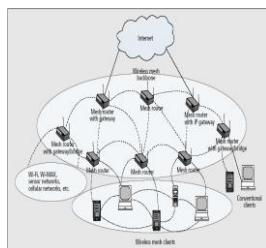



## Topic 9:

## Ad hoc Network (Mesh Network)

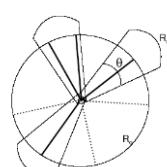



Professor Eric Hsiaokuang Wu  
2010



Wireless & Multimedia Network Laboratory™

## Wireless Mesh Network.




## Mesh Network Scenario



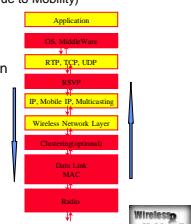
Wireless & Multimedia Network Laboratory™

## Multi-channel, Multi-Radio, Directional Antenna



Two Issues for Collaborative Computing

- ◆ Network Layer Collaborative:
  - Ad hoc- Infrastructure-less ~ support "anytime, anywhere"
  - To support communications between ad hoc nodes
    - ◆ To guide the packets effectively to satisfy different requirements
    - ◆ To adjust to dynamical topology change (due to Mobility)
- ◆ Application Collaborative:
  - Video Conferencing, News Broadcasting
  - Group of users to share the same information
  - Mobility Support




Application

OSI Multi-Way

HTTP/TCP/UDP

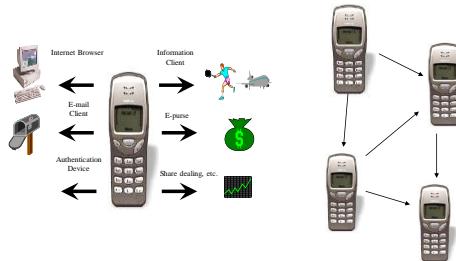
RSVP



## Trend Evolution

CSIE

- IP success
  - The involvement and level of responsibility of end users have dramatically increased
  - The freedom has fueled creativity
- Infrastructure-less, self-organized networks
  - The network runs solely by operation of end users
  - Progress of electronic integration and wireless communication
  - Complement these infrastructures in cases where cost, constraints, or environment require self-organized solutions
  - Will be interconnected with the Internet and cellular networks




Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

## Mobile Computing to Pervasive Computing

CSIE

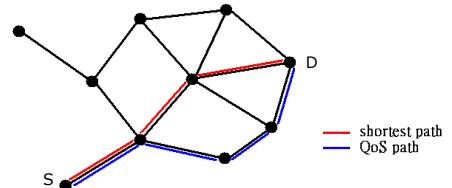


Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

## Mesh Network Scenario

CSIE

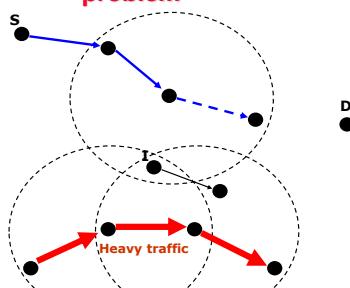



Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

## Why not existing routing protocol

- Existing routing protocol search for shortest path not guarantee any QoS.

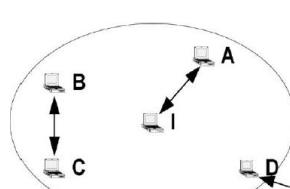



Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

## Bandwidth influence ~ hidden route problem

CSIE




Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

## Traffic aggregation of existing flow

CSIE



B<sub>self</sub>: Tx or Rx by I.

B<sub>neighborhood</sub>: traffic between I's neighbors.

B<sub>boundary</sub>: connection cross I's access range.

$$B_{\text{available}}(I) = B - \sum_{J \in N(I)} B_{\text{self}}(J).$$

Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

## 802.11 Bandwidth Estimation

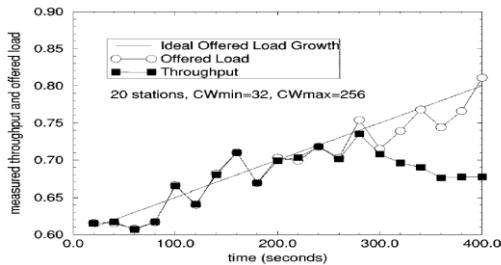
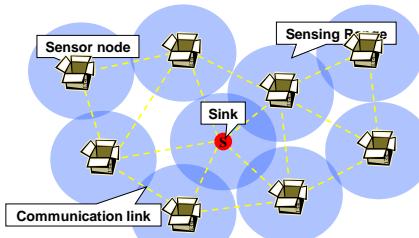
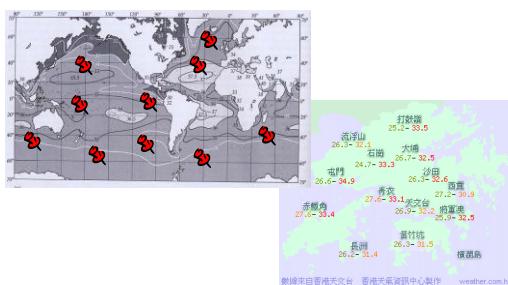




Fig. 3. Measured Throughput with slowly increasing offered load.

