
Topic 9:
Ad hoc Network (Mesh Network)

Professor Eric Hsiao-kuang Wu
May 16, 2008

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

Wireless Mesh Network.

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

Mesh Network Scenario

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

Multi-channel, Multi-Radio, Directional Antenna

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

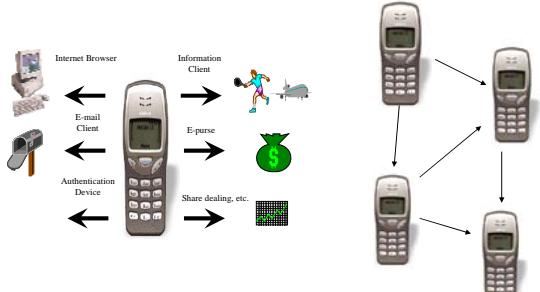
Two Issues for Collaborative Computing

- ♦ Network Layer Collaborative:
 - Ad hoc~ Infrastructure-less ~ support “anytime, anywhere”
 - To support communications between ad hoc nodes
 - To guide the packets effectively to satisfy different requirements
 - To adjust to dynamical topology change (due to Mobility)
- ♦ Application Collaborative:
 - Video Conferencing, News Broadcasting
 - Group of users to share the same information
 - Mobility Support

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

Trend Evolution


- IP success
 - The involvement and level of responsibility of end users have dramatically increased
 - The freedom has fueled creativity
- Infrastructure-less, self-organized networks
 - The network runs solely by operation of end users
 - Progress of electronic integration and wireless communication
 - Complement these infrastructures in cases where cost, constraints, or environment require self-organized solutions
 - Will be interconnected with the Internet and cellular networks

Wireless & Multimedia Network Laboratory™

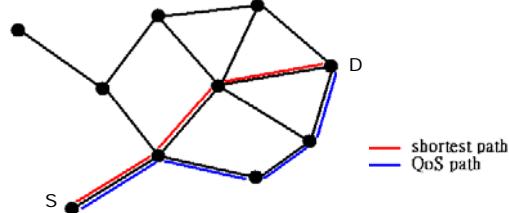
Wireless Multimedia

Mobile Computing to Pervasive Computing

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

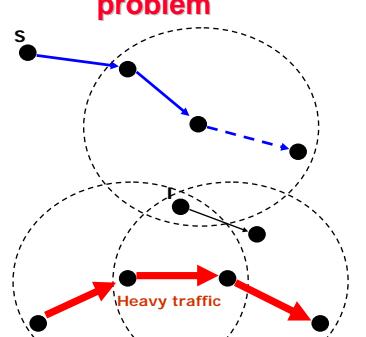
Mesh Network Scenario



Wireless & Multimedia Network Laboratory™

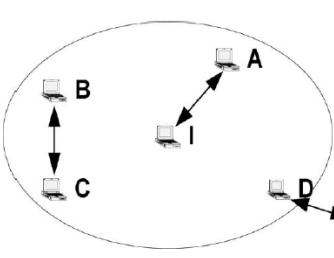
Wireless Multimedia

Why not existing routing protocol


- Existing routing protocol search for shortest path not guarantee any QoS.

