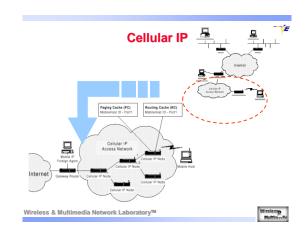

CS E

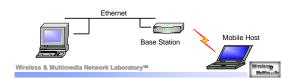
無線網路多媒體系統 Wireless Multimedia System

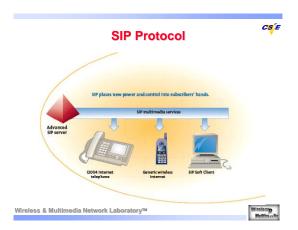

Lecture 8: Wireless TCP

吳曉光博士 http://wmlab.csie.ncu.edu.tw/wms

具你網路多數發音教室

CS E Mobile IP 132.4.16 Forwarding address Home address 128.8.128.Y 132.4.16. Z R 128.8.128 Wireless & Multimedia Network Laboratory™


Wireless TCP



- TCP turned to perform well in traditional network where the packet losses occur mostly because of congestion.
- In the wireless environment

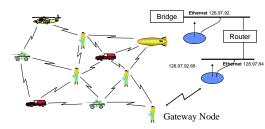
Wireless & Multimedia Network Laboratory^π

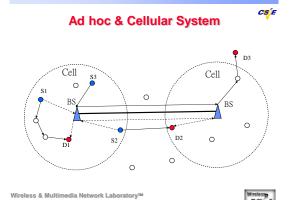
- Non-congestion losses caused by wireless link
- The degraded performance of TCP is mostly due to mistaking wireless

Mobile Multicast

CS E

- Mobile Network~ Mobile IP
- Application Requirements: updates to replicated databases, Interprocess communication among cooperating processes
- Resource Conservations~ Single Copy in...Multicast IP


Wireless & Multimedia Network Laboratory™


 DSR support the seamless interoperation between an ad hoc network and the Internet

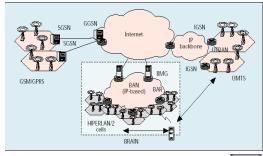
Wireless & Multimedia Network Laboratory™

CS E

QoS Support for an All-IP System Beyond 3G

BRAIN

- Broadband Radio Access for IP-Based Networks
 - · Cellular systems, fixed networks, and wireless LANs
 - · Personal mobility, adapted for the terminal and link bandwidth
 - End-to-end QoS
 - A new QoS model for applications (BRENTA)
 - The radio link improvements
- IP-aware RAN (Radio Access Network)
 - Better support to IP applications
 - . IP infrastructure will be widely available
- Protocol must be redesigned
 - · Resource Management
 - Terminal mobility
 - RAN and terminal must have IP Stack


Wireless & Multimedia Network Laboratory™

CS E

CS E

BRAIN (Broadband Radio Access for IP-based) Network)

Wireless & Multimedia Network LaboratoryTh

CS E

Energy and Power Efficient

 This paper presents a comprehensive summary of recent work addressing energy efficient and low-power design within all layers of the wireless network protocol stack.

Wireless & Multimedia Network Laboratory™

CS E

Agenda

- Basic TCP
- Impact of Mobility & Wireless on TCP performances
- Solutions for Wireless TCP
- · Midterm (next week)

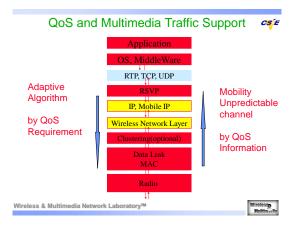
Wireless & Multimedia Network Laboratory™

Reading

- [Balakrishnan95], Harri Balakrishnan, Srinivasan Seshan, Elan Amir and Randy H. Katz, "Improving TCP/IP Performance over Wireless Networks", ACM Mobicom95
- [Balarkrishnan97], Harri Balarkrishna, Venkat N, Padmanabhan, Srinivasan Seshan and Randy Katz, "A Comparison of Mechanisms for Improving TCP Performance over Wireless Links", IEEE JSAC 97.
- Reference: Ka-Cheong Leung and Victor O. K. Li, "Transmission Control Protocol(TCP) in Wireless Networks: Issues, Approaches, and Challenges", IEEE Communications Survey 2006

Wireless & Multimedia Network Laboratory™

Mobility in Wireless LANs: Basestation as Officers Bridges



- Basestations are bridges(layer 2) i.e. they relay MAC frames
 Smort bridges avoid wasted bandwidth
- Smart bridges avoid wasted bandwidth
 Works the within an ethernet(or other broadcast LAN)
 - Fails across network boundaries, and in switched LANs(e.g. ATM)

