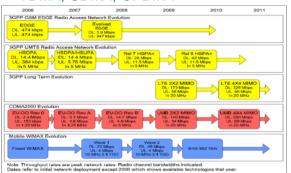
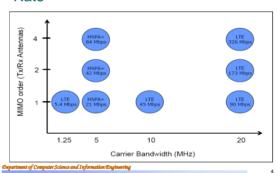
3GPP: IMS (IP Multimedia Subsystem)

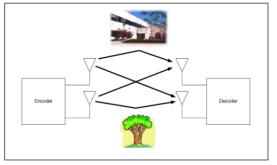

National Central University
Department of Computer Science and Information Engineering

Outline

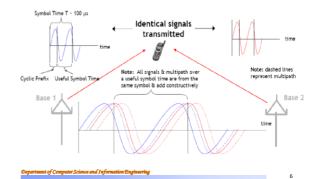
- o 3GPP Evolution
- SIP Architecture
- Mobility Management
- o SIP and 3G Networks


Department of Computer Science and Information Engineering

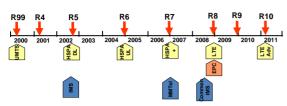
TDMA, CDMA, OFDMA


Department of Computer Science and Information Engineering

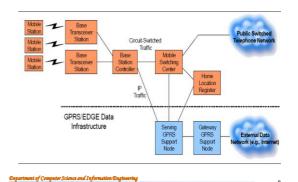
HSPA+, LTE Possible Peak Downlink Rate



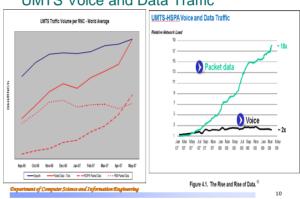
MIMO

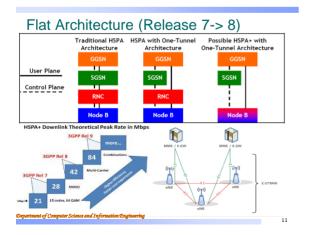

Figure 32: MIMO Using Multiple Paths to Boost Throughput and Capacity

Mobile Multicast/Broadcast TV



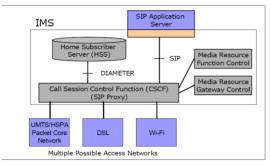
3GPP Release

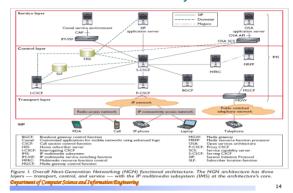

- Releases cover the areas of:
 . Accesses (GSM, EDGE, HSPA, UMTS, LTE, LTE-Advanced, etc.)
 . Core Network (GSM Core, EPC)
 . Services (IMS, MMTel)


GPRS/EDGE Data Infrastructure



Global Growth of UMTS/HSPA Subscriptions 1.9 Billion 2,000 1,800 ■W-CDMA ■HSPA 1,600 1.4 Billio 1.400 1.200 981 M 1.000 688 M 800 479 M 600 320 M 400 200 Dec-08 Dec-09 Dec-10 Dec-11 Dec-12 Dec-13 Source: Informa Telecoms & Media, WCIS, Dec 2008 Forecast


UMTS Voice and Data Traffic



IMS-IP Multimedia Subsystem

Department of Computer Science and Information Engineering

IMS: IP Multimedia Subsystem

MMTel (Multimedia Telephony)

Figure 3: Looking forward: the MMTel standard enables operators to interconnect services Department of Computer Science and Information Engineering

Session Initiation Protocol (SIP)

Session Initiation Protocol

- SIP is originally proposed by Columbia University and is specified by IETF.
- $\circ\,$ SIP is an end-to-end application-layer protocol
 - Establish, modify and terminate interactive multimedia sessions, e.g., VoIP and video conference, between SIPbased users.
 - Signaling protocol.
 - Client-Server framework.
- H.323 is a alternative signaling protocol to support VoIP.

Department of Computer Science and Information Engineering

Microsoft Voice .NET Services

Department of Computer Science and Information Engineering

Features of SIP

- Text-based
 - Easy implementation in Java or Perl
 JSIP open source library

 - Easy debuggingFlexible and extensible
- Less signaling comparing to H.323
 - OoS
- o Transport-layer independence
 - UDP is commonly used.
- o Forking a call request
 - Call forwarding
 - Parallel rings at different places

H.323

The H.323 standard

- o Introduction to SIP
- o SIP Architecture
- o Mobility management
- o SIP and 3G Networks

Four SIP Logical Entities

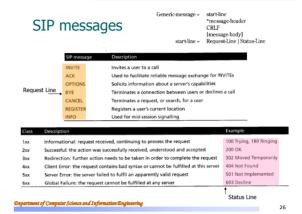
- User agent
- o Proxy Server
- Registrar
- Redirect Server

User Agent

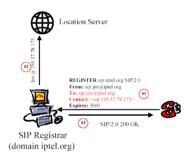
- User applications
- o Both software and hardware

Type of SIP Servers

- Proxy Server
 - Application layer router used to relay SIP messages.
- Registrar
 - Accept registration request from user agent.
- o Redirect Server
 - Redirects caller to other servers.

