

Reading list for This Lecture

(Jorgen95) J. B. Andersen, T. S. Rappaport, "Propagation Measurements and Models for Wireless Communications channels", (IEEE Communication Magazine), pp. 42-49 (Jeffrey H98) Jeffrey H. Reed, Kevin J. Krizman, Brian D. Woerner, and T. S. Rappaport, "An Overview of the Challenges and Progress in Meeting the E-911 Requirement for Location Service, (IEEE Communication Magazine), pp. 30-37

(Rappaport97) T. S. Rappaport, K. Blankenship, H. Xu, "Propagation and Radio System Design Issues in Mobile Radio Systems for the GloMo Project

CS E

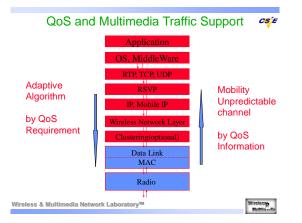
The mystery of the Radio Propagation

Wireless & Multimedia Network Laboratory™

Wireless

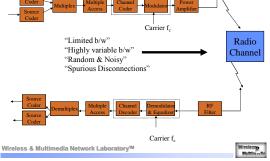
Wireless & Multimedia Network Laboratory™

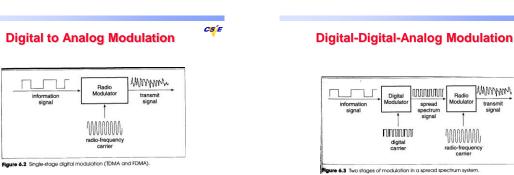
Required Reading:


Further Reading

Multimenter

CS E

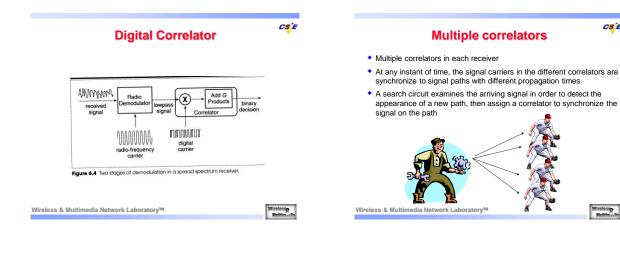



Radio Modulator

100000

lio-freque carrier

Wireless & Multimedia Network Laboratory™


Multimedia

CS E

C<mark>S</mark>É

information signal

relesap

C<mark>S</mark>É

Key role for the radio propagation

- Radio Propagation determines
 - the area which could be covered
 - The maximum data rate in a system
 - · Battery power requirement for mobile transceivers

Wireless & Multimedia Network Laboratory™

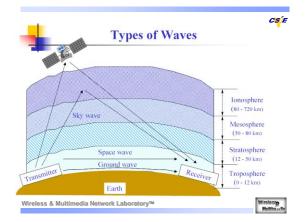
Multin

Speed, Wavelength, Frequency

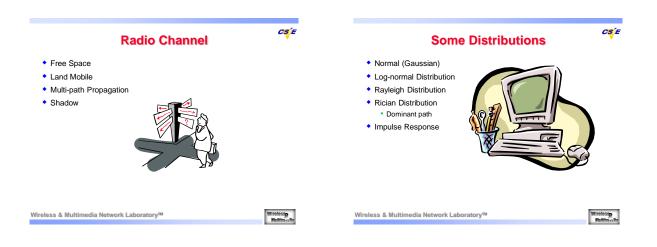
Light speed = Wavelength x Frequency

 $= 3 \times 10^8 \text{ m/s} = 300,000 \text{ km/s}$

System	Frequency	Wavelength
AC current	60 Hz	5,000 km
FM radio	100 MHz	3 m
Cellular	800 MHz	37.5 cm
Ka band satellite	20 GHz	15 mm
Ultraviolet light	10 ¹⁵ Hz	10 ⁻⁷ m