Wireless & Multimedia Network Laboratory™

3

Background

- CS E
- With the growth of wireless device, wireless network access will become popular, but...
- Import the protocol from the wire network to wireless network...
- · Packet losses occur in wireless due to the lossy links, not network congestion
- In traditional TCP, it can not distinguish the difference between that lossy link and network congestion

Wireless & Multimedia Network Laboratory™

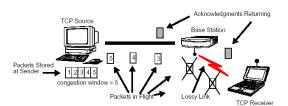
Characteristics of Wireless & Mobility

- Limited Bandwidth
 - Small frame sizes (MTU) to keep latency small
- High bit error rates
 - Small frame sized to keep packet loss probability small
- · Time varying bit error rate
 - Fading, frequency collisions etc.
- · QoS (loss rate, delay) degradation during hand-off
 - Due to network layer rerouting
 - Due to link layer procedures
- QoS degradation after hand-offs
 - Lack of resource at new basestation
 - Less optimal route

Wireless & Multimedia Network Laboratory™

CS E

Basic End-to-End Control (Transport)



Wireless & Multimedia Network Laboratory™

CS E

Typical loss situation

Wireless & Multimedia Network Laboratory™

UDP (Connectionless, Unreliable)

Possible Multicast, Real Time Traffic, TCP-Friendly

Impact on Connectionless, Unreliable **Transport Protocol**

- · Example: effect on UDP applications
- Increase in end-to-end packet losses
 - Error on wireless link
 - Packet loss during hand-offs
- Drop in application throughput
 - · Errors on wireless link
 - Packet loss during hand-off
- Pauses in interactive applications
 - · Burst errors on wireless link
 - · Packet loss during hand-off
 - Delay increase due to buffering & re-sequencing during hand-offs
- Application level impact is much more complex!

Wireless & Multimedia Network LaboratoryTh

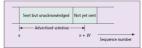
CS E

CS E

TCP (Connection Oriented, Reliable)

Data Transmission, WWW, flow control, error control

Wireless & Multimedia Network Laboratory™



CS E

CS E

TCP and Congestion Control

- Terms:
 - · advertised window

■ Figure 1. An illustration of the source sequence number spa-

- · congestion avoidance
- · congestion window

Wireless & Multimedia Network Laboratory™

TCP Basics

- Sliding window protocol: Go-Back N ARQ
 - Transfers a byte stream in "segments", not fixed user blocks, logical timer associated with each segment that is sent
 - 32-bit sequence number indicated byte number in stream
 - Window is max number of outstanding unACK'ed bytes in network
- Cumulative acknowledgement scheme (original TCP)
 - Ack's all bytes up through n
- Piggybacked on data packets in reverse direction Control of sender's window size
- - Min (receiver's advertized window, congestion window)
 - Three goals
 - Flow control to avoid receiver buffer overflow
 - Congestion control to react to congestion in netwo Congestion avoidance
- Segment loss is assumed to be a result of congestion in routers
 - Reasonable for wired network since BER on fiber is better than 10⁻¹²

Wireless & Multimedia Network Laboratory™

TCP's End to End Congestion Control

- Window-based congestion control
 - . Cwnd: congestion window size
 - . Ssthresh: slow start threshold (for slow down of increase)
- Timeout is an indicator of segment loss
- Timeout value
 - Using estimated average of ACK delay and expected deviation
- On timeout
 - Segment is assumed lost and is attributed to congestion.
 - · One-half of current window Is recorded in ssthresh
 - Cwd is reduced to 1
 - Timeout value is increased in case packet was delayed

Wireless & Multimedia Network Laboratoryth

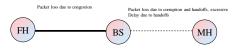
TCP's End-to-end Congestion Control

- On new ACK
 - Everything okay, so allow larger congestion window
 - . Two ways of increasing cwnd
 - Phase1: slow start until cwnd <= ssthresh
 - Fast (exponential) increase of cwd
 - Phase2: congestion avoidance
 - Slow (additive) increase of cwnd
- Duplicate ACKs
 - Two causes: lost segment, misordered segment
 - >=3 duplicate ACKs in a row are a good indication of a lost segment but data is still flowing
 - Fast Retransmit and Fast Recovery
 - Missing segment is retransmitted without waiting for timeout
 - One half of current window is recorded in ssthresh
 - Congestion avoidance is done but not slow start

