

無線網路多媒體系統 Wireless Multimedia System

Radio Propagation: Issues & Models

Dr. Eric Hsiaokuang Wu
<http://inrg.csie.ntu.edu.tw>

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

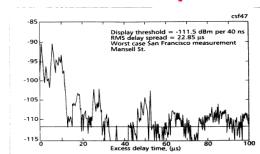
Lecture II Agenda

- ♦ Radio Propagation
 - Physical of radio propagation
 - Two types of propagation models
 - Outdoor vs. Indoor Radio Propagation Model
 - How to do simple "link budget" calculation
 - Combating the radio channel impairment
- ♦ Wireless Modem Design
- ♦ Modern Application: 911 services

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Path Loss Model (Large Scale)


$$\overline{PL}(d) = \overline{PL}(d_0) + 10n \log\left(\frac{d}{d_0}\right)$$

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Multi-path fading (Small Scale)

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Reading list for This Lecture

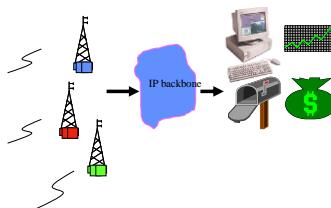
- ♦ Required Reading:
 - (Jørgen95) J. B. Andersen, T. S. Rappaport, "Propagation Measurements and Models for Wireless Communications channels", (IEEE Communication Magazine), pp. 42-49
 - (Jeffrey H98) Jeffrey H. Reed, Kevin J. Krizman, Brian D. Woerner, and T. S. Rappaport, "An Overview of the Challenges and Progress in Meeting the E-911 Requirement for Location Service, (IEEE Communication Magazine), pp.30-37

Further Reading

- (Rappaport97) T. S. Rappaport, K. Blankenship, H. Xu, "Propagation and Radio System Design Issues in Mobile Radio Systems for the GloMo Project

Wireless & Multimedia Network Laboratory™

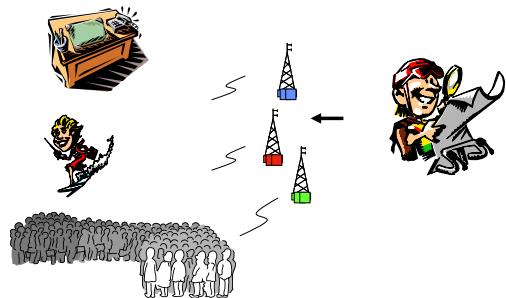
Wireless
Multimedia


The mystery of the Radio Propagation

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

How to deal with Radio Propagation

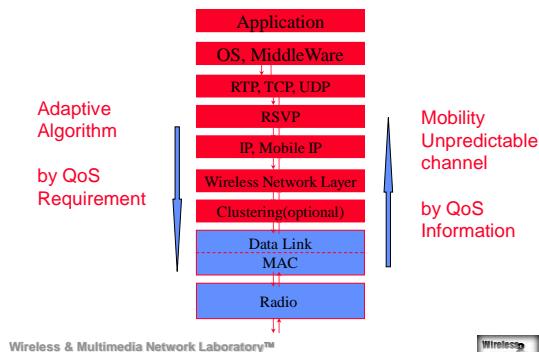


Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

CSIE

Where are you from?

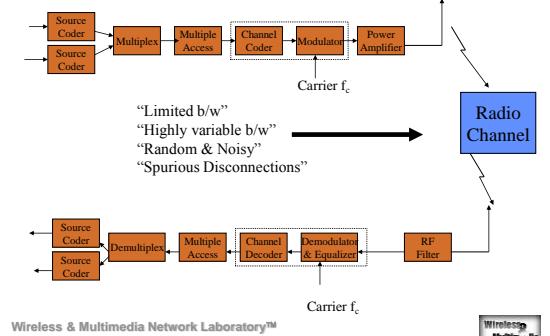


Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

CSIE

QoS and Multimedia Traffic Support



Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

CSIE

Simplified View of a Digital Radio Link

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

CSIE

Digital to Analog Modulation

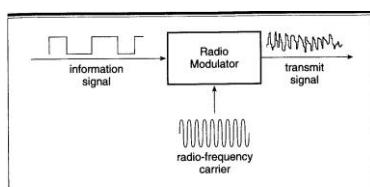


Figure 6.2 Single-stage digital modulation (TDMA and FDMA).

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

CSIE

Digital-Digital-Analog Modulation

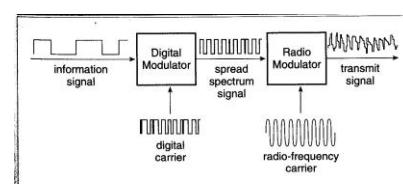


Figure 6.3 Two stages of modulation in a spread spectrum system.

