UART_1 Software Flow Control Mode of UART1/2/3 37.

UART_2 UART2 Clock Request Prevents Deep Sleep 37.

UART_3 OSC_12M_SEL and EBLR Registers Are Not Readable 38.

6.3 MMC/SD Advisories 39.

MMC_1 MMC/SD Does Not Support Stream Mode Reads 39.

6.4 Microwire Advisories 40.

UWIRE_1 Pull Down on the UWIRE.SDI Pin Needs to be Disabled by Software 40.

UWIRE_2 Microwire Interface RX Data Failures Possible 40.

6.5 I2C Advisories 41.

I2C_1 I2C Prescalar Value of 0 Not Supported in Slave Mode 41.

SPRZ016OMAP5910 Silicon Errata

4

6.6 USB Function Advisories 42.

USBF_1 Read of USB Function Data Register Has a SIde-Effect and Should Not be
Read From Emulator 42.

USBF_2 USB Function Suspend Functionality in HMC_MODE 13 and HMC_MODE 15 43.

USBF_3 USB Function Double-Buffering Not Supported 43.

6.7 USB Host Advisories 44.

USBH_1 Remote Wake Non-Functional Through TLL in
HMC_MODEs 9, 10, 11, 12, 14, 21, 23, 24, and 25 44.

7 OMAP5910 Device/System Level Advisories 45.

7.1 System Advisories 45.

SYS_1 Timeout Abort on a Posted-Write Access in the TIPB Bridge 45.

SYS_2 Write Followed by Immediate Read Not Supported on Specific
Addresses (TIPB Switch and PWT Module) 45.

SYS_3 Impact on IDDC(Q) Current if DSP Held in Reset WIthout Proper Initialization 46.

8 Documentation Support 47.

SPRZ016OMAP5910 Silicon Errata

5

1 Introduction

This document describes the silicon updates to the functional specifications for the
OMAP5910, silicon Revision C.

1.1 Quality and Reliability Conditions

TMX Definition

Texas Instruments (TI) does not warranty either (1) electrical performance to specification, or
(2) product reliability for products classified as TMX. By definition, the product has not
completed data sheet verification or reliability performance qualification according to TI Quality
Systems Specifications.

The mere fact that a TMX device was tested over a particular temperature and voltage ranges
should not, in any way, be construed as a warranty of performance.

TMP Definition

TI does not warranty product reliability for products classified as TMP. By definition, the
product has not completed reliability performance qualification according to TI Quality Systems
Specifications; however, products are tested to a published electrical and mechanical
specification.

TMS Definition

Fully-qualified production device

SPRZ016OMAP5910 Silicon Errata

6

1.2 Revision Identification

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all OMAP devices
and support tools. Each commercial OMAP platform member has one of three prefixes: X, P, or null (no prefix). Texas
Instruments recommends two of three possible prefix designators for support tools: TMDX and TMDS. These prefixes
represent evolutionary stages of product development from engineering prototypes (TMDX) through fully qualified
production devices/tools (TMDS).

Device development evolutionary flow:

X Experimental device that is not necessarily representative of the final device’s electrical specifications
and may not use production assembly flow. (TMX definition)

P Prototype device that is not necessarily the final silicon die and may not necessarily meet final
electrical specifications. (TMP definition)

null Production version of the silicon die that is fully qualified. (TMS definition)

Support tool development evolutionary flow:

TMDX Development-support product that has not yet completed Texas Instruments internal qualification
testing.

TMDS Fully qualified development-support product

X and P devices and TMDX development-support tools are shipped against the following disclaimer:

“Developmental products intended for evaluation purposes.”

Production devices and TMDS development-support tools have been characterized fully, and the quality and reliability
of the device have been demonstrated fully. TI’s standard warranty applies.

The device revision can be determined by the symbols marked on the top of the GZG package as shown in
Figure 1. Some prototype devices may have markings different from those shown in Figure 1 with the device name
in the following format: aOMAP5910bGZGc where a = product level, b = the revision number, and c = an internal TI
designator (has no meaning to customer).

Figure 1. Example Markings for OMAP5910 GZG Package, Revision C

YMLLLLS

aOMAP5910b
OMAP(TM)

GZG c

NOTE: Qualified devices are marked with no prefix at the beginning of the device
name, while nonqualified devices are marked with the letter X at the beginning
of the device name.

SPRZ016OMAP5910 Silicon Errata

7

2 Important Notices and Information About OMAP5910

2.1 Useful Information Regarding C55x Assembler Diagnostic Messages

The TMS320C55x (C55x) DSP assembler will generate three types of diagnostic messages when it detects a
potential or probable Silicon Exception.

2.1.1 ERROR Diagnostics

The assembler generates ERROR diagnostics in cases where it can fully determine that the code will cause a
silicon exception to occur on hardware.

2.1.2 WARNING Diagnostics

The assembler generates WARNING diagnostics in cases where it can fully determine that the code will cause a
silicon exception to occur on hardware, but which, under certain circumstances, may not be an issue for the user.

2.1.3 REMARK Diagnostics

The assembler generates REMARK diagnostics in conditions where it can fully determine that the code may cause
a silicon exception to occur on hardware, but the exception itself also depends on non-visible trigger conditions that
the assembler has no knowledge of, such as whether interrupts are enabled.

Since the assembler cannot determine the state of these trigger conditions, it cannot know that the exception will
affect this code. Therefore, it generates a REMARK to instruct the user to examine the code and evaluate whether
this is a potential silicon exception situation. (Please see the following sections for how to suppress remarks in
situations where you have determined that the other trigger conditions do not exist.)

Intended Treatment of REMARK Diagnostics

The intent of generating REMARK diagnostics is to inform the user that the code could potentially cause a silicon
exception and that it should be reviewed by the user side by side with the trigger conditions and a determination be
made whether the code is a potential silicon exception situation.

If the code is determined to be a potential silicon exception situation, users should modify their code to prevent that
exception from occurring.

If users determine that their code will not cause a silicon exception based on the trigger conditions, then the
REMARK that the assembler generates can be suppressed. There are two methods of doing so; please see the
“Suppressing REMARK Diagnostics” section.

Suppressing REMARK Diagnostics

Once the user determines that a silicon exception REMARK diagnostic is not appropriate for the code as written,
the REMARK diagnostic can be suppressed in one of the following ways.

• REMARK directives

• REMARK command-line options

TMS320C55x and C55x are trademarks of Texas Instruments.
Other trademarks are the property of their respective owners.

SPRZ016OMAP5910 Silicon Errata

8

REMARK Directives:

The .noremark.remark directives can be used to suppress the generation of a REMARK diagnostic for particular
regions of code. The .noremark directive turns off the generation of a particular REMARK diagnostic. The .remark
directive re-enables the generation of a particular REMARK diagnostic.

A ’.noremark ##’ (where ## is the remark id) directive is placed at the beginning of the region, and a ’.remark ##’
directive is placed at the end of the region.

NOTE: The .noremark.remark directive combination should always be placed around the
entire region of code that participates in the potential silicon exception. Otherwise, spurious
diagnostics may still be generated.

Additionally, the user has the option of disabling a silicon exception diagnostic for the entire file by placing just the
.noremark directive at the top of the assembly file. However, this may be dangerous if, during inevitable code
maintenance, the code is modified by someone not familiar with all the exception conditions. Please take great
care when using the directives in this manner.

REMARK Command-Line Options:

The compiler shell (cl55) supports a command line option to suppress a particular REMARK diagnostic. The shell
option –ar# (where # is the assembler’s silicon exception id as described above) will suppress the named
REMARK for the entire scope of all assembly files compiled with that command. Using the option –ar without a
number will suppress all REMARK diagnostics.

Again, this may be dangerous if, during inevitable code maintenance, the code is modified by someone not familiar
with all the silicon exception conditions. Please take great care when using the command-line REMARK options.
Using the .noremark/.remark directives covering the shortest possible range of source lines is much safer.

SPRZ016OMAP5910 Silicon Errata

9

3 DSP Subsystem Advisories
The “CPU_x” portion of the exception numbers correspond to the TMS320C5510 DSP CPU exception numberings
because the C55x assembler generates remarks, warnings, and error messages that correspond to the 5510
exception numbers.

3.1 DSP Processor Core Advisories

Certain Instructions Not Pipeline-Protected From ResetsAdvisory
DSP_CPU_73

Revision(s) Affected: Revision C

Details: In the following cases, instructions may not execute properly due to insufficient pipeline
protection from reset conditions:

Case 1

The following instruction(s) is not executed properly when closely preceded by a hardware or
software reset:
DP = #K16 ;OR
DAGEN operation affected by any status bit ;OR
if (cond) execute (AD Unit)

These instructions (which depend on ST0_55, ST1_55 and ST2_55) will not execute correctly
if they are located in the first four instructions following the reset (including the delay slot in the
reset vector).