Wireless & Multimedia Network Laboratory™



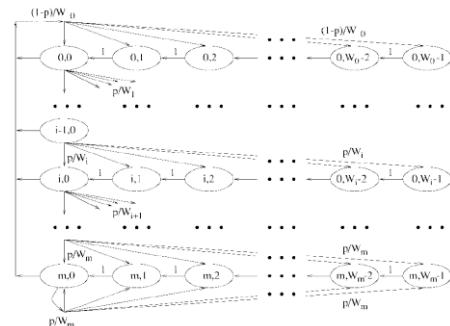

## Wireless sensor network: data gathering



Wireless & Multimedia Network Laboratory™



### Spatial correlation among measured data

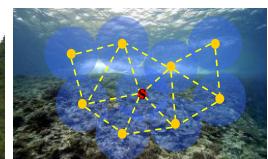



Wireless & Multimedia Network Laboratory™



## Markov chain model

CSIE




Win. Fig. 3. Markov chain model for the backoff window size.



## Energy constraint of sensor network

- ◆ Battery-equipped, limited energy
- ◆ Remote environment, re-charge is hard



Wireless & Multimedia Network Laboratory™



## Correlated data encoding for energy efficiency

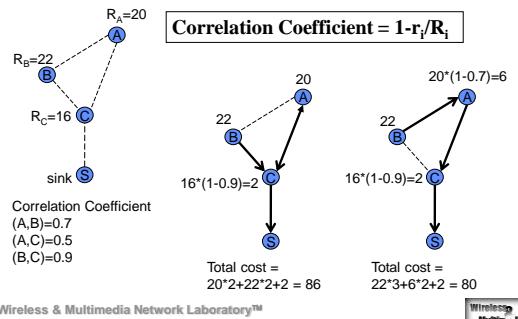
- Exploit spatial correlation to encode measured data to reduce amount of information.
- Explicit communication approach proposed by Razvan Cristescu et al. IEEE/ACM Trans. On Networking 2006.

Wireless & Multimedia Network Laboratory™



## Explicit communication approach

CSIE



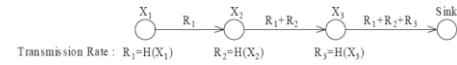

Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

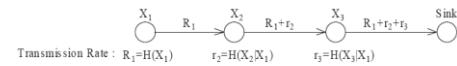
## Joint optimization of rate allocation and routing path

CSIE




Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia


## Explicit communication approach

CSIE

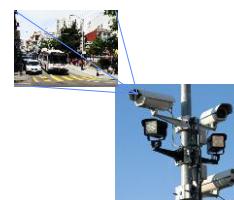
- $H(X_i)$  is entropy of random variable  $X_i$ , and represents the amount of information.



Transmission Rate :  $R_1=H(X_1)$     $R_2=H(X_2)$     $R_3=H(X_3)$



Transmission Rate :  $R_1=H(X_1)$     $r_2=H(X_2|X_1)$     $r_3=H(X_3|X_1)$


(b) Transmission cost when data are dependent.

Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

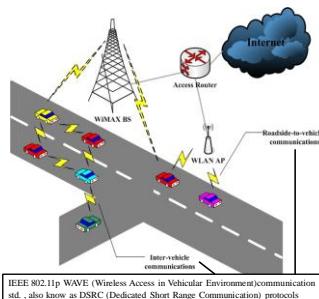
## Video Transmission in VANET

CSIE



GPS gets instant video streams from the surveillance cameras at an intersection.

The driver can get a better view of the traffic.




Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

## What is a VANET (Vehicular Ad hoc Network) ?

CSIE



Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

## VANET vs. MANET

CSIE

- VANET can be considered as one of concrete applications of MANETs in the future
- The difference between VANET and MANET
  - (i) VANET have vehicles as network nodes and their main characteristics are highly mobility and speed
  - (ii) VANET nodes move non-randomly along specific paths (roads)
  - (iii) VANET nodes are vehicles, so there are less power and storage constraints
- Due to the characteristic of (i) (ii), VANET will suffer *rapid changes in network topology*, and will be subject to *frequent fragmentation*

Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

## Vehicular communications: why?



CSIE

## Applications of vehicular communications

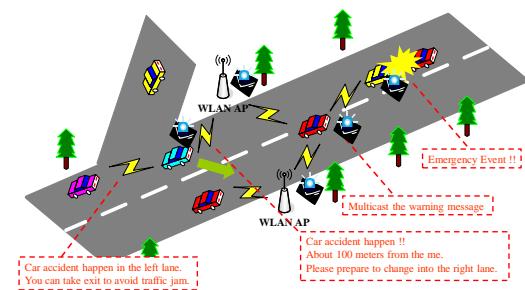
- There are many applications envisioned for VANETs, we can divide the applications into two major categories:

- Safety-related applications**

- Collision avoidance
- Cooperative driving

- Non-safety (private) applications**

- Traffic optimization
- Payment services (toll collections)
- Location-based services (find the closest fuel station)
- Infotainment (Internet access)


Wireless & Multimedia Network Laboratory™

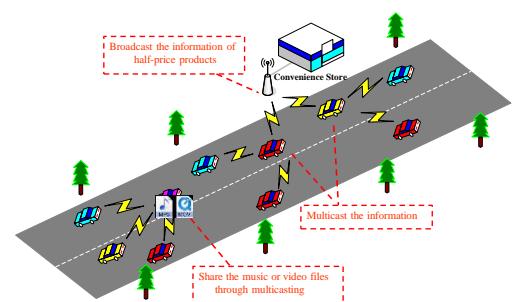
Wireless  
Multimedia

Wireless  
Multimedia

## Scenario of VANET safety applications

### Multicasting warning messages




Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

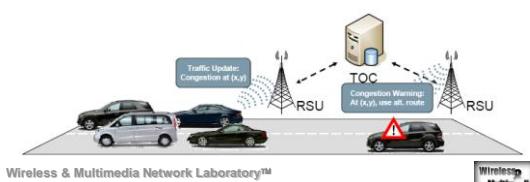
Wireless  
Multimedia

## Scenario of VANET private applications

### Multicasting infotainment messages



Wireless & Multimedia Network Laboratory™

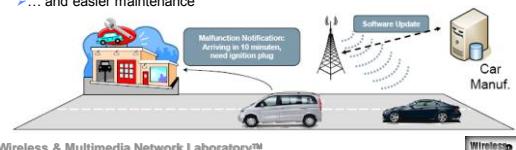

Wireless  
Multimedia

## Vehicular Ad Hoc Network Scenario

CSIE

more fun,

CSIE




Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

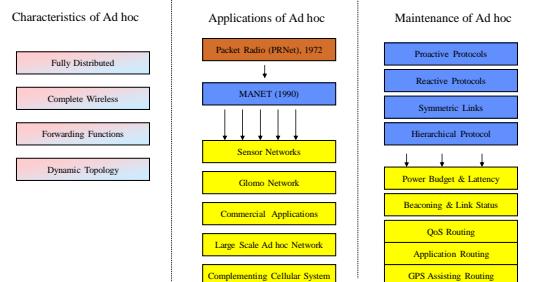
Wireless  
Multimedia

... and easier maintenance



Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia


## Observations

Personal Communications have been the dominant paradigm so far, but **mobile ad hoc networks** open new possibilities, such as the communication between objects

Wireless & Multimedia Network Laboratory™



## Survey of Ad hoc Researches



Wireless & Multimedia Network Laboratory™

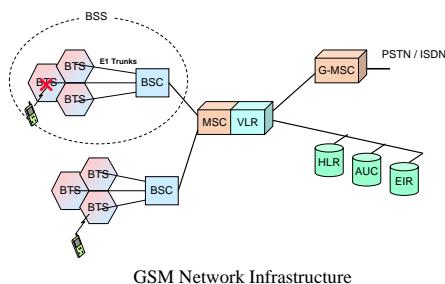
Wireless & Multimedia Network Laboratory™

## Reading

- [Jean2001] Jean-Piere Hubaux, Thomas Gross, Jean-Yves Le Boudec, and Martin Vetterli, "Toward Self-Organized Mobile Ad Hoc Networks: The Terminodes Project"
- [Ian 2005] Ian F. Akyildiz, A Survey on Wireless Mesh Networks, IEEE Radio Communications September 2005

Wireless & Multimedia Network Laboratory™




## Agenda

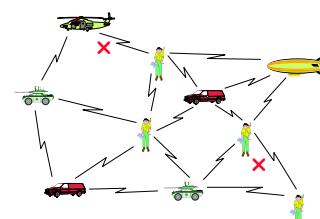
- Overview of Mobile Ad Hoc Networks
- Major Technical challenges:
  - Networking
  - Real time services
  - Software
- Long-term Research Project:
  - Terminodes Projects