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

CSIE

Digital Correlator

CSIE

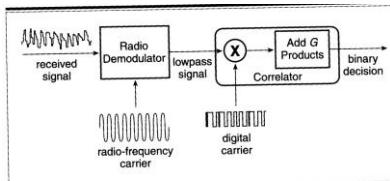
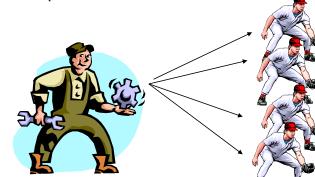
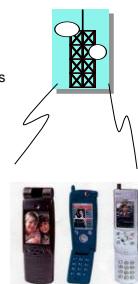



Figure 6.4 Two stages of demodulation in a spread spectrum receiver.

CSIE

Multiple correlators

- Multiple correlators in each receiver
- At any instant of time, the signal carriers in the different correlators are synchronize to signal paths with different propagation times
- A search circuit examines the arriving signal in order to detect the appearance of a new path, then assign a correlator to synchronize the signal on the path



Wireless & Multimedia Network Laboratory™

Key role for the radio propagation

CSIE

- Radio Propagation determines
 - the area which could be covered
 - The maximum data rate in a system
 - Battery power requirement for mobile transceivers

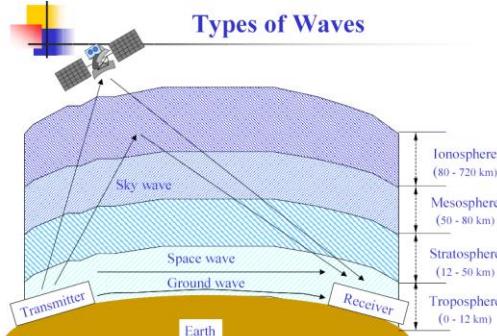
CSIE

Speed, Wavelength, Frequency

$$\text{Light speed} = \text{Wavelength} \times \text{Frequency}$$

$$= 3 \times 10^8 \text{ m/s} = 300,000 \text{ km/s}$$

System	Frequency	Wavelength
AC current	60 Hz	5,000 km
FM radio	100 MHz	3 m
Cellular	800 MHz	37.5 cm
Ka band satellite	20 GHz	15 mm
Ultraviolet light	10^{15} Hz	10^{-7} m


Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

Types of Waves

CSIE

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSIE

Radio Frequency Bands

Classification Band	Initials	Frequency Range	Characteristics
Extremely low	ELF	< 300 Hz	
Infra low	ILF	300 Hz - 3 kHz	
Very low	VLF	3 kHz - 30 kHz	
Low	LF	30 kHz - 300 kHz	Surface/ground wave
Medium	MF	300 kHz - 3 MHz	
High	HF	3 MHz - 30 MHz	Sky wave
Very high	VHF	30 MHz - 300 MHz	
Ultra high	UHF	300 MHz - 3 GHz	Space wave
Super high	SHF	3 GHz - 30 GHz	
Extremely high	EHF	30 GHz - 300 GHz	
Tremendously high	THF	300 GHz - 3000 GHz	Satellite wave

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

Radio Channel

- Free Space
- Land Mobile
- Multi-path Propagation
- Shadow

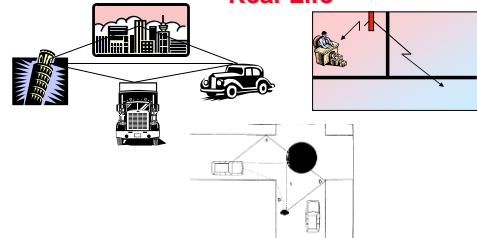
Wireless & Multimedia Network Laboratory™

Some Distributions

- Normal (Gaussian)
- Log-normal Distribution
- Rayleigh Distribution
- Rician Distribution
 - Dominant path
- Impulse Response

Wireless & Multimedia Network Laboratory™

Propagation Mechanisms in Space with Objects

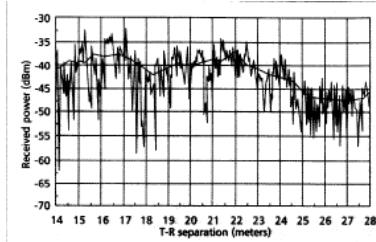


- Reflection (with Transmittance and Absorption)
 - Radio wave impinges on an object
 - Surface of earth, walls, buildings, atmospheric layers
 - If perfect (lossless) dielectric object, then zero absorption
 - If perfect conductor, then 100% reflection
- Diffraction
 - Radio path is obstructed by an impenetrable surface with sharp irregularities (edges)
 - Secondary waves "bend" around the obstacle (Huygen's principle)
 - Explain how RF energy can travel without LOS
 - "shadowing"
- Scattering (diffusion)
 - Similar principles as diffraction, energy reradiated in many directions

