

無線網路多媒體系統

Wireless Multimedia System

Dr. Eric Hsiaokuag Wu
hsiao@csie.ncu.edu.tw

<http://wmlab.csie.ncu.edu.tw/course/wms>
2011 Fall

First Week Agenda

- ◆ Course Preview
- ◆ Wireless Multimedia/Mobile Computing / Pervasive Computing
- ◆ Wireless Mobile Communications
- ◆ System Review and Fundamental Problems
- ◆ Next Week

Course Contents

◆ Fundamental Wireless Technology

- Propagation Model
- Wireless Medium Access
- Transport Solutions
- Ad hoc/Mesh Wireless System
- Cellular System
- Middleware Systems
- Multimedia System

◆ Advanced Wireless Technology

- Multicasting
- Beyond 3G
- Routing Algorithms/Mesh Network/VANET
- QoS/ Reliable Multimedia Transmissions

台灣行動電話發展趨勢圖

Roaming Across a variety of heterogeneous network and service environments

Figure 1. Subscriber growth and IC reduction in mobile terminals.

QUALCOMM

> Easy Migration from cdmaOne to 3G

DEUTSCHE BANK ALEX BROWN 11-14-00 16

WiMAX Nomadic and Portable

802.16e PC
Card

Ref: Margaret LaBrecque , “Enabling Deployments through Standards and Certification,”
WiMax, 2003

Wireless & Multimedia Network Laboratory™

WiMAX 802.16

WiMAX

■ Figure 1. Mobile WiMAX enabling a variety of usage models in the same network.

Femtocell

Femtocell: Consumer installed wireless data access point inside homes, which backhauls data through a broadband gateway (DSL/cable/Ethernet/WiMAX) over the Internet to the cellular operator network.

Growth in traffic in different access system and voice and data services

25Gb/s(km²)

Figure 1. Growth of transferred data in Western Europe.

IEEE Communications Magazine • February 2011

Context Aware Services

Mobile Sensing

Recent Wireless Technologies

■ Figure 1. Evolution and backward compatibility of air interface technologies.

Forecast number of subscribers

Frequency Hopping Spread Spectrum

- ◆ Transmitted signal is spread over a wide range of frequencies. (i.e. 2.400-2.485 GHz)
- ◆ Transmission usually hop 35 times per second.

Direct Sequence Spread Spectrum

To transmit a 0 the station use a unique “chip sequence”:

To transmit a 1 the station use the one’s complement of its chip sequence:

Therefore if data is 1010 it will transmit:

DS-CDMA

- ◆ Processing Gain:
- ◆ SF=2 cases:
 - ◆ $(1, 1) \otimes (1, 1) = 1+1=2$ (Processing Gain)
 - ◆ $(1, 1) \otimes (1, -1) = 1-1=0$ (orthogonal)
- ◆ SF=4 cases:
 - ◆ $(1, 1, 1, 1) \otimes (1, 1, 1, 1) = 1 + 1 + 1 + 1 = 4$ (Processing Gain)
 - ◆ $(1, 1, 1, 1) \otimes (1, 1, -1, -1) = 1 + 1 - 1 - 1 = 0$ (Orthogonal)
- ◆ $SIR = Pr * \text{Processing Gain} / \text{Interference}$
- ◆ $= Pr * (\text{Total_Radio_Frequencyband} / \text{Bitrate}) / \text{Interference}$

Narrowband vs. Wideband

Ultra-Wideband Radio

CR (Cognitive Radio)

- ◆ The CR idea was initially introduced by [Joseph Mitola](#). On average, only 2% of allocated spectrum in the U.S. is actually in use

Wi-Fi 2.0

A 60 GHz Wireless Network

■ Figure 1. Configuration of gigabit WPANs in a typical home environment.

Multi-channel, Multi-Radio, MIMO

Wireless Mesh Network.

Mesh Network Scenario

Aeronautical Communications

Figure 2. Aeronautical communications network architecture.

Wireless Applications Scenario

Multimedia over IP

IP Mobility & All IP Multimedia Towards Wireless Internet Network Vision

SIP places new power and control into subscribers' hands.

3GPP - Release 5 IMS & HSDPA

IMS Service Scenario

Wireless sensor network: data gathering

Video Transmission in VANET

GPS gets instant video streams from the surveillance cameras at an intersection.

The driver can get a better view of the traffic.

Context Aware Communication

Business Finder

Adaptive Applications

Video

Audio

Graph

Text

High

.....

Quality

.....