Case 2

IFR0/1 or ST1 MMR read instructions may return invalid read data when followed by a
software reset.

Case 3

The BRAF bit is not cleared correctly by a software reset which follows the
bit (ST1, #BRAF) = #1 instruction.

Assembler Notification: None

Workaround: Use the appropriate workaround, based on the Case. This exception will not be fixed in future
silicon revisions.

Case 1

Do not put the following instruction(s) in the delay slot (last four bytes after the interrupt
vector). Also do not use the following instruction(s) as the first, second, or third instructions at
beginning of program space:

DP = #K16 ;OR
DAGEN-operation affected by any status bit ;OR
if (cond) execute (AD Unit)

Case 2

Ensure at least 3 cycles between IFR0/1 or ST1 MMR read and a software reset.

Case 3

Ensure at least 5 cycles between bit(ST1, #BRAF) = #1 and a software reset

SPRZ016OMAP5910 Silicon Errata

10

DELAY Smem Does Not Work With Circular AddressingAdvisory
DSP_CPU_76

Revision(s) Affected: Revision C

Details: When using circular addressing mode with the ‘DELAY Smem’ instruction in the following
case:

smem = (end address of a circular buffer)

the incorrect destination address is used for the delay instruction. The destination address
used is (end of circular buffer)+1, which is outside of the circular buffer. The correct
functionality would be for the destination address to wrap around to the beginning address of
the circular buffer.

Assembler Notification: Assembler (version 2.3 and later) will detect the use of delay (Smem) and generate a
REMARK.

Workaround: Do not use circular addressing mode with the ‘DELAY’ instruction. This exception will not be
fixed in future silicon revisions.

‘if (cond true) goto’ at the End of Local Repeat FailsAdvisory
DSP_CPU_82

Revision(s) Affected: Revision C

Details: Within any local repeat block if a conditional branch instruction is placed at the second to last
position, and the branch target is at the last position of the loop, the program flow is corrupted.
This is the case regardless of whether the local repeat is the outer loop or a nested inner loop.

Mnemonic example
localrepeat{

.

.

.

if (cond true) goto TARGET

TARGET
nop

}

.

Assembler Notification: Problem is always avoided. The complier does not generate the problem sequence.

Workaround: Do not use this instruction sequence. Incidentally, this sequence would be very impractical in
actual application code. This exception will not be fixed in future silicon revisions.

SPRZ016OMAP5910 Silicon Errata

11

BRAF Updated Incorrectly in Certain Cases of Conditional ExecutionAdvisory
DSP_CPU_83

Revision(s) Affected: Revision C

Details: When C54CM=1 and one of the following cases occurs, the BRAF bit is modified regardless of
the condition.

• if(cond=false)Execute(D_unit) � bit(ST1, @BRAF) = #0/1

• while(cond=false && (RPTC < k8)) bit(ST1, @BRAF) = #0/1

Assembler Notification: Assembler (version 2.3 and greater) will attempt to detect the cases above and generate a
WARNING.

Workaround: Use one of the following workarounds. This exception will not be fixed in future silicon
revisions.

1. Use the AD-unit instead of the D-unit in the conditional execution instruction
OR
Do not use parallelism (use conditional execute of next instruction as opposed to
conditional execute of parallel instruction).

2. Do not use a bit instruction that modifies BRAF within the WHILE instruction

SPRZ016OMAP5910 Silicon Errata

12

SPI/SSP Access Followed by a Conditional Execute is not Protected Against InterruptsAdvisory
DSP_CPU_84

Revision(s) Affected: Revision C

Details: Any of the following instructions are not protected against interrupts when followed by a
AD-unit conditional execute instruction for which the condition is false. (This exception only
applies to conditional execution of the next instruction and not a conditional execute of a
parallel instruction):

?? SP = SP + k8 (revision 1.x only)
?? MMR-read access to SP/SSP
?? dst = XSP/XSSP
?? dbl(Lmem) = XSP/XSSP
?? push_both(XSP/XSSP)
?? XSP/XSSP = pop()
?? MMR-write access to SP/SSP

Algebraic example
...{

nop

SP = SP - #1

.if (TC1) execute (SD_Unit) ;where TC1=0, condition is false.

<interrupt occurs>

AR6 –= #1

...

Assembler Notification: Assembler (version 2.3 and greater) will attempt to identify a code sequence that may cause
the Exception, and will generate a REMARK.

Assembler Notification: This exception is avoided in compiler version 2.04 when the v5510.2 switch is used.

Workaround: Use one of the following workarounds. This exception will not be fixed in future silicon
revisions.

1. When SP/SSP is read in the read phase, insert two (2) NOPs between the SP/SSP
instruction and the conditional execute instruction.

2. When SP/SSP is read or written in the execute phase, insert three (3) NOPs between the
SP/SSP instruction and the conditional execute instruction.

3. When SP/SSP is written in the write phase, insert four (4) NOPs between the SP/SSP
instruction and the conditional execute instruction.

SPRZ016OMAP5910 Silicon Errata

13

Local Repeat with C54CM = 1 may be Corrupted on its Last IterationAdvisory
DSP_CPU_85

Revision(s) Affected: Revision C

Details: Under the following conditions during a local repeat loop:

• C54CM = 1

• The program fetch is occurring to restart the last iteration of the local repeat loop

• The program fetch is occurring to stalled

The local repeat body may be overwritten even though the last iteration has not been
completed.

Assembler Notification: Assembler (version 2.3 and greater) will generate a WARNING when a .C54CM_ON directive
is seen and a local repeat is encountered.

Workaround: Do not use local repeat loops with C54CM = 1. This exception will not be fixed in future silicon
revisions.

SPRZ016OMAP5910 Silicon Errata

14

Corruption of CSR or BCRx Register Read When Executed in Parallel With WriteAdvisory
DSP_CPU_86

Revision(s) Affected: Revision C

Details: Under the following conditions:

• CSR, BRC0, or BRC1 register is read in the EXE phase in parallel with a write to the same
register

• The instruction is stalled due to a previous write access

The register read may be corrupted, returning the new value from the register write instruction.
The possible parallel instruction pairs which may cause this condition are as follows:

Smem = CSR � CSR = TAx ;Smem should be updated by old register value, but
Smem = CSR � CSR = Smem ;updated to TAx value instead

Smem = BRC0 � BRC0 = TAx
Smem = BRC0 � BRC0 = Smem
TAx = BRC0 � BRC0 = TAx
TAx = BRC0 � BRC0 = Smem

Smem = BRC1 � BRC1 = TAx
Smem = BRC1 � BRC1 = Smem
TAx = BRC1 � BRC1 = TAx
TAx = BRC1 � BRC1 = Smem

Assembler Notification: Assembler (version 2.3 and greater) will detect the above parallel pairs and generate a
WARNING.

Assembler Notification: This exception is always avoided by the complier since the compiler currently does ot
generate any instruction that reads CSR or BRCx in the execution stage of the pipline.

Workaround: Do not execute these instructions in parallel. This exception will not be fixed in future silicon
revisions.

SPRZ016OMAP5910 Silicon Errata

15

Context Restore Just Before Return Instruction Sometimes FailAdvisory
DSP_CPU_87

Revision(s) Affected: Revision C

Details: A context restore just before the return instruction sometimes fails. There are two cases in
which this condition may occur:

Case 1: When the C54CM bit in ST1_55 is updated via MMR write just before the return
instruction, a failure may occur. In the following sequence:

*(ST1_55) = <value>

return

the new value of the C54CM bit is not used by the return instruction. This may eventually lead
to a BRAF recovery error. When C54CM=1, BRAF is not recovered by return. When
C54CM=0, BRAF is recovered.

This failure occurs under the following conditions:

• C54CM bit is modified by ST1_55 context restore, AND

• the return condition is either ‘return’ with slow-return configuration, OR, ‘if() return’ with
fast or slow return configuration.

Case 2: Altering the BRAF bit just before ‘return_int’ instruction. In the following sequence:

C54CM = #1

...

any BRAF update

return_int

In the fast-return configuration, BRAF is recovered immediately after return_int is decoded
(along with return address). Due to lack of pipeline protection, the BRAF contents recovered
by ‘return_int’ is overwritten by the instruction preceding ‘return_int’..

This failure occurs under the following conditions:

• C54CM = 1, AND

• the return condition is either ‘return’ with fast-return configuration.

Assembler Notification: Assembler (version 2.3 and greater) will generate a REMARK when it detects the above
instruction sequences.