Wireless & Multimedia Network Laboratory™

Reflection, Diffraction, and Scattering in Real-Life

- Received signal often a sum of contributions from different directions
- Random phases make the sum behave as noise (Rayleigh Fading)


Wireless & Multimedia Network Laboratory™

Small-scale and Large-scale Fading

- Signal fades rapidly as receiver moves, but the local average signal changes much more slowly

Wireless & Multimedia Network Laboratory™

Path Loss (Free-space)

- Definition of path loss L_p :

$$L_p = \frac{P_t}{P_r},$$

Path Loss in Free-space:

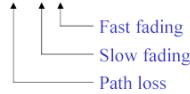
$$L_{pf} (dB) = 32.45 + 20 \log_{10} f_c (MHz) + 20 \log_{10} d (km),$$

where f_c is the carrier frequency.

This shows greater the f_c , more is the loss.

Wireless & Multimedia Network Laboratory™

Land Propagation


- The received signal power:

$$P_r = \frac{G_r G_t P_t}{L}$$

where G_r is the receiver antenna gain,

L is the propagation loss in the channel, i.e.,

$$L = L_p L_s L_f$$

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

CSIE

Path Loss (Free-space)

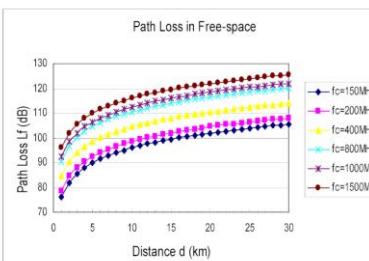
- Definition of path loss L_p :

$$L_p = \frac{P_t}{P_r},$$

Path Loss in Free-space:

$$L_{pf}(dB) = 32.45 + 20 \log_{10} f_c(MHz) + 20 \log_{10} d(km),$$

where f_c is the carrier frequency.

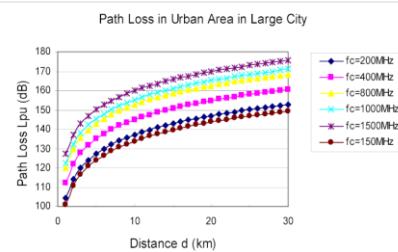

This shows greater the f_c , more is the loss.

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

CSIE

Example of Path Loss (Free-space)

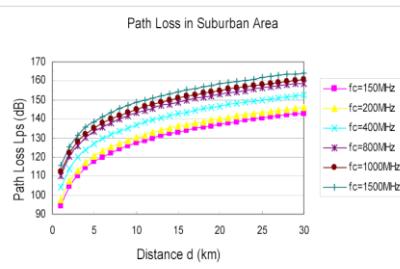


Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

CSIE

Example of Path Loss (Urban Area: Large City)

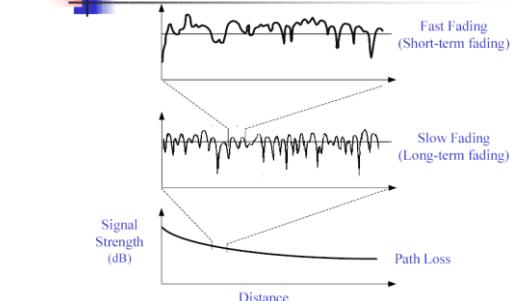


Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

CSIE

Example of Path Loss (Suburban Area)



Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

CSIE

Fading

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

CSIE

Analysis of the Propagation

- Large Scale Effect

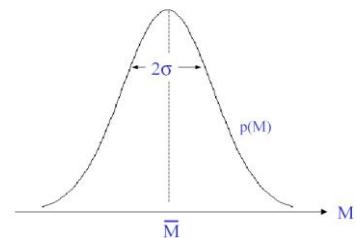
- The variation of the mean received signal strength over large distance or long time intervals

- Small Scale Effect

- The fluctuations of the received signal strength about a local mean, where these fluctuations occur over small distances or short time interval

Large Scale -> Link Budget

Slow Fading


- The long-term variation in the mean level is known as slow fading (shadowing or log-normal fading). This fading caused by shadowing.
- Log-normal distribution:

- The pdf of the received signal level is given in decibels by

$$p(M) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(M-\bar{M})^2}{2\sigma^2}},$$

where M is the true received signal level m in decibels, i.e., $10\log_{10}m$,
 \bar{M} is the area average signal level, i.e., the mean of M ,
 σ is the standard deviation in decibels