Wireless & Multimedia Network Laboratory™

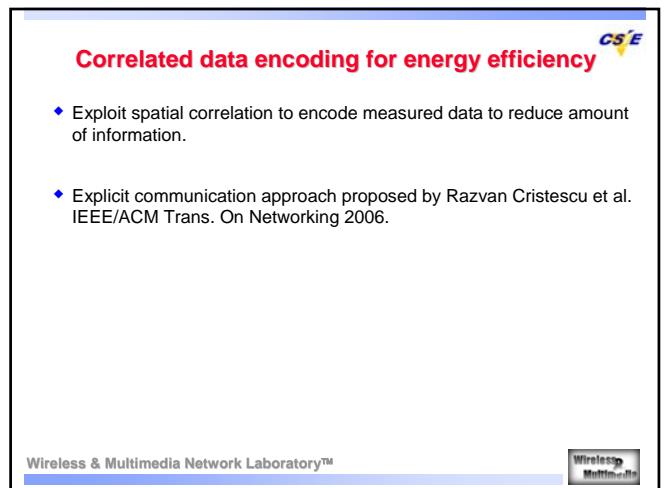
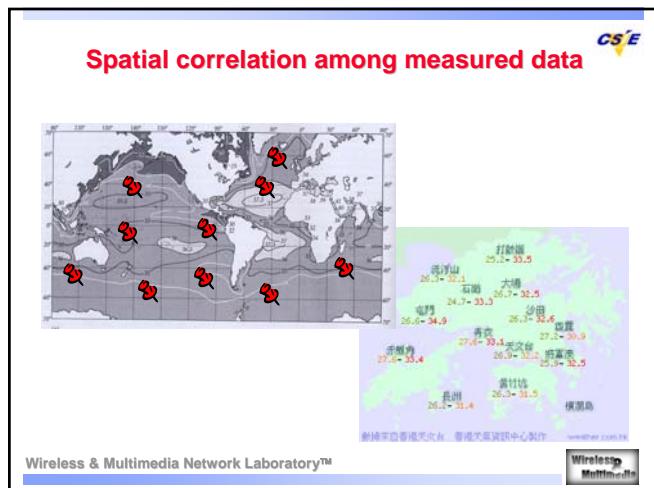
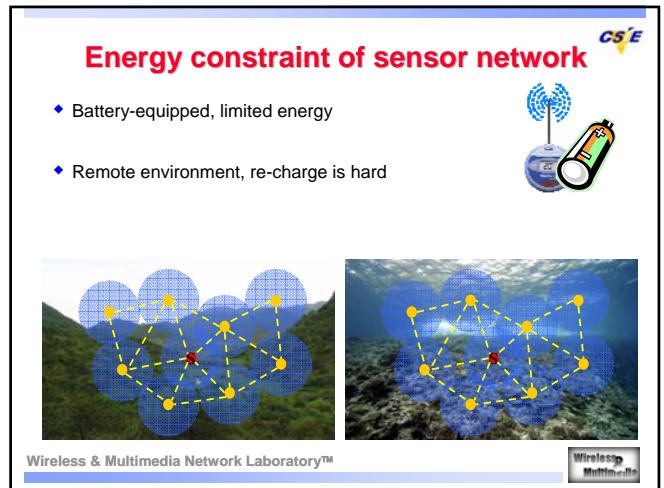
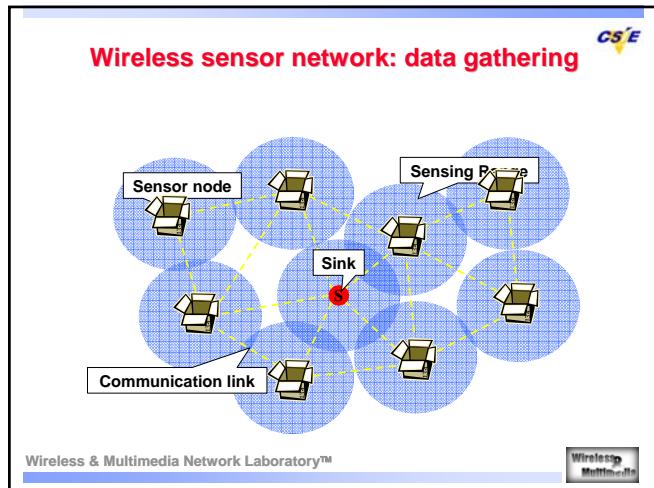
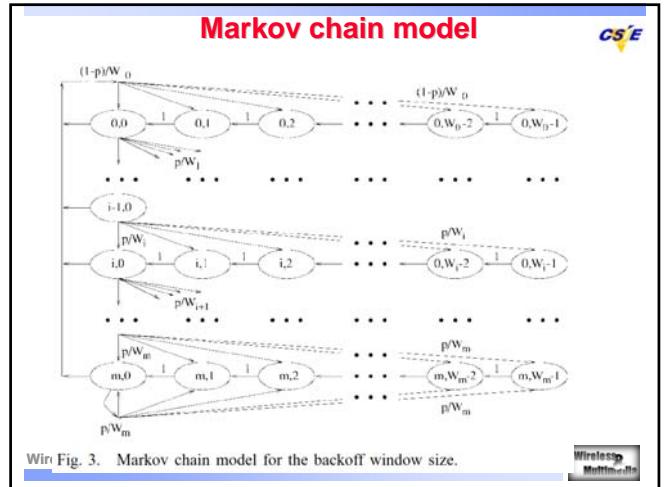
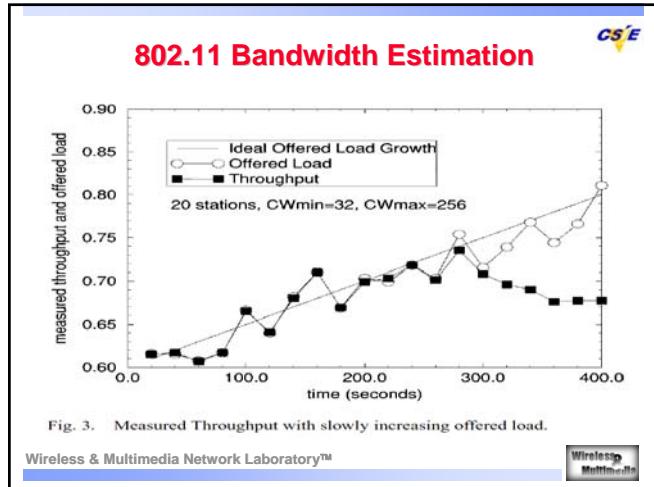
Wireless Multimedia


Bandwidth influence ~ hidden route problem

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

Traffic aggregation of existing flow

$$B_{\text{available}}(I) = B - \sum_{J \in N(I)} B_{\text{self}}(J).$$

B_{self}: Tx or Rx by I.
Neighborhood: traffic between I's neighbors.
Boundary: connection cross I's access range.

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

Explicit communication approach

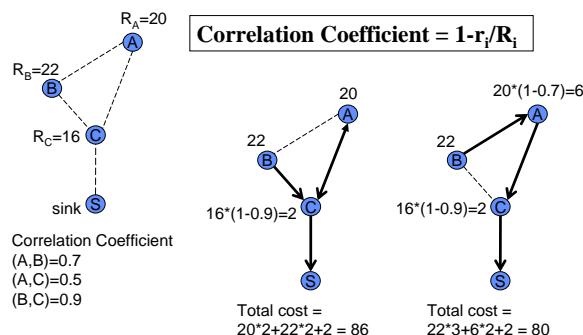
Wireless & Multimedia Network Laboratory™

CS' E

Explicit communication approach

- $H(X_i)$ is entropy of random variable X_i , and represents the amount of information.