Workaround: Use one of the following workarounds. This exception will not be fixed in future silicon
revisions.

Case 1: Insert at least one NOP between the MMR access and the return instruction.

Case 2: Do not recover the BRAF context with an instruction that accesses BRAF. Instead, let
return recover the BRAF content.

SPRZ016OMAP5910 Silicon Errata

16

Incorrect Context Store of BRAF During Interrupt ServicingAdvisory
DSP_CPU_88

Revision(s) Affected: Revision C

Details: When an interrupt is serviced while a blockrepeat loop is active, the context pushed onto the
stack incorrectly stores the BRAF bits as 0. Upon returning from the interrupt service routine,
the CPU acts as if no loop is active. The program execution will continue sequentially past the
end of the active loop. in other words, the blockrepeat loop is not re-activated upon return from
an interrupt.

This condition occurs when the second instruction of a parallel instruction pair is a call (only
call L16 is legal for such an instruction pair). The condition can occur when these parallel
instructions are placed before the loop as well as within the loop.

Algebraic example
...
<instruction 1> � call L16
...
blockrepeat{
...
<interrupt decoded>
... ; upon return from interrupt, loop becomes inactive.
}

OR

...
blockrepeat{
...
<instruction 1> � call L16
...
<interrupt decoded>
... ; upon return from interrupt, loop becomes inactive.
}

Assembler Notification: Assembler (version 2.3 and greater) will detect any instruction with a parallel call L16 and
generate a REMARK.

Assembler Notification: This exception is avoided in compiler version 2.04 when the v5510.2 switch is used.

Workaround: Since interrupts are asynchronous, the only workaround is NOT to utilize the following parallel
instruction pair.

<instruction 1> � call L16

This exception will not be fixed in future silicon revisions.

SPRZ016OMAP5910 Silicon Errata

17

Internal Overflow Not Detected When Using the Left Shift CommandAdvisory
DSP_CPU_89

Revision(s) Affected: Revision C

Details: In native 55x mode (C54CM=0) when performing left shifts using 32-bit computational mode
(M40=0) with the sign extension mode bit set to UNSIGNED (SXMD=0), any overflow in ACx
should result in a saturate 40-bit value of 0x 00 7FFFF FFFF. However, if ACx[39..32] = 0xFF
and a left shift occurs with the shift value ≥ 0x8, then ACx gets zeroed.

Two instructions could cause this failure to occur as they both perform a store of a saturate of
a shifted value all in the same instruction.

Smem = HI(saturate(uns(rnd(ACx << DRx))))

Smem = HI(saturate(uns(rnd(ACx << SHIFTW))))

If guard bits of the accumulator are)xFF, bit 31 is 0, and the result of the sifft is such that bits
39:31 are zero, the value is not recognized as an overflow, and thus is not saturated.

Example
SXMD = #0

M40 = #0

AC2 = FF 0000 0000h

DR1 = 0x0008h

TARGET*AR4 = HI(saturate(AC2 << DR1))

; *AR4 = 0x0000

; Expected value should be *AR4 = 0x7FFF.

Assembler Notification: Pending

Workaround: The user should avoid these compressed insturction forms. Software may either:

1. Perform the shift is one instruction followed by the saturate-and-store command.

2. Perform the shift-and-saturate in one instruction followed by the store.

This exception will not be fixed in future silicon revisions.

SPRZ016OMAP5910 Silicon Errata

18

C16, XF, and HM Bits Not Reinitialized by Software ResetAdvisory
DSP_CPU_91

Revision(s) Affected: Revision C

Details: According to the specification, the software reset only affects (IFR0/1, STO_55, ST1_55, and
ST2_55. In this case, the reset value should be the same as those forced by a hardware reset
(C16=0, HM=0, XF=1). Instead, the software reset does not affect the C16, XF, and HM bits
and they retain their previous values.

Assembler Notification: None

Workaround: After a RESET, hardware of software initializes these bits as follows:

C16 = 0
HM = 0
XF = 1

This will correct the problem for a software RESET and will have no effect on a hardware
RESET since these bits would already be set to the specified state. This exception will not be
fixed in future silicon revisions.

SPRZ016OMAP5910 Silicon Errata

19

Interrupted Conditional Execution After Long Memory-Mapped Register Write is Executed
Unconditionally in the D Unit / AD Unit

Advisory
DSP_CPU_94

Revision(s) Affected: Revision C

Details: When a long memory-mapped register (MMR)† write instruction is executed just before or
during a conditional statement in the D unit / AD unit and:

• an interrupt is asserted between the conditional execute and the next instruction to be
executed

• no single MMR write follows before or during the return from interrupt

then, the instruction to be executed based on the conditional gets executed regardless of the
conditional’s value as shown in the following examples.

Example 1
long MMR Write
. ;No single MMR write
If (Conditional) Execute (AD Unit / D Unit) ;No single MMR write
<Hardware Interrupt Asserted>
Instruction to be executed based on the Conditional gets executed
regardless of the Conditional
.
.

ISR . ;No single MMR write
. ;No single MMR write
.Return-int ;No single MMR write

† Long memory mapped register (MMR): Any of the following instructions that point to 0x0 – 0x5F with
“Lmem”. Such as:

dbl(Lmem) = pop()
dbl(Lmem) = ACx, copr()
dbl(Lmem) = LCRPV
dbl(Lmem) = src
dbl(Lmem) = ACx
dbl(Lmem) = saturate(uns(ACx))
Lmem = pair(DAx)
HI(Lmem) = HI(ACx) >> #1, LO(Lmem) = LO(ACx) >> #1
Lmem = pair(HI(ACx))
Lmem = pair(LO(ACx))
Lmem = dbl(coeff)

SPRZ016OMAP5910 Silicon Errata

20

Interrupted Conditional Execution After Long Memory-Mapped Register Write is Executed Unconditionally in the D Unit /
AD Unit (Continued)

Example 2
If (Conditional) Execute (AD Unit / D Unit) ;No single MMR write
<Hardware Interrupt Asserted>
Instruction to be executed based on the Conditional gets executed
regardless of the Conditional
.
.

ISR .
.
long MMR write
. ;No single MMR write
.Return-int ;No single MMR write

Example 3
If (Conditional) Execute (AD Unit / D Unit) ;No single MMR write
<Hardware Interrupt Asserted>
Instruction to be executed based on the Conditional gets executed
regardless of the Conditional
.
.

ISR .
.
long MMR write � Return_int

Assembler Notification: None

Workaround: Put a dummy single memory write (i.e., @#0x1F = AR0 � mmap() : 0x1F is a reserved space.)
in front of all “Return_int” and ensure that no long memory writes are in parallel with a
“Return_int.”

Example
long MMR Write
. ;No single MMR write
If (Conditional) Execute (AD Unit / D Unit) ;No single MMR write
<Hardware Interrupt Asserted>
Instruction to be executed
.
.

ISR . ;No single MMR write
. ;No single MMR write
Single MMR write
.Return-int ;No single MMR write

This exception will not be fixed in future silicon revisions.

SPRZ016OMAP5910 Silicon Errata

21

BRCx Decement May Not Work When GotoP24 Is Put at End of Blockrepeat
With C54CM = 0

Advisory
DSP_CPU_95

Revision(s) Affected: Revision C

Details: When a branch, such as gotoP24, is performed at the end of blockrepeat with C54CM =0,
then the corresponding BRCx may not get decremented. This bug occurs in both outer and
inner blockrepeats. See the following example.

Example
RC = x
lockrepeat{

 goto tgt ; assembled to gotoP24

. .
tgt: BRC == x or (x–1) ?

NOTE: If the destination of the goto is within a 16-bit range i.e. gotoL16 is assigned, this
problem does not occur.

Assembler Notification: Pending

Workaround: Do not put a goto instruction at the end of a blockrepeat. This exception will not be fixed in
future silicon revisions.

SPRZ016OMAP5910 Silicon Errata

22

BRCx Decement May Not Work When GotoP24 Is Put at End of BlockrepeatAdvisory
DSP_CPU_96

Revision(s) Affected: Revision C

Details: When a branch, such as gotoP24, occurs within a blockrepeat with C54CM =0 and its target is
within the same loop, the loop ends immediately. If a nested loop starts after the branch, it is
handled as a non–nested one with the 1st–level (RSA0/REA0 utilized, BRC0 decremented).
See the following examples.

Example 1
blockrepeat{
 .
 goto tgt
 .

tgt: .
 .
} ; Exit from the loop regardless BRCx value.