Wireless & Multimedia Network Laboratory™

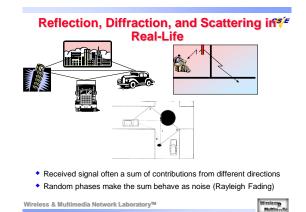
Wirelesson Multiment

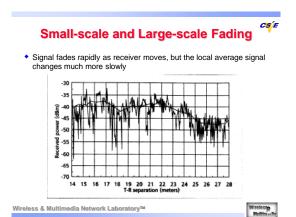

C<mark>S</mark>É

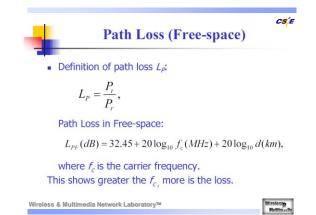
Wirelesson Multimenta

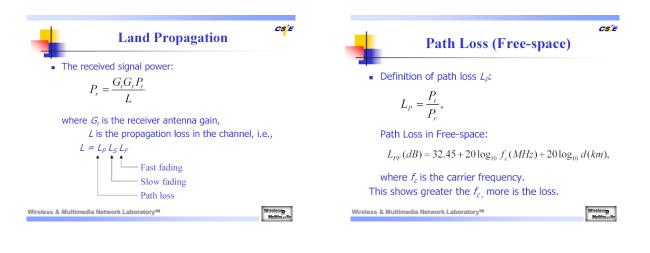
C<mark>S</mark>É

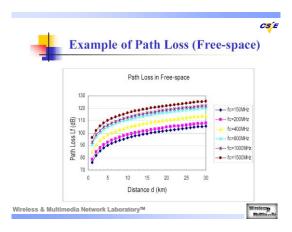
Rad	lio Fre	equency Band	ls	
Charles de Dest	La secto	D. D. D.	Characteria da da	
Classification Band	Initials	Frequency Range	Characteristic	
Extremely low	ELF	< 300 Hz		
Infra low	ILF	300 Hz • •3 kHz		
Very low	VLF	3 kHz • •30 kHz		
Low	LF	30 kHz • •300 kHz	Surface/groun	
Medium	MF	300 kHz • •3 MHz	wave	
High	HF	3 MHz • •30 MHz	Sky wave	
Very high	VHF	30 MHz • •300 MHz	Space wave	
Ultra high	UHF	300 MHz • •3 GHz		
Super high	SHF	3 GHz • • 30 GHz		
Extremely high	EHF	30 GHz • •300 GHz	Satellite wave	
Tremendously high	THF	300 GHz • •3000 GHz	1	

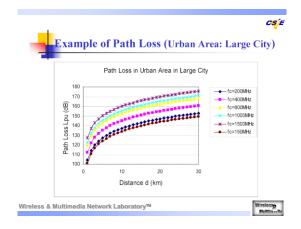


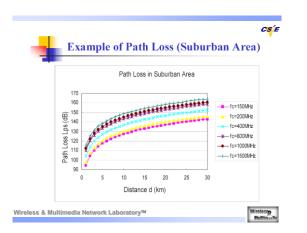

Propagation Mechanisms in Space with Objects

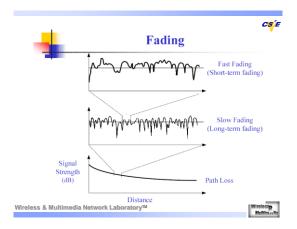

- Reflection (with Transmittance and Absorption)
- Radio wave impinges on an object
- · Surface of earth, walls, buildings, atmospheric layers
- · If perfect (lossless) dielectric object, then zero absorption
- If perfect conductor, then 100%reflection
- Diffraction
 - Radio path is obstructed by an impenetrable surface with sharp irregularities (edges)
 - Secondary waves "bend" around the obstacle (Huygen's principle)
 - Explain how RF energy can travel without LOS
 - "shadowing
- Scattering (diffusion)
 - · Similar principles as diffraction, energy reradiated in many directions


Wireless & Multimedia Network Laboratory**


Multiment







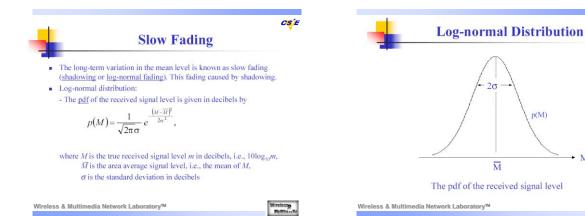
Analysis of the Propagation

Large Scale Effect

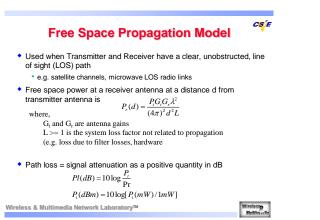
The variation of the mean received signal strength over large distance or long time intervals

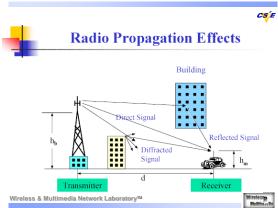
- Small Scale Effect
 - The fluctuations of the received signal strength about a local mean, where these fluctuations occur over small distances or short time interval