Challenges of Mobility and Wireless on Network Performance

TCP Performance

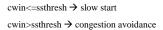
Wireless & Multimedia Network Laboratory™

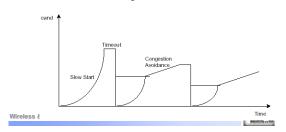


CS E

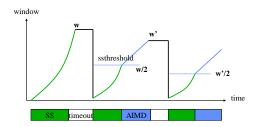
The Problem

- Packet corruption due to high BER on wireless link (noise, fading)
- · Packet delay and losses during handoffs
- But, TCP invokes congestion control nevertheless
- Mistaking wireless errors and handoffs for congestion causes
 - Significant reductions in throughput (window size decreases, slow start)
 - Unacceptable delays (low resolution TCP times ~500ms, back-off)

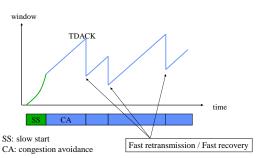



Wireless & Multimedia Network Laboratoryth

CS E


Example graph

Slow Start of TCP Reno



ssthreshold : slow-start threshold

Wireless & Multimedia Network Laboratory™

Congestion Avoidance of TCP Reno

Wireless & Multimedia Network Laboratory™

CS E

Fixes?

- Fix TCP
 - TCP really a hack in many ways..
 - Separate congestion control from error control
 - Move away from cumulative ACK
- Fix lower layer to make TCP work better
 - Improve the wireless link
- Use something different
 - Something totally new
 - Something different for the wireless

Normal TCP

Fast-Retransmit Scheme

0 0 0 congestion window = 5 Standard cumulative ACKs generated by TCP Reno receiver.

Wireless & Multimedia Network LaboratoryTh

Wireless & Multimedia Network Laboratory™

Solutions for WTCP (I)

Split the connection into two parts

Split Connection Approaches

- Main Idea: split MH ↔ FH connection into two MH ↔ BS & BS ↔ FH
 - Separate flow control and reliable delivery mechanisms
 - Intermediate higher layer agent at the base-station
 - Session layer hides the split connection
- · Two approaches:
 - Both FH \leftrightarrow BS & BS \leftrightarrow MH segments use TCP: Rutger's Indirect-TCP
 - e.g. uses MTCP (Multiple TCP) over BS ↔ MH
 - BS \leftrightarrow MH uses specialized protocol
 - e.g. uses SRP (Selective Repeat) over BS ↔MH
 - Error and flow control optimized for lossy wireless link

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

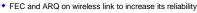
CS E

Pros & Cons of Split-Connection Approaches

- Pros
 - . FH is shielded from wireless link behavior
 - · Handoff is transparent to FH
 - · Relative easy to implement
 - Requires no modification to FH
 - Can use specialized protocol over wireless link
- Cons
 - · Loss of end-to-end semantics
 - · Application relink with new library
 - · Software overhead: efficiency and latency
 - · Large handoff latency

Solutions for WTCP (II)

Lower layer to make TCP work better


Wireless & Multimedia Network Laboratory™

Link-level Error Control

- · Improves performance independent of transport protocol
- Disadvantage
 - · Coupling between link level and end-to-end retransmission may lead to degraded performance at high error rates
 - Does not address the delay and losses due to handoffs

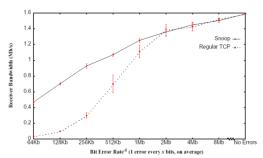
Solutions for WTCP (III)

Snoop, Make it look like!

Wireless & Multimedia Network Laboratory™

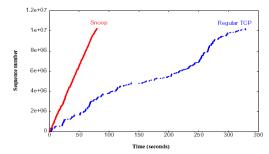
Wireless & Multimedia Network Laboratory™

CS E


Snoop TCP

- Basic Idea for transfer of data to MH
 - Snoop Module: Modify network layer routing code at BS
 - · Cache un-acknowledged TCP data going to MH at BS Perform local retransmissions over wireless link
 - Policies to deal with ACKs from MH and timeout
 - Used duplicate ACKs to identify packet losses
 - Shields sender from wireless link Transient conditions of high BER, temporary disconnection
- Basic idea for transfer of data from MH
 - BS detects missing packets and generated NACKs for MH, expoits SACK option for TCP
 - MH re-sends the packets, requires modifying TCP code at MH
- Features
 - Speedups of up to x20 over regular TCP depending on bit error rate
 - · Maintain end-to-end semantics
 - . Does not address the handoff problem

