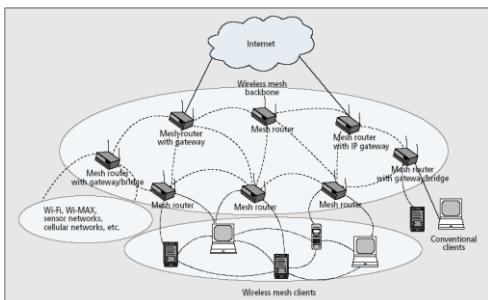
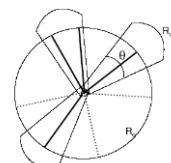
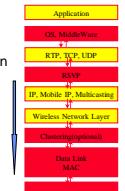


Topic 9:


Ad hoc Network (Mesh Network)


Professor Eric Hsiaokuang Wu
2011

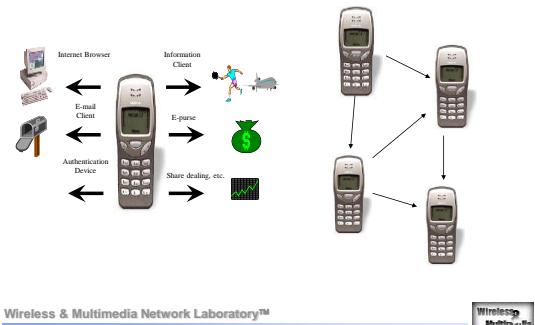
Wireless Mesh Network.



Multi-channel, Multi-Radio, Directional Antenna

Two Issues for Collaborative Computing

- Network Layer Collaborative:
 - Ad hoc- Infrastructure-less ~ support "anytime, anywhere"
 - To support communications between ad hoc nodes
 - To guide the packets effectively to satisfy different requirements
 - To adjust to dynamical topology change (due to Mobility)
- Application Collaborative:
 - Video Conferencing, News Broadcasting
 - Group of users to share the same information
 - Mobility Support



Trend Evolution

- IP success
 - The involvement and level of responsibility of end users have dramatically increased
 - The freedom has fueled creativity
- Infrastructure-less, self-organized networks
 - The network runs solely by operation of end users
 - Progress of electronic integration and wireless communication
 - Complement these infrastructures in cases where cost, constraints, or environment require self-organized solutions
 - Will be interconnected with the Internet and cellular networks

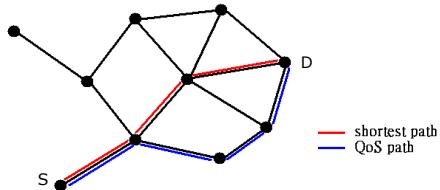
Mobile Computing to Pervasive Computing

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

CSIE

Mesh Network Scenario

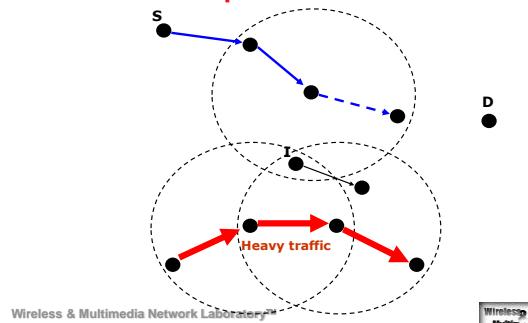

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

CSIE

Why not existing routing protocol

- Existing routing protocol search for shortest path not guarantee any QoS.

