

無線網路多媒體系統 Wireless Multimedia System

Lecture 6: CDMA & 3G Trend 吳曉光博士

Wireless & Multimedia Network Laboratory^π

Agenda

- Spread Spectrum (Multipath, interferences from other cells)
- W-CDMA
- Evolutions of PCS
- ALL IP Challenges
 - Mobile IP/Cellular IP
 - QoS Provisions: Integrated Service / DiffServ
- · Next Week (Mobile IP)

Wireless & Multimedia Network Laboratory™

CS E

CS E

Reading

- [Kohno95]Ryuji Kohno, Reuven Meidan, and Laurence B. Milstein Spread Spectrum Access Methods for Wireless . Communications, IEEE Communication Magazine, 1995
- [Dahlman98]Erick Dahlman, Bjorn Gudmundson, Mat Nilsson and Johan Skold, UMTS/IMT-2000 Based on Wideband CDMA, IEEE Communication Magazine 1998
- [Ojanpera98] T. OJanpera, R. Prasad, An Overview of Third-Generation Wireless Personal Communications: An European Perspective, IEEE Personal Communication Magazine 1998

Wireless & Multimedia Network Laboratory™

CS E

CS E

Code Division, Spread Spectrum

in CDMA?

Wireless & Multimedia Network Laboratory™

CS E

CDMA Era

1949 John Pierce: time hopping spread spectrum Claude Shannon and Robert Pierce: basic ideas of CDMA 1949

1950 De Rosa-Rogoff: direct sequence spread spectrum Price and Green: antimultipath "RAKE" patent 1956

1961

Magnuski: near-far problem
Several developments for military field and navigation systems

Narrowband CDMA Era

Cooper and Nettleton: cellular application of spread spectrum Investigation of narrowband CDMA techniques for cellular applications

Formulation of optimum multiuser detection by Verdu

IS-95 standard

Wideband CDMA Era

:FRAMES FMA2 | WCDMA Europe Japan UŚA :cdma2000

:TTA I TTA II Korea 2000s Commercialization of wideband CDMA systems

Wireless & Multimedia Network Laboratoryth

Digital to Analog Modulation

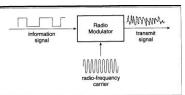
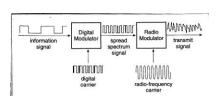
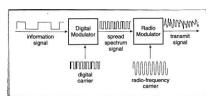


Figure 6.2 Single-stage digital modulation (TDMA and FDMA).

Wireless & Multimedia Network LaboratoryTh

Digital-Digital-Analog Modulation




Figure 6.3 Two stages of modulation in a spread spectrum system

Wireless & Multimedia Network Laboratory™

CS E

CS E

Digital-Digital-Analog Modulation

gure 6.3 Two stages of modulation in a spread spectrum system

Wireless & Multimedia Network LaboratoryTh

CS E

Digital Correlator

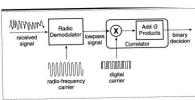


Figure 6.4 Two stages of demodulation in a spread spectrum receiver.

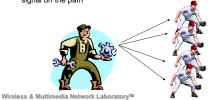
Wireless & Multimedia Network Laboratory™

CS E

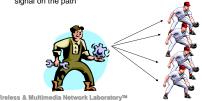
DS-CDMA

CS E

- Processing Gain:
- SF=2 cases:
- (1, 1) ⊗ (1, 1) = 1+1=2 (Processing Gain)
- (1, 1) ⊗ (1,-1) = 1-1=0 (orthogonal)
- SF=4 cases:
- (1, 1, 1, 1) \otimes (1, 1, 1, 1) = 1 + 1 + 1 + 1 = 4 (Processing Gain)
- $(1, 1, 1, 1) \otimes (1, 1, -1, -1) = 1 + 1 1 1 = 0$ (Orthogonal)
- SIR = Pr * Processing Gain / Interference
- = Pr * (Total_Radio_Frequencyband / Bitrate) / Interference