Low

Varied type
of service

Adaptive
application
coding

Situation-Aware Wireless Networks

■ **Figure 4.** Situation awareness functionality.

Network Mobility Management

■ Figure 1. A mobile network in a B3G system.

IEEE 802.11 WLAN

Fig. 1. A is sending a packet to B when C should decide whether to transmit to D.

Ad hoc mode

Infrastructure mode

802.11 family

Figure 1. The 802.11 PHY layer amendments and their dependencies.

Quiz 0: WLAN Performance Anomaly Problem

Fairness for upstream and downstream

Expectation of the Class

- ◆ Basic Understanding of PCS world
- ◆ Being able to do the wireless research
- ◆ Developing the capability to invent the key wireless applications

Course Process

- ◆ Paper reading and your presentations
- ◆ Wireless Multimedia Applications Exercises

Mobile Computing

Mobile phone today = multipurpose terminal for ...

Reading list for This Lecture

- ◆ Required Reading:

(S.2001) M. Satyanaraynan, "Pervasive Computing: Vision and Challenges", IEEE Personal Communication Magazine, (August 2001), pp.10-17

(Bi2001) Qi Bi, George I. Zysman, and Hank Menkes, "Wireless Mobile Communications at the Start of the 21 Century", IEEE Communication Magazine (January 2001), pp. 110-116

Reference Papers:

(Heusse 2003) **M Heusse**, F Rousseau, G Berger-Sabbatel, A Duda – "Performance anomaly of 802.11" IEEE INFOCOM, 2003

(Guido 2010) Guido R. Hiertz, Dee Denteneer, Lothar Stibor, Yunpeng Zang, Xavier Perez Costa, Bernhard Walke, "The IEEE 802.11 Universe". IEEE Communication Magazine January 2010, pp 62-70.

Mobile Computing

Mobile Computing

- ◆ information processing in general
 - not just communication or just computing, but both
- ◆ Any medium or combination of medium
 - process not just telephone voice or just data, but multimedia
- ◆ Mobility
 - components of the systems may be
 - ◆ moving, tether-less (wireless), portable
 - uses of the system may be moving

Why should we care ?

- ◆ Reason # 1 : \$\$\$ & jobs
- ◆ Explosive growth of wireless voice, paging, and data services
 - 35-60 percent annual growth in the past decade
 - mobile phones in US will be 42 % of fixed -line phones by 2000
 - 700 million mobile users at the end of 2000
 - One billion expected by 2003
- ◆ Big demand for portable communicators and computers
 - 2 M portable computer in 1988 to 74.1 M units in 1998

Is there a more “academic” reason ?

- ◆ Reason # 2: a next step in the evolution of information system
- ◆ Evolution from personal computing to networked computing to mobile computing
- ◆ Evolution from wired telephony to cordless telephony to mobile cellular telephony
- ◆ At the same time, unification of computing and communication

Mobile Multimedia Systems

- ◆ Ubiquitous information access (everybody else)
 - e.g. wireless computing, mobile computing, nomadic computing
 - information distributed everywhere by “the net”
 - users carry (wireless) terminals to access the information services
 - terminal is the universal service access device
 - terminals adapt to location and services
 - Knowledge-based society
- ◆ Flexible Users Choices
 - In terms of access, service, content
 - Any where, anytime, any terminal equipments
- ◆ Wearable Computing terminal / Mobile Broadband services (MBS)

Pervasive Computing

- ◆ Technology that disappears
 - The most profound technologies are those that disappear. They weave themselves into the fabric of everyday life until they are indistinguishable from it".
- ◆ Ubiquitous (Invisible) Computing (Xerox PARC)
 - Cheap computers of different scale and types embedded everywhere
 - Potentially 100s of computers per room that disappear into background (e.g. active badge, tabs, pads, live boards..)
 - User centric, not terminal centric
 - Computers swapped and shared among users
- ◆ Effective Use of Smart Spaces
- ◆ Invisibility
- ◆ Localized Scalability
- ◆ Masking Uneven Conditioning

Support for Pervasive Computing

- ◆ User Intent
- ◆ Cyber Foraging
- ◆ Adaptation Strategy
- ◆ High-Level Energy Management
- ◆ Balancing Pro-activity and Transparency
- ◆ Privacy and Trust
- ◆ Impact on Layering

Pervasive Computing

■ Figure 1. Taxonomy of computer systems research problems in pervasive computing.

Aura Client

■ Figure 2. The structure of an Aura client.