Example 2
blockrepeat{
 .
 goto tgt
 .

tgt: blockrepeat { ; Regarded as outer loop, use of RSA0/REA0/BRC0
 .
 }
 .
}

NOTE: If the destination of the goto is within a 16-bit range, i.e. gotoL16 is used, this
bug does not occur. This implies that the size of the blockrepeat must be greater than
0x8000.

Assembler Notification: Pending

Workaround: Do not put a goto instruction, in which the target is within the same loop, in a blockrepeat
which is greater than 0x8000 in size. This exception will not be fixed in future silicon revisions.

SPRZ016OMAP5910 Silicon Errata

23

LCRPC – Lmem � Lmem = LCRPC May Not WorkAdvisory
DSP_CPU_97

Revision(s) Affected: Revision C

Details: LCRPC = Lmem || Lmem = LCRPC can be used to swap the data between Lmem and LCRPC
as shown below:

New LCRPC <– Old Lmem

Old LCRPC –> New Lmem

However, when this store operation is stalled during a parallel execution, the content of the old
LCRPC is lost as shown below:

New LCRPC <– Old Lmem

New LCRPC –> New Lmem

Example

Before execution : LCRPC is 0x00123456, Lmem is 0xffffffff

After execution : LCRPC is 0xffffffff, Lmem is 0xffffffff (Should be 0x00123456)

Assembler Notification: Pending

Workaround: Do not use this parallel execution. This exception will not be fixed in future silicon revisions.

SPRZ016OMAP5910 Silicon Errata

24

BANZ at the End of Inner Loop in Native Mode May Corrupt Program FlowAdvisory
DSP_CPU_98

Revision(s) Affected: Revision C

Details: When all of the following conditions are met:

– C54CM=0 (Native mode),

– Two blockrepeats (not localrepeat) are nested,

– the instruction at very end of inner loop is BANZ with a false condition,

– the size of inner loop is less than 32 byte.

– the distance between the end of the two loops is greater than 0 and less than 24byte.

The program flow may be corrupted. The instruction immediately after the inner loop, although
outside of the inner loop, gets executed during first iteration of the inner loop. See the
example below.

Example

”INST–A” is executed at the first iteration of the inner loop.

bit(ST1,@C54CM) = #0

blockrepeat{

 .

 blockrepeat{

 . Less than 32 bytes

 .

 BANZ with false condition

 }

 INST–A

 . Greater 0 and less than 24 bytes

 }

Assembler Notification: Pending

Workaround: Put a NOP immediately after the BANZ within the inner loop. This exception will not be fixed in
future silicon revisions.

SPRZ016OMAP5910 Silicon Errata

25

Return_int (Under a Fast – Return Configuration) May Cause Improper Operation of
Single Repeats and Conditional Executions

Advisory
DSP_CPU_99

Revision(s) Affected: Revision C

Details: Under a fast return configuration, when an interrupt is asserted during any of the following:

• Single repeat

• Just before a conditional execute instruction

• Etc.

And if the corresponding return_int is stalled at an ADDRESS or ACCESS1 phase, then the
following may occur:

• The single repeat is executed more than expected and if it is located at the end of
blockrepeat / localrepeat, the BRCx may be not get decremented.

• The instruction to be executed conditionally gets executed UNconditionally.

See the following examples.

Example 1
AR0 = #0
repeat(#15)
AR0 = AR0 + #1 ; An interrupt is asserted here.
AR0 = AR0 ^ #16 ; AR0 is expected to be 0 but not.
if(AR0 != #0) goto ERROR
.

ISR: .
AR1 = AR1 – #1
mar(*AR1+) || return_int ; Stalled at ADDRESS phase.

Example 2
.
<< An interrupt is asserted here >>
if(cond=false)Execute(AD_Unit/D_Unit)
Instruction to be executed conditionally always gets executed.
.

ISR: .
AR1 = AR1 – #1
mar(*AR1+) || return_int ; Stalled at ADDRESS phase.

Assembler Notification: Pending

Workaround: If the ”hold” feature, which can cause the CPU to stall, is not used, place 6 NOPs immediately
before the return_int to avoid it from stalling.

Example
nop
nop
nop
nop
nop
nop
return_int ; No stalling during an ADDRESS or ACCESS1 phase.

Or do not use the fast return configuration This exception will not be fixed in future silicon
revisions.

SPRZ016OMAP5910 Silicon Errata

26

Interrupted Single Repeat Is Not Resumed After RETIAdvisory
DSP_CPU_100

Revision(s) Affected: Revision C

Details: When an interrupt is asserted during any of the following single repeat instructions:

• while (cond && (RPTC < k8)) repeat

• repeat (k16)

• repeat (CSR)

• repeat (CSR) , CSR += DAx

• repeat (CSR) , CSR += k4

• repeat (CSR) , CSR –= k4

• repeat (k8)

The single repeat doesn’t resume after returning from the interrupt under all of the following
conditions:

• the restore of the repeat counter(RPTC) by MMR write in ISR is close(*) to the
”return_int”.

• the RPTC is 0 before the restore.

(*) if the instruction between restore RPTC and return_int is less than

• six for the fast return configuration.

• two for the slow return configuration.

Assembler Notification: Pending

Workaround: Insert 6 nops between the restore RPTC and return_int for the fast return configuration. Insert
2 nops between restore RPTC and return_int for the slow return configuration.

Example
ISR: . ; Fast return configuration.

.
@RPTC_L=pop()||mmap()
nop
nop
nop
nop
nop
nop
return_int.

This exception will not be fixed in future silicon revisions.

SPRZ016OMAP5910 Silicon Errata

27

Page Register Update and CPU Bypass Corrupts Following Memory ReadAdvisory
DSP_CPU_102

Revision(s) Affected: Revision C

Details: In the following sequence,

 INST0 : any
 INST1 : any
 INST2 : any
 INST3 : Write to a memory
 INST4 : Read from the same memory with CPU STALL
 INST5 : Read from any memory (Doesn’t have to be same address with

 INST3,4)

INST5 may get wrong data from memory if the corresponding page register for the data read
address generation has been updated as follows.

– by MMR write at INST0,1 or 2 position
– by EXE phase instruction at INST 1 or 2 position

The following table shows all Page registers with MMR address. Instructions to update in EXE
phase and the events (data read) to be used.

 Page Register
 (MMR address) EXE phase Inst. Used by (Candidate of INST5)

 DPH (2Bh) XDP = xsrc – Direct addressing (CPL=0)
 XDP = dbl(Lmem)
 XDP = popboth()

 SPH,SSPH (4Eh) XSP = xsrc – Direct addressing (CPL=1)
 XSP = dbl(Lmem) – All kind of return INST.
 XSP = popboth() – All kind of pop INST.
 XSSP = xsrc
 XSSP = dbl(Lmem)
 XSSP = popboth()

 CDPH (4Fh) XCDP = xsrc – Indirect addressing with
 XCDP = dbl(Lmem) CDP pointer
 XCDP = popboth()

 ARx_H (None) XARx = xsrc – Indirect addressing with
 XARx = dbl(Lmem) with ARx pointer
 XARx = popboth()

SPRZ016OMAP5910 Silicon Errata

28

Page Register Update and CPU Bypass Corrupts Following Memory Read (Continued)

Example:

In the following example, the DR1 gets corrupted value.

XAR1 = XAR3 ; The page of AR1 is updated in EXE.
nop
*AR6 = #0xABCD || DR3 = AR7 ; Write to a memory
DR0 = *AR6 || AC0 = DR3 ; Read from the same memory with CPU stall
DR1 = *AR1 || DR2 = *AR2 ; Reading data from *AR1 using XAR1

Assembler Notification: Pending

Workaround: Use one of the following workarounds:

Case 1: Have at least 3 instructions between the page register update by the MMR write and
the next write instruction as follows. As the assembler cannot detect ”Page register update by
MMR write”, this condition must be confirmed by users.

Page register update by MMR write in WRITE phase
INST
INST
INST
Write to a memory
Read from the memory
Read from memory/stack using the updated page register

Case 2: Have at least 2 instructions between the page register update by EXE phase
instruction and the next write instruction as follows. If there’s less than 2 instructions, it is
planned that a future revision of the assembler will reject it.

Page register update by EXE phase Instructions
INST
INST
Write to a memory
Read from the memory
Read from memory/stack using the updated page register

Case 3: Use ”dst = mar(Smem)” which is to update the Page Register at ADDRESS phase
like follows.

dst = mar(Smem) ; dst can be XARn, XCDP, XDP, XSP or XSSP.
Write to a memory
Read from the memory
Read from memory/stack using the updated page register

This exception will not be fixed in future silicon revisions.