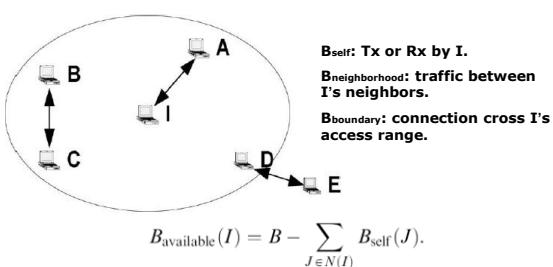


Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

CSIE

Bandwidth influence ~ hidden route problem



Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

CSIE

Traffic aggregation of existing flow

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

CSIE

802.11 Bandwidth Estimation

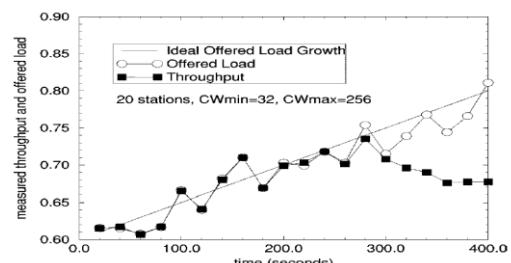
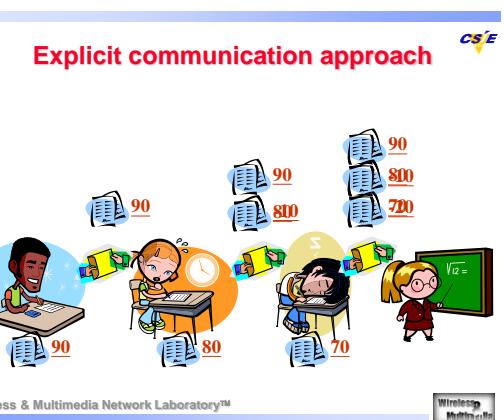
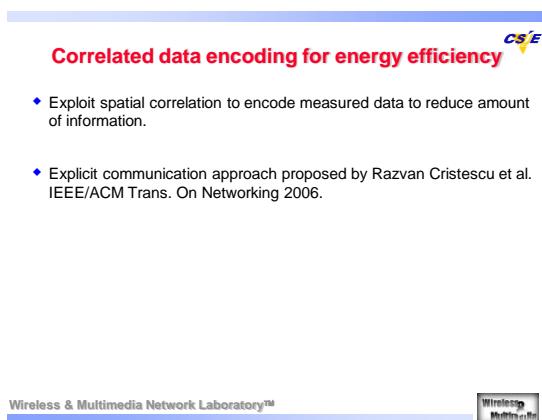
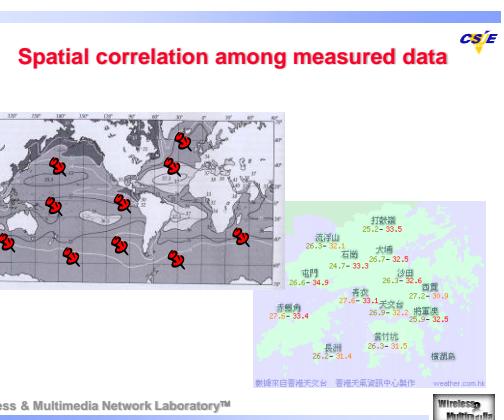
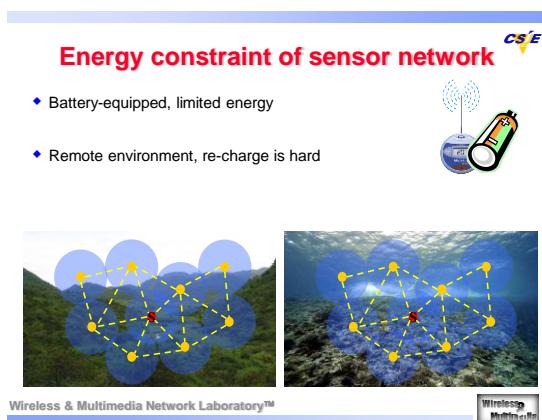
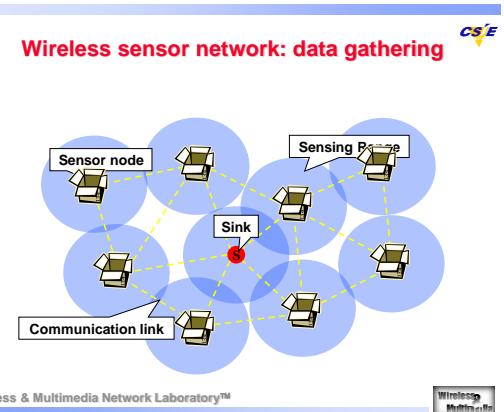
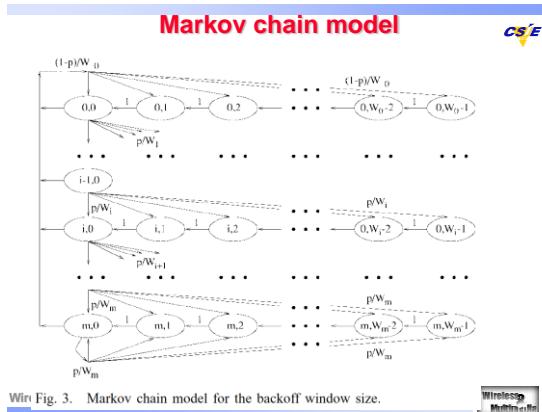
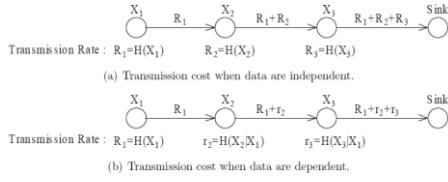








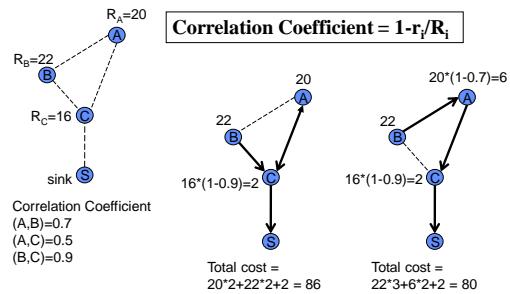
Fig. 3. Measured Throughput with slowly increasing offered load.