Log-normal Distribution

The pdf of the received signal level

Free Space Propagation Model

- Used when Transmitter and Receiver have a clear, unobstructed, line of sight (LOS) path

e.g. satellite channels, microwave LOS radio links

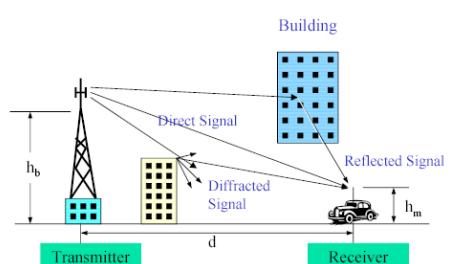
- Free space power at a receiver antenna at a distance d from transmitter antenna is

$$P_r(d) = \frac{P G_t G_r \lambda^2}{(4\pi)^2 d^2 L}$$

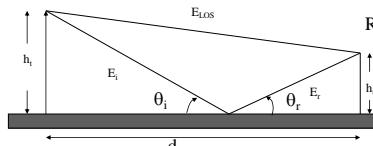
where,

G_t and G_r are antenna gains

$L \geq 1$ is the system loss factor not related to propagation


(e.g. loss due to filter losses, hardware)

- Path loss = signal attenuation as a positive quantity in dB


$$PL(dB) = 10 \log \frac{P_r}{P_t}$$

$$PL(dBm) = 10 \log \frac{P_r(mW)}{1mW}$$

Radio Propagation Effects

Example: Ground Reflection (2-Ray) Model

- Model found a good predictor for large-scale signal strength over distances of several kilometers for mobile systems with tall towers (heights > 50m) as well as for LOS microcell channels
- Can show (physics) that for large d

$$P_r(d) = \frac{P_t G_t G_r h_t^2 h_r^2}{d^4}$$

- Much more rapid path loss than expected due to free spaces

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

CSIE

Log-Distance Path Loss Model

- Assume average power (in dB) decreases proportional to log of distance

$$\overline{PL}(d) = \overline{PL}(d_0) + 10n \log\left(\frac{d}{d_0}\right)$$

- Justification?

- Measurements
- Intuition/theory.. Recall; free space, ground-reflection model

- Problem: "Environment Clutter" may differ at two locations at the same time (Log-normal Shadowing)

$$\overline{PL}(d) = \overline{PL}(d_0) + 10n \log\left(\frac{d}{d_0}\right) + X_\sigma$$

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

CSIE

Typical Path Loss Exponent, n

Environment	Path Loss Exponent, n
Free Space	2
Urban area cellular / PCS	2.7 to 4.0
Shadow urban cellular / PCS	3 to 5
In building line of sight	1.6 to 1.8
Obstructed in building	4 to 6
Obstructed in factories	2 to 3

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Wireless
Multimedia

Practical Link Budget Design Using Path Loss Models

- Bit-Error-rate is a function of SNR (signal-to-noise ratio), or equivalently CIR (carrier-to-interference ratio), at the receiver
 - The "function" itself depends on the modulation scheme
- Link budget calculations allow one to compute SCR or CIR
- Battery Life-> Talk Time -> received/Transmitted power -> Path Loss Models

$$\begin{aligned} SNR(dB) &= P_s(dBm) - N(dBm) \\ P_s(dBm) &= (P_t) + (G_t) + (G_r) - \overline{PL}(d) \\ N &= KT_0 BF \\ N &= -174(dBm) + 10 \log_{10} B + F(dB) \end{aligned}$$

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Example Link Budget Calculation

- Maximum separation distance vs. transmitted power (with fixed BW)
 - Given
 - Cellular phone with 0.6W transmitted power
 - Unity gain antenna, 900 MHz carrier frequency
 - SNR must be at least 25 dB for proper reception
 - Receiver BW is B=30KHz, noise figure F=10 dB
 - What will be the maximum distance?
 - Solution:
 - $N = -174 \text{ dBm} + 10 \log 30000 + 10 \text{ dB}$
 - For SNR > 25 dB, we must have $P_r > (-119+25) = -94 \text{ dBm}$
 - $P_t = 0.6 \text{ W} = 27.78 \text{ dBm}$
 - This allows path loss $PL(d) = Pt - Pr < 122 \text{ dB}$
for free space, $n=2$, $d < 33.5 \text{ km}$
for shadowed urban with $n=4$, $d < 5.8 \text{ km}$

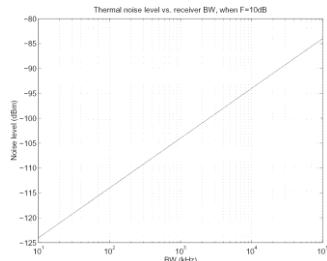
Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Wireless
Multimedia

Link Budget (SNR)