Wireless & Multimedia Network Laboratory™



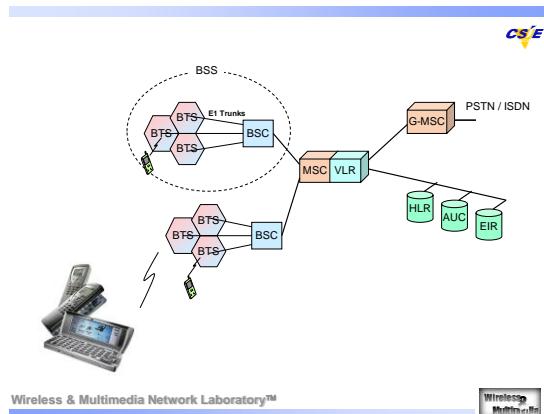
## Cellular based




GSM Network Infrastructure

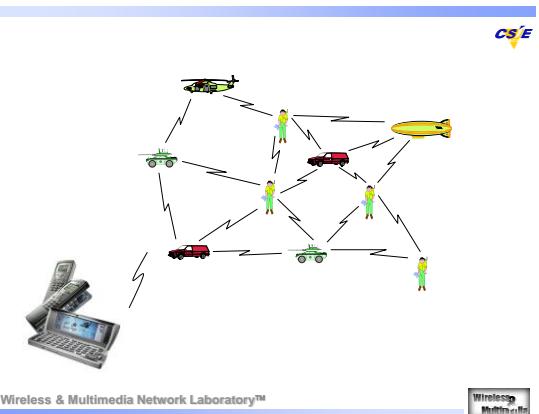
Wireless & Multimedia Network Laboratory™




## Ad-hoc network

- No centralized controller ( base stations )
- No wired inter-connection backbone
- Forwarding function should be provided by mobile nodes



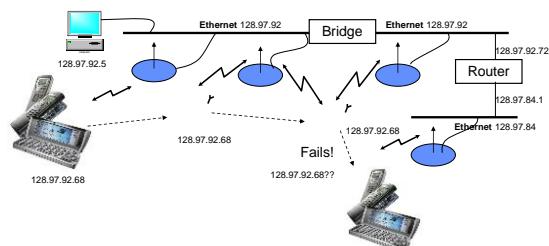

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™



Wireless & Multimedia Network Laboratory™

CSIE




Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSIE

## Mobility in Wireless LANs: Mobile IP

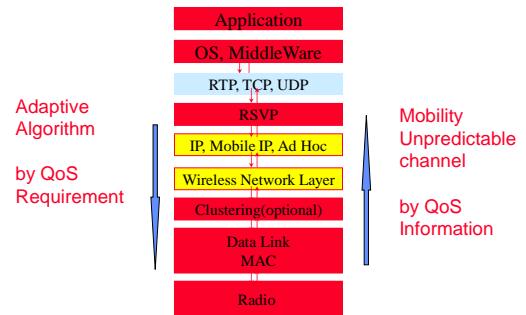


Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSIE

## Introduction


Self-Organized Mobile Ad Hoc Networks

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

## QoS and Multimedia Traffic Support



Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSIE

## Overview (MANET)

- Packet Radio Networks ('70)
  - Research Results
    - Radio Resource Allocation
    - Network Organization
  - An Individual, handheld device
  - Military application (provide person-to-person communications on the battlefield)



Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

## MANET



- ♦ Potential Applications:
  - Manmade disasters
  - Relief operation
  - Military applications
  - Car-based networks
  - Sensor networks
  - The Provision of wireless connectivity in remote areas
  - Collaborative Computing, Video Conferences

Wireless & Multimedia Network Laboratory™



## MANET, Peculiarities



- ♦ They can act independent of any provider
- ♦ They have to be highly cooperative: The tasks are distributed over the nodes
- ♦ Any operation is the result of the collaboration of a group of them
- ♦ The nodes rely on batteries for their energy, energy saving
- ♦ Power aware: the set of functions offered by a node depends on its available power
- ♦ Highly dynamic topology
- ♦ Security is difficult to implement

Wireless & Multimedia Network Laboratory™



## Technical Issues



- ♦ Routing
- ♦ Mobility Management
- ♦ IP Address
- ♦ Transport Layer
- ♦ Air Interface
- ♦ Security
- ♦ Power Management
- ♦ Standards and Products

Wireless & Multimedia Network Laboratory™



## Routing



- ♦ Ad hoc routing
  - Different from traditional solutions in the Internet or cellular phone networks (relative stable, distributed routing databases)
  - IETF (The Internet Engineering Task Force) MANET address the challenge
  - Distant vector, links state, source routing (table driven, on-demand)
  - Geographic methods: nodes are informed of their own geographic position