(a) Transmission cost when data are independent.



(b) Transmission cost when data are dependent.

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

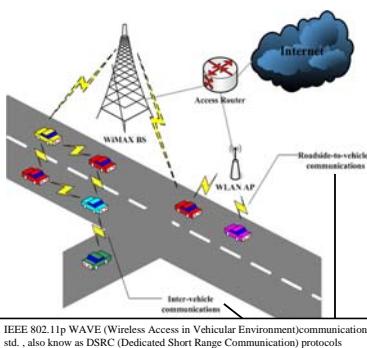
Joint optimization of rate allocation and routing path

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

Video Transmission in VANET

GPS gets instant video streams from the surveillance cameras at an intersection.


The driver can get a better view of the traffic.

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

What is a VANET (Vehicular Ad hoc Network) ?

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

VANET vs. MANET

- VANET can be considered as one of concrete applications of MANETs in the future
- The difference between VANET and MANET
 - (i) VANET have vehicles as network nodes and their main characteristics are highly mobility and speed
 - (ii) VANET nodes move non-randomly along specific paths (roads)
 - (iii) VANET nodes are vehicles, so there are less power and storage constraints
- Due to the characteristic of (i) (ii), VANET will suffer *rapid changes in network topology*, and will be subject to *frequent fragmentation*

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

Vehicular communications: why?

- In 2009, around 3000 people die in road accidents, 120,000 are injured in 100 countries
- Traffic jams generate a tremendous waste of time
- Try to improve driving safety and traffic management while providing drivers and passengers with Internet access

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Applications of vehicular communications

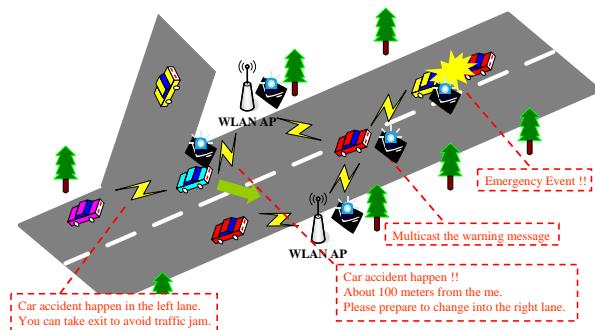
- There are many applications envisioned for VANETs, we can divide the applications into two major categories:

- **Safety-related applications**

- Collision avoidance
- Cooperative driving

- **Non-safety (private) applications**

- Traffic optimization
- Payment services (toll collections)
- Location-based services (find the closest fuel station)
- Infotainment (Internet access)

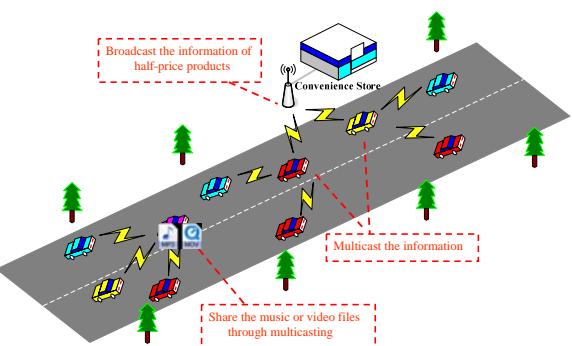

CSIE

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Scenario of VANET safety applications

Multicasting warning messages

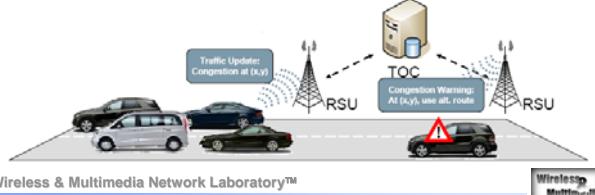


Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Scenario of VANET private applications

Multicasting infotainment messages



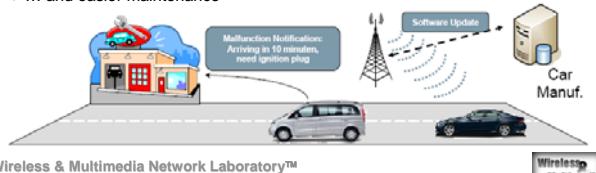
Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Vehicular Ad Hoc Network Scenario

CSIE

Wireless & Multimedia Network Laboratory™


Wireless
Multimedia

Vehicular Ad Hoc Network Scenario

CSIE

more fun,

... and easier maintenance

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Observations

Personal Communications have been the dominant paradigm so far, but **mobile ad hoc networks** open new possibilities, such as the communication between objects

Wireless & Multimedia Network Laboratory™

Survey of Ad hoc Researches

Characteristics of Ad hoc

- Fully Distributed
- Complete Wireless
- Forwarding Functions
- Dynamic Topology

Applications of Ad hoc

- Packet Radio (PRNet), 1972
- ↓
- MANET (1990)
- ↓
- Sensor Networks
- ↓
- Glomo Network
- ↓
- Commercial Applications
- ↓
- Large Scale Ad hoc Network
- ↓
- Complementing Cellular System