- Frequency
- Power
- Distance
- Environments
- Bandwidth

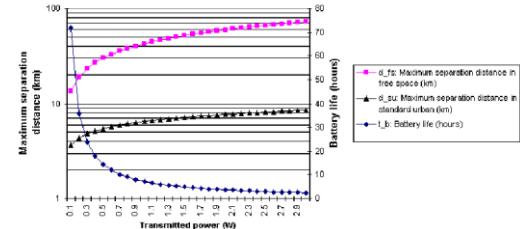


Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Noise

- $N=KT_0BF$ ($K=1.38 \times 10^{-23}$ J/K Boltzmann's constant, $T_0=290$ K)
- $N(\text{dBm})=174(\text{dBm})+10\log_{10}B+F(\text{dB})$

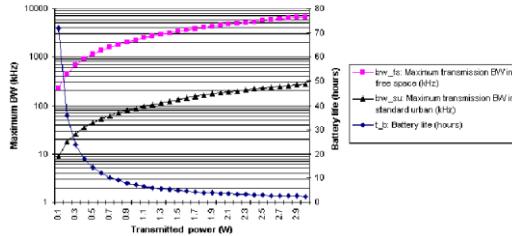


Wireless & Multimedia Network Laboratory™

CSIE

Distance/Power/Battery/Environment

Combined plot of the maximum separation distance and the battery life vs. transmitted power, when $\text{BW}=30\text{kHz}$, $F=10\text{ dB}$, $\text{SNR}=25\text{ dB}$.



Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

BW/Power/Battery/Environment

Combined plot of the battery life and the maximum transmission BW vs. the transmitted power, when $d=5\text{ km}$, $F=10\text{ dB}$, $\text{SNR}=25\text{ dB}$.

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSIE

Effectiveness of RTS/CTS handshake in 802.11 Ad hoc Network

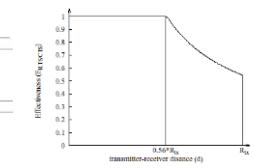
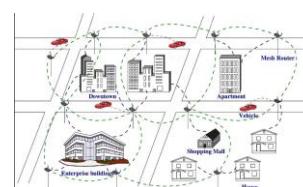



Fig. 2. Effectiveness of RTS-CTS handshake for TWO-RAY GROUND model and SNR threshold as 10.

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

Large Area Interference Problem

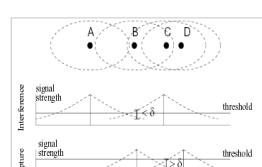


Figure 2: Interference and Capture

Fig. 1. Effectiveness of RTS/CTS handshake when d is large
 $T_{SNR} \frac{1}{2} * R_{tx}$ and smaller than R_{tx} .

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSIE

RMS Delay Spreads

TYPICAL RMS DELAY SPREADS IN VARIOUS ENVIRONMENTS.

Environment	Freq. (MHz)	σ_τ (ns)	Notes	Source
Urban - New York City	910	1300	Average	[23]
Urban - New York City	910	600	Standard Deviation	[23]
Urban - New York City	910	3500	Maximum	[23]
Urban - San Francisco	892	1000-2500	Worst Case	[24]
Suburban	910	200-310	Averaged Typical Case	[23]
Suburban	910	1960-2110	Averaged Extreme Case	[23]
Indoor - Office Building	1500	10-50		[25]
Indoor - Office Building	1500	25	Median	[25]
Indoor - Office Building	850	270	Maximum	[26]
Indoor - Office Buildings	1900	70-94	Average	[27]
Indoor - Office Buildings	1900	1470	Maximum	[27]

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

Small Scale → Quality of Service

Small-Scale Fading Effects (over small t and x)

- Fading manifests itself in three ways
 - Time dispersion caused by different delays limits transmission rates
 - Rapid changes in signal strength over small x or t
 - Random frequency modulation due to varying Doppler shifts
- In urban areas, mobile antenna heights << height of buildings
 - Usually no LOS from base station
- Moving surrounding objects also cause time-varying fading

Factors Influencing Small-Scale Fading

- Multi-path propagation
- Speed of Mobile
- Speed of surrounding objects
- Transmission bandwidth of the signal

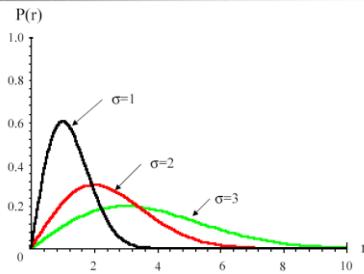
Fast Fading

- The signal from the transmitter may be reflected from objects such as hills, buildings, or vehicles.
- When MS far from BS, the envelope distribution of received

Rayleigh distribution. The pdf is

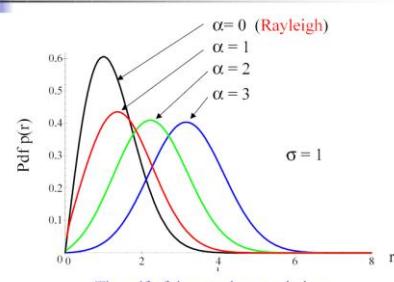
$$p(r) = \frac{r}{\sigma^2} e^{-\frac{r^2}{2\sigma^2}}, \quad r > 0$$

where σ is the standard deviation.