Wireless & Multimedia Network Laboratory™


Performance of the Snoop Mechanism

Wireless & Multimedia Network Laboratory™

Performance of the Snoop Mechanism

Wireless & Multimedia Network Laboratoryth

Comparison of Wireless TCP Techniques

- End-to-End proposals
 - Selective ACKs
 - Allows sender to recover from multiple packet losses without resorting to course timeout
 - . Explicit Loss Notification (ELN)
 - Allow sender to distinguish between congestion vs. other losses
- Split-connection proposal
 - Separate reliable connection between BS & MH
 - May use standard TCP or, special techniques such as SACK, or NACK
- Link-layer proposal
 - Hide link-layer losses via general local retransmission and FEC
 - Make link-layer TCP aware
 - Snoop agent to suppress duplicate ACKs

Main Conclusions of [Balakrishnan97]

- Simple link layers do not quite work
 - · Adverse interaction of times is actually a minor problem
 - Fast retransmission and associated congestion control gets triggered and cause performance loss
- Reliable link layer with TCP knowledge works well
 - $^{\circ}$ Shielding sender from duplicate ACKs due to wireless losses improves throughput by 10-30%
- No need to split end-to-end connections
 - I-TCP does as bad because sender stalls due to buffer space limit at BS
 - Using SAK or BS-MH link works well
- SACK and ELN helps significantly
 - · Help avoid timeous
 - e.g. ELN helped throughput by x2 over vanilla TCP-Reno
 - But still do 15% to 35% worse than TCP-aware link layer schemes

Wireless & Multimedia Network Laboratory™

CS E

Introduction

- TCP Westwood (TCPW) is a sender-side modification of TCP Reno in wire as well as wireless network
- TCPW can estimate the E2E b/w and the improvement is most significant in wireless network with lossy links
- TCPW sender monitors the ACK reception and from it estimates the data rate
- The sender uses the b/w estimate to properly set the cwin and ssthresh

Wireless & Multimedia Network Laboratory®

CS E

Filtering the ACK reception rate

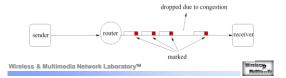
$$b_k = \frac{d_k}{t_k - t_{k-1}}$$

We employ a low-pass filter to average sampled
 magauraments.

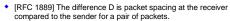
$$\hat{b}_k = \alpha_k \hat{b}_{k-1} + \left(1 - \alpha_k \right) \left(\frac{b_k + b_{k-1}}{2} \right)$$

if (3 DUPACKs are received)
ssthresh = (BWE * RTTmin) / seg_ size;
if (cwin > ssthresh) /* congestion avoid. */
cwin = ssthresh;
endif
endif

Wireless & Multimedia Network Laboratory™



CS E


Congestion Coherence

 This paper proposes a new enhancement approach that use Explicit Congestion Notification (ECN) to signal network congestion and use the sequential coherence of ECN marks to distinguish wireless and congestion losses.

inter-arrival jitter

• The D (sec) is called inter-arrival jitter.

$$D(i,j) = (R_j - R_i) - (S_j - S_i) = (R_j - S_j) - (R_i - S_i)$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$

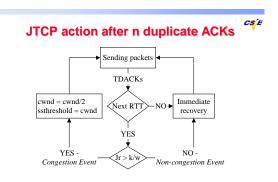
Wireless & Multimedia Network Laboratory™

Jitter ratio

Shi-Yang Chen, Eric Hsiao-Kuang Wu, and Mei-Zhen Chen, "A New Approach Using Time-Based Model for TCP-Friendly Rate Estimation", 2002.

The ratio of packet queued at the router is

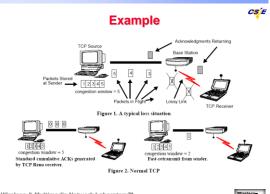
$$\frac{\left\lfloor \frac{1}{t_A} - B \right\rfloor}{\frac{1}{t_A}} = \frac{\left\lfloor \frac{1}{t_A} - \frac{1}{t_D} \right\rfloor}{\frac{1}{t_A}} = \frac{t_D - t_A}{t_D}$$


$$\approx \frac{\left(R_j - R_i\right) - \left(S_j - S_i\right)}{R_j - R_i} = \frac{D}{R_j - R_i}$$
Jitter ratio
$$Jr = \frac{D}{R_j - R_i}$$

 t_A : the packet - by - packet delay of the packets arrival at the router t_D : the delay of the packets depature from the router

B: the service rate of the router

Wireless & Multimedia Network Laboratoryth



Next RTT: The time between recent and previous TDACKs is longer than one RTT

Wireless & Multir

CS E

Wireless & Multimedia Network Laboratory™

OL OL 12345 Cumulative ACKs w/ ELN option generated by receiver.