SPRZ016OMAP5910 Silicon Errata

29

3.2 DSP DMA Advisories

DSP EMIF/DMA Port Hangs During EMIF Bus ErrorAdvisory
DSP_DMA_1

Revision(s) Affected: Revision C

Details: If the EMIF times out on an access, the DSP will get a timeout bus–error interrupt. The
time–out condition may also cause a DMA interrupt. In the case where a DMA interrupt
occurs, the DMA won’t timeout, but hangs instead.

Workaround: Whenever an EMIF bus error interrupt occurs the software needs to RESET the DMA and
reschedule the transfer. This exception will not be fixed on future silicon revisions.

DSP DMA IDLE Prevents Transfer CompletionAdvisory
DSP_DMA_2

Revision(s) Affected: Revision C

Details: When system modules are placed in IDLE, there is hardware handshaking to ensure IDLE can
occur without any system consequences.

The DSP DMA, however, goes into IDLE even though a transfer is occurring. This may
prevent an expected from transfer completing.

Workaround: In order to enforce that all DMA transfers are complete before attempting to IDLE the DMA,
the DMA status first needs to be checked. The DMA channels then need to be disabled, and
the IDLE instruction can then be safely executed. This exception will not be fixed in future
silicon revisions.

Potential Deadlock in Burst AccessesAdvisory
DSP_DMA_3

Revision(s) Affected: Revision C

Details: If a transfer is configured with burst enabled and any of the accessed addresses (notably start
address) are not 4x32–bits aligned (i.e. byte address is not multiple of 16) then the DMA may
deadlock and the transfer may never terminate.

Workaround: Configure start address, block size, frame size, element size and indexes such that all DMA
burst accesses are made on 4x32–bits aligned addresses. This exception will not be fixed in
future silicon revisions.

This same functional limitation is present on the System DMA controller, but the
programmation restrictions stated in this workaround are documented in the OMAP5910
Technical Reference Manual (literature number SPRU602).

SPRZ016OMAP5910 Silicon Errata

30

4 MPU Subsystem Advisories

4.1 MPU Data-Cache Advisories

Data Cache Transparent Mode Restriction During Copy-Back OperationAdvisory
MPU_DCACHE_1

Revision(s) Affected: Revision C

Details: The data cache copy–back mode can only be used when the Transparent bit is disabled (set
to ‘0’). When this bit is set to ‘1’ an interleaving of writes and reads will occur during a cache
line replacement – write one word of the cache line, read the word that will replace it; write the
next word of the cache line one word, read the word that will replace it; etc. Setting the
transparent bit to ‘0’ will cause the writing of the dirty cache line to occur before the new cache
line has been read to the cache.

Workaround: Do not enable Transparent Mode in the ARM925T Configuration register (it is disabled by
default). This exception will not be fixed on future silicon revisions.

4.2 System DMA Advisories

DMA Clocks Turned Off During Transfers Allows CorruptionAdvisory
SYS_DMA_1

Revision(s) Affected: Revision C

Details: When bit 8 of the ARM_IDLECT2 register (DMACK_REQ) is set to “1”, the root clock to the
System DMA is turned OFF if there is no valid DMA request. However, it takes about 25 cycles
to turn OFF the DMA clocks. During these 25 clock cycles, if a new DMA request is activated,
then the clocks to DMA may be turned OFF in the middle of the new DMA transfer, which
could lead to a corruption of data.

Workaround: Always set ARM_IDLECT2(DMACK_REQ) bit to “0”. Since the DMA itself has internal auto
clock gating which will turn OFF clocks by itself when there is no active DMA request
(assuming AUTOGATING_ON=1 in the DMA_GCR register, which is the only supported
setting of this bit) there is no benefit to software setting the DMACK_REQ bit to “0”. There is
no impact to power or performance with this workaround.

This exception will not be corrected on future silicon revisions.

SPRZ016OMAP5910 Silicon Errata

31

5 Traffic Controller Subsystem Advisories

5.1 EMIF Slow (EMIFS) Advisories

FLASH.RDY Should Not Be Used With Intel Burst Flash WAIT SignalAdvisory
EMIFS_1

Revision(s) Affected: Revision C

Details: Intel’s most recent burst flash devices assert the WAIT signal during the addressing phase of a
transaction and de–assert it when the first data word is available. However, the timing of the
initial data word is independent of the de–assertion of WAIT (i.e. it is a fixed access time from
address to data). Essentially, this makes the WAIT signal “extra” information. This behavior
includes the W18, K18 and K3 families of burst flash.

During syncronous burst read mode, the OMAP5910 flash interface does not expect a
transition to occur on the WAIT signal during the addressing phase of a transaction. This WAIT
assertion can cause the Memory Interface to incorrectly process the flash transaction.

This will only occur if the FLASH.RDY signal of the flash interface is connected to the flash
WAIT signal.

Workaround: Do NOT connect the WAIT signal from the Intel burst flash to the flash interface WAIT#FRDY
input. Instead, tie the WAIT#FRDY signal through a pull–up to DVdd. There are NO
performance implications to this workaround.

This workaround is possible because the OMAP5910’s Traffic Controller will only permit a
burst to an aligned address, preventing any possibility to cross an Intel burst flash page
boundary. For instances where an unaligned access is required, the Traffic Controller
translates these into single accesses until a burstable boundary is reached. Therefore, the
WAIT from Intel burst flash can be completely ignored by the OMAP5910 processor.

This exception will not be fixed on future silicon revisions.

SPRZ016OMAP5910 Silicon Errata

32

Burst Writes in EMIFS Causes Latency of Two TC Clock Cycles Extra From Second Data
Write in the Data Path

Advisory
EMIFS_2

Revision(s) Affected: Revision C

Details: EMIFS supports burst writes. EMIFS handles burst writes by splitting the transactions into 4 (if
the memory connected is 32 bit width) or 8 (if the memory connected is 16bit width). During
split transfers, EMIFS has to follow the specifications single write specifications. But from the
data write onwards, the data comes 2 TC clock cycles later than the expected. This problem
exists irrespective of the initiator (ARM, DSP, DMA, or LB).

Workaround: Increase the WELEN bit field of the EMIFS Chip Select Configuration register to compensate
the extra 2 TC clock cycle latency in the data path. The following table shows the requirement
for increment of WELEN in case of burst write operation.

FCLKDIV WELEN(old) WELEN(new) Flash clock

“00” X X + 2 TC_clock/1

“01” X X + 1 TC_clock/2

“10” X X + 1 TC_clock/4

“11” X X + 1 TC_clock/6

This exception will not be fixed in future silicon revisions.

WELEN = 0 and FDIV = 1 WIth 16-Bit MemoryAdvisory
EMIFS_3

Revision(s) Affected: Revision C

Details: When performing an asynchronous operation to 16–bit memories, connected to EMIFS
interface, with WELEN=0 and FCLKDIV=00 (configured in EMIFS chip select configuration
register), EMIFS generates an extra ready for each access to the host. This can cause the
host to interpret the extra ready as the ready for the next access, which can cause the system
to hang.

Workaround: Use one of the following 2 workarounds:

1. Program WELEN (of EMIFS configuration registers) greater than 0

2. Use FCLKDIV (of EMIFS configuration registers) greater than “00”

This exception will not be fixed in future silicon revisions.

SPRZ016OMAP5910 Silicon Errata

33

EMIFS Wait StatesAdvisory
EMIFS_4

Revision(s) Affected: Revision C

Details: Data pipeline in EMIFS is broken during burst write with certain configuration

(WRWST < 3 and FCLKDIV = 0).

Workaround: The EMIFS must be setup with a minimum of 3 write wait states (WRWST > 2) for proper
operation if FCLKDIV = 0. For most devices used with EMIFS, this is not a performance
constraint since the memories available are slower than this speed. This exception will not be
fixed on future silicon revisions.

SPRZ016OMAP5910 Silicon Errata

34

5.2 EMIF Fast (EMIFF) Advisories

EMIFF Configuration Preventing Deep Sleep EntryAdvisory
EMIFF_1

Revision(s) Affected: Revision C

Details: Due to the implementation of the SDRAM power down feature in the EMIFF, it is possible to
have a sequence of events where the SDRAM clock will not properly be disabled making it
impossible to enter deep sleep.

The following table details every combination of relevant events which lead to deep sleep
entry. The sequence of events is from left to right in the table, i.e, the register bit specified in
column one is step1 followed by the register bit in step2, etc. Also, all register bits are
assumed to be low before the sequence is started. The “Deep Sleep?” column indicates
whether the device will successfully enter deep sleep mode for the corresponding sequence
(OK) or whether it will fail to enter deep sleep (NOT OK).

STEP1 STEP2 STEP3 STEP4 DEEP SLEEP?