- Middle value r_m of envelope signal within sample range to be satisfied by

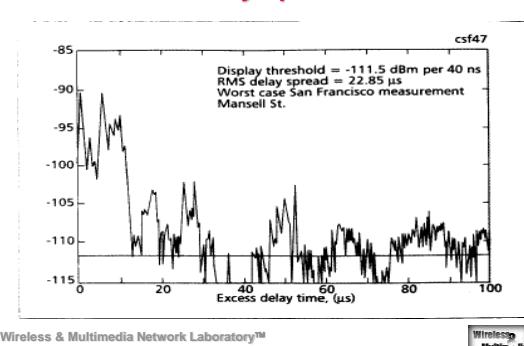
$$P(r \leq r_m) = 0.5.$$

• We have $r_m = 1.777 \cdot \sigma$.



Rayleigh Distribution

The pdf of the envelope variation


Rician Distribution

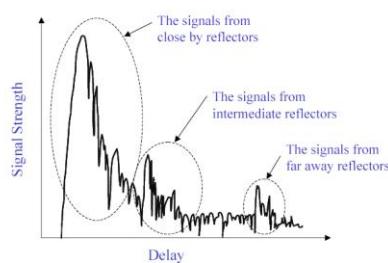
The pdf of the envelope variation

Delay Spread

CSIE

Delay Spread

CSIE


- When a signal propagates from a transmitter to a receiver, signal suffers one or more reflections.
- This forces signal to follow different paths.
- Each path has different path length, so the time of arrival for each path is different.
- This effect which spreads out the signal is called "Delay Spread".

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

Delay Spread

CSIE

Wireless & Multimedia Network Laboratory™

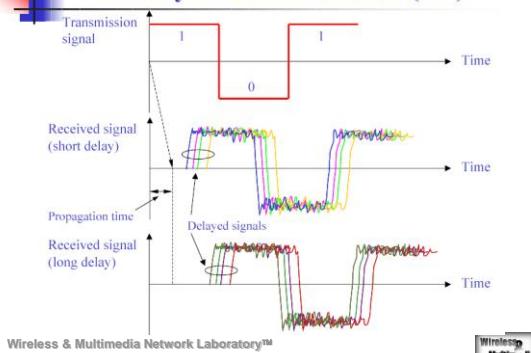
Wireless Multimedia

Intersymbol Interference (ISI)

CSIE

- Caused by time delayed multipath signals
- Has impact on burst error rate of channel
- Second multipath is delayed and is received during next symbol
- For low bit-error-rate (BER)

$$R < \frac{1}{2\tau_d}$$


- R (digital transmission rate) limited by delay spread.

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

Intersymbol Interference (ISI)

CSIE

Coherence Bandwidth

CSIE

- Coherence bandwidth B_c :
- Represents correlation between 2 fading signal envelopes at frequencies f_1 and f_2 .
- Is a function of delay spread.
- Two frequencies that are larger than coherence bandwidth fade independently.
- Concept useful in diversity reception
 - Multiple copies of same message are sent using different frequencies.

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

Parameters of a Multipath Channel

- Multipath Channel Impulse Response (measured by sounding technique)

$$h(t) = \sum_{i=1}^N a_i e^{j\theta_i} \delta(t - \tau_i)$$

- Four important parameters of interest

- RMS delay spread

$$\sigma_\tau = \sqrt{\bar{\tau}^2 - (\bar{\tau})^2}, \bar{\tau} = \sum_k a_k^2 \tau_k / \sum_k a_k^2, \bar{\tau}^2 = \sum_k a_k^2 \tau_k^2 / \sum_k a_k^2$$

- Coherence bandwidth

$$B_c = \frac{1}{5\sigma_\tau}$$

- Doppler spread

$$B_D = f_m = \max((v/\lambda) \cos \theta) = (v/c) f_{carrier}$$

- Coherence time

$$T_c = 0.423 / f_m$$

Doppler Shift

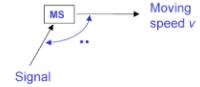
- Doppler Effect:** When a wave source and a receiver are moving towards each other, the frequency of the received signal will not be the same as the source.