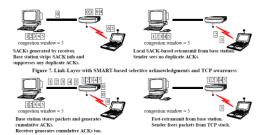


Figure 6. Link-Layer with SMART-based selective acknowledgments

Wireless & Multimedia Network Laboratory™

Enhanced Solution

Wireless & Multimedia Network Laboratory™

CS E

Taxonomy of Solutions for TCP in Wireless € **Networks**

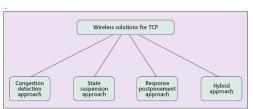
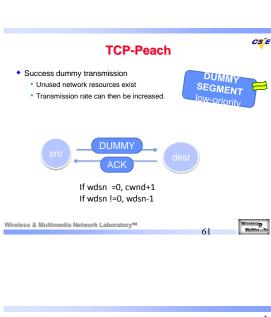



Figure 2. The taxonomy of solutions for TCP in wireless networks.

Wireless & Multimedia Network Laboratory™

60

CS E

- Sudden start :
 - open up congestion window faster.
 - -wdsn ←0, transmit dummy packets within one RTT.
 - -cwnd can quickly be raised to the achievable value.
- Rapid recovery: alleviate the performance degradation due to link error.
 - -wdsn ← cwnd ← ½ cwnd
 - -If received ACK, cwnd +1.

Wireless & Multimedia Network Laboratory[®]

TCP-Peach (3/3)

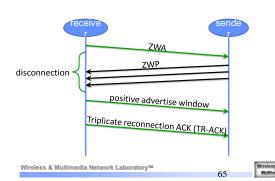
CS E

- Advantage
 - · Maintain ACK-clocking
- Disadvantage:
 - Assume: when congestive loss happens, more than half of dummy segments are lost. -> cwnd could be reclaimed.
 - dummy segment increase the traffic load, even lead to congestion.
 - Routers must distinguish segments with priorities.

Freeze-TCP (1/3)

- Receiver monitors the signal strengths of its wireless antennas and detects any impending handoffs.
- Destination(Receiver) sends "ACK with ZWA" to force the source into the persist mode and to prevent it from dropping its congestion window.

Wireless & Multimedia Network Laboratory™


Wireless & Multimedia Network Laboratory™

Freeze-TCP (2/3)

Freeze-TCP (3/3)

- · Five shortcomings
 - Must be aware of mobility so that come cross-layer information exchanges are needed.
 - -Needs to predict when a disconnection is going to happen.
 - Fails to predict an upcoming disconnection if it happens at a wireless link along the transmission path.
 - There's no guarantee that the available bandwidth of a connection after a disconnection is the same as the previous one.
 - -Can only avoid performance degradations due to disconnections.

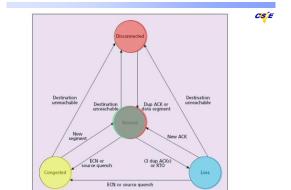
Wireless & Multimedia Network Laboratory^{ra}

66

ATCP (1/4)

- Introduce "ATCP layer" between TCP and IP at the sender's protocol stack
- so that the ATCP layer
 - · monitors the current TCP state and
 - spoofs TCP from triggering its congestion control mechanisms inappropriately
- for problems specific to ad hoc networks.

ATCP (2/4)

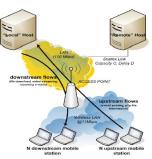

- ECN
- end-to-end notification of network congestion without dropping packets.
- ICM
 - One of the core protocols of the Internet Protocol suite.
 - · Used by networked computers OS to send error messages.

Wireless & Multimedia Network Laboratory™

67

Wireless & Multimedia Network Laboratory™

ATCP (4/4)


- Drawbacks
 - Inefficient in using the available bandwidth for data transmission in wireless networks with the presence of frequent route changes and network partition.
 - Require MH to be aware of and be implemented with ECN. A destination is also required to interpret the ECN flag.
 - Does not allow source to send new data segments to a destination when it's in the loss state as the source is in the persist mode.

Wireless & Multimedia Network Laboratory™

70

TCP Fairness over 802.11

Wireless & Multimedia Network Laboratory™

Wirele Figure 6. The state transition diagram for ATCP.

Multimedia

CS E