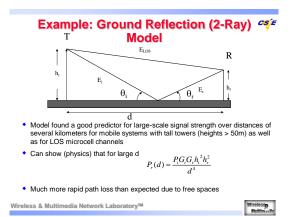
Large Scale -> Link Budget

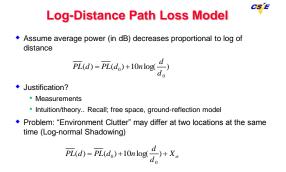

Wireless & Multimedia Network Laboratory**

C<mark>S</mark>É


100


p(M)


• M



C<mark>S</mark>É

Wireless & Multimedia Network Laboratorv™

Typical Path Loss Exponent, n

Environment	Path Loss Exponent, n	
Free Space	2	
Urban area cellular / PCS	2.7 to 4.0	
Shadow urban cellular / PCS	3 to 5	
In building line of sight	1.6 to 1.8	
Obstructed in building	4 to 6	
Obstructed in factories	2 to 3	

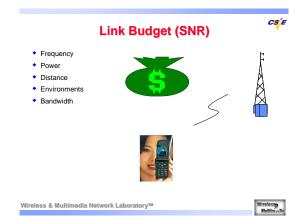
Wireless & Multimedia Network Laboratory™

Virelesson Multiment

C<mark>S</mark>É

CS E

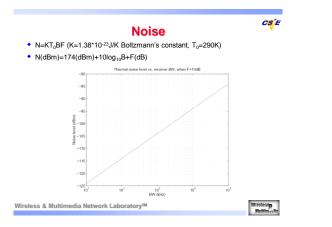
Practical Link Budget Design C<mark>S</mark>É Using Path Loss Models


- Bit-Error-rate is a function of SNR (signal-to-noise ratio), or equivalently CIR (carrier-to-interference ratio), at the receiver . The "function" itself depends on the modulation scheme
- Link budget calculations allow one to compute SCR or CIR
- Battery Life-> Talk Time -> received/Transmitted power -> Path Loss Models

 $SNR(dB) = P_s(dBm) - N(dBm)$ $P_s(dBm) = (P_t) + (G_t) + (G_r) - (\overline{PL}(d))$ $N = KT_0BF$ $N = -174(dBm) + 10\log_{10}B + F(dB)$

Wireless & Multimedia Network Laboratory™

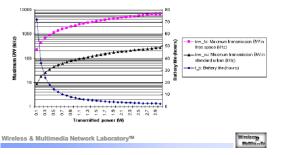
Irelesso

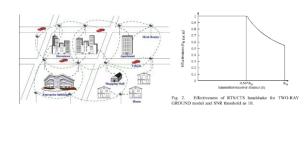

Example Link Budget Calculation

 Maximum separation distance vs. transmitted power (with fixed BW) Given

- Cellular phone with 0.6W transmitted power .
- Unity gain antenna, 900 MHz carrier frequency
- SNR must be at least 25 dB for proper reception Receiver BW is B=30KHz, noise figure F=10 dB
- What will be the maximum distance?
- Solution:

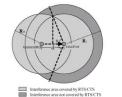
 - N= -174 dBm + 10 log 30000 + 10 dB For SNR > 25 dB, we must have Pr > (-119+25) = -94 dBm
 - Pt=0.6W = 27.78 dBm
 - This allows path loss PL(d) = Pt Pr < 122 dB for free space, n=2, d < 33.5 km
 - for shadowed urban with n=4, d < 5.8 km


Wireless & Multimedia Network Laboratory™


C<mark>S</mark>É Distance/Power/Battery/Environment Combined plot of the maximum separation distance and the battery life vs. transmitted power, when BW= 30kHz, F=10 dB, SNR=25 dB. 100 h 8 8 Maximum separation distance (km) d_fs: Maximum separation distance in free space (km) d_su: Maximum separation dis standard urban (km) 10 3attery I ******** ***** -t_b: Battery life (hours) 44 20 10 ****** 0.3 - 80 5 Wireless & Multimedia Network Laboratory Virelesso Multiments

BW/Power/Battery/Environment

Combined plot of the battery life and the maximum transmission BW vs. the transmitted power, when d=5 km, F=10 dB, SNR=25 dB.


CS E Effectiveness of RTS/CTS handshake in 802.11 Ad hoc Network

Wireless & Multimedia Network Laboratory

Large Area Interference Problem

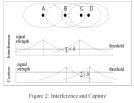


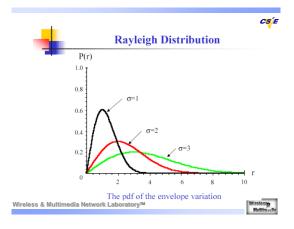
Fig. 1. Effectiveness of RTS/CTS handshake when d is larg $T_{SNB}^{-\frac{1}{6}} * R_{tx}$ and smaller than R_{tx} .

