

無線網路多媒體系統 Wireless Multimedia System

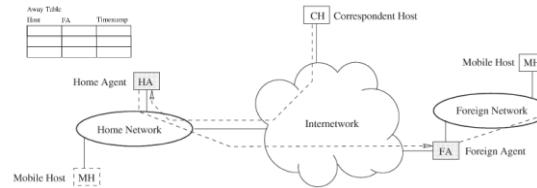
Lecture 7: Network Mobility 吳曉光博士

A IP reference Architecture for Wireless Mobile System

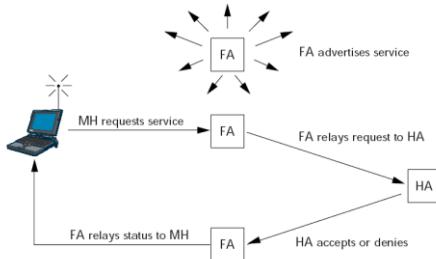
Agenda

- All-IP System: Beyond 3G
- Evolutions of PCS
- ALL IP Challenges
 - Mobile IP/Cellular IP
 - QoS Provisions: Integrated Service / DiffServ
- Next Week (Wireless TCP)

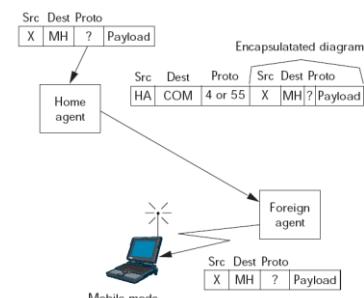
Reading

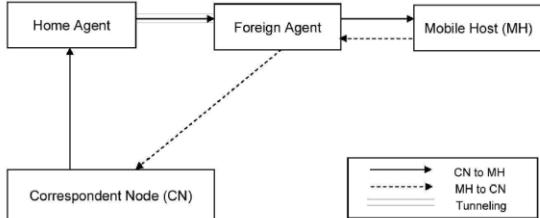

- [Bhagwat96] Pravin Bhagwat, Charles Perkins, and Satish Tripathi, "Network Layer Mobility: An Architecture and Survey

Foreign Agent Tables


Visitor Table		
Host	HA	Timestamp

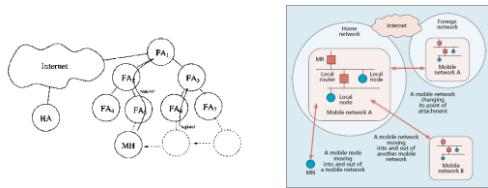
Home Agent Tables


Home Table		
Host	FA	Timestamp


Register Operation

Tunneling Operation

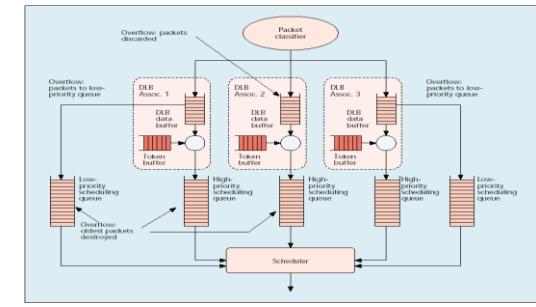
Indirect Routing (Triangular Routing)



Wireless & Multimedia Network Laboratory™

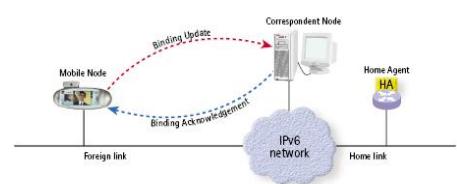
Wireless

Mobility Management


- ◆ Micro-Mobility
- ◆ Network Mobility

Wireless & Multimedia Network Laboratory™

Wireless


MT Scheduler

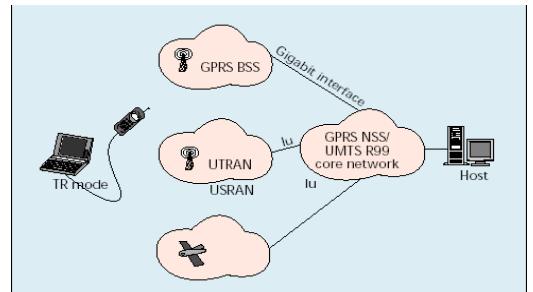
Wireless & Multimedia Network Laboratory™

Wireless

RO (Route Optimization)

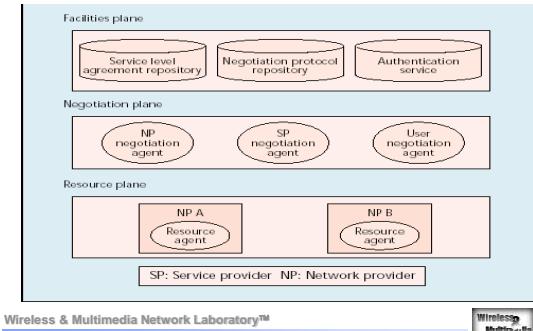
Wireless & Multimedia Network Laboratory™

Wireless


All IP

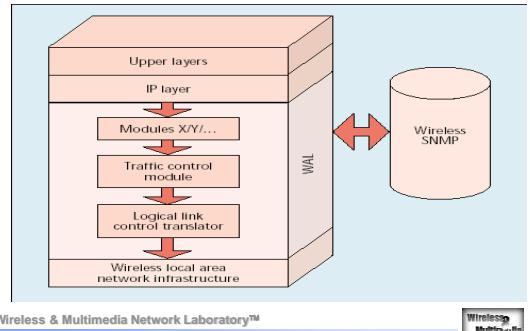
Something to happen?