Wireless & Multimedia Network Laboratory™

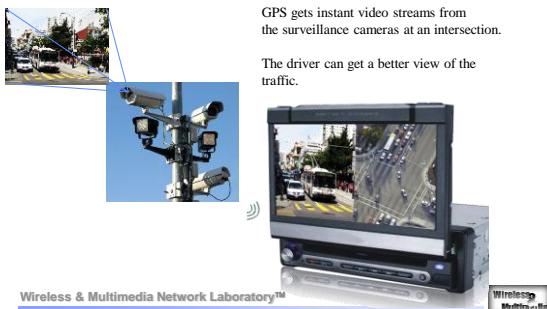

Wireless
Multimedia

CSIE

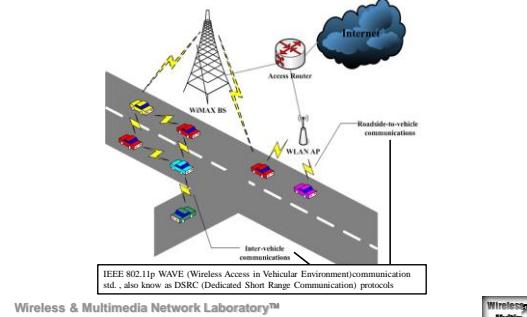
Explicit communication approach


- $H(X_i)$ is entropy of random variable X_i , and represents the amount of information.

Wireless & Multimedia Network Laboratory™


Joint optimization of rate allocation and routing path

Wireless & Multimedia Network Laboratory™


Video Transmission in VANET

Wireless & Multimedia Network Laboratory™

What is a VANET (Vehicular Ad hoc Network) ?

Wireless & Multimedia Network Laboratory™

VANET vs. MANET

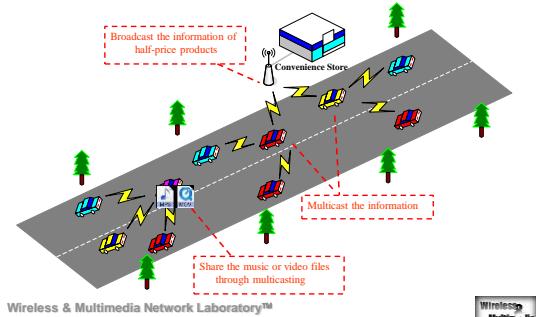
- VANET can be considered as one of concrete applications of MANETs in the future
- The difference between VANET and MANET
 - (i) VANET have vehicles as network nodes and their main characteristics are highly mobility and speed
 - (ii) VANET nodes move non-randomly along specific paths (roads)
 - (iii) VANET nodes are vehicles, so there are less power and storage constraints
- Due to the characteristic of (i) (ii), VANET will suffer *rapid changes in network topology*, and will be subject to *frequent fragmentation*

Vehicular communications: why?

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

Applications of vehicular communication

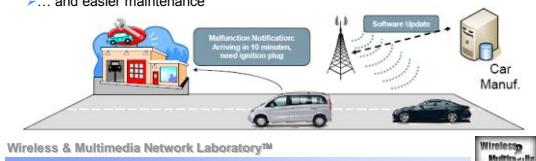

- There are many applications envisioned for VANETs, we can divide the applications into two major categories:
 - Safety-related applications**
 - Collision avoidance
 - Cooperative driving
 - Non-safety (private) applications**
 - Traffic optimization
 - Payment services (toll collections)
 - Location-based services (find the closest fuel station)
 - Infotainment (Internet access)

Wireless & Multimedia Network Laboratory™

Scenario of VANET private applications

Multicasting infotainment messages

Wireless & Multimedia Network Laboratory™

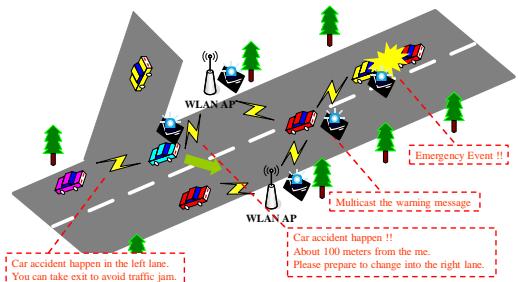


Vehicular Ad Hoc Network Scenario

The logo of the Center for Strategic and International Studies (CSIE) is located in the bottom right corner. It consists of the letters "CSIE" in a blue, italicized, sans-serif font, with a yellow, stylized, downward-pointing arrow graphic positioned below the "E".