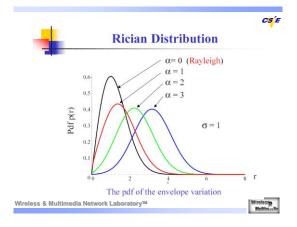
Wireless & Multimedia Network Laboratory**

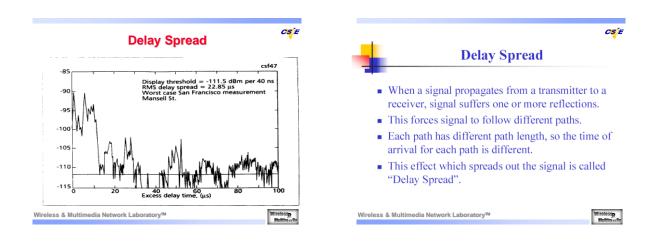
Q826

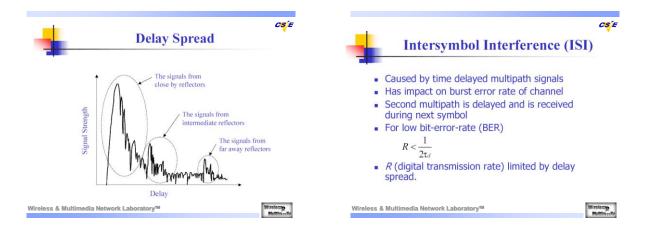
CS E

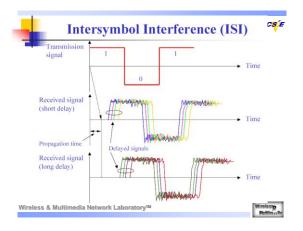
C<mark>S</mark>É

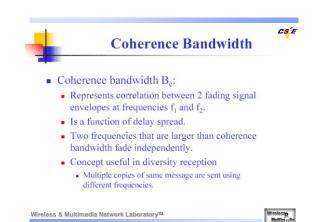

RMS Delay Spreads

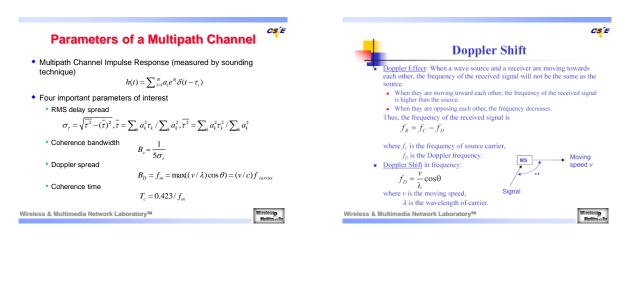

CS E

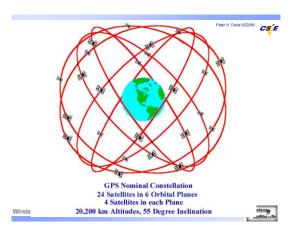

TYPICAL RMS DELAY SPREADS IN VARIOUS ENVIRONMENTS.

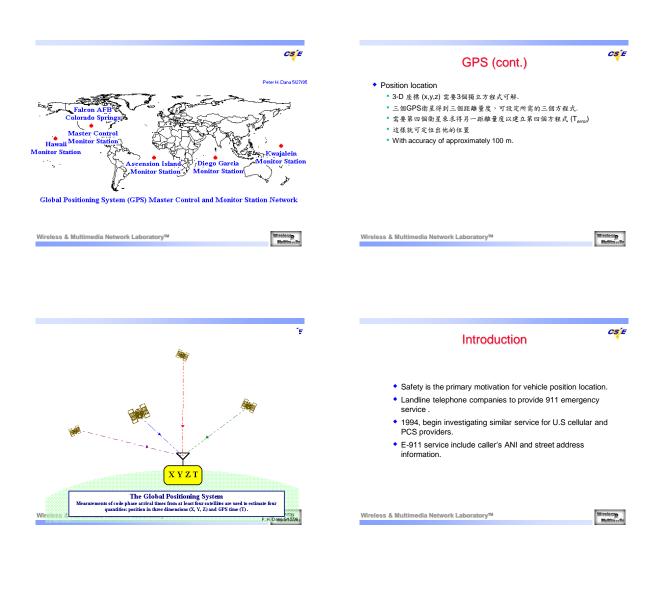

Environment	Freq. (MHz)	σ_{τ} (ns)	Notes	Source
Urban – New York City	910	1300	Average	[23]
Urban – New York City	910	600	Standard Deviation	[23]
Urban – New York City	910	3500	Maximum	[23]
Urban – San Francisco	892	1000-2500	Worst Case	[24]
Suburban	910	200-310	Averaged Typical Case	[23]
Suburban	910	1960-2110	Averaged Extreme Case	[23]
Indoor – Office Building	1500	10-50		[25]
Indoor – Office Building	1500	25	Median	[25]
Indoor – Office Building	850	270	Maximum	[26]
Indoor – Office Buildings	1900	70-94	Average	[27]
Indoor - Office Buildings	1900	1470	Maximum	[27]