- When they are moving toward each other, the frequency of the received signal is higher than the source.
- When they are opposing each other, the frequency decreases.

Thus, the frequency of the received signal is

$$f_R = f_C - f_D$$

where f_C is the frequency of source carrier,


f_D is the Doppler frequency.

- Doppler Shift in frequency:**

$$f_D = \frac{v}{\lambda} \cos \theta$$

where v is the moving speed,

λ is the wavelength of carrier.

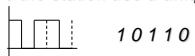
Types of Fading

- Two independent mechanisms:
 - Time Dispersion (Due to Multi-path delays)
 - Flat fading
 - Frequency Selective Fading
 - Doppler Spread (due to Motion of mobile or channel)
 - Fast Fading
 - Slow Fading

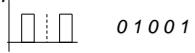
Fades: Why do we care?

- Data Rate
- Equalization
- Fades result in "Error Bursts"
- Average duration of (Flat) fades
- Depends primarily on speed of the mobile.

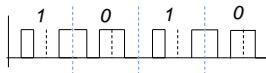
The Design of Wireless Modem



Combating Errors

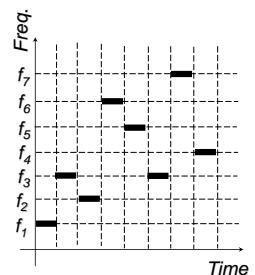

- Increase transmitted power
- (Adaptive) Equalization
- Antenna or space diversity for "Multipath"
- Forward error correction
- Automatic Repeat Request (ARQ)

Direct Sequence Spread Spectrum


To transmit a 0 the station use a unique "chip sequence":

To transmit a 1 the station use the one's complement of its chip sequence:

Therefore if data is 1010 it will transmit:



Wireless & Multimedia Network Laboratory™

CSIE

Frequency Hopping Spread Spectrum

- Transmitted signal is spread over a wide range of frequencies. (i.e. 2.400-2.485 GHz)
- Transmission usually hop 35 times per second.

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSIE

Antenna Types

Omni Directional Antenna

YAGI Directional Antenna

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSIE

Modern Applications: 911 Service

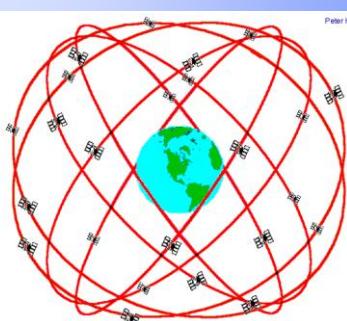
Location Service

Wireless & Multimedia Network Laboratory™

CSIE

E-911 Requirement for Location Service

- 1996, FCC (Federal Communications Commission) announced its mandate for enhanced emergency services for cellular phone callers.
- The current deadline for this capability is October 1, 2001



Wireless & Multimedia Network Laboratory™

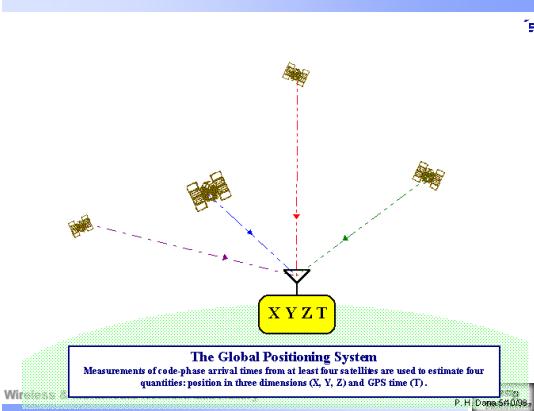
Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSIE

GPS Nominal Constellation
24 Satellites in 6 Orbital Planes
4 Satellites in each Plane

20,200 km Altitudes, 55 Degree Inclination


Wireless & Multimedia Network Laboratory™

Peter H. Dana 9/22/98 CSIE

Peter H. Dana 5/27/95

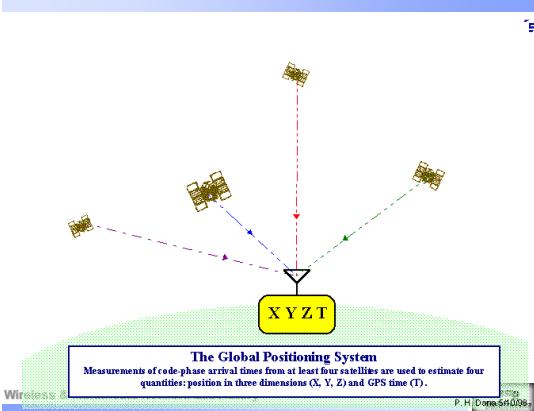
Global Positioning System (GPS) Master Control and Monitor Station Network

Mobile Location Solution

Driving Force :

Legal aspects :

- Fire brigades, hospitals and other emergency centers.