Maintenance of Ad hoc

- Proactive Protocols
- Reactive Protocols
- Symmetric Links
- Hierarchical Protocol
- ↓
- Power Budget & Latency
- ↓
- Beaconing & Link Status
- ↓
- QoS Routing
- ↓
- Application Routing
- ↓
- GPS Assisting Routing

Wireless & Multimedia Network Laboratory™

Reading

- [Jean2001] Jean-Pierre Hubaux, Thomas Gross, Jean-Yves Le Boudec, and Martin Vetterli, "Toward Self-Organized Mobile Ad Hoc Networks: The Terminodes Project"
- [Ian 2005] Ian F. Akyildiz, A Survey on Wireless Mesh Networks, IEEE Radio Communications September 2005

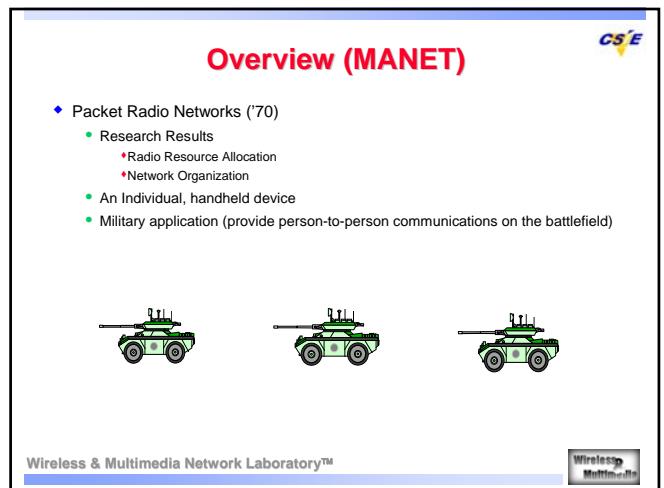
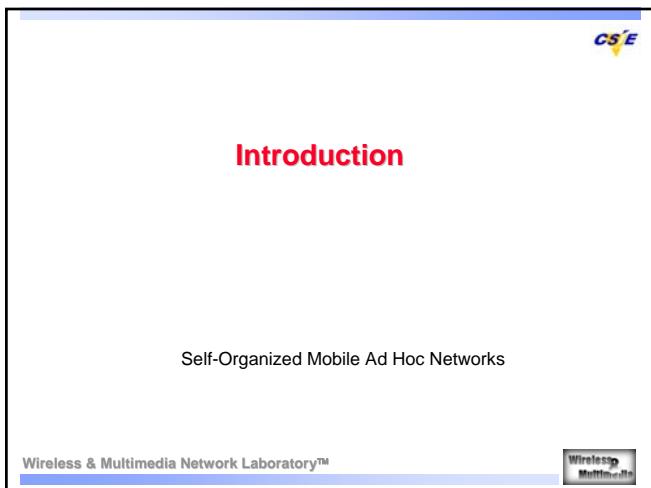
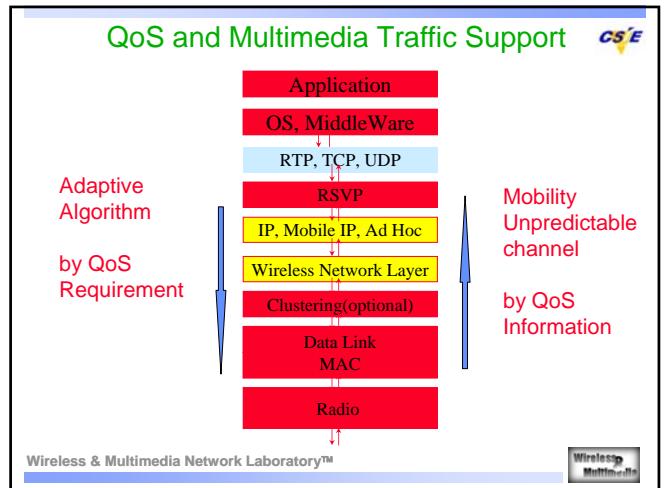
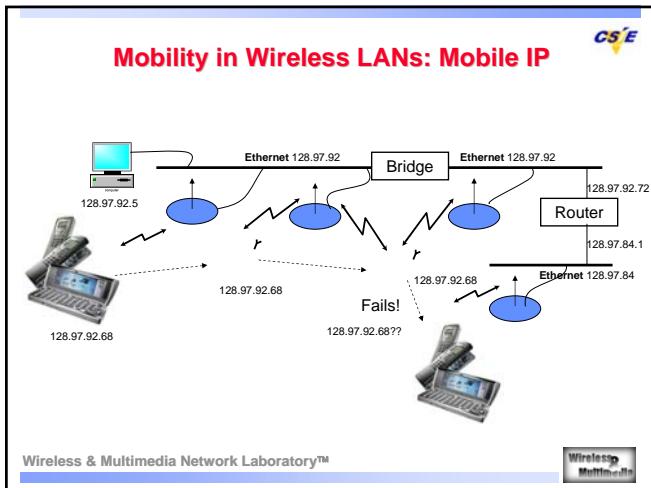
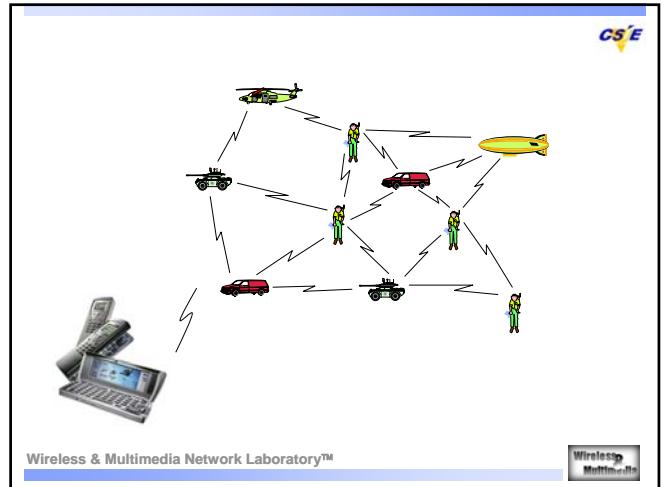
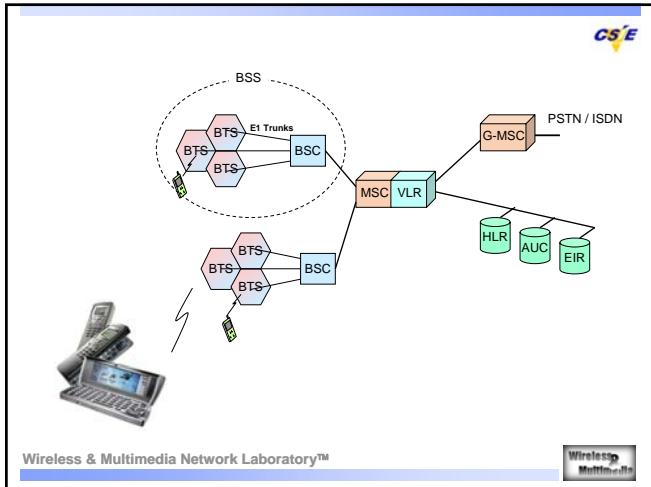
Wireless & Multimedia Network Laboratory™