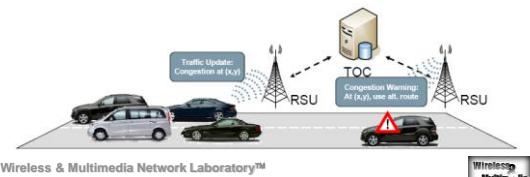
>more fun.

and easier maintenance



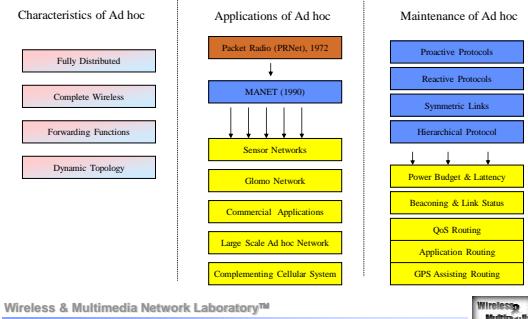
Wireless & Multimedia Network Laboratory™

Scenario of VANET safety applications


Multicasting warning messages

Wireless & Multimedia Network Laboratory™

Vehicular Ad Hoc Network Scenario


Wireless & Multimedia Network Laboratory™

Observations

Personal Communications have been the dominant paradigm so far, but mobile ad hoc networks open new possibilities, such as the communication between objects

Survey of Ad hoc Researches

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

CSIE

Reading

- [Jean2001] Jean-Pierre Hubaux, Thomas Gross, Jean-Yves Le Boudec, and Martin Vetterli, "Toward Self-Organized Mobile Ad Hoc Networks: The Terminodes Project"
- [Ian 2005] Ian F. Akyildiz, A Survey on Wireless Mesh Networks, IEEE Radio Communications September 2005

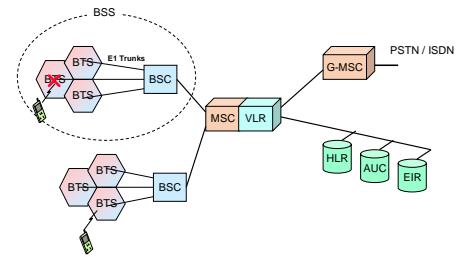
Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

CSIE

Agenda

CSIE


- Overview of Mobile Ad Hoc Networks
- Major Technical challenges:
 - Networking
 - Real time services
 - Software
- Long-term Research Project:
 - Terminodes Projects

Wireless & Multimedia Network Laboratory™

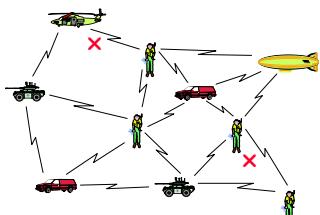
Wireless
Multimedia

CSIE

Cellular based

GSM Network Infrastructure

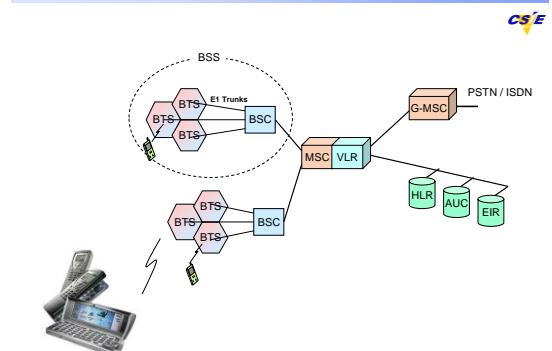
Wireless & Multimedia Network Laboratory™


Wireless
Multimedia

CSIE

Ad-hoc network

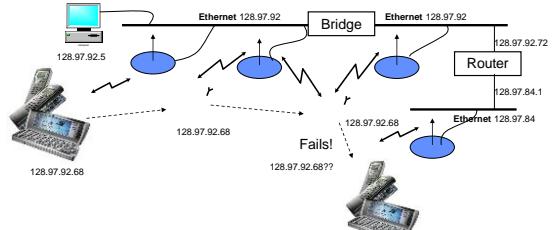
CSIE


- No centralized controller (base stations)
- No wired inter-connection backbone
- Forwarding function should be provided by mobile nodes

Wireless & Multimedia Network Laboratory™

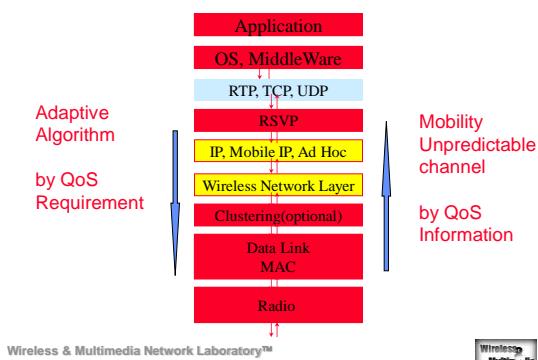
Wireless
Multimedia


CSIE


Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

CSIE


Mobility in Wireless LANs: Mobile IP

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

QoS and Multimedia Traffic Support

Introduction

Self-Organized Mobile Ad Hoc Networks

Wireless Multimedia

Overview (MANET)