Wireless


Integration Scenario

Wireless & Multimedia Network Laboratory™

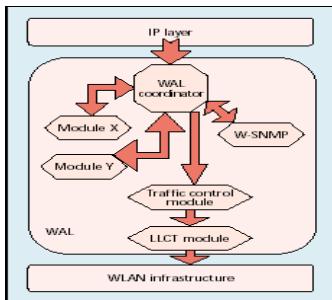
Wireless


Resource Managements

Wireless & Multimedia Network Laboratory™

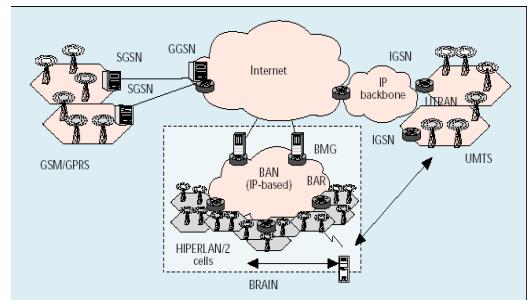
CSIE

WAL



Wireless & Multimedia Network Laboratory™

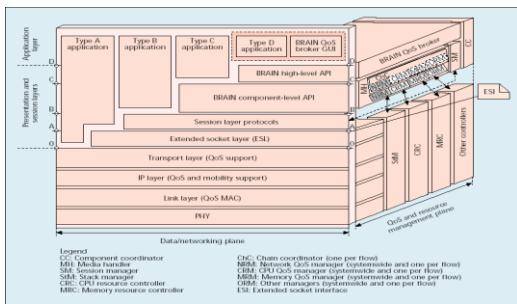
Wireless & Multimedia Network Laboratory™


CSIE

Detail WAL

Wireless & Multimedia Network Laboratory™

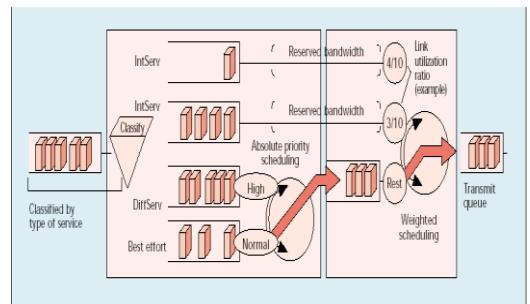
Wireless & Multimedia Network Laboratory™



Wireless & Multimedia Network Laboratory™

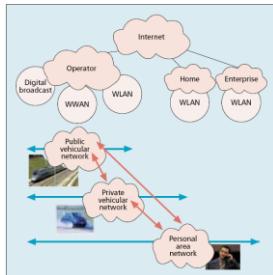
Wireless & Multimedia Network Laboratory™

CSIE


QoS Support

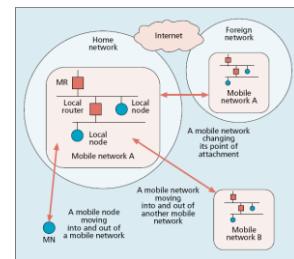
Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™


IP QoS Modeling

Wireless & Multimedia Network Laboratory™

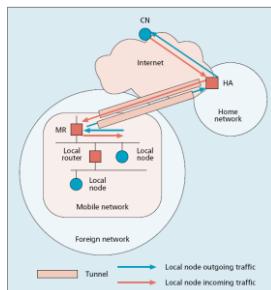
Wireless & Multimedia Network Laboratory™


A mobile network in a B3G system

Wireless & Multimedia Network Laboratory™

CSIE

Mobile network scenarios



Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSIE

Traffic flows with basic network mobility

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSIE

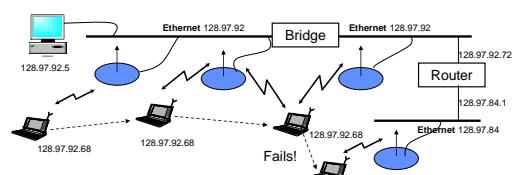
Lecture Outline

- Mobility in wireless LANs
- Problems in making Internet mobile
- Canonical packet forwarding architecture for Mobile-IP
- Columbia's Mobile-IP schema

Making the Internet Mobile

CSIE

- Goal
 - Provide continuous IP connectivity to "mobile" users.
- Mobility == change in how MH accesses the internet
 - Physically move so that access to internet is via a different basestation
 - Switch network interfaces
- Continuous connectivity
 - Datagrams for MH must be delivered to its current location
 - Mobility must be transparent to applications
 - Applications must not die or need to restarted
 - Performance transparency also desirable
- Desirable
 - Secure
 - Work across security domains
 - Require no changes to existing stationary hosts


Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

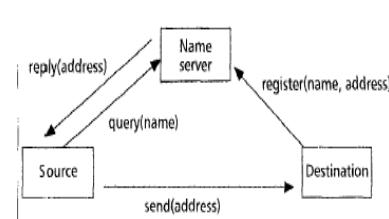
Wireless & Multimedia Network Laboratory™

CSIE

Mobility in Wireless LANs: Basestation as Bridges

- Basestations are bridges(layer 2) – i.e. they relay MAC frames
 - Smart bridges avoid wasted bandwidth!
- Works the within an ethernet(or other broadcast LAN)
 - Fails across network boundaries, and in switched LANs(e.g. ATM)

Wireless & Multimedia Network Laboratory™


Wireless & Multimedia Network Laboratory™

CSIE

Internet Naming and Addressing

- Collection of networks that are connected by routers
- Each internet host(each network interface) has two identifiers:
 - Internet (IP) Address(32-bit)
 - Host Name (string)
- Domain Name System (DNS) maps host names to IP address
- Applications refer to hosts by names
 - Use Domain Name System (DNS) to map host names to IP addresses
 - DNS lookup done once only at connection set-up
 - Transport protocols developed that assume this static binding
 - E.g. a TCP connection is identified by
 - <Source IP address, source TCP port, destination IP address, destination TCP port>
- Packets carry source and destination IP addresses
 - Routers use routing tables to forward packets based on destination address
 - Packet sent directly to destination within a network (e.g. ethernet)

DNS-based Resolution

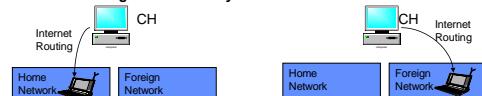
Hierarchical Addressing

- Routers maintain network topology in routing tables
- Flat IP address space would make routing tables huge!
 - Many many millions of hosts
- IP address space is therefore *hierarchical*
 - IP address is a tuple: (network id, host id)
 - e.g., consider 192.11.35.53

Network id	Host id
192	11
35	53

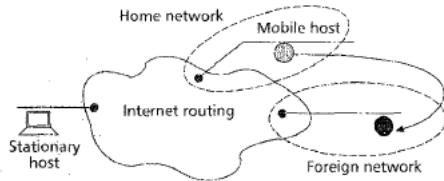
- Internet routers required to maintain network topology only at the granularity of individual networks
 - Only network id part of destination address used in routing
 - Makes routing tables manageable

“Non-solutions” to Internet Mobility


- Enhance DNS
 - Historically, DNS does not have dynamic *name-address binding* updates
 - Optimized for access cost
 - DNS clients cache DNS records
 - Hard to optimize for both access and update costs
 - Solves only part of the problem
 - TCP connections will still die!
- Keep per-MH routing information at all routers
 - Completely breaks the hierarchical routing model
 - Unbounded growth in routing table sizes at all routers
- Fix all the transport layer and higher protocols, and applications
 - Yeah, sure....

Clean solutions: fix the network (IP) layer!

Making IP Network Layer Mobile


Challenge of Mobile-IP

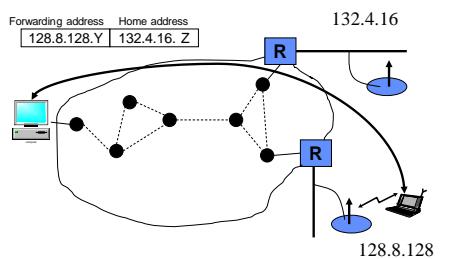
How to direct IP packets to MH that travels to a Foreign Network away from MH's Home Network?

- MH is assigned a home address as its IP address
 - Home network is the network containing the home address
 - DNS queries for MH return the home address
- Mobile-IP only concerned with moves across networks
 - Moves within home network (e.g. ethernet) handled by link-layer bridging.

Illustration of terms

Wireless & Multimedia Network Laboratory™

CSIE

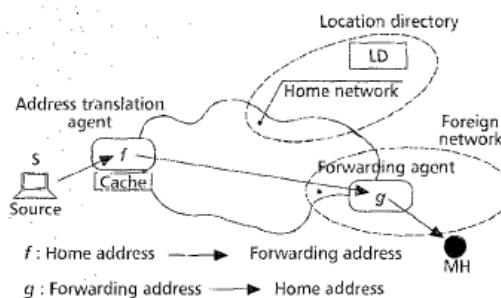

Key to Mobile-IP Two-Tier Addressing

- MH has two IP addresses associated with it
 - Does no mean two IP address are assigned!
- First component of the address serves as the routing directive
 - Reflects MH's point of attachment to Internet
 - Derived from the foreign network
 - Changes whenever MH moves to a new network
 - Internet routers use this address to route to MH's point of attachment
- Second component of the address servers as the end-point identifier
 - This is the home address
 - Remains static throughout the lifetime of MH
 - Only this address used for protocol processing above network layer
 - MH remains virtually connected to the home network
- Two-tier addressing is only a logical concept
 - IP packet headers can't actually carry two addresses!
- MH to Stationary Host (SH) packets do not need special handling