Agenda

- Overview of Mobile Ad Hoc Networks
- Major Technical challenges:
 - Networking
 - Real time services
 - Software
- Long-term Research Project:
 - Terminodes Projects

Wireless & Multimedia Network Laboratory™

Cellular based







GSM Network Infrastructure

Wireless & Multimedia Network Laboratory™

Ad-hoc network

- No centralized controller (base stations)
- No wired inter-connection backbone
- Forwarding function should be provided by mobile nodes

Wireless & Multimedia Network Laboratory™

MANET

- ♦ Potential Applications:
 - Manmade disasters
 - Relief operation
 - Military applications
 - Car-based networks
 - Sensor networks
 - The Provision of wireless connectivity in remote areas
 - Collaborative Computing, Video Conferences

Wireless & Multimedia Network Laboratory™

CS&E

MANET, Peculiarities

- ♦ They can act independent of any provider
- ♦ They have to be highly cooperative: The tasks are distributed over the nodes
- ♦ Any operation is the result of the collaboration of a group of them
- ♦ The nodes rely on batteries for their energy, energy saving
- ♦ Power aware: the set of functions offered by a node depends on its available power
- ♦ Highly dynamic topology
- ♦ Security is difficult to implement

Wireless & Multimedia Network Laboratory™

CS&E

Technical Issues

- ♦ Routing
- ♦ Mobility Management
- ♦ IP Address
- ♦ Transport Layer
- ♦ Air Interface
- ♦ Security
- ♦ Power Management
- ♦ Standards and Products

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia

Routing

- ♦ Ad hoc routing
 - Different from traditional solutions in the Internet or cellular phone networks (relative stable, distributed routing databases)
 - IETF (The Internet Engineering Task Force) MANET address the challenge
 - Distant vector, links state, source routing (table driven, on-demand)
 - Geographic methods: nodes are informed of their own geographic position

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia

Routing Protocol

- ♦ Traditional Routing
 - Distance Vector (Bellman Ford)
 - Link State
- ♦ Ad Hoc Routing Protocols
 - DSDV
 - DSR
 - AODV
 - TORA

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia

Traditional Routing

- ♦ Distance Vector (Table Driven)
 - Each node maintains its own routing table
 - Routing table contains
 - ♦ destination node index
 - ♦ next hop
 - ♦ metric
 - Periodic routing table exchange
- ♦ Disadvantage
 - Count-Infinity Problem
 - Convergence Problem

A	B	C
B-A-1	A-B-1	C-B-1
C-B-2	C-B-1	A-B-2
0	1	2
x	1	2
x	3	2
x	3	4
x	5	4
x	∞	∞

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia

Traditional Routing (Cont.)