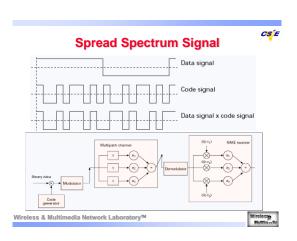

Wireless & Multimedia Network Laboratory™

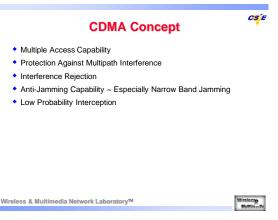
Multiple correlators

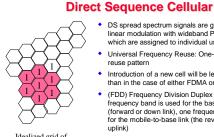

- Multiple correlators in each receiver
- At any instant of time, the signal carriers in the different correlators are synchronize to signal paths with different propagation times
- · A search circuit examines the arriving signal in order to detect the appearance of a new path, then assign a correlator to synchronize the signal on the path

Multiple correlators

- Multiple correlators in each receiver
- At any instant of time, the signal carriers in the different correlators are synchronize to signal paths with different propagation times
- A search circuit examines the arriving signal in order to detect the appearance of a new path, then assign a correlator to synchronize the signal on the path


Wireless & Multimedia Network Laboratory¹¹


Spread Spectrum Multiple Access 1&2 2 (a) (b) Wireless & Multimedia Network Laboratory™


CS E

S Wireless & Multimedia Network LaboratoryTh

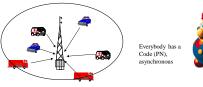
Interference Rejection

Idealized grid of Hexagonal cells

DS spread spectrum signals are generated by linear modulation with wideband PN sequences which are assigned to individual users

- Universal Frequency Reuse: One-cell frequency reuse pattern
- Introduction of a new cell will be less restricted than in the case of either FDMA or TDMA
- (FDD) Frequency Division Duplex Operation: One frequency band is used for the base-to-mobile (forward or down link), one frequency band is used for the mobile-to-base link (the reverse link or uplink)

Wireless & Multimedia Network Laboratory™

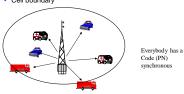

CS E

Power Control (Reverse Link)

CS E

CS E

- Reverse Link: asynchronous, asynchronous CDMA system is vulnerable to the "near-far" problem
- Power Control: minimize consumption of the transmitted power, fast enough to compensate for Rayleigh fading
- Capacity is bounded by number of users (MAI Multiple Access interferences)



Wireless & Multimedia Network LaboratoryTh

Power Control (Forward Link)

- Forward Link: the users can be orthogonalized, (however, the orthogonalization is not preserved between different paths of the multipath propagation, nor is it preserved between the forward links of different cells)
- Power Control: Since the cell's signals can be received at the mobile with equal power, the forward link does not suffer from near-far problem
- Cell boundary

Wireless & Multimedia Network LaboratoryTh

Wirelesso Multimaille

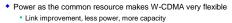
CS E

CS E

Cellular Capacity

 Capacity of the reverse link (typically asynchronous link)

$$(\frac{E_b}{\eta_0})_{\text{eff}} = \frac{1}{\frac{\eta_0}{E_b} + \frac{2}{3G}(M-1)(1+K)\alpha}$$

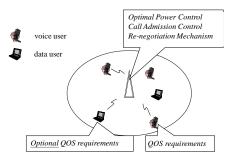

Wireless & Multimedia Network Laboratoryⁿ

CS E

CS E

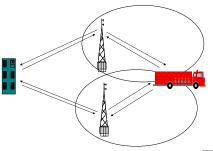
Radio Resource Management

Orthogonal variable spreading factor (OVSF) for variable bit rate

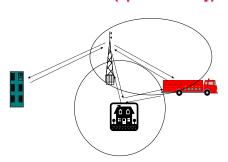


Wireless & Multimedia Network Laboratory™

CS E


Call Admission Control

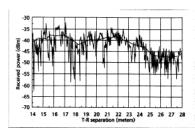
Wireless & Multimedia Network Laboratory™


Soft Handovers (Macro Diversity)

Wireless & Multimedia Network Laboratory™

Wirelesso

Softer Handovers (Space Diversity)