Wireless & Multimedia Network Laboratory™

CSIE

Two-Tier Addressing for Mobile Hosts

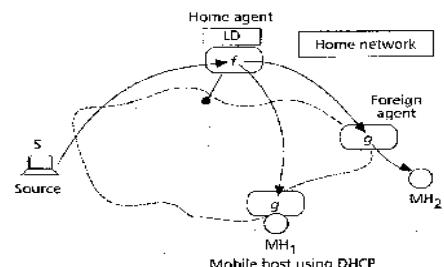


Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSIE

Packet Forwarding model



Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSIE

Canonical Mobile-IP Architecture

Wireless & Multimedia Network Laboratory™

CSIE

Components of Canonical Mobile-IP Architecture

CSIE

- Forwarding Agent (FA)
 - Forwarding component of two-tier address is the address of FA entity
 - FA receives packets on behalf of MH
 - Packets contain FA's address as destination
 - FA maps forwarding address to MH's home address
 - FA: f (forwarding address) \rightarrow home address
 - FA then relays the packet to MH
 - FA represents a function, not a machine
- Issues:
 - Where can FA be located?
 - MH, BS, somewhere else
 - How does MH find the FA in a foreign network? (and, vice versa)
 - Route advertisement and registration protocol
 - FA periodically advertises its presence (beacons)

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Component of Canonical Mobile-IP Architecture (contd.)

CSIE

- Address Translation Agent (ATA)
 - CH sends packets to MH at its home address
 - ATA replaces MH's home address with FA's address in packets
 - ATA: f (home address) \rightarrow forwarding address
 - address translation involves:
 - Querying the LD
 - Obtain address of the FA corresponding to the MH
 - Use FA's address to forward packet to MH's location
 - Issues:
 - Where to locate ATA
 - At CH: but will need to change software in millions of hosts! elsewhere
 - Querying LD for every packet is expensive: cache LD entries?
 - Improves performance
 - but, requires maintaining consistency between LD and cached entries!

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Address Translation Mechanisms

CSIE

- Encapsulation approach (IP-in-IP tunnel)
 - ATA appends new header at the beginning of datagram
 - Outer header contains the forwarding address
 - Inner header contains the home address
 - Internet routes according to outer header
 - FA strips the outer header and delivers datagram locally to MH

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Component of Canonical Mobile-IP Architecture (contd.)

CSIE

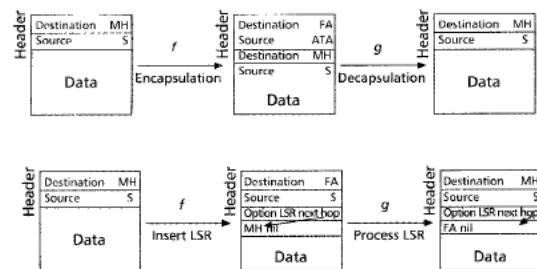
- Location Directory (LD)
 - Records association between home and forwarding addresses
 - Contains most up to date mapping of MH to its FA
 - MH sends updates to LD on moving
 - Issues:
 - Centralized vs. distributed realization
 - Centralized is infeasible – too many MHs in the Internet
 - How to distribute?
 - Cost operation
 - Security
 - Ease of location
 - Ownership
 - Possible distribution policy: *owner-maintains*
 - Some agent in home network maintains LD information for a MH responsible for security, authentication, updates, and distribution
 - a CH does not need to find the right LD component to query router in home network can forward to the correct LD component

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Location Update Protocol (LUP)

CSIE


- LUP is the reliable mechanism for
 - Keeping LD up to date
 - Keeping cached LD entries consistent with master LD
- Choice of LUP depends on caching policy
 - Together the determine scalability and routing characteristics
- What if no LD caching
 - ATA must be collocated with LD to avoid per-packet queries
 - Packets from CH will first travel to home network before being sent to FA no optimal paths!
- What if there is caching?
 - Routing efficiency is improved no more travel to home network
 - but, vulnerable to security attacks cache updates must be authenticated otherwise, traffic to MH may be redirected away!

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

ATM (Address Translation Mechanisms)

CSIE

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Address Translation Mechanisms (contd.)

- Loose Source Routing approach
 - Option in IP packets to specify a sequence of IP addresses to follow path is automatically recorded in the packet destination can send reply back along reverse path
 - ATA can use LSR to cause packets to MH to be routed via FA co-locate ATA at CH, and FA at MH
 - MH sends to CH using LSR, ATA/CH reverses the path

CSIE

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Example: Columbia's Mobile IP

- Campus environment with a reserved subnet for MHs
 - MHs home address are from the reserved subnet
- Group of cooperating Mobile Support Routers (MSR)
 - MSRs advertise reachability to wireless subnet via beacons
 - MHs connect to campus backbone through MSRs
 - MSRs forward traffic to/from MHs
- On moving, MH registers with the new MSR
 - New location is provided to the previous MSR
- CH sends packet to MSR closest to CH
 - This MSR either delivers the packet or, forwards it to the right MSR after encapsulation
 - Right MSR is located by a multicast WHO_HAS query to other MSRs
- Wide area operation uses a pop-up mode
 - A temporary address is used by MH as a forwarding address
 - MH does its own encapsulation/decapsulation