Wireless Communications

Mobile Communications

Fixed Broadband Wireless Communications

Evolution of Mobile Wireless Systems

- ◆ First Generation : Analog – Voice (Early 1980s)
 - Analog modulation
 - Cellular phone (AMPS) with manual roaming
 - Cordless phones
 - Packet radio networks
- ◆ Second Generation : Digital - Voice & Data (Early 1990s)
 - WAP (wireless application protocol)
 - 2.5 G GPRS
 - TDMA and narrowband CDMA: EX-GSM, IS-95(cdmaOne)
- ◆ Third Generation: Digital – Multimedia (Late 1990s)
 - Unified digital wireless access anytime, anywhere
 - Voice, data, images, video, music, sensor etc.
- ◆ 4G~ Life after Third-Generation Mobile Communications
 - LTE (Long Term Evolution), Wimax

Cellular Service Subscription

Wireless Personal Communications

- ◆ What is it?
 - Cellular telephone
 - Cordless telephone
 - Paging systems
 - Wide area data networks
 - Local area data networks
- ◆ Many ways to segment PCS
 - Applications
 - Extent of coverage
 - Degree of mobility (speed, area)
 - Circuit switched voice vs. packet-switched data
 - Mode of communication (messaging, two-way real time, paging, agents)
 - User location (indoor vs. outdoor, train, airplane)
- ◆ Common ingredients in all PCS activity
 - Desire for mobility in communications
 - Desire to be free from tethers

2000 Market Share

■ **Figure 5.** Estimated market shares of 1G and 2G wireless mobile systems in 2000.

Mobile Terminal Growth

Figure 1. Subscriber growth and IC reduction in mobile terminals.

QUALCOMM

> Easy Migration
from cdmaOne
to 3G

Time to Market

Simple IS-95 to cdma2000 conversion

GPRS Architecture

RS Spectrum Allocation

Figure 2. RF spectrum allocation in major regions.

Wireless Mobile Interface

Figure 4. Wireless mobile system interface definition.

Elements of UMTS Architecture

第三代行動電話之技術標準

Modular IMT-2000 Harmonization

Paired spectrum

Unpaired spectrum

(Terrestrial Component)

	Cdma2000	WCDMA	TD-SCDMA
Multiple access	DS-CDMA/MC-CDMA	DS-CDMA	TDMA/DS-CDMA
CLPCF	800 Hz	1600 Hz	200 Hz
PCSS	1 dB (0.5, 0.25 optional)	0.25–1.5 dB	1, 2, 3 dB
Channel coding	Convolutional or turbo coding	Convolutional, RS, or turbo coding	Convolutional or turbo
Spreading code	DL:Walsh, UL:M-ary Walsh mapping	OVSF	OVSF
VSF	4...256	4...256	1...16
Carrier	2 GHz	2 GHz	2 GHz
Modulation	DL: QPSK, UL: BPSK	DL: QPSK, UL: BPSK	QPSK, 8-PSK (at 2 Mb/s)
Bandwidth	1.25*2/3.75*2 MHz	5*2 MHz	1.6 MHz
UL-DL spectrum	Paired	Paired	Unpaired
Chip rate	1.2288/3.6864 Mchips/s	3.84 Mchips/s	1.28 Mchip/s
Frame length	20 ms, 5 ms	10 ms	10 ms
Interleaving periods	5/20/40/80 ms	10/20/40/80 ms	10/20/40/80 ms
Maximum data rate	2.4 Mb/s	2 Mb/s	2 Mb/s
Pilot structure	DL: CCMP, UL: DTMP	DL: DTMP, UL: DTMP	CCMP
Detection	PSBC	PCBC	PSBC
Inter-BS timing	Synchronous	Asynchronous/synchronous	Synchronous

CCMP: common channel multiplexing pilot; DTMP: dedicated time multiplexing pilot; VSF: variable spreading factor; CLPCF: closed-loop power control frequency; PCSS: power control step size; DL: downlink; UL: uplink; PSBC: pilot symbol based coherent; PCBC: pilot channel based coherent

■ *Figure 1. The increasing trend in estimated population of mobile subscribers in China from 1998 to 2010. The total mobile communication related product value is estimated at about US\$ 180–220 billions.*

Location-Based Applications

Figure 1. A typical location data transaction

3G-Network integration

3GPP-Release 5 IMS & HSDPA

Mobile Broadband System

Figure 1. MBS and UMTS coverage and applications.

Mobile System Evolution

Figure 5. Mobile communication systems evolution.