Power Control (Open & Close Loop)

Wireless & Multimedia Network Laboratory™

Close-Loop Power Control

Compensates a fading channe(1500 times per second)

Wireless & Multimedia Network Laboratory™

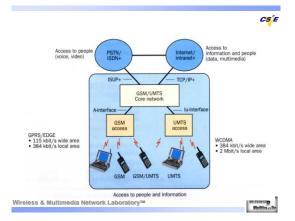
CS E

UMTS/IMT-2000 Based on Wideband CDMA

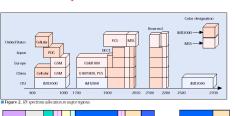
What is going to happen for WCDMA

Wireless & Multimedia Network Laboratory™

Application Support in UMTS


CS E

- UMTS (Universal Mobile Telecommunication System)
- UTRA (UMTS Terrestrial Radio Access)
- Support:
 - 384 kb/s for wide-area coverage
 - 2 Mb/s for local coverage
- Multimedia Applications Requirements
 - Packet-oriented
 - · Variable bit rate
 - Network resources can be available on a shared basis
 - E_b /N₀


Wireless & Multimedia Network Laboratory™

CS E

RS Spectrum Allocation

G : Reserved 1500 1515 | : PACS | 1500 1500 | : PACS | :

H: DECT J: PACS (To Be Licensed)
Wireless & Multimedia Network LaboratoryTM

5

Wireless Mobile Interface

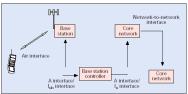
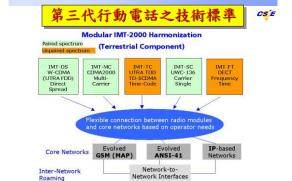



Figure 4. Wireless mobile system interface definition

Elements of UMTS Architecture



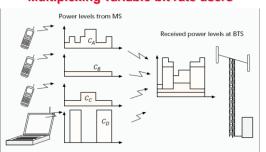
Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network LaboratoryTh

Wireless & Multimedia Network Laboratory™

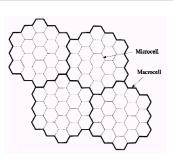
Inter-Network Roaming

Key W_CDMA Features



- Performance Improvements
 - · Capacity Improvements (3 dB, 384 kb/s, 1.9 Mb/s, 130 users)
 - Coverage and Link Budget Improvements (reuse GSM cell, 144 kb/s)
- Service Flexibility
 - Support of a wide range of services with maximum rate of 2 Mb/s, the possibility for multiple parallel services on one connection
 - A fast and efficient packet-access scheme
- Operator Flexibility
 - Support of asynchronous inter-base-station operation
 - Efficient support of different deployment scenarios, HCS, hot-sport
 - Support of evolutionary technologies such as adaptive antenna arrays and multi-user detection
 - A TDD mode designed for efficient operation in uncoordinated environment

Wireless & Multimedia Network Laboratory™



Multiplexing variable bit rate users

Wireless & Multimedia Network Laboratoryth

An example of two-tier cellular system

Macro

f1

Hot-spot scenario

Hot spot f_2

f₁

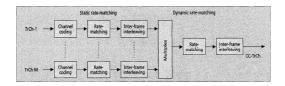
Handover $f_1 \longleftrightarrow f_2$ needed sometimes at Hot Spot

Wireless & Multimedia Network Laboratory™

Handover $f_1 \longleftrightarrow f_2$ always needed between layers

HCS-Scenario

Micro


f2

Macro

f1

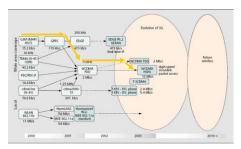
Transport of the channel

Wireless & Multimedia Network Laboratory™

About 3G

3 G

Organization :


- 3GPP (3rd Generation Partnership Project)
- 3GPP2 is the standardization group for IS-95 (CDMA)
- IMT-2000 (International Mobile Telephony 2000) • global standard proposed by the ITU
- IMT-2000 3G standards :
 - TD-SCDMA
 - CDMA2000
 - · W-CDMA

Wireless & Multimedia Network LaboratoryTh

Development: 2G to 3G

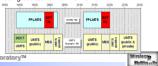
Wireless & Multimedia Network Laboratory™

WCDMA

Wideband CDMA

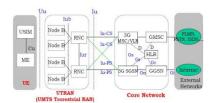
 Use spreading factors 4 - 512 to spread the base band data over ~5MHz band.