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

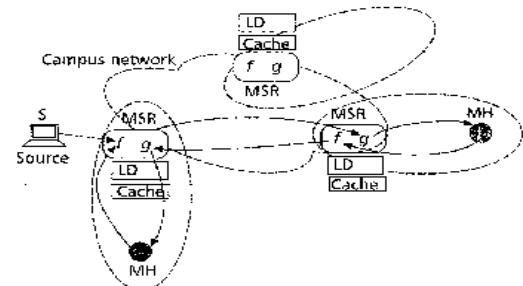
Columbia's Mobile-IP Mapped to Canonical Architecture

- MSR performs both encapsulation & decapsulation
 - Both f and g are collocated at MSR
 - MSR acts as FA for MHs in its coverage area
 - MSR acts as ATA for packets addressed to other MHs
- LD is distributed realization of the owner-maintains scheme
 - Each MSR maintains a table of MHs in its coverage
 - MSRs are a distributed realization of home router
 - Tables of MHs in MSRs together constitute an owner-maintained LD
- Caching policy for LD entries is "need-to-know"
 - MSR sends WHO_HAS query if it does not know MH's location
- LUP is lazy-update
 - When MH moves, only primary and previous copy of LD entry is updated
 - Cached entries are assumed correct by default
 - Stale cache entry causes packet delivery failure, triggering WHO_HAS
- 100% backward compatible – no existing internet entities are affected

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Various Mobile-IP Proposals


- Many Mobile-IP systems have been proposed (and some implemented)
 - Columbia's Mobile-IP
 - Sony's Virtual (VIP)
 - IBM's LSR Scheme
 - Stanford's MosquitoNet Scheme
 - IMHP (Internet Mobile Host protocol)
 - IETF's Mobile-IP for IPv4
 - IETF's Mobile-IP for IPv6
 - etc.
- All are special cases of the canonical mobile-IP architecture
 - Make different choices of
 - FA location
 - ATA location
 - Choice of LUP address translation mechanism

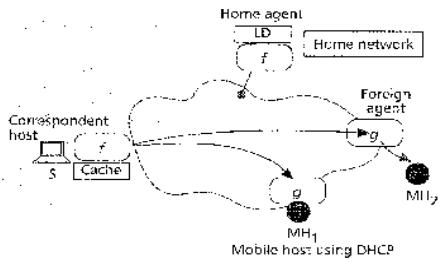
CSIE

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Columbia Proposal

Wireless & Multimedia Network Laboratory™


Wireless
Multimedia

Performance Characteristics of Columbia Mobile-IP

- Control
 - LD cache at ATA is updated when packet routing is needed
 - Limits control traffic
 - But, slow "first" packet due to WHO_HAS query results in SYN packet being lost in TCP (start of transmission)
- Overhead of IP-in-IP
 - 20 bytes (4% on 500 byte packets)
- Routing
 - Requires routing to nearest MSR to be optimal
 - Not optimal for pop-up mode
- Implementation on 33 MHz 486 based MSRs
 - 1.4 ms for WHO_HAS
 - 45 microseconds for encapsulation (per packet overhead)

Wireless
Multimedia

Route Optimization

Wireless & Multimedia Network Laboratory™

CSIE

Route Optimizations

Figure 4. Behavior when CH is Close to MH

Figure 5. A Smart Correspondent Host

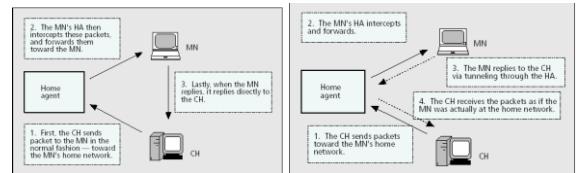
Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSIE

Security Issues

Figure 2. Problem with Source Address Filtering

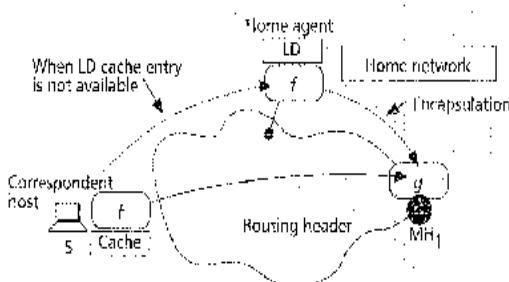

Figure 3. Bi-directional Tunneling

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

Tunneling



Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

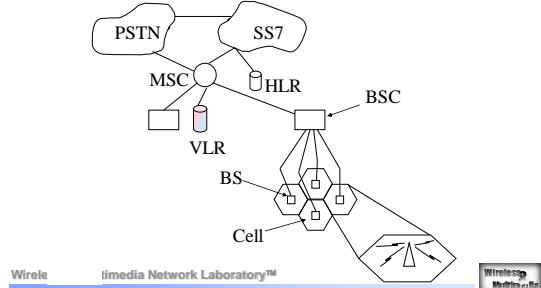
CSIE

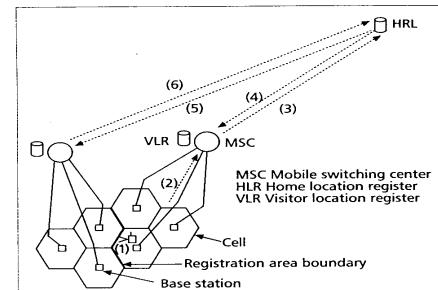
IPv6 Mobility Proposal

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

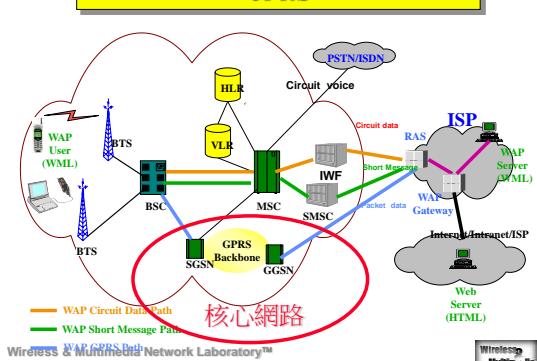

Evolutions of PCS


PCS Requirements

CSIE

PCS network architecture

Location Update Procedure

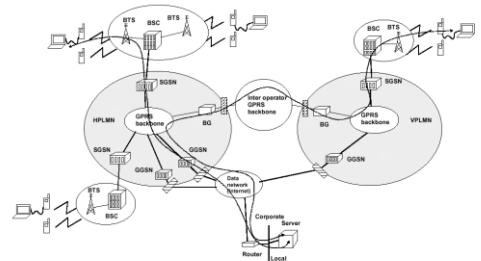


■ Figure 3. Location registration procedures.

Wireless & Multimedia Network Laboratory™

CSIE

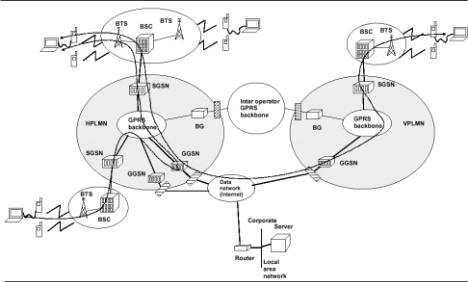
GPRS



Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSIE


Data transfer MS-fixed

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

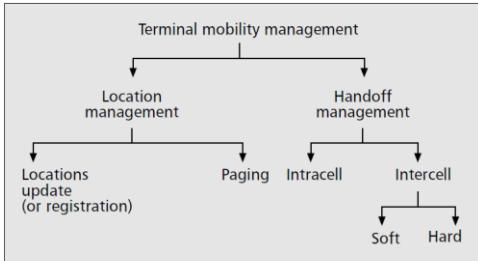
Data transfer MS-MS

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

Coming Challenges for IP



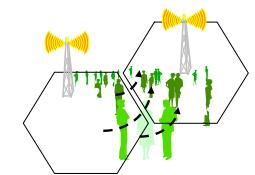
Location Managements~ handoff, roaming
QoS Transport- Backbone delivery

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

Mobility Management

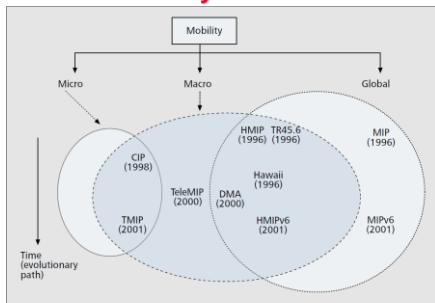
■ Figure 1. Classification of mobility management.


Wireless & Multimedia Network Laboratory™

CSIE

Mobility

- User mobility
 - Micro
 - Macro
- IP mobility support
 - Mobile IP
 - Cellular IP
 - HAWAII
 - Hierarchical Mobile IP


- Handoff issue
- Location management
- Paging

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

Mobility Protocols

■ Figure 2. Mobility classification of protocols.

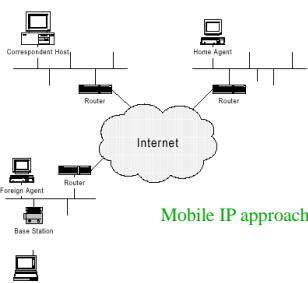
Wireless & Multimedia Network Laboratory™

CSIE

Mobility Protocols

Mobility	Protocol	LUs
		Global (up to HN)
Global	MIP	P^*N
	TR45.6	P^*N
	MIPv6	P^*N
Global/macro	HMIPI6	$P^*(N/R)^*L$
	HMIPI6	$P^*(N/R)^*L$
	TeleMIP	$P^*(N/R)$
	DMA	$P^*(N/R)$
Macro	HAWAII	P
Macro/micro	TMIP	P
	CIP	P

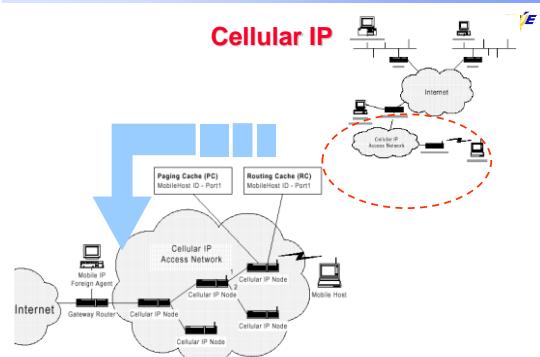
P = Number of MNs, N = Number of subnets,
 R = Number of subnets handled by an MA, $M = N/R$,
 L = Number of levels of hierarchy in HMIPI6 and HMIPI6


■ Table 1. Analytical estimate of LUs.