- Link State Routing
- Procedures
 - Neighbor Discovery
 - Routing Information Broadcast
 - Shortest Path Finding (e.g. Dijkstra's algorithm)

- Disadvantage
 - short-live looping problem

0	1	2	3	4	5	6	7	8	9	10	11	12
	X											
		X										
			X	X								
				X	X							
					X	X						
						X						
							X					
								X				
									X			
										X		
											X	
												X

adjacency matrix

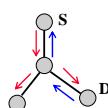
Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Ad Hoc Routing - DSDV

- DSDV
 - Destination Sequence Distance Vector Routing
 - Each route information is labeled with a increasing sequence number
 - Route info. with greatest number will be update
 - Route info. of broken link is broadcast with odd sequence one greater than the original sequence number

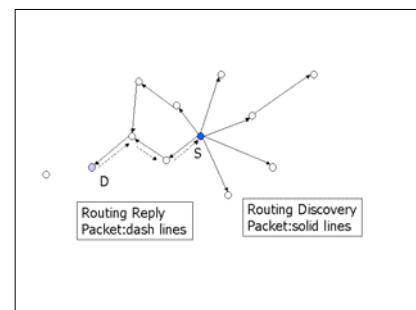
- Contribution
 - Main contribution of DSDV is freedom-loop guarantee


- Disadvantage
 - The periodic broadcast adds the overhead into the network

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Ad Hoc Routing - DSR


- DSR
 - Dynamic Source Routing
 - Route Discovery
 - Source node flooding routing request (RREQ) packet
 - Destination (inter-node) node reply RREP packet that piggybacks the route info.
 - Source node caches the route info
 - Route Maintenance
 - The route info. will be removed after receiving RERR packet
- Advantage
 - Requires no periodical routing exchange
- Disadvantage
 - packet is larger because of carrying route info.

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

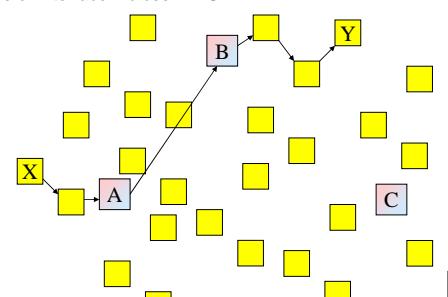
Routing in ad hoc network environment only

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Routing in heterogeneous environment

Node that helps registration for destination


Routing Reply
Packet:dash lines

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Heterogeneous Network Support

- Use of Interface Indices in DSR

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Internet Interconnection and Mobile IP

- DSR support the seamless interoperation between an ad hoc network and the Internet

Wireless & Multimedia Network Laboratory™

On Demand Support Multicast & QoS

Bandwidth (QoS) Parameters

Multicast Join

Wireless & Multimedia Network Laboratory™

Ad Hoc Routing - AODV

- AODV
 - Ad-hoc On-demand Distance Vector
 - Shares the advantages of DSR and distance vector
 - Route Discovery
 - Similar to DSR
 - Route Maintenance - Table Entry
 - Destination IP, Destination Sequence, Hop Count, Next Hop, Life Time
 - The route info. is invalid if
 - Life Time is expired
 - Receive RERR packet

Wireless & Multimedia Network Laboratory™

Ad Hoc Routing - TORA

- TORA
 - Temporally-Ordered Routing Algorithm
 - Routing procedures
 - Flood QUERY packet
 - UPDATE packet will be broadcast from destination or inter-node
 - HEIGHT info. is appended to UPDATE packet
 - the node receives UPDATE packet set its height and the forwarding UPDATE packet's height to a value one greater than original one
 - Source node send data to the destination via neighbor that have lower height with respect to the destination
- Advantage
 - Minimizes the reaction due to changes of network topology
- Disadvantage
 - Depend on Internet MANET encapsulation Protocol, the overhead is large

Wireless & Multimedia Network Laboratory™

Ad Hoc Routing - TORA (Cont.)

Directed acyclic graph rooted at destination

Wireless & Multimedia Network Laboratory™


ABR (Associativity-Based Routing)

- ABR considers the stability of a link.
 - The metric is called **degree of association stability**.
- Basic Idea:
 - Each node periodically generates a beacon to signify its existence.
 - On receipt of the beacon, a neighboring node will increase the "tick" of the sender by 1.
 - A higher degree of association stability (i.e., ticks) may indicate a low mobility of that node.
 - A low degree of association stability may indicate a high mobility of that node.
 - When a link becomes broken, the node will set the tick of the other node to 0.

Wireless & Multimedia Network Laboratory™

ABR Outline

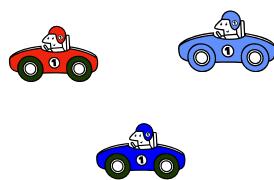
- Route Discovery:
 - (similar to DSR)
 - On needing a route, a host will broadcast a ROUTE_REQUEST packet.
 - Each receiving host will append its address to the packet.
 - The **association stability** (represented by "ticks") is also appended in the ROUTE_REQUEST packet.
 - The destination node will select the **best route** (in terms of association stability), and then respond a packet to the source.

Wireless & Multimedia Network Laboratory™

CSIE

Route Reconstruction:

- On route error, a node will perform a local search in hope of rebuild the path.
- If the local search fails, a ROUTE_ERROR will be reported to the source.