Multiple access method	DS-CDMA (Direct-Sequence - CDMA)			
Duplex method	FDD / TDD			
Chip rate	3.84 Mcps			
Frame length	10 msec			
Base station frequency	Asynchronous operation			
Service multiplexing	Multiple services with different quality of service requirements multiplexed on one connection			
Multi-rate concept	Variable spreading factor and multi-code			


Wireless & Multimedia Network Laboratory™

UMTS/WCDMA Features

- Speed :
- UMTS 384Kbps up to 2Mbps
- Bands :
 - · Asia & Europe 2100MHz North America 800 & 1900MHz
- Applications :
 - Email, internet, fax, music, image, video...etc
- Global Access :
 - · Users can move between GSM, GPRS and UMTS coverage areas without dropping connections or losing access to their network.

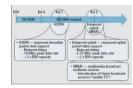

UMTS Architecture

CS E

Core Network : Connection with External Networks

• UTRAN : Functions about Radio

• UE : communication between air interface and users.


Wireless & Multimedia Network Laboratory™

First Step of HSPA - HSDPA

- WCDMA R5
 - Proposed by 3GPP on 2001
 - HSDPA Technique

- HSDPA (High Speed Downlink Packet Access)
 - Data rate 3Mbps up to 14Mbps
 - · 3 times Capacity
 - Backward compatible with WCDMA

Advancements in distributions have residued in per second increases 10,000 feel 1000 f

Wireless & Multimedia Network Laboratoryth

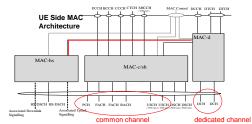
Enhanced WCDMA - 3.5G HSDPA

- Defined in 3GPP Release 5.
- Higher data rate : 2Mbps~14Mbps

Wireless & Multimedia Network Laboratory™

HSDPA Characteristic

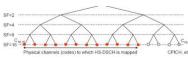
- New Transport ChannelHS-DSCH
- Short TTI
- 2ms
- AMC
 - Modulation :
 QPSK(2bits/symbol)
 16QAM(4bits/symbol)
 - Channelized code 1~15
- HARQ
 - SAW HARQ (simplest and little overhead)
- Fast Scheduling
 - Do packet Scheduling and retransmission in Node B


Wireless & Multimedia Network Laboratory™

MAC Architecture

UTRAN Side MAC entity is similar to the UE side except that there will be one MAC-d for each UE.

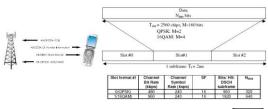
Wireless & Multimedia Network Laboratory™


SF and Modulation

QPSK can show 2 bits per symbol, and 16QAM can show 4

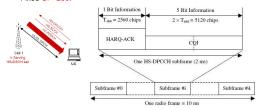
bits per symbol.

Channelization code at a fixed SF = 16.


Wireless & Multimedia Network Laboratoryth

HS-PDSCH

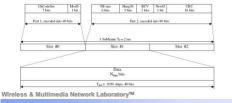
- HS-PDSCH carries the data traffic in terms of MAC-hs PDU.
- Fixed SF=16; up to 15 parallel channels
- 14Mbps = 960 x 15 ~= 14400 kbps


Wireless & Multimedia Network LaboratoryTh

HS-DPCCH

- HS-DPCCH feedbacks ACK/NACK and channel quality information
- Fixed SF=256.

Wireless & Multimedia Network Laboratory™

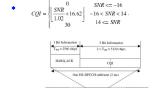


HS-SCCH

- Fixed SF=128: UE can monitor up to 4 HS-SCCH simultaneously.
- HS-SCCH signals the configuration to be used next.