- Packet Radio Networks ('70)
 - Research Results
 - Radio Resource Allocation
 - Network Organization
 - An Individual, handheld device
 - Military application (provide person-to-person communications on the battlefield)

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

MANET

- Potential Applications:
 - Manmade disasters
 - Relief operation
 - Military applications
 - Car-based networks
 - Sensor networks
 - The Provision of wireless connectivity in remote areas
 - Collaborative Computing, Video Conferences

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

MANET, Peculiarities

- They can act independent of any provider
- They have to be highly cooperative: The tasks are distributed over the nodes
- Any operation is the result of the collaboration of a group of them
- The nodes rely on batteries for their energy, energy saving
- Power aware: the set of functions offered by a node depends on its available power
- Highly dynamic topology
- Security is difficult to implement

Wireless & Multimedia Network Laboratory™

Technical Issues

- Routing
- Mobility Management
- IP Address
- Transport Layer
- Air Interface
- Security
- Power Management
- Standards and Products

Wireless & Multimedia Network Laboratory™

Routing

- Ad hoc routing
 - Different from traditional solutions in the Internet or cellular phone networks (relative stable, distributed routing databases)
 - IETF (The Internet Engineering Task Force) MANET address the challenge
 - Distant vector, links state, source routing (table driven, on-demand)
 - Geographic methods: nodes are informed of their own geographic position

Wireless & Multimedia Network Laboratory™

Routing Protocol

- Traditional Routing
 - Distance Vector (Bellman Ford)
 - Link State
- Ad Hoc Routing Protocols
 - DSDV
 - DSR
 - AODV
 - TORA

Wireless & Multimedia Network Laboratory™

Traditional Routing

- Distance Vector (Table Driven)
 - Each node maintains its own routing table
 - Routing table contains
 - destination node index
 - next hop
 - metric
- Periodic routing table exchange
- Disadvantage
 - Count-Infinity Problem
 - Convergence Problem

A	B	C
B-A-1	A-B-1	B-C-1
C-B-1	C-B-1	A-B-2
0	1	2
x	1	2
x	3	2
x	3	4
x	5	4
x	∞	∞

Wireless & Multimedia Network Laboratory™

Traditional Routing (Cont.)

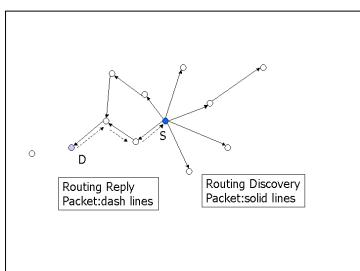
- Link State Routing
- Procedures
 - Neighbor Discovery
 - Routing Information Broadcast
 - Shortest Path Finding (e.g. Dijkstra's algorithm)
- Disadvantage
 - short-live looping problem

0	1	2	3	4	5	6	7	8	9	10	11	12
0	1	2	3	4	5	6	7	8	9	10	11	12
1	0	1	2	3	4	5	6	7	8	9	10	11
2	1	0	1	2	3	4	5	6	7	8	9	10
3	2	1	0	1	2	3	4	5	6	7	8	9
4	3	2	1	0	1	2	3	4	5	6	7	8
5	4	3	2	1	0	1	2	3	4	5	6	7
6	5	4	3	2	1	0	1	2	3	4	5	6
7	6	5	4	3	2	1	0	1	2	3	4	5
8	7	6	5	4	3	2	1	0	1	2	3	4
9	8	7	6	5	4	3	2	1	0	1	2	3
10	9	8	7	6	5	4	3	2	1	0	1	2
11	10	9	8	7	6	5	4	3	2	1	0	1
12	11	10	9	8	7	6	5	4	3	2	1	0

adjacency matrix

Wireless & Multimedia Network Laboratory™

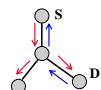
Ad Hoc Routing - DSDV



- DSDV
 - Destination Sequence Distance Vector Routing
 - Each route information is labeled with a increasing sequence number
 - Route info. with greatest number will be update
 - Route info. of broken link is broadcast with odd sequence one greater than the original sequence number
- Contribution
 - Main contribution of DSDV is freedom-loop guarantee
- Disadvantage
 - The periodic broadcast adds the overhead into the network

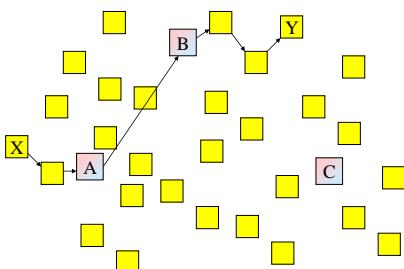
Wireless & Multimedia Network Laboratory™