Wireless & Multimedia Network Laboratory™

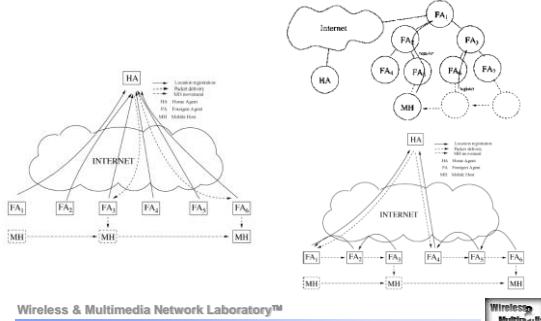
Wireless & Multimedia Network Laboratory™

CSIE


Nomadic wireless access

Wireless & Multimedia Network Laboratory™

CSIE


Cellular IP

Wireless & Multimedia Network Laboratory™

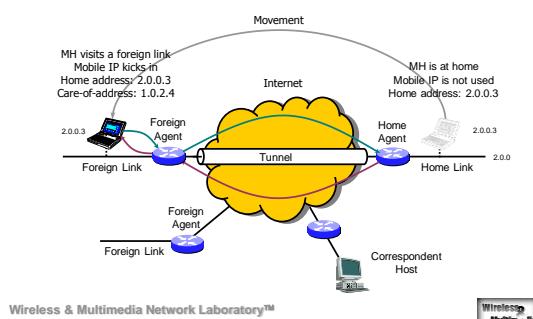
Wireless & Multimedia Network Laboratory™

Hierarchical Mobility Management

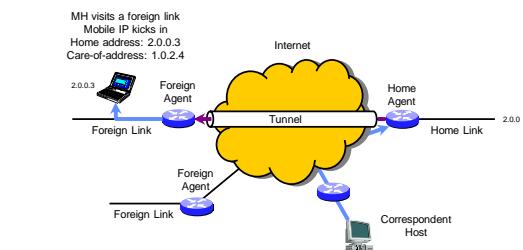
Mobility Management

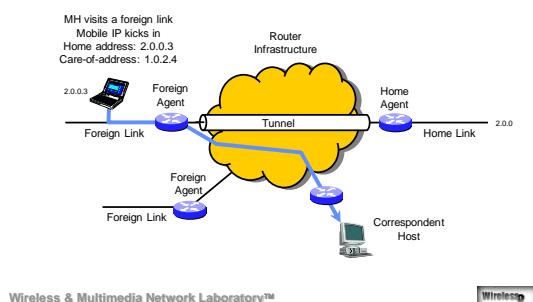
Mobility Classification

- Roaming
- Macro-mobility
 - Domain mobility
- Micro-mobility
 - Subnet mobility


Solutions

- Network layer solution: Mobile IP
- Application layer solution: SIP

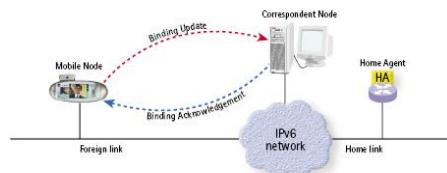

Wireless & Multimedia Network Laboratory™


Mobile IPv4: Registration Example

Mobile IPv4: CH-to-MH Routing Example

Mobile IPv4: MH-to-CH Routing Example

Mobile IPv4

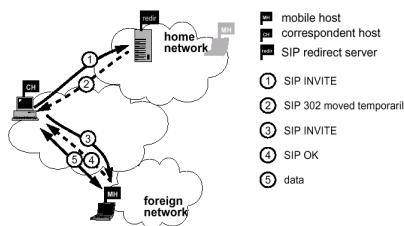

Triangle route problem

- Micro-mobility improvement
 - Cellular IP, Campbell in Column University.
 - Regional Registration, Perkins, Nokia Center.
 - ...

Wireless & Multimedia Network Laboratory™

Mobile IPv6: Binding Update

Wireless & Multimedia Network Laboratory™

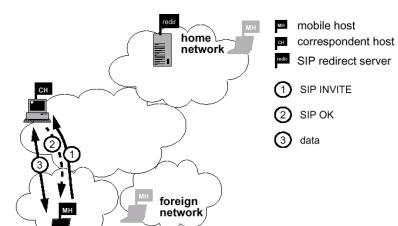

Wireless
Multimedia

CSIE

Application Layer Mobility Using SIP

- Terminal Mobility
- Session Mobility

Terminal Mobility

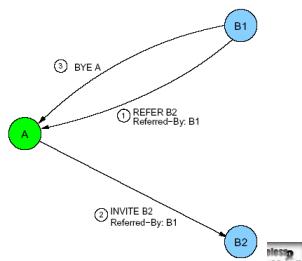


Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

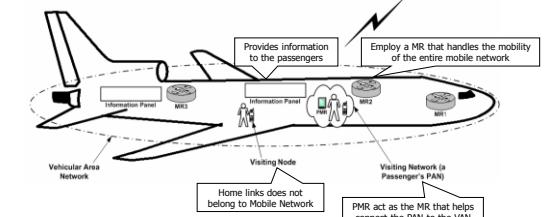
CSIE

Terminal Mobility


Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

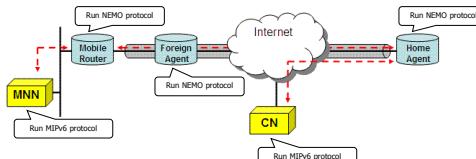
CSIE


Session Mobility

- Allow a user to maintain a media session even while changing terminals.