Wireless & Multimedia Network Laboratory™



## Routing Protocol



- ♦ Traditional Routing
  - Distance Vector ( Bellman Ford )
  - Link State
- ♦ Ad Hoc Routing Protocols
  - DSDV
  - DSR
  - AODV
  - TORA

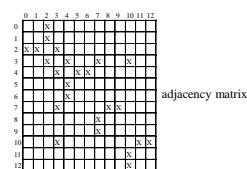
Wireless & Multimedia Network Laboratory™



## Traditional Routing



- ♦ Distance Vector ( Table Driven )
  - Each node maintains its own routing table
  - Routing table contains
    - destination node index
    - next hop
    - metric
- ♦ Periodic routing table exchange
- ♦ Disadvantage
  - Count-Infinity Problem
  - Convergence Problem


| A     | B     | C     |
|-------|-------|-------|
| B-A-1 | A-B-1 | B-C-1 |
| C-B-1 |       |       |
| B-B-1 | A-B-1 | B-B-1 |
| C-B-2 | C-B-1 | A-B-2 |
| 0     | 1     | 2     |
| x     | 1     | 2     |
| x     | 3     | 2     |
| x     | 3     | 4     |
| x     | 5     | 4     |
|       | ↓     |       |
| x     | ∞     | ∞     |

Wireless & Multimedia Network Laboratory™



## Traditional Routing ( Cont. )

- Link State Routing
- Procedures
  - Neighbor Discovery
  - Routing Information Broadcast
  - Shortest Path Finding ( e.g. Dijkstra's algorithm )
- Disadvantage
  - short-live looping problem



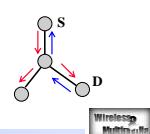
Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

CSIE

## Ad Hoc Routing - DSDV

- DSDV
  - Destination Sequence Distance Vector Routing
  - Each route information is labeled with a increasing sequence number
    - Route info. with greatest number will be update
  - Route info. of broken link is broadcast with odd sequence one greater than the original sequence number
- Contribution
  - Main contribution of DSDV is freedom-loop guarantee
- Disadvantage
  - The periodic broadcast adds the overhead into the network

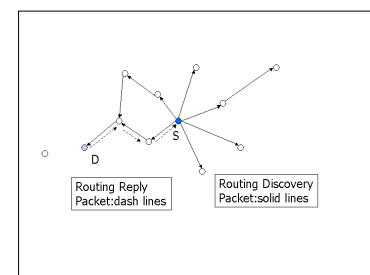

Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

CSIE

## Ad Hoc Routing - DSR

- DSR
  - Dynamic Source Routing
  - Route Discovery
    - Source node flooding routing request (RREQ) packet
    - Destination (inter-node) node reply RREP packet that piggybacks the route info.
    - Source node caches the route info
  - Route Maintenance
    - The route info. will be removed after receiving RERR packet
- Advantage
  - Requires no periodical routing exchange
- Disadvantage
  - packet is larger because of carrying route info.

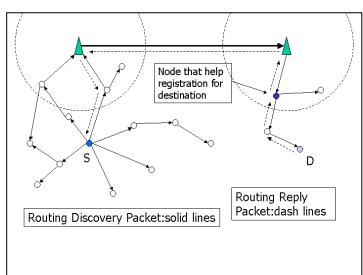



Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

CSIE

## Routing in ad hoc network environment only



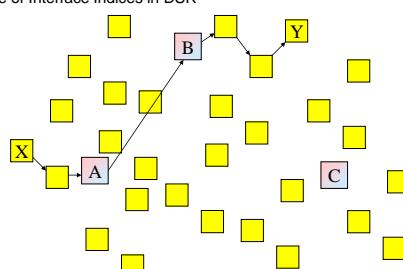

Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

CSIE

## Routing in heterogeneous environment




Wireless & Multimedia Network Laboratory™

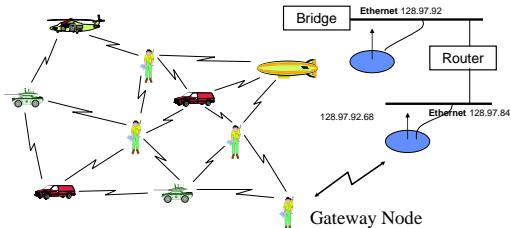
Wireless  
Multimedia

CSIE

## Heterogeneous Network Support

- Use of Interface Indices in DSR

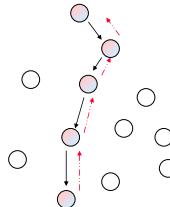



Wireless & Multimedia Network Laboratory™

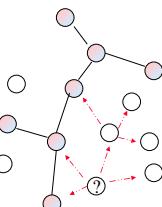
Wireless  
Multimedia

CSIE

## Internet Interconnection and Mobile IP


- DSR support the seamless interoperation between an ad hoc network and the Internet




Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

## On Demand Support Multicast & QoS



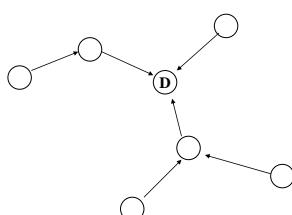
Bandwidth (QoS) Parameters



Multicast Join

Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia


## Ad Hoc Routing - AODV

- AODV
  - Ad-hoc On-demand Distance Vector
  - Shares the advantages of DSR and distance vector
  - Route Discovery
    - Similar to DSR
  - Route Maintenance - Table Entry
    - Destination IP, Destination Sequence, Hop Count, Next Hop, Life Time
  - The route info. is invalid if
    - Life Time is expired
    - Receive RERR packet

Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

## Ad Hoc Routing - TORA ( Cont. )



Directed acyclic graph rooted at destination

Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

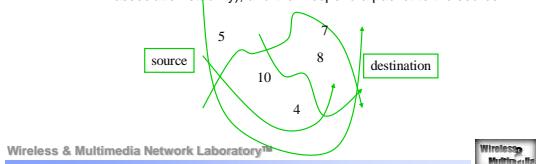
## Ad Hoc Routing - TORA

- TORA
  - Temporally-Ordered Routing Algorithm
  - Routing procedures
    - Flood QUERY packet
    - UPDATE packet will be broadcast from destination or inter-node
    - HEIGHT info. is appended to UPDATE packet
    - the node receives UPDATE packet set its height and the forwarding UPDATE packet's height to a value one greater than original one
  - Source node send data to the destination via neighbor that have lower height with respect to the destination
- Advantage
  - Minimizes the reaction due to changes of network topology
- Disadvantage
  - Depend on Internet MANET encapsulation Protocol, the overhead is large

Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

## ABR (Associativity-Based Routing)


- ABR considers the stability of a link.
  - The metric is called **degree of association stability**.
- Basic Idea:
  - Each node periodically generates a beacon to signify its existence.
  - On receipt of the beacon, a neighboring node will increase the "tick" of the sender by 1.
    - A higher degree of association stability (i.e., ticks) may indicate a low mobility of that node.
    - A low degree of association stability may indicate a high mobility of that node.
  - When a link becomes broken, the node will set the tick of the other node to 0.

Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

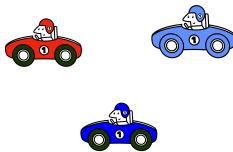
## ABR Outline

- Route Discovery:
  - (similar to DSR)
    - On needing a route, a host will broadcast a ROUTE\_REQUEST packet.
    - Each receiving host will append its address to the packet.
  - The **association stability** (represented by "ticks") is also appended in the ROUTE\_REQUEST packet.
  - The destination node will select the **best route** (in terms of association stability), and then respond a packet to the source.



Wireless & Multimedia Network Laboratory™

- Route Reconstruction:
  - On route error, a node will perform a local search in hope of rebuild the path.
  - If the local search fails, a ROUTE\_ERROR will be reported to the source.




Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

## Mobility Management

- Broadcasting a paging message the whole network: won't scale well
- Different from centralized servers (either HLR in GSM), location must be distributed among the nodes
- Prediction of the future locations



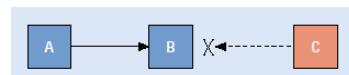
Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

## MACA/PR

- The key component
- the MAC protocol for data transmission
- Reservation scheme for real-time connection setup
- QoS Routing algorithm


Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

## Radio Interface

- CSMA/CA: hidden terminal

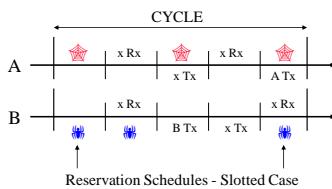


- Defining master and slaves roles: Bluetooth

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

## MACA/PR - MAC


- Data-gram Traffic
  - RTS - CTS - PKT - ACK
  - <RTS,CTS> for hidden terminal avoidance, ACK for retransmission
- Real-Time Traffic
  - <RTS - CTS> - PKT - ACK
  - <RTS,CTS> used for first time transmission to set up the reservation
  - ACK for renewing the reservation, not recovery