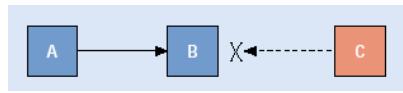


Wireless & Multimedia Network Laboratory™

CSIE

Mobility Management

- Broadcasting a paging message the whole network: won't scale well
- Different from centralized servers (either HLR in GSM), location must be distributed among the nodes
- Prediction of the future locations



Wireless & Multimedia Network Laboratory™

CSIE

Radio Interface

- CSMA/CA: hidden terminal

- Defining master and slaves roles: Bluetooth

Wireless & Multimedia Network Laboratory™

CSIE

MACA/PR

- The key component
 - the MAC protocol for data transmission
- Reservation scheme for real-time connection setup
- QoS Routing algorithm

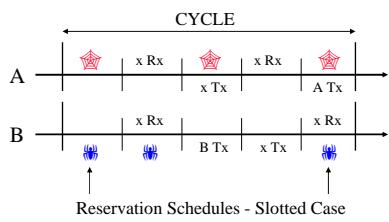
Wireless & Multimedia Network Laboratory™

Wireless & Multimedia

CSIE

MACA/PR - MAC

- Data-gram Traffic
 - RTS - CTS - PKT - ACK
 - <RTS,CTS> for hidden terminal avoidance, ACK for retransmission
- Real-Time Traffic
 - < RTS - CTS > - PKT - ACK
 - <RTS,CTS> used for first time transmission to set up the reservation
 - ACK for renewing the reservation, not recovery


Wireless & Multimedia Network Laboratory™

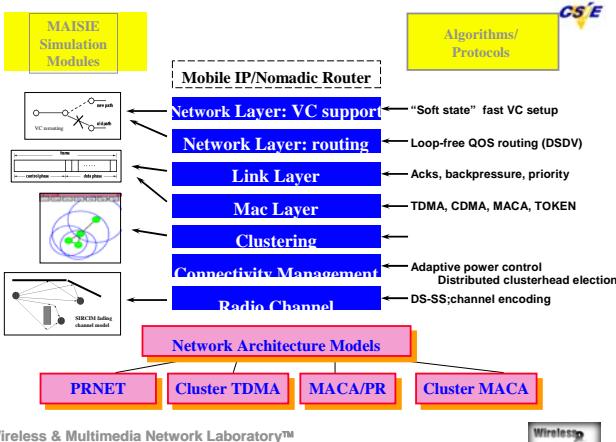
Wireless & Multimedia

CSIE

MACA/PR - Reservation/QoS Routing

- CYCLE is the max. interval allowed between two real-time packets
- Each node maintains its own reservation table
- DSDV routing is employed
- Bandwidth info. can be easily obtained via reservation table

Wireless & Multimedia Network Laboratory™

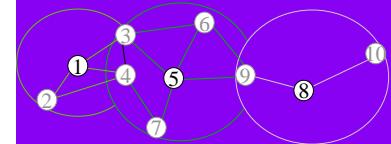

Wireless Multimedia

MACA/PR - Properties

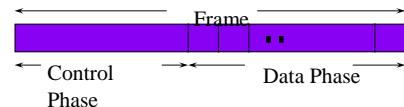
- Asynchronous approach
- Low latency, low packet loss rate
 - Hidden Terminal Problem is solved automatically
- Fair bandwidth sharing
- Good mobility handling
 - Maintain secondary routing path
- Low implementation costs

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

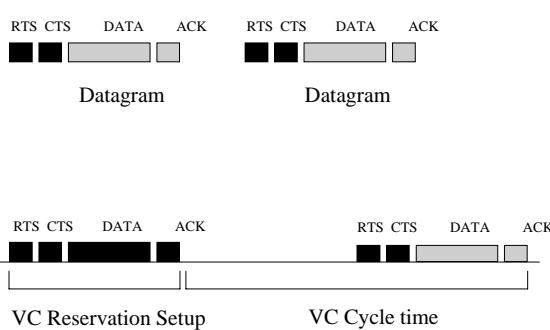


Wireless & Multimedia Network Laboratory™


Wireless Multimedia

Cluster TDMA

Lowest ID Clustering Algorithm


Within each cluster: time-slotted frame

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

Cluster MACA

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

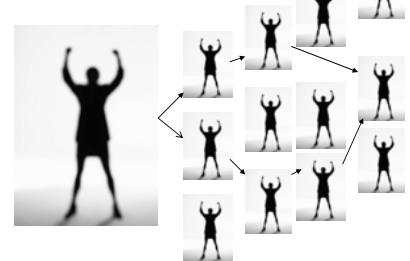
The Paradigm Shift and Some Open Research Questions

MANET

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

Terminodes Projects


- Large scale self-organized mobile ad hoc networks
- All layers and interlayer interactions
 - From physical layer up to software architecture and applications
- Try to capture the business and societal potential
- Three levels:
 - Technical challenges
 - Intellectual fantasy
 - Societal/political vision

Wireless & Multimedia Network Laboratory™

CS' E

Terminodes

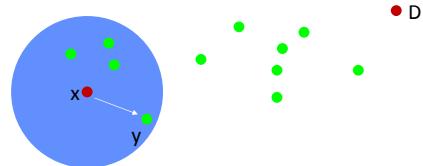
- Networking Issues
 - Scalability
- Virtual Currency
 - Obligation
- Real Time Services
 - QoS