TDMA, CDMA, OFDMA

2006

2007

2008

2009

2010

2011

3GPP GSM EDGE Radio Access Network Evolution

3GPP UMTS Radio Access Network Evolution

3GPP Long Term Evolution

CDMA2000 Evolution

Mobile WiMAX Evolution

Note: Throughput rates are peak network rates. Radio channel bandwidths indicated.
Dates refer to initial network deployment except 2006 which shows available technologies that year.

WiMAX Nomadic and Portable

802.16e PC
Card

Ref: Margaret LaBrecque , “Enabling Deployments through Standards and Certification,”
WiMax, 2003

Wireless & Multimedia Network Laboratory™

**National Central University
&
Hughes Network Systems
LMDS Demo Briefing**

November 1999

Campus Network

Figure 1: Wireless Network Infrastructure

LMDS NCU Test-bench

Architecture of the Demo

National Central University Demo Layout

G-17833P 8/19/99

Step.1 LMDS Architecture

與衛星結合

遙測中心

HEAD END

USER END

MRA-28L

Set Top Box

WiMAX Consumer Last Mile

Ref: Margaret LaBrecque , "Enabling Deployments through Standards and Certification,"
WiMax, 2003

Wireless & Multimedia Network Laboratory™

IEEE 802.11 Configurations - Independent

- ♦ Independent
 - one Basic Service Set - BSS
 - Ad Hoc network
 - direct communication
 - limited coverage area

Topology of a Wireless LAN

- 進接(Access)應用: 使用者與網路的連接

- 中繼(Trunk)或骨幹(Backbone)應用: 網路與網路之間的連接. 例如,大樓與大樓之間的通訊, 或是遠方網路的連接.

- **Duration field in RTS and CTS frames distribute Medium Reservation information which is stored in a Network Allocation Vector (NAV).**
- **Defer on either NAV or "CCA" indicating Medium Busy.**
- **Use of RTS / CTS is optional but must be implemented.**

Node Contention & Rate Adaptation

Fig. 7 Throughputs with node contentions.
[Choi, ACM SIGMETRICS'05]

IP integration

WiMedia Solutions – Simple Usage

Capacity and Mobility

地球村的建立

衛星本體

衛星本體

衛星本體

Sky of Satellites

DirecPC Satellite Experiments

Ubiquitous Access

“Anytime Anywhere” Information System

Fundamental Issues

Three System Components

End-Point
Terminal Architecture

Infrastructure
Network architecture

Services
OS & Middleware

Personal area network

Connect devices to internet on the mobile infrastructure world wide

GSM
TDMA
CDMA
GPRS
EDGE
WCDMA

QoS and Multimedia Traffic Support

QoS and Multimedia Traffic Support

Adaptive
Algorithm
by QoS
Requirement

Mobility
Unpredictable
channel
by QoS
Information

Channel Propagation and Fading

Figure 4. Received power as a function of distance: in a street (left), in a pavilion (right); BER and handover (right).

Intra-Domain Handoff

Resource Sharing

- ◆ Reservation Approaches
 - Centralized Control
 - token (round robin)
- ◆ Collision Approaches
 - fight for resource
 - distributed control

Through A Centralized Control

- ◆ TDMA, FDMA, CDMA

MACA/PR

QoS and Multimedia Traffic Support

Adaptive
Algorithm
by QoS
Requirement

Mobility
Unpredictable
channel

by QoS
Information

QoS and Multimedia Traffic Support

Internetworking, IP, Mobile

◆ Internetworking

- roaming through different networks
- supporting IP format
- supporting IP portability

QoS and Multimedia Traffic Support

Adaptive
Algorithm
by QoS
Requirement

Mobility
Unpredictable
channel

by QoS
Information

What problem does Multimedia Bring?

5

Ad Hoc Wireless Network

Tight and Loose Internetworking

Figure 1. a) Tight and b) loose interworking architecture of 3G /WLAN networks.

Limited & Variable Bandwidth

- ◆ Low bandwidth compared to wired
- ◆ Highly variable bandwidth
- ◆ High latency

Wireless Communication

- ◆ More difficult than wired communication
- ◆ Dis-connections

Mobility

- ◆ Address migration
- ◆ Location-dependent information
- ◆ Migration locality

Portability

- ◆ Light weight power
- ◆ Risks to data
- ◆ Small user interface
- ◆ Small storage capacity

Challenges in Mobile Multimedia Infor- System

- ◆ Portable end-points
- ◆ End-to-end Quality of Services
- ◆ Seamless operation under context (location) changes
- ◆ Context-aware operation
- ◆ Secure operation

Channel Propagation and Fading

Figure 4. Received power as a function of distance: in a street (left), in a pavilion (right); BER and handover (right).