Routing in ad hoc network environment only


Wireless & Multimedia Network Laboratory™

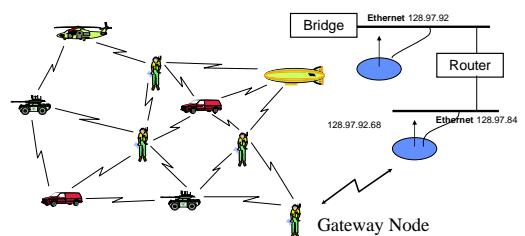
Ad Hoc Routing - DSR

- DSR
 - Dynamic Source Routing
 - Route Discovery
 - Source node flooding routing request (RREQ) packet
 - Destination (inter-node) node reply RREP packet that piggybacks the route info.
 - Source node caches the route info
 - Route Maintenance
 - The route info. will be removed after receiving RERR packet
- Advantage
 - Requires no periodical routing exchange
- Disadvantage
 - packet is larger because of carrying route info.

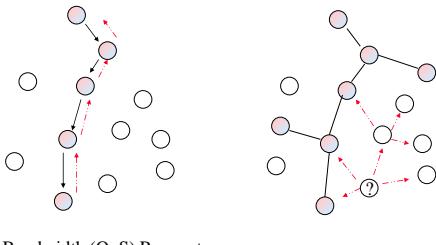

Wireless & Multimedia Network Laboratory™

Heterogeneous Network Support

- Use of Interface Indices in DSR


Wireless & Multimedia Network Laboratory™

Internet Interconnection and Mobile IP


- DSR supports the seamless interoperation between an ad hoc network and the Internet

Wireless & Multimedia Network Laboratory™

On Demand Support Multicast & QoS

CSIE

Ad Hoc Routing - AODV

- ♦ AODV

- Ad-hoc On-demand Distance Vector
- Shares the advantages of DSR and distance vector
- Route Discovery
 - ♦ Similar to DSR
- Route Maintenance - Table Entry
 - ♦ Destination IP, Destination Sequence, Hop Count, Next Hop, Life Time
- The route info. is invalid if
 - ♦ Life Time is expired
 - ♦ Receive RERR packet

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Wireless
Multimedia

Ad Hoc Routing - TORA

CSIE

- ♦ TORA
 - Temporally-Ordered Routing Algorithm
 - Routing procedures
 - ♦ Flood QUERY packet
 - ♦ UPDATE packet will be broadcast from destination or inter-node
 - ♦ HEIGHT info. is appended to UPDATE packet
 - ♦ the node receives UPDATE packet set its height and the forwarding UPDATE packet's height to a value one greater than original one
 - Source node send data to the destination via neighbor that have lower height with respect to the destination
- ♦ Advantage
 - Minimizes the reaction due to changes of network topology
- ♦ Disadvantage
 - Depend on Internet MANET encapsulation Protocol, the overhead is large

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

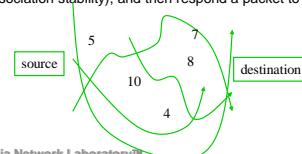
Wireless
Multimedia

ABR (Associativity-Based Routing)

CSIE

- ♦ ABR considers the stability of a link.
 - The metric is called **degree of association stability**.
- ♦ Basic Idea:
 - Each node periodically generates a beacon to signify its existence.
 - On receipt of the beacon, a neighboring node will increase the "tick" of the sender by 1.
 - ♦ A higher degree of association stability (i.e., ticks) may indicate a low mobility of that node.
 - ♦ A low degree of association stability may indicate a high mobility of that node.
 - When a link becomes broken, the node will set the tick of the other node to 0.

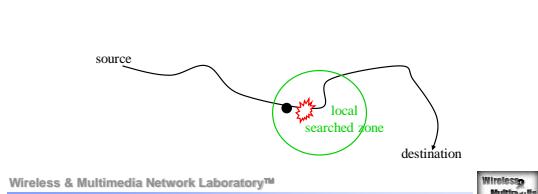
Wireless & Multimedia Network Laboratory™


Wireless
Multimedia

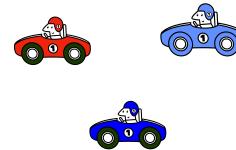
Wireless
Multimedia

ABR Outline

CSIE


- ♦ Route Discovery:
 - (similar to DSR)
 - ♦ On needing a route, a host will broadcast a ROUTE_REQUEST packet.
 - ♦ Each receiving host will append its address to the packet.
 - The **association stability** (represented by "ticks") is also appended in the ROUTE_REQUEST packet.
 - The destination node will select the **best route** (in terms of association stability), and then respond a packet to the source.

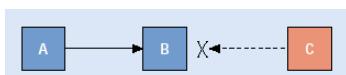
Wireless & Multimedia Network Laboratory™


Wireless
Multimedia

- Route Reconstruction:
 - On route error, a node will perform a local search in hope of rebuild the path.
 - If the local search fails, a ROUTE_ERROR will be reported to the source.