Commercial aspects :

- Differentiation : new and attractive services.
- Reduced costs : operators can adapt their network to match calling patterns.
- Increased revenues : commercial services that use positioning information is infinite.

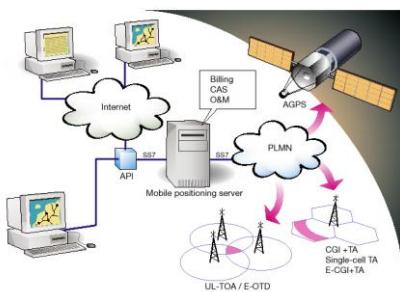
GPS (cont.)

Position location

- 3-D 座標 (X,Y,Z) 需要3個獨立方程式可解.
- 三個GPS衛星得到三個距離量度，可設定所需的三個方程式.
- 需要第四個衛星來求得另一距離量度以建立第四個方程式 (T_{error})
- 這樣就可定位出他的位置
- With accuracy of approximately 100 m.

Introduction

- Safety is the primary motivation for vehicle position location.
- Landline telephone companies to provide 911 emergency service .
- 1994, begin investigating similar service for U.S cellular and PCS providers.
- E-911 service include caller's ANI and street address information.

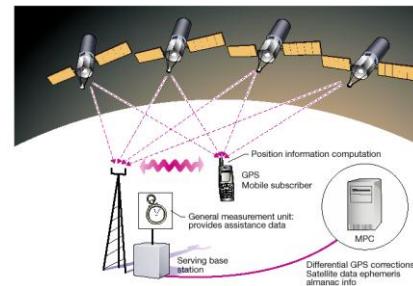

Positioning mechanism and requirement

Terminal-based :

- Positioning intelligence is stored in the terminal or its SIM card.
- Network-assisted global positioning system (A-GPS).

Network-based :

- Positioning intelligence isn't built into the handset.
- Measurement of Cell global identity and timing advance(CGI+TA) 、uplink time of arrival (UL-TOA).

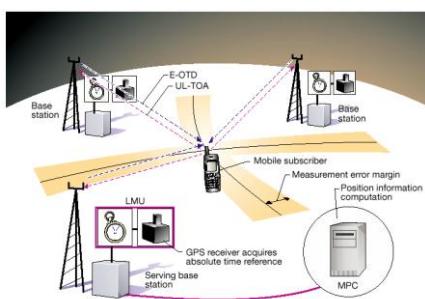


Mobile location solution has been designed to handle a variety of positioning methods and application interfaces.

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

CSIE



Network-assisted GPS (A-GPS) is a positioning product with very attractive characteristics.

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

CSIE

UL-TOA and E-OTD methods each use the triangulation of time difference between base stations and the terminal to determine positions.

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

CSIE

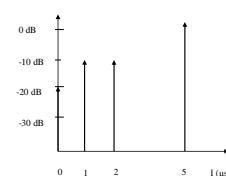
Location applications (cont.)

Resource management :

- Taxi fleet management, the administration of container goods, and the assignment and grouping of railway repairmen.

Navigation :

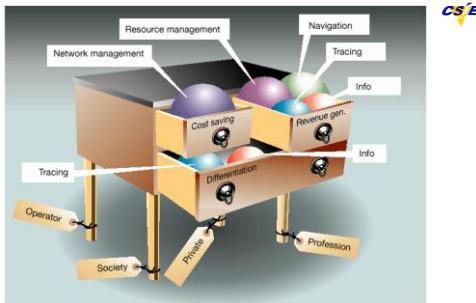
- Vehicle or pedestrian navigation.


Wireless & Multimedia Network Laboratory™

Wireless Multimedia

CSIE

Small Scale Fading


- Mean Excess Delay, rms delay spread

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

CSIE

The chest of drawers illustrates how different applications can be grouped strategically for use by their beneficiaries.

Wireless & Multimedia Network Laboratory™

CSIE

Channel Propagation and Fading

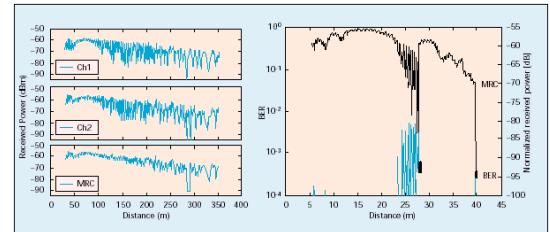


Figure 4. Received power as a function of distance: in a street (left), in a pavilion (right). BER and handover (right).

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™