EMIFS_PDE EMIFF_CLK EMIFF_PWD SLFR OK

EMIFS_PDE EMIFF_CLK SLFR EMIFF_PWD OK

EMIFS_PDE EMIFF_PWD EMIFF_CLK SLFR OK

EMIFS_PDE EMIFF_PWD SLFR EMIFF_CLK OK

EMIFS_PDE SLFR EMIFF_PWD EMIFF_CLK NOT OK

EMIFS_PDE SLFR EMIFF_CLK EMIFF_PWD NOT OK

EMIFF_CLK EMIFS_PDE EMIFF_PWD SLFR OK

EMIFF_CLK EMIFS_PDE SLFR EMIFF_PWD OK

EMIFF_CLK EMIFF_PWD EMIFS_PDE SLFR OK

EMIFF_CLK EMIFF_PWD SLFR EMIFS_PDE OK

EMIFF_CLK SLFR EMIFF_PWD EMIFS_PDE OK

EMIFF_CLK SLFR EMIFS_PDE EMIFF_PWD OK

EMIFF_PWD EMIFS_PDE EMIFF_CLK SLFR OK

EMIFF_PWD EMIFS_PDE SLFR EMIFF_CLK OK

EMIFF_PWD EMIFF_CLK EMIFS_PDE SLFR OK

EMIFF_PWD EMIFF_CLK SLFR EMIFS_PDE OK

EMIFF_PWD SLFR EMIFF_CLK EMIFS_PDE OK

EMIFF_PWD SLFR EMIFS_PDE EMIFF_CLK NOT OK

SLFR EMIFS_PDE EMIFF_CLK EMIFF_PWD NOT OK

SLFR EMIFS_PDE EMIFF_PWD EMIFF_CLK NOT OK

SLFR EMIFF_CLK EMIFS_PDE EMIFF_PWD OK

SLFR EMIFF_CLK EMIFF_PWD EMIFS_PDE OK

SLFR EMIFF_PWD EMIFF_CLK EMIFS_PDE OK

SLFR EMIFF_PWD EMIFS_PDE EMIFF_CLK NOT OK

SPRZ016OMAP5910 Silicon Errata

35

EMIFF Configuration Preventing Deep Sleep Entry (Continued)

Important notes:

• The above table was generated with

– RFRSH_STBY of the EMIFF_SDRAM_CONFIG_2 (bit0) register = 1, and,

– PWD_EN of EMIFS_CONFIG_REG (bit 2) register = 1

• EMIFS_PDE = Global Power Down Enable, EMIFS_CONFIG_REG(3)

• EMIFF_CLK = EMIFF sdram clock control, EMIFF_SDRAM_CONFIG(27).

• EMIFF_PWD = EMIFF Power Down Enable, EMIFF_SDRAM_CONFIG(26).

• SLFR = EMIFF Self Refresh Control, EMIFF_SDRAM_CONFIG(0).

Workaround: In order to ensure that the deep sleep state is entered correctly and the clocks are turned off, it
is necessary to make sure that the Global Power Down Enable (EMIFS_CONFIG_REG(3)) is
set as the last event of the TC Idle entry procedure and it has to be toggled from 0 –> 1.

The recommended sequence is:

1. Set EMIFS_PDE = 0

2. Set EMIFF_CLK, SLFR, EMIFF_PWD to 1 (in any order, or all at once)

3. Make sure that IMIF_PWD bit is set to 1.

4. Set EMIFS_PDE = 1

As there is a simple software workaround, this exception will not be fixed in future silicon
revisions.

SPRZ016OMAP5910 Silicon Errata

36

6 OMAP5910 Peripheral Advisories

6.1 LCD Advisories

Missing the Palette Loading InterruptAdvisory
LCD_1

Revision(s) Affected: Revision C

Details: When LCD is in Palette and Data loading mode and the palette loading interrupt occurs, the
LCD sends an interrupt, but the status register bit does not get set. ARM will see the interrupt,
but will not be able to identify what caused it because LCD status register doesn’t capture it.
The real intention of this bit, however, is for palette loading mode only. If the user is in palette
loading mode only, then the operation is correct; the interrupt is sent and the status bits are
properly set.

Workaround: Do not use this interrupt when operating in Palette and Data loading mode. If operating in this
mode then this interrupt should be masked. This exception will not be fixed in future silicon
revisions.

SPRZ016OMAP5910 Silicon Errata

37

6.2 UART Advisories

Software Flow Control Mode of UART1/2/3Advisory
UART_1

Revision(s) Affected: Revision C

Details: When software flow control mode is enabled, the UART (MODEM or IrDA) will compare
incoming data with XOFF1 (and/or XOFF2) programmed characters or XON1/2:

• If a correct XOFF is received, the transmission is halted.

• If a correct XON is received the transmission is re–started.

• If XOFF1 and XOFF2 are used they must be received sequentially in order to halt the
transmission.

If parity, framing or break error occurs when XOFF is received, the transmission should not be
stopped but an error should be reported.

There are two issues:

• XOFF with framing error (only this one) stops the transmission.

• With XOFF1 + word with Parity or break error + XOFF2, the transmission is stopped. It is
not correct because XOFF2 does not follow immediately XOFF1. (Note: the sequence
XOFF1 + word without error + XOFF2 does not stop the transmission)

Workaround: Use one of the following two workarounds:

1. use hardware flow control.

2. use software to perform software flow control without hardware assist.

This exception will not be fixed on future silicon revisions.

UART Clock Request Prevents Deep SleepAdvisory
UART_2

Revision(s) Affected: Revision C

Details: OMAP5910 was intended to have a feature that if communication is sent on the UART2.RX
signal while the device is in deep sleep mode then the device will automatically wake up from
deep sleep. This function does not work properly and consequently, if UART2.RX activity
occurs while the device is awake, this will incorrectly create a pending wakeup request from
UART2 preventing the device from entering deep sleep mode even when all other conditions
required for deep sleep are met.

Workaround: To allow deep sleep mode is to be used, it is recommended that UART2 be used for data
transmission only and that a different UART (UART1 or UART3) be used to receive serial
data. Note that this issue in no way impacts other deep sleep operation and is limited to the
constraint outlined in this notice.

A fix for this exception is being considered for future silicon revisions.

SPRZ016OMAP5910 Silicon Errata

38

OSC_12M_SEL and EBLR Registers Are Not ReadableAdvisory
UART_3

Revision(s) Affected: Revision C

Details: Several UART configuration registers are write–only and cannot be read by the MPU or the
DSP. These registers are: the OSC_12M_SEL register of UART1,2 and 3 and EBLR register
of UART3.

Workaround: Writes to these registers operate correctly but software will not be able to confirm written value
with a read. Write errors to the OSC_12M_SEL registers will exhibit themselves as baud–rate
inaccuracies. This exception will not be fixed in future silicon revisions.

SPRZ016OMAP5910 Silicon Errata

39

6.3 MMC/SD Advisories

MMC/SD Does Not Support Stream Mode ReadsAdvisory
MMC_1

Revision(s) Affected: Revision C

Details: The MMC/SD controller does not support stream mode read operations with MMC devices
(SD cards do not support stream mode.) The command associated with stream mode reads
is:

CMD11 – READ_DAT_UNTIL_STOP

Workaround: Block oriented read commands (class 2) must be used for read operations. This exception will
not be fixed on future silicon revisions.

SPRZ016OMAP5910 Silicon Errata

40

6.4 Microwire Advisories

Pulldown On the UWIRE.SDI Pin Needs to be Disabled by SoftwareAdvisory
UWIRE_1

Revision(s) Affected: Revision C

Details: On the UWIRE.SDI pin (ball J14 of the 289–pin BGA device when configured for UWIRE) pin,
there is a pull–down active by default. The inactive level of the signal is high, so the pull down
needs to be disabled in software in OMAP5910 native mode otherwise power is wasted. The
pull–down is disabled in compatibility mode.

Workaround: Write 0x0000EAEFh to the COMP_MODE_CTRL_0 register (base address: FFFE:1000 +
offset 0x0C) to put the part in OMAP5910 native mode.

Before putting the device into OMAP5910 native mode, set CONF_PDEN_WIRE_SDI_R
(bit 18) to 1 of the PULL_DWN_CTRL_1 register (MPU byte address FFFE:1044).

This exception will not be fixed in future silicon revisions.

Microwire Interface RX Data Failures PossibleAdvisory
UWIRE_2

Revision(s) Affected: Revision C

Details: There are RX data failures which occur when specific configurations are used:

Configuration #1:

CSx_EDGE_RD=0
CSx_EDGE_WR=1
Delay of 1.5 SCLK cycles between last bit transmitted and first receive bit
captured.