Mobility Management

- Broadcasting a paging message the whole network: won't scale well
- Different from centralized servers (either HLR in GSM), location must be distributed among the nodes
- Prediction of the future locations



Wireless & Multimedia Network Laboratory™

Wireless Multimedia

Radio Interface

- CSMA/CA: hidden terminal

- Defining master and slaves roles: Bluetooth

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

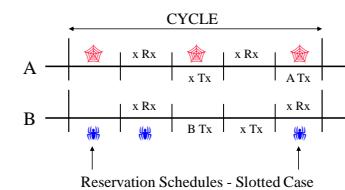
MACA/PR

- The key component
 - the MAC protocol for data transmission
 - Reservation scheme for real-time connection setup
 - QoS Routing algorithm

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

MACA/PR - MAC


- Data-gram Traffic
 - RTS - CTS - PKT - ACK
 - <RTS,CTS> for hidden terminal avoidance, ACK for retransmission
- Real-Time Traffic
 - <RTS - CTS > - PKT - ACK
 - <RTS,CTS> used for first time transmission to set up the reservation
 - ACK for renewing the reservation, not recovery

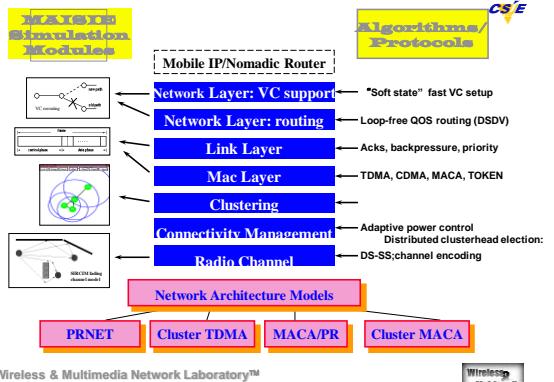
Wireless & Multimedia Network Laboratory™

Wireless Multimedia

MACA/PR - Reservation/QoS Routing

- CYCLE is the max. interval allowed between two real-time packets
- Each node maintains its own reservation table
- DSDV routing is employed
- Bandwidth info. can be easily obtained via reservation table

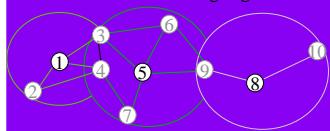
Wireless & Multimedia Network Laboratory™

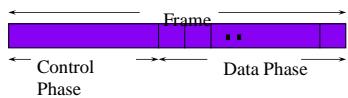

Wireless Multimedia

MACA/PR - Properties

- Asynchronous approach
- Low latency, low packet loss rate
 - Hidden Terminal Problem is solved automatically
- Fair bandwidth sharing
- Good mobility handling
 - Maintain secondary routing path
- Low implementation costs

Wireless & Multimedia Network Laboratory™


Wireless & Multimedia Network Laboratory™


Cluster TDMA

Lowest ID Clustering Algorithm


Within each cluster: time-slotted frame

Wireless & Multimedia Network Laboratory™

Cluster MACA

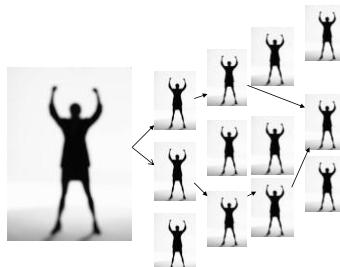
Wireless & Multimedia Network Laboratory™

The Paradigm Shift and Some Open Research Questions

MANET

Wireless & Multimedia Network Laboratory™

Terminodes Projects



- Large scale self-organized mobile ad hoc networks
- All layers and interlayer interactions
 - From physical layer up to software architecture and applications
- Try to capture the business and societal potential
- Three levels:
 - Technical challenges
 - Intellectual fantasy
 - Societal/political vision

Terminodes

CSIE

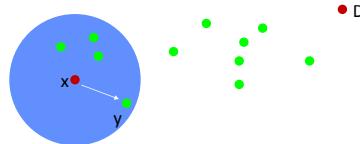
- Networking Issues
 - Scalability
 - Virtual Currency
 - Obligation
 - Real Time Services
 - QoS