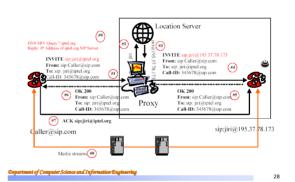

Typically, "SIP server" implements the functionality of Proxy, Registrar and Redirect Servers.

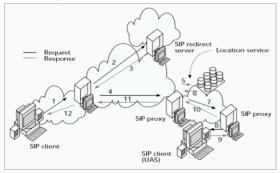
SIP Addressing


- o SIP give you a globally reachable address.
 - Email-like address.
 - o sip: leonard@a.ntu.edu.tw
 - o sip: 82828888@a.ntu.edu.tw
- User agents bind this address to Registrar by using SIP REGISTER message.
- Each user agent communicates with one another by using this address.

Department of Computer Science and Information Engineering

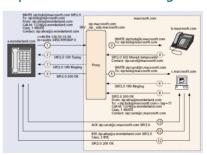
25


Example: SIP Registration


Department of Computer Science and Information Engineering

27

Example: Session Establishment



Routing Information

Department of Co

Example: Session Forwarding

Department of Computer Science and Information Engineering

Session Description Protocol (SDP)

- o The message body of SIP
- o SDP is used to describe a multimedia session

```
u = http://www.ietf.org
e = g.bell@bell-telephone.com
c = IN IP4 132.151.1.19
m = audio 3456 RTP/AVP 96
a = rtpmap:96 VDVI/8000/1
m = video 3458 RTP/AVP 31
m = application 32416 udp wb
a = orient:portrait
```

RTP, RTCP, and RTSP

- Real Time Transport Protocol (RTP)
 - Encode and decode media stream
 - Recover the possible loss and jitter
- Real Time Control Protocol (RTCP)
 - QoS feedback

- Real Time Streaming Protocol (RTSP)
 - Control stored media
 - VCR remote control
 - Support play, record, pause, fast forward, and etc.

32

RTSP protocol session

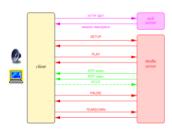
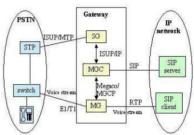



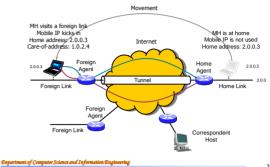
Figure 6: RTSP protocol session

SIP Interworking with the SS7

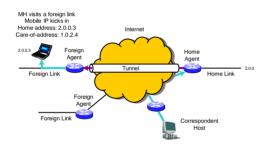
o Introduction to SIP

- o SIP Architecture
- o Mobility management
- o SIP and 3G Networks

Wireless Technologies Convergence

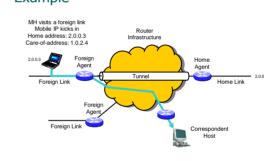

Mobility Management

- o Mobility Classification
 - Roaming
 - Macro-mobility
 - o Domain mobility
 - Micro-mobility
 - Subnet mobility
- Solutions
 - Network layer solution: Mobile IP


Application layer solution: SIP

Department of Computer Science and Information Engineerin

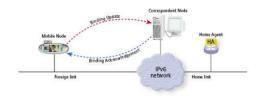
Mobile IPv4: Registration Example



Mobile IPv4: CH-to-MH Routing Example

Department of Computer Science and Information Engineering

Mobile IPv4: MH-to-CH Routing Example


Department of Computer Science and Information Engineering

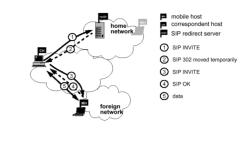
Mobile IPv4

- o Triangle route problem
- Micro-mobility improvement
 - Cellular IP, Campbell in Column University.
 - Regional Registration, Perkins, Nokia Center.

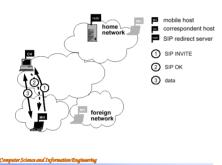
• ...