Configuration #2:

CSx_EDGE_RD=1
CSx_EDGE_WR=0
Delay of 2.5 SCLK cycles between last bit transmitted and first receive bit
captured.

In Configuration #1, an extra bit of receive data is captured in the RX register. In Configuration
#2, the first bit of RX data will not be captured.

Workaround: Configuration #1: In this configuration, bit 0 can be ignored by right shifting the RX register
value by 1 after reading the data from the RX register. This work–around cannot be used in
the 16–bit mode since 1 bit of data is lost due to the extra captured bit. In 16–bit mode, a
different configuration must be used.

Configuration #2: No work–around exists. A different configuration must be used.

SPRZ016OMAP5910 Silicon Errata

41

6.5 I2C Advisories

I2C Prescalar Value of 0 Not Supported in Slave ModeAdvisory
I2C_1

Revision(s) Affected: Revision C

Details: The I2C peripheral does not detect a start condition on the I2C bus when the prescalar value
is programmed to a divide by 1 value. When the I2C_PSC register stays at its default value of
0 (divide by 1 of the system 12Mhz clock), the Bus Busy (bit 12) bit of the I2C_STAT is not set.
Additionally in this case, the I2C peripheral does not recognize the address sent by the
master.

Register addresses affected are:

I2C_PSC register = byte address FFFB:380C

BB bit (bit 12) of I2C_STAT register = byte address FFFB:3802

Workaround: If operating in Slave Mode set PSC greater than or equal to 1. If operating in Master Mode
above 100 kbps then set PSC to 0.

As the System Clock is a 12Mhz clock (83.3ns), the internal sampling clock will have a period
of 166.6ns when PSC is set to 1. The I2C performance & functionality is still in conformance to
the I2C specification, however, a pulse width less than 166.6ns (which includes 83.3ns pulses)
will be filtered.

This exception will not be fixed in future silicon revisions.

SPRZ016OMAP5910 Silicon Errata

42

6.6 USB Function Advisories

Read of USB Function Data Register Has a Side-Effect and Should Not be Read From
Emulator

Advisory
USBF_1

Revision(s) Affected: Revision C

Details: Emulation/debug read access (ARM TIPB Suspend active) for USB Function DATA register
works only if the end point (the last offset address) is selected. If endpoint is not selected,
there is no response from USB Function, and the ARM processor hangs.

Emulation/debug read access (ARM TIPB Suspend active) for USB Function DATA_DMA
register works only when the DMA Request is active. If DMA request is not active, there is no
response from USB Function, and the system DMA Controller hangs.

The registers affected are:

DATA = byte address FFFB:4008

DATA_DMA = byte address FFFB:4048

No other registers in the USB Function are affected.

Workaround: Do not read this register from emulator. The Code Composer Studio memory map may be
configured so that memory windows will not cause accesses to these registers. Either of
these two methods can be used.

Option 1 – use Code Composer Studio ”Options” pull down menu’s ”Memory Map” window to
define the two registers as ”protected”. This sequence will need to be performed every time
you open Code Composer Studio. Perform the following steps:

Select ”Memory Map on the ”Options” menu
Set the Starting Address field to 0xFFFB4008.
Set the Length field to 4.
Set the Attribute field to None – No Memory/Protected.
Set the Access Size field to Auto.
Make sure the Memory Mapping box is checked.
Click the Add Button
Set the Starting Address field to 0xFFFB4048.
Set the Length field to 4.
Set the Attribute field to None – No Memory/Protected.
Set the Access Size field to Auto.
Make sure the Memory Mapping box is checked.
Click the Add Button.
The Memory Map List window should now include the following lines:
0xFFFB4008–0xFFFB400B: NONE
0xFFFB4048–0xFFFB404B: NONE
Click the OK Button. See the Code Composer Studio on–line Help for further
details on Memory Mapping.

SPRZ016OMAP5910 Silicon Errata

43

Read of USB Function Data Register Has a Side-Effect and Should Not be Read From Emulator (Continued)

Option 2 – Modify the Code Composer Studio GEL file that is automatically loaded at Code
Composer Studio boot time so that it pre–initializes the memory map so that these registers
are protected. Add the following lines to the GEL file:

GEL_MapAddStr(0xFFFB4000, 0, 0x00000008, ”R|W|AS2”, 0);
GEL_MapAddStr(0xFFFB4008, 0, 0x00000004, ”NONE”, 0);
GEL_MapAddStr(0xFFFB400C, 0, 0x0000003C, ”R|W|AS2”, 0);
GEL_MapAddStr(0xFFFB4048, 0, 0x00000004, ”NONE”, 0);
GEL_MapAddStr(0xFFFB404C, 0, 0x000007B4, ”R|W|AS2”, 0);

You may need to modify other GEL_MapAddStr or GEL_MapAdd operations in the GEL file
that already define this area or overlap this area.

See the Code Composer Studio on–line Help for further details on Memory Mapping, GEL
files, and the GEL_MapAddStr and GEL_MapAdd operations.

This exception will not be fixed in future silicon revisions.

USB Function Supend Functionality in HMC_MODE 13 and HMC_MODE 15Advisory 1
USBF_2

Revision(s) Affected: Revision C

Details: When in HMC_MODE 13 or HMC_MODE 15, the TLL receives its Suspend and Pullup Enable
signals from the USB Function. In its default operating mode, the USB Function will not
transition from Suspend to enabled until it senses that it has successfully enabled the Pullup.
The TLL prioritizes its Suspend input over its Pullup Enable input, so the TLL will not signal the
presence of the pullup, and the USB Function cannot sense that it has enabled the pullup.
The USB Function will not exit Suspend mode.

Workaround: Do not use the Transceiverless Link Logic with the USB Function and an external USB Host
Controller. Use a transceiver–based solution instead. This exception will not be fixed in future
silicon revisions.

USB Function Double-Buffering Not SupportedAdvisory USBF_3

Revision(s) Affected: Revision C

Details: USB Function Double Buffering does not function properly.

Workaround: Use Single–buffer mode instead of double buffering mode. This exception will not be fixed in
future silicon revisions.

SPRZ016OMAP5910 Silicon Errata

44

6.7 USB Host Advisories

Remote Wake Non-Functional Through TLL in HMC_Mode Settings 9, 10, 11, 12, 14, 21,
23, 24, and 25

Advisory
USBH_1

Revision(s) Affected: Revision C

Details: When in HMC_MODE 9, 10, 11, 12, 14, 21, 23, 24, or 25, the USB Host will not receive
Remote Wake from the external USB Function Controller connected to the pins associated
with the Transceiverless Link Logic. The external USB Function Controller cannot wake the
USB link from USB Suspend using Remote Wake.

This does not affect other connectivity which does not use the Transceiverless Link Logic.

Workaround(s): 1. Systems which do not use USB Remote Wake through the Transceiverless Link Logic
may ignore this errata.

2. Use a transceiver–based connection (may require use of a different HMC_MODE or a
different set of OMAP5910 pins).

3. Use an OMAP5910 GPIO pin and software monitoring to indicate when software should
take the appropriate USB Host Controller port out of USB Suspend state.

4. Avoid putting the USB Host Port which uses the Transceiverless Link Logic into USB
Suspend.

This exception will not be fixed on future silicon revisions.

SPRZ016OMAP5910 Silicon Errata

45

7 OMAP5910 Device/System Level Advisories

7.1 System Advisories

Timeout Abort on a Posted-Write Access in the TIPB BridgeAdvisory
SYS_1

Revision(s) Affected: Revision C

Details: An issue has been detected when posted–write is enabled in the TIPB Bridge, and a
posted–write transaction causes a timeout abort. In this case the TIPB Bridge wrongly
generates a data strobe to the ARM, which could cause the ARM to hang.

Workaround: Disable the posted–write in the both the Public and Private TIPB Bridges. By default (coming
out of RESET), the posted–write is disabled. The posted–write feature can be disabled by
setting ARM_TIPB_CNTL[1:0] = “00”.

A fix is being considered for this exception on future silicon revisions.

Write Followed by Immediate Read Not Supported on Specific Addresses (TIPB Switch
and PWT Module)

Advisory
SYS_2

Revision(s) Affected: Revision C

Details: A write followed by an immediate read does not work on the ARM address space defined
below. If a read occurs immediately after the write to the same address, then the read will
return incorrect data (not the data that was just written).

The affected address spaces are:

TIPB Switch module: Address FFFB:C800 to End Address FFFB:CFFF

PWT module: Address space FFFB:6000 to End Address FFFB:67FF

Workaround: When an immediate read is required after a write to any register in the above address space,
the workaround is to make two consecutive writes to the same address prior to the read. By
this procedure, it is guaranteed that the first write must complete and the read data will be
correct. This exception will not be fixed on future silicon revisions.