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Networking Issues

CSIE

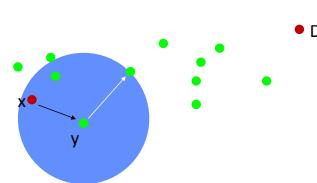


Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Greedy Forwarding

CSIE

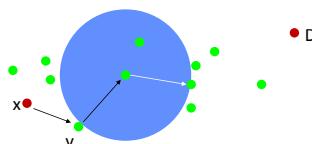


Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Greedy Forwarding

CSIE

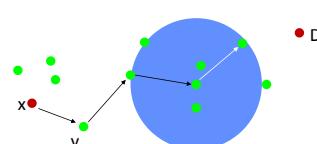


Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Greedy Forwarding

CSIE

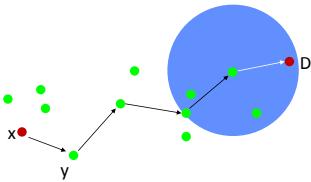


Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Greedy Forwarding

CSIE

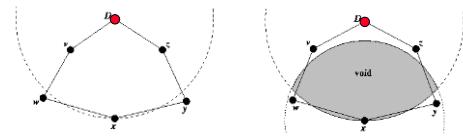


Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Greedy Forwarding

CSIE

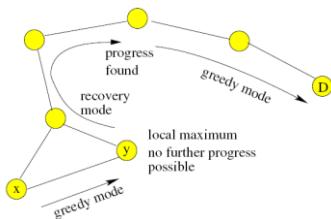


Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Greedy Forwarding Failure

CSIE

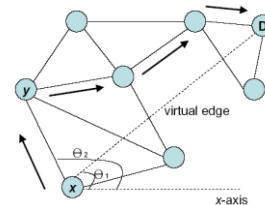


Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Recover Mode (GSR two modes)

CSIE

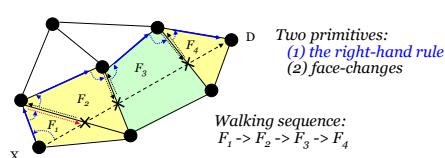


Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Right hand rule

CSIE

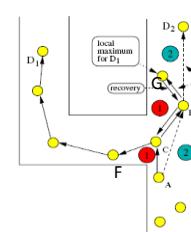


Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Face (Perimeter) traversal on a planar graph

CSIE


Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Scenarios Where GPCR does not work Well

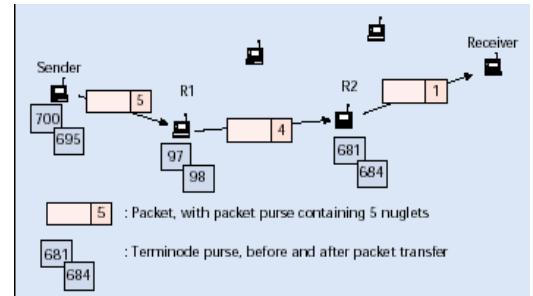
CSIE

For Destination D₂, the source A has to send to C (junction node) then to B (because it is closer to D₁ than F), then G. Then it goes for recovery mode because G is the local maxima and return back to C. C sends to F and finally Data is sent to D₁.

For Destination D₁ The source A has to send to C (junction node) then to B (because it is closer to D₁ than F), then G. Then it goes for recovery mode because G is the local maxima and return back to C. C sends to F and finally Data is sent to D₁.

Wireless
Multimedia

Routing for Terminode



- Each Terminode has
 - A permanent unique node identifier, EUI (End System Unique Identifier)
 - Location-Dependent Address (LDA)
- Geodesic Packet Forwarding:
 - The packet is forwarded to the neighbor closest to the direction in which the destination is located
- Terminode local routing
 - MANET routing (link State, Distance Vector, Source Routing)

Wireless & Multimedia Network Laboratory™

Networking Issues

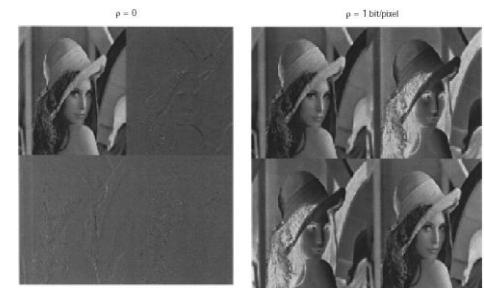
Wireless & Multimedia Network Laboratory™

Virtual Currency (Nuglet)

- Service Availability is a major requirement for self-organization
- The End users must be given incentive to cooperate
- They must be encouraged to not overload the network

Wireless & Multimedia Network Laboratory™

Real-Time Services over Ad hoc Networks



- Real-Time Services
 - Voice or video over ad hoc networks
 - Unreliable <-> stringent delay
 - Large error, node failure
- Redundancy, error correction codes over parallel connections

Wireless & Multimedia Network Laboratory™

Multiple description coding

Wireless & Multimedia Network Laboratory™

Software Aspects

- Software implementations:
 - Base software: Routing algorithms, accounting system and security system
 - Application software: Software that makes a collection of terminodes useful for a client
 - Flexible software architectures
- Resource Allocations
 - Contract
 - Loader
 - Dynamic checks

Wireless & Multimedia Network Laboratory™

Discussions

- Three Networks:
 - Telecom networks
 - The Internet
 - Self-Organized Mobile Ad Hoc Networks

Network	Infrastructure	Security	Applications
Telecom networks	Telcos	Telcos	Telcos (IN)
Internet	ISPs + telcos	ISPs + users (PGP)	Users
Self-org. ad hoc NW	Users + vendors	Users + vendors	Users