Wireless & Multimedia Network Laboratory™

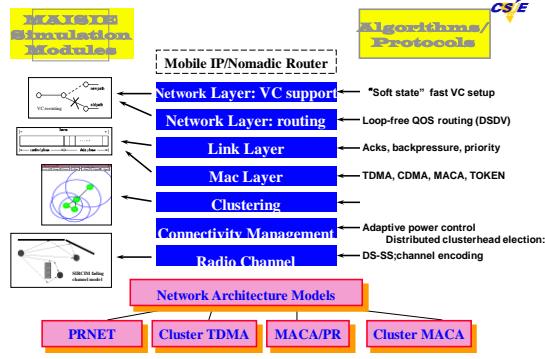
Wireless & Multimedia Network Laboratory™

## MACA/PR - Reservation/QoS Routing

- CYCLE is the max. interval allowed between two real-time packets
- Each node maintains its own reservation table
- DSDV routing is employed
- Bandwidth info. can be easily obtained via reservation table



Wireless & Multimedia Network Laboratory™

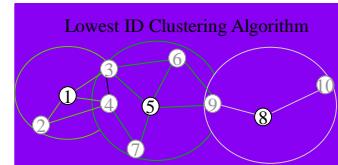

Wireless  
Multimedia

## MACA/PR - Properties

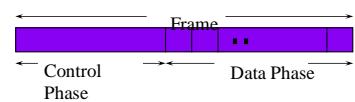
- Asynchronous approach
- Low latency, low packet loss rate
  - Hidden Terminal Problem is solve automatically
- Fair bandwidth sharing
- Good mobility handling
  - Maintain secondary routing path
- Low implementation costs

Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia



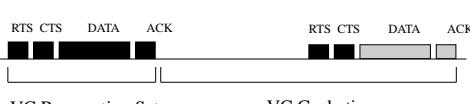
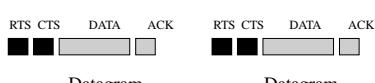

Wireless & Multimedia Network Laboratory™


Wireless  
Multimedia

## Cluster TDMA

Lowest ID Clustering Algorithm





Within each cluster: time-slotted frame



Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

## Cluster MACA



Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

## The Paradigm Shift and Some Open Research Questions

MANET

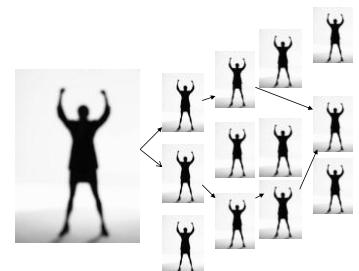
Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

## Terminodes Projects



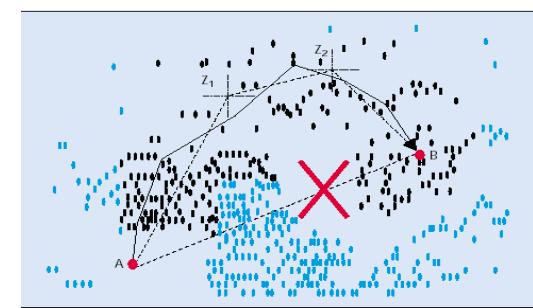
- Large scale self-organized mobile ad hoc networks
- All layers and interlayer interactions
  - From physical layer up to software architecture and applications
- Try to capture the business and societal potential
- Three levels:
  - Technical challenges
  - Intellectual fantasy
  - Societal/political vision


Wireless & Multimedia Network Laboratory™



## Terminodes

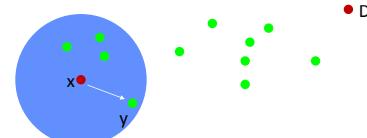



- Networking Issues
  - Scalability
- Virtual Currency
  - Obligation
- Real Time Services
  - QoS