SPRZ016OMAP5910 Silicon Errata

46

Impact on IDDC(0) Current if DSP Held in Reset Without Proper InitializationAdvisory
SYS_3

Revision(s) Affected: Revision C

Details: Due to the synchronous implementation of resets within the DSP subsystem, if the DSP is
simply held in reset, it will not be in its lowest power state. The DSP must be properly
initialized to enter its lowest power state.

Workaround: The OMAP5910 DSP subsystem can go properly into a low current consumption state in any
one of three different ways:

• Method 1: use the program in DSP PDROM to put the DSP into idle
• Method 2: toggle the DSP reset (DSP_EN of ARM_RSCT1): 0 then 1 then 0 again.
• Method 3: download a Program into the DSP that puts the DSP into idle

All of these must be done with DSP clocks enabled.

Method 1: Use the program code in DSP PDROM to put the DSP into idle.

Enable DSP clock
Enable MPUI clock
Release DSP Interface Reset (Bit DSP_RST of ARM_RSTCT1)
Set up the MPUI
Set up the MPUI boot to the value 0x2 (API_DSPBootConfig(API_DSP_BOOT_IDLE))
Set API_SIZE_REGISTER register to 0 (Make SARAM inaccessible by MPU to allow the
DSP to go into idle)
Release DSP reset (Bit DSP_EN of ARM_RSCT1)
The DSP boots from the PDROM and executes code that put itself in IDLE
Set all the IDLE bits of ARM_IDLECT1

Method 2: Toggle the DSP reset.
Cut DSP clock
Set all the IDLE bits of ARM_IDLECT1

Method 3: Download a Program into the DSP that puts the DSP into idle.
Turn on DSP clock
Turn on API clock
Release DSP Interface Reset (Bit DSP_RST of ARM_RSTCT1)
Set up the MPUI
Set up the MPUI boot to the value 0x5
(API_DSPBootConfig(API_DSP_BOOT_INTERNAL))
Write DSP code into DSP SARAM0
Set API_SIZE_REGISTER register to 0 (Make SARAM inaccessible by MPU to allow the
DSP to go into IDLE)
Assert DSP reset (Bit DSP_EN of ARM_RSCT1)
Release DSP reset (Bit DSP_EN of ARM_RSCT1)
The DSP boots from SARAM0 and executes code that puts itself in idle
Set all the IDLE bits of ARM_IDLECT1

This exception will not be fixed in future silicon revisions.

SPRZ016OMAP5910 Silicon Errata

47

8 Documentation Support

For device-specific data sheets and related documentation, visit the TI web site at: http://www.ti.com

For further information regarding the OMAP5910, please refer to:

• OMAP5910 Fixed-Point Digital Signal Processor data manual, literature number SPRS076

• TMS320C55x� DSP Functional Overview, literature number SPRU312

For additional information, see the latest versions of:

• TMS320C55x DSP CPU Reference Guide (literature number SPRU371)

• TMS320C55x DSP Mnemonic Instruction Set Reference Guide (SPRU374)

• TMS320C55x DSP Algebraic Instruction Set Reference Guide (SPRU375)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third–party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright 2002, Texas Instruments Incorporated

	Contents
	Introduction
	Quality and Reliability Conditions
	TMX Definition
	TMP Definition
	TMS Definition

	Revision Identification

	Important Notices and Information About OMAP5910
	Useful Information Regarding C55x Assembler Diagnostic Messages
	ERROR Diagnostics
	WARNING Diagnostics
	REMARK Diagnostics
	Intended Treatment of REMARK Diagnostics
	Suppressing REMARK Diagnostics
	REMARK Directives
	REMARK Command-Line Options

	DSP Subsystem Advisories
	DSP Processor Core Advisories
	DSP_CPU_73Certain Instructions Not Pipeline-Protected From Resets
	DSP_CPU_76 DELAY Smem Does Not Work With Circular Addressing
	DSP_CPU_82 ‘if (cond true) goto’ at the End of Local Repeat Fails
	DSP_CPU_83 BRAF Updated Incorrectly in Certain Cases of Conditional Exec\ution
	DSP_CPU_84 SPI/SSP Access Followed by a Conditional Execute is not Prote\cted Against Interrupts
	DSP_CPU_85 Local Repeat with C54CM = 1 may be Corrupted on its Last Iter\ation
	DSP_CPU_86 Corruption of CSR or BCRx Register Read When Executed in Para\llel With Write
	DSP_CPU_87 Context Restore Just Before Return Instruction Sometimes Fail\
	DSP_CPU_88 Incorrect Context Store of BRAF During Interrupt Servicing
	DSP_CPU_89 Internal Overflow Not Detected When Using the Left Shift Comm\and
	DSP_CPU_91 C16, XF, and HM Bits Not Reinitialized by Software Reset
	DSP_CPU_94 Interrupted Conditional Execution After Long Memory-Mapped Re\gister Write is Executed Unconditionally in the D Uni
	DSP_CPU_95 BRCx Decement May Not Work When GotoP24 Is Put at End of Bloc\krepeat With C54CM=0
	DSP_CPU_96 BRCx Decement May Not Work When GotoP24 Is Put at End of Bloc\krepeat
	DSP_CPU_97 LCRPC – Lmem || Lmen= LCRPC May Not Work
	DSP_CPU_98 BANZ at the End of Inner Loop in Native Mode May Corrupt Prog\ram Flow
	DSP_CPU_99 Return_int (Under a Fast – Return Configuration) May Cause \Improper Operation of Single Repeats and Conditional E
	DSP_CPU_100 Interrupted Single Repeat Is Not Resumed After RETI
	DSP_CPU_102 Page Register Update and CPU Bypass Corrupts Following Memor\y Read

	DSP DMA Advisories
	DSP_DMA_1 DSP EMIF/DMA Port Hangs During EMIF Bus Error
	DSP_DMA_2 DSP DMA IDLE Prevents Transfer Completion
	DSP_DMA_3 Potential Deadlock in Burst Accesses

	MPU Subsystem Advisories
	MPU Data-Cache Advisories
	MPU_DCACHE_1 Data Cache Transparent Mode Restriction During Copy-Back Op\eration

	System DMA Advisories
	SYS_DMA_1 DMA Clocks Turned Off During Transfers Allows Corruption

	Traffic Controller Subsystem Advisories
	EMIF Slow (EMIFS) Advisories
	EMIFS_1 FLASH.RDY Should Not Be Used With Intel Burst Flash WAIT Signal
	EMIFS_2 Burst Writes in EMIFS Causes Latency of Two TC Clock Cycles Extr\a From Second Data Write in the Data Path
	EMIFS_3 WELEN = 0 and FDIV = 1 WIth 16-Bit Memory
	EMIFS_4 EMIFS Wait States

	EMIF Fast (EMIFF) Advisories
	EMIFF_1 EMIFF Configuration Preventing Deep Sleep Entry

	OMAP5910 Peripheral Advisories
	LCD Advisories
	LCD_1 Missing the Palette Loading Interrupt

	UART Advisories
	UART_1 Software Flow Control Mode of UART1/2/3
	UART_2 UART Clock Request Prevents Deep Sleep
	UART_3 OSC_12M_SEL and EBLR Registers Are Not Readable

	MMC/SD Advisories
	MMC_1 MMC/SD Does Not Support Stream Mode Reads

	Microwire Advisories
	UWIRE_1 Pulldown On the UWIRE.SDI Pin Needs to be Disabled by Software
	UWIRE_2 Microwire Interface RX Data Failures Possible

	I2C Advisories
	I2C_1 I2C Prescalar Value of 0 Not Supported in Slave Mode

	USB Function Advisories
	USBF_1 Read of USB Function Data Register Has a Side-Effect and Should N\ot be Read From Emulator
	USBF_2 USB Function Supend Functionality in HMC_MODE 13 and HMC_MODE 15
	USBF_3 USB Function Double-Buffering Not Supported

	USB Host Advisories
	USBH_1 Remote Wake Non-Functional Through TLL in HMC_Mode Settings 9, 10\, 11, 12, 14, 21, 23, 24 and 25

	OMAP5910 Device/System Level Advisories
	System Advisories
	SYS_1 Timeout Abort on a Posted-Write Access in the TIPB Bridge
	SYS_2 Write Followed by Immediate Read Not Supported on Specific Address\es (TIPB Switch and PWT Module)
	SYS_3 Impact on Iddc(0) Current if DSP Held in Reset Without Proper In\itialization

	Documentation Support
	IMPORTANT NOTICE