DCH, DSCH and HS-DSCH

Feature	DCH	DSCH	HS-DSCH	
Variable SF	Yes (4 - 512)	Yes (4 ~ 256)		
Fast power control	Yes	Yes	No	
Modulation	QPSK	QPSK	Adaptive using QPSI ,16QAM	
HARQ	No	No	Yes	
ті	10 to 80 ms	10 or 20 ms	2 ms	
Multi-Code operation	Ilti-Code operation Yes (up to 6)		Yes (extended to 15)	
Mac Processing	RNC	RNC	Node B	

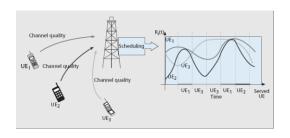

Wireless & Multimedia Network Laboratory™

CQI (Channel Quality Indicator)

- Estimate the channel quality from CPICH and feedback CQI via HS-DPCCH cyclically. (In Spec25.331 k = 0,2,4,8,10,20,40,80,160)
- Delay and error of bits affect the accuracy of estimation.

Wireless & Multimedia Network Laboratory™

UE Category


Classify the UE category base on the capability of UE.

Category	Codes	Inter-IT1	TB Size	Total # of Soft Bits	Modulation	Data Rate
1	5	3	7300	19200	QPSK/16QAM	1.2 Mbps
2	5	3	7300	28800	QPSK/16QAM	1.2 Mbps
3	5	2	7300	28800	QPSK/16QAM	1.8 Mbps
4	5	2	7300	38400	QPSK/16QAM	1.8 Mbps
5	5	1	7300	57600	QPSK/16QAM	3.6 Mbps
6	5	1	7300	67200	QPSK/16QAM	3.6 Mbps
7	10	1	14600	115200	QPSK/16QAM	7.2 Mbps
8	10	1	14600	134400	QPSK/16QAM	7.2 Mbps
9	15	1	20432	172800	QPSK/16QAM	10.2 Mbps
10	15	1	28776	172800	QPSK/16QAM	14.4 Mbps
11	5	2	3650	14400	QPSK only	0.9 Mbps
12	5	1	3650		QPSK only	1,8 Mbps

| Description | The content |

Scheduling based on User Channel Quality (CQI),IEEE Network 2007

Wireless & Multimedia Network Laboratory™

Round Robin vs. Proportional Fair Scheduler

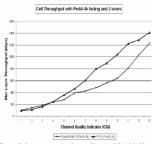
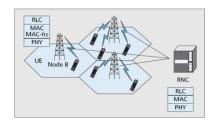
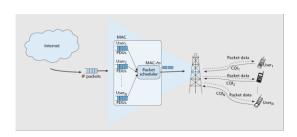



Fig. 1. Performance comparison between Proportional Fair Scheduler and Round Robin in lab, in a low mobility scenario (Ped A)

Wireless & Multimedia Network Laboratory™


Scheduling from RNC to Basestation (Node B)

Wireless & Multimedia Network Laboratory™

Packet Scheduler Model in HSDPA

Wireless & Multimedia Network Laboratory™

Performance of HSDPA, IEEE VTJ 2007

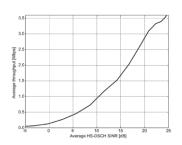
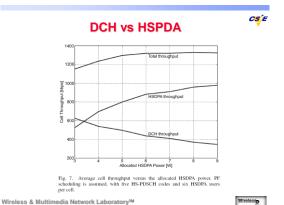
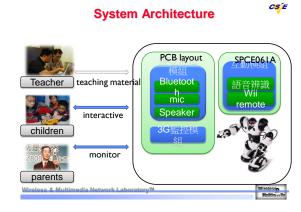
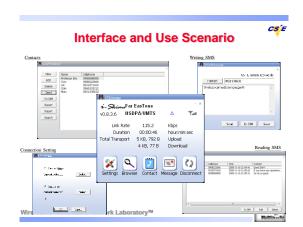





Fig. 5. Single-user HSDPA throughput as a function of the average HS-DSCH SINR.