Wireless & Multimedia Network Laboratory™

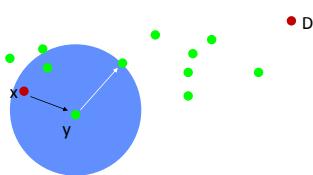



## Networking Issues



Wireless & Multimedia Network Laboratory™

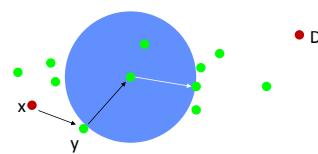



## Greedy Forwarding



Wireless & Multimedia Network Laboratory™



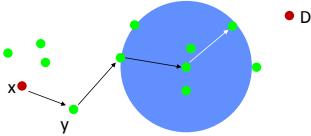

## Greedy Forwarding



Wireless & Multimedia Network Laboratory™



## Greedy Forwarding

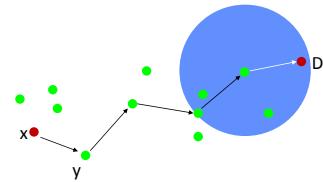



Wireless & Multimedia Network Laboratory™



## Greedy Forwarding

CSIE

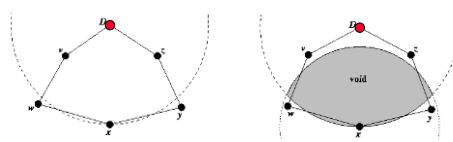



Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

## Greedy Forwarding

CSIE

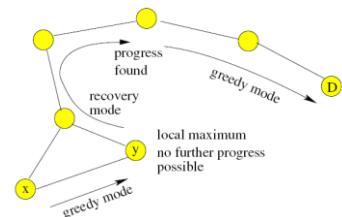



Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

## Greedy Forwarding Failure

CSIE

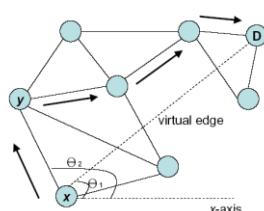



Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

## Recover Mode (GPSR two modes)

CSIE

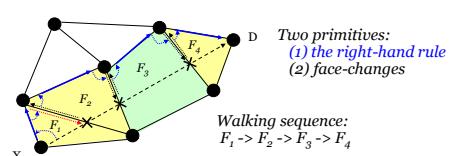



Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

## Right hand rule

CSIE

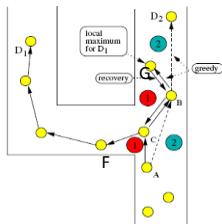



Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

## Face (Perimeter) traversal on a planar graph

CSIE




Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

## Scenarios Where GPCR does not work Well

For Destination D2, the source A has to send to C even if it can send directly to more closer node B.



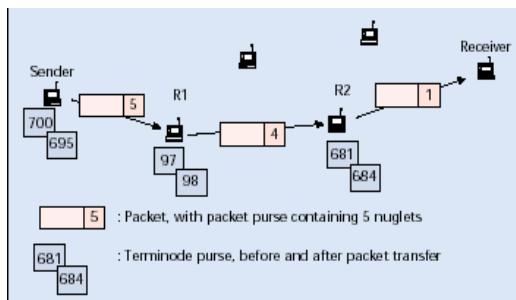
For Destination D2  
The source A has to send to C (junction node) then to B (because it is closer to D1 than F), then G. Then it goes for recovery mode because G is the local maxima and return back to C. C sends to F and finally Data is sent to D1.

Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

CSIE

## Routing for Terminode


- Each Terminode has
  - A permanent unique node identifier, EUI (End System Unique Identifier)
  - Location-Dependent Address (LDA)
- Geodesic Packet Forwarding:
  - The packet is forwarded to the neighbor closest to the direction in which the destination is located
- Terminode local routing
  - MANET routing (link State, Distance Vector, Source Routing)

Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

CSIE

## Networking Issues

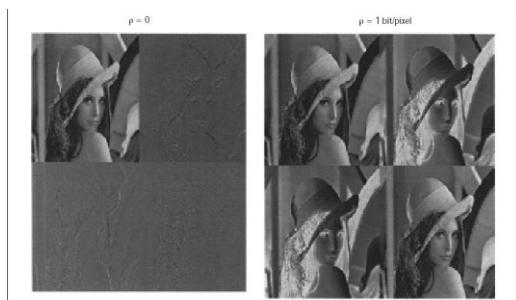


Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

CSIE

## Virtual Currency (Nuglet)


- Service Availability is a major requirement for self-organization
- The End users must be given incentive to cooperate
- They must be encouraged to not overload the network

Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

CSIE

## Multiple description coding



Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

CSIE

## Real-Time Services over Ad hoc Networks

- Real-Time Services
  - Voice or video over ad hoc networks
  - Unreliable <> stringent delay
  - Large error, node failure
- Redundancy, error correction codes over parallel connections

Wireless & Multimedia Network Laboratory™

Wireless  
Multimedia

CSIE

## Software Aspects



- ◆ Software implementations:
  - Base software: Routing algorithms, accounting system and security system
  - Application software: Software that makes a collection of terminodes useful for a client
  - Flexible software architectures
- ◆ Resource Allocations
  - Contract
  - Loader
  - Dynamic checks

## Discussions



- ◆ Three Networks:
  - Telecom networks
  - The Internet
  - Self-Organized Mobile Ad Hoc Networks

| Network             | Infrastructure  | Security           | Applications |
|---------------------|-----------------|--------------------|--------------|
| Telecom networks    | Telcos          | Telcos             | Telcos (IN)  |
| Internet            | ISPs + telcos   | ISPs + users (PGP) | Users        |
| Self-org. ad hoc NW | Users + vendors | Users + vendors    | Users        |