Mobile IPv6: Binding Update

Department of Computer Science and Information Engineering

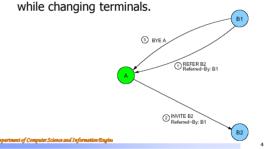

repartment of Computer Science and Information Engineering

Application Layer Mobility Using SIP

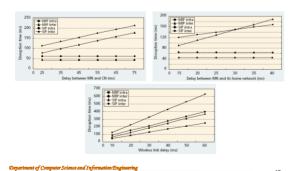

- o Terminal Mobility
- Session Mobility

Department of Computer Science and Information Engineering

Terminal Mobility

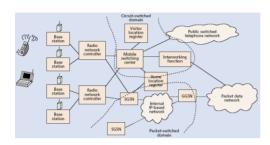


Terminal Mobility



Session Mobility

 Allow a user to maintain a media session even while changing terminals.


Comparison

- o Introduction to SIP
- SIP Architecture
- Internetworking
- Mobility management
- o SIP and 3G Networks

Department of Computer Science and Information Engineering

3G UMTS

Pure IP connectivity vs. Dedicated Multimedia subsystem

- o Some mechanisms should be defined in 3G to support multimedia session transfers?
- Market Perspective
 - Subscriber perspective
 - Network operator perspective
 - Third-party service provider perspective

Subscriber Perspective

Advantages

- It is free and flexible to choose applications.
- Reuse application in wired-networks

Disadvantage

- Trouble to choose the application and service provider.
- The demand of service package and one bill.
- Some application may lose QoS guarantee.

Network Operator Perspective

Advantages

 Operators may not have experience in IP multimedia applications. They only focus in the IP connectivity.

Disadvantages

- Circuit-switch revenue will be decayed.
- · Loss possible revenue for paving basic IP multimedia application, e.g., VoIP.
- Issue of customer dissatisfaction for IP multimedia applications.

t of Computer Science and Information Engineering

Third-Party Service Provider Perspective

Advantages

. They don't have to bother the peculiarity of wireless networks. They don not need extensive knowledge of wireless telecommunication networks and protocols.

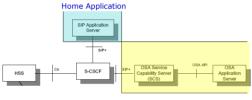
Disadvantages

 They are unable to take advantage of the wireless network, e.g., user location information.

IP Multimedia Subsystem (IMS)

- o Appear in Release 5 and beyond
- o IMS comprises the network elements for control of multimedia sessions.
- Network operator provides both
 - IP connectivity
 - Multimedia session management

Basic Add-in Features


- o Call State Control Function (CSCF)
 - Provisioning of call control for IP multimedia applications. P-CSCF, I-CSCF, S-CSCF.
- Open Service Access (OSA)
 - Third-party are expected to stimulate innovative application, taking advantage of knowing the capabilities provided by wireless network providers.

Department of Computer Science and Information Engineering

55

IP Multimedia Subsystem

Serving-CSCF

Third-paty application

Department of Computer Science and Information Engineerin

S-CSCF

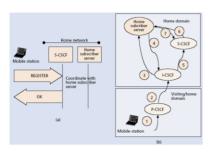
- o Session control.
- o Retrieve the information from HSS.
- o Connect to Application Servers.
- Each user agent needs to attach a S-CSCF before setup a session.
- o Analog to Registrar in SIP.

Department of Computer Science and Information Engineeris

5

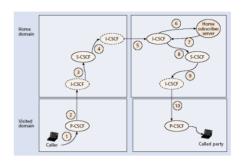
Proxy-CSCF (P-CSCF)

- o The first contact point within the IMS.
- Mobile node communicate with S-CSCF via P-CSCF. Direct communication with S-CSCF is not allowed.
 - · Integrity protection of SIP signaling.
 - Compression due to sparse wireless resource (Sigcom).
 - Inspect SIP signaling if the mobile node is in a visited network.


spartment of Computer Science and Information Engineering

Interrogating-CSCF (I-CSCF)

- o Entry Point in a network operator.
- Hide the configurations, topology and capacity from outside.
- o Analog to Proxy and redirect servers in SIP.


Department of Computer Science and Information Engineering

Registration

Department of Computer Science and Information Engineering

Session Setup

Department of Computer Science and Information Engineering

MMTel and Circuit Switch internetworking

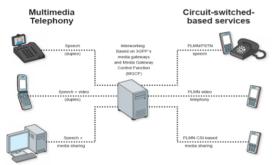


Figure 4: Important interworking scenarios between MMTel and standard circuit-switched services

Department of Computer Science and Information Engineering

63

Reference

Mobile IP: Charles E. Perkins http://people.nokia.net/~charliep

SIP: http://www.cs.columbia.edu/sip

IMS: 3GPP TS 23.228 v2.0 http://www.3gpp.org/ftp

Department of Computer Science and Information Engineering