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

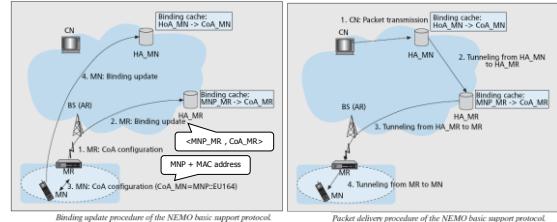

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

CSIE

How the NEMO works

CSIE



Wireless & Multimedia Network Laboratory™

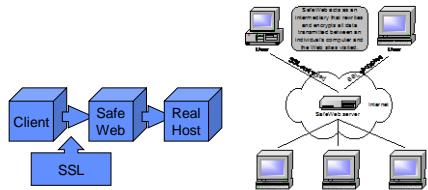
Wireless
Multimedia

NEMO Binding update & Packet Delivery procedure

CSIE

Binding update procedure of the NEMO basic support protocol.

Packet delivery procedure of the NEMO basic support protocol.

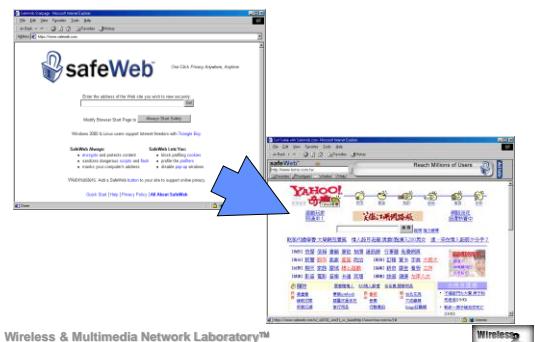

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

SafeWeb

CSIE

- A big proxy
- Reassembly HTML to hide user info.
- Using SSL between SafeWeb and Client

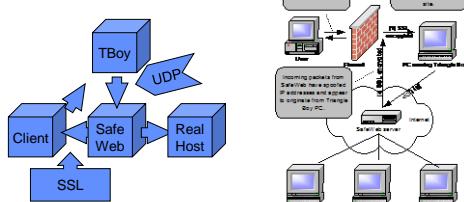


Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Screenshot of SafeWeb

CSIE


Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

TBoy

CSIE

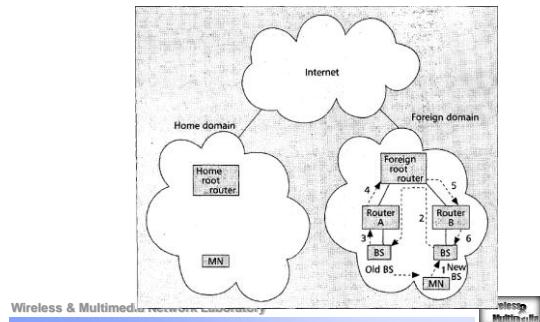

- Redirect the Request to SafeWeb
- SafeWeb will send response using TBoy IP.

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

- A paging area consists of one or more networks

Wireless & Multimedia Network Laboratory™


Wireless
Multimedia

P-MIP

CSIE

- A paging area consists of one or more networks

Hawaii (Handoff-aware Wireless Access Internet Infrastructure)

Vehicular Area Network

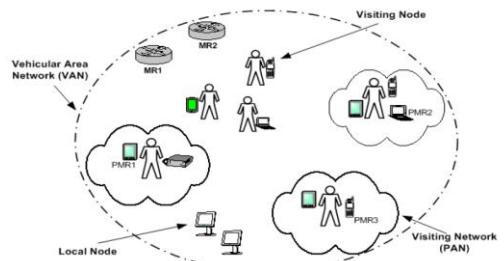


Figure 2: Abstract View of a Vehicular Area Network

Wireless & Multimedia Network Laboratory™

Nested Bi-Directional Tunneling

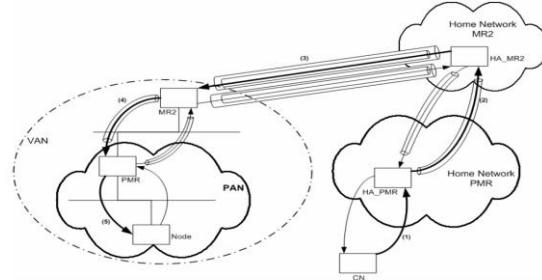


Figure 3: Nested Bi-Directional Tunneling

Wireless & Multimedia Network Laboratory™