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia

Networking Issues

CS' E

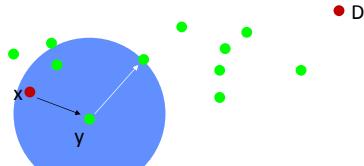


Wireless & Multimedia Network Laboratory™

Wireless & Multimedia

Greedy Forwarding

CS' E

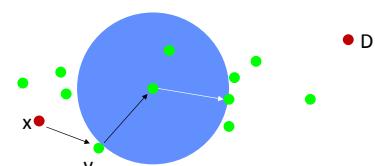


Wireless & Multimedia Network Laboratory™

Wireless & Multimedia

Greedy Forwarding

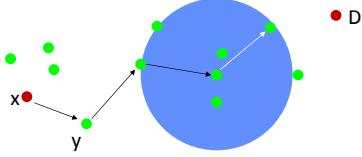
CS' E



Wireless & Multimedia Network Laboratory™

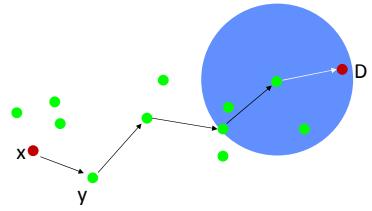
Wireless & Multimedia

Greedy Forwarding


CS' E

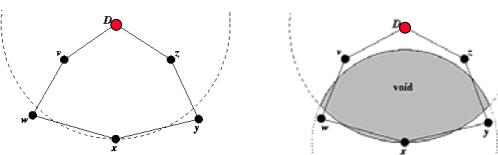
Wireless & Multimedia Network Laboratory™

Wireless & Multimedia


Greedy Forwarding

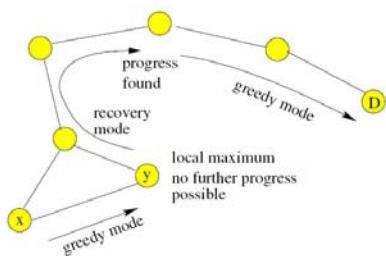
Wireless & Multimedia Network Laboratory™

Wireless Multimedia


Greedy Forwarding

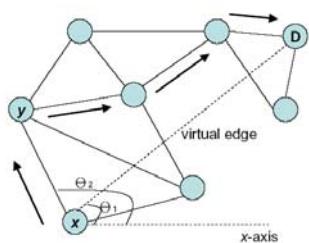
Wireless & Multimedia Network Laboratory™

Wireless Multimedia


Greedy Forwarding Failure

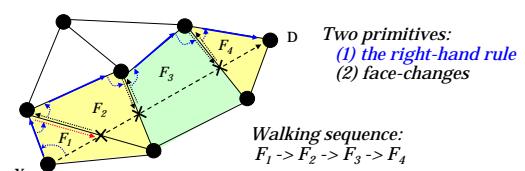
Wireless & Multimedia Network Laboratory™

Wireless Multimedia


Recover Mode (GPSR two modes)

Wireless & Multimedia Network Laboratory™

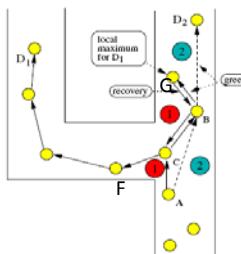
Wireless Multimedia


Right hand rule

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

Face (Perimeter) traversal on a planar graph



Wireless & Multimedia Network Laboratory™

Wireless Multimedia

Scenarios Where GPCR does not work Well

For Destination D2, the source A has to send to C even if it can send directly to more closer node B.

For Destination D1
The source A has to send to C (Junction node) then to B (because it is closer to D1 than F), then G. Then it goes for recovery mode because G is the local maxima and return back to C. C sends to F and finally Data is sent to D1.

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

Routing for Terminode

- Each Terminode has
 - A permanent unique node identifier, EUI (End System Unique Identifier)
 - Location-Dependent Address (LDA)
- Geodesic Packet Forwarding:
 - The packet is forwarded to the neighbor closest to the direction in which the destination is located
- Terminode local routing
 - MANET routing (link State, Distance Vector, Source Routing)

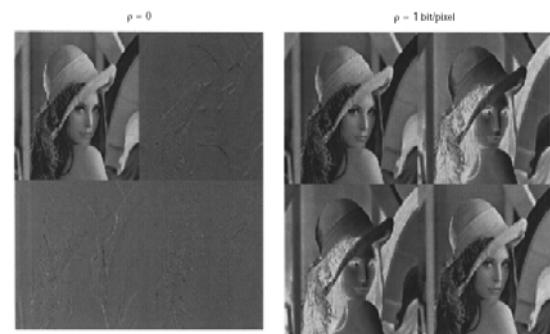
Wireless & Multimedia Network Laboratory™

Wireless Multimedia

Networking Issues

Wireless & Multimedia Network Laboratory™

Wireless Multimedia


Virtual Currency (Nuglet)

- Service Availability is a major requirement for self-organization
- The End users must be given incentive to cooperate
- They must be encouraged to not overload the network

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

Multiple description coding

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

Real-Time Services over Ad hoc Networks

- Real-Time Services
 - Voice or video over ad hoc networks
 - Unreliable <-> stringent delay
 - Large error, node failure
- Redundancy, error correction codes over parallel connections

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

Software Aspects

- ♦ Software implementations:
 - Base software: Routing algorithms, accounting system and security system
 - Application software: Software that makes a collection of terminodes useful for a client
 - Flexible software architectures
- ♦ Resource Allocations
 - Contract
 - Loader
 - Dynamic checks

Wireless & Multimedia Network Laboratory™

Discussions

- ♦ Three Networks:
 - Telecom networks
 - The Internet
 - Self-Organized Mobile Ad Hoc Networks

Network	Infrastructure	Security	Applications
Telecom networks	Telcos	Telcos	Telcos (IN)
Internet	ISPs + telcos	ISPs + users (PGP)	Users
Self-org. ad hoc NW	Users + vendors	Users + vendors	Users

Wireless & Multimedia Network Laboratory™