Wirelesso Multice culler Wireless & Multimedia Network LaboratoryTM


Forward error correctionAutomatic Repeat Request (ARQ)

Wirelesso

دي Direct Sequence Spread Spectrum	Frequency Hopping Spread Spectrun	<i>cs∕́≢</i> 1
To transmit a 0 the station use a unique "chip sequence": 10110 To transmit a 1 the station use the one's complement of its chip sequence: 01001 Therefore if data is 1010 it will transmit: therefore if data is 1010 it will transmit: eless & Multimedia Network Laboratory ^{MM}	 Transmitted signal is spread over a wide range of frequencies. (i.e. 2.400. 2.485 GH2) Transmission usually hop 35 times per second. 	Time Wintess
دچ نِ≢ Antenna Types	Modern Applications: 911 Service	C <mark>S</mark> ÍE
• YAGI Directional Antenna	Location Service	
■ Omni Directional Antenna eless & Multimedia Network Laboratory™ Wiretess	Wireless & Multimedia Network Laboratory ^{ma}	

C<mark>S</mark> E

Mobile Location Solution

Driving Force :

Legal aspects :

•Fire brigades, hospitals and other emergency centers.

Commercial aspects :

•Differentiation : new and attractive services.

•Reduced costs : operators can adapt their network to match calling patterns.

•Increased revenues : commercial services that use positioning information is infinite.

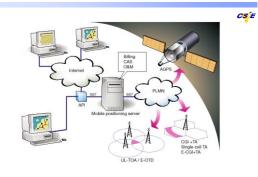
Wireless & Multimedia Network Laboratory™

[[W	Ire	65	b	
ι.	Mrt	ttin	G	110

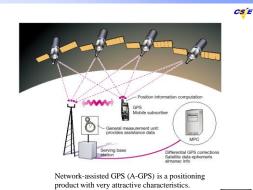
Positioning mechanism and requirement

Terminal-based :

- · Positioning intelligence is stored in the terminal or its SIM card.
- · Network-assisted global positioning system (A-GPS).

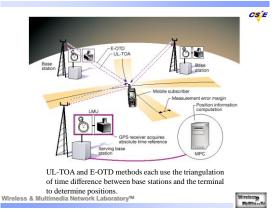

Network-based :

- · Positioning intelligence isn' t built into the handset.
- Measurement of Cell global identity and timing advance(CGI+TA) uplink time of arrival (UL-TOA).


Wireless & Multimedia Network Laboratory

Wirelesso

CS E


Mobile location solution has been designed to handle a variety of positioning methods and application interfaces. Wireless & Multimedia Network LaboratoryTM

Wireless & Multimedia Network Laboratory™

Multimed

Location applications

Information services :

•Location-based yellow pages, events, and attractions (ex. What is happening today in town near here?)

Tracing services :

•Tracing of a stolen car, helping paramedics to locate persons quickly in an emergency situation, and giving a towing service or automobile repair shop the location of a motorist in need (out of gas, flat tire, dead battery).

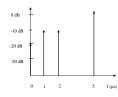
Wireless & Multimedia Network LaboratoryTM

Multimenter

Location applications (cont.)

Resource management :

 Taxi fleet management, the administration of container goods, and the assignment and grouping of railway repairmen.


Navigation :

· Vehicle or pedestrian navigation.

CS E

Mean Excess Delay, rms delay spread

Wireless & Multimedia Network Laboratory™

Mirelesso Multimeter

CS E

550

The chest of drawers illustrates how different applications can be grouped strategically for use by their beneficiaries.

Wireless & Multimedia Network Laboratory™

Wirelesso Multimedia

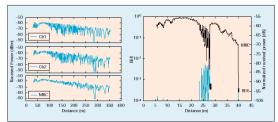


Figure 4. Received power as a function of distance: in a street (left), in a pavilion (right); BER and handover (right)

Wireless & Multimedia Network LaboratoryTM

Wirelesson Multimenta