

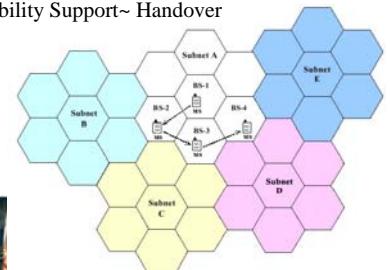
無線網路多媒體系統 Wireless Multimedia System

Lecture 5: Cellular Concepts

中央大學 吳曉光博士

<http://wmlab.csie.ncu.edu.tw/course/wms>

Wireless & Multimedia Network Laboratory™


無線網路多媒體實驗室

Wireless Multimedia

Mobility Support & Channel Reuse

Mobility Support~ Handover

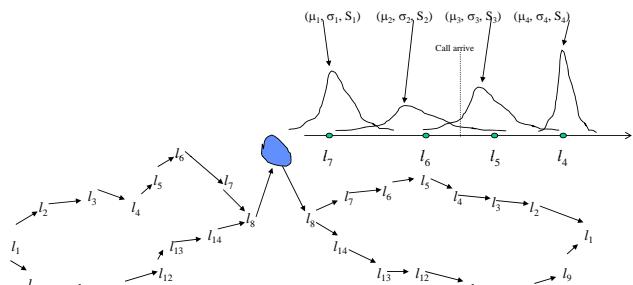
Channel Allocations: Reuse

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

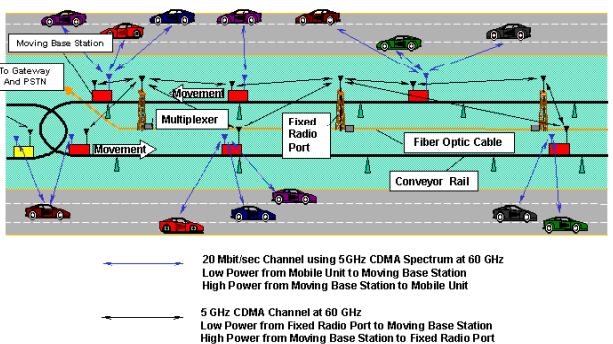
Wireless & Multimedia Network Laboratory™

Wireless Multimedia


ChungLi Case Study

Wireless & Multimedia Network Laboratory™

Wireless Multimedia


Moving Behavior

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

Mobile Broadband Infrastructure Diagram

Channel Assignment in Cellular System

- ♦ Fundamental Problem:
- ♦ Fixed Channel Assignment
- ♦ Dynamic Channel Assignment
- ♦ Hybrid Schemes
- ♦ Whole Channel Usage (CDMA)
- ♦ Reduce the Cell Size

Wireless & Multimedia Network Laboratory™

CSIE

Hand-off in Cellular Networks

- ♦ Transfer of mobile to a new channel when it crosses cell boundary
- ♦ Handoff delay
- ♦ Prioritizing handoffs to reduce probability of dropped calls
- ♦ Handoff Strategies
- ♦ Network Controlled handoff (NCHO)
- ♦ Mobile assisted handoff (MAHO)
- ♦ Mobile controlled handoff (MCHO)

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia

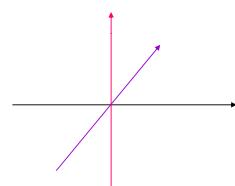
Agenda

- ♦ Cellular Concepts
- ♦ Channel Assignments
- ♦ Handover
- ♦ Next Lecture: 3G WCDMA design

Wireless & Multimedia Network Laboratory™

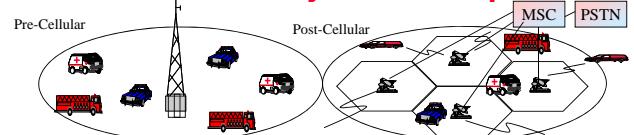
Wireless & Multimedia

Reading


- ♦ [Katzela96] Katzela, and M. Nahgshineh, "Channel assignment schemes for cellular mobile telecommunication systems: a comprehensive survey," IEEE Personal Communications, June 1996
- ♦ [Pollinin96], G.P. Pollini, "Trends in handover design," IEEE Communications Magazine, March 1996.

Wireless & Multimedia

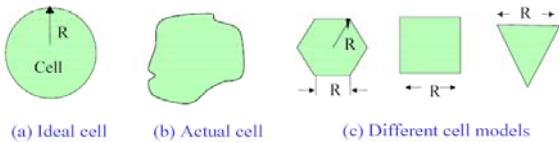
Channel Allocation


- ♦ A given Channel Spectrum (or bandwidth) can be divided into a set of disjoint or non-interfering radio channel
 - Frequency Division
 - ♦ frequency band
 - Time Division
 - ♦ time slot
 - Code Division
 - ♦ modulation code

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia

Cellular System Concept

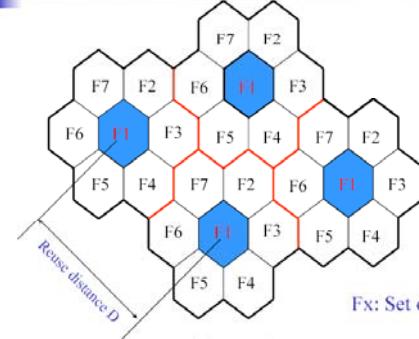


- ♦ Replace single high power transmitter covering the entire service area with low power
 - Mobiles in sufficiently distant base-stations may be assigned identical channel (frequency, time slot, & code)
 - System capacity may be increased without adding more spectrum
- ♦ Major conceptual breakthrough in spectra congestion & user capacity
 - Required relatively minor technological changes frequency reuse & co-channel interference, channel allocation, hand-offs

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia

Cell Shape

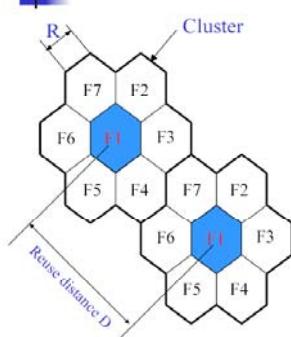


Wireless & Multimedia Network Laboratory™

Wireless Multimedia

CSIE

Frequency Reuse


Fx: Set of frequency

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

CSIE

Reuse Distance

- For hexagonal cells, the reuse distance is given by

$$D = \sqrt{3N}R$$

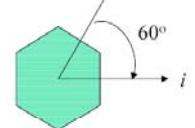
where R is cell radius and N is the reuse pattern (the cluster size or the number of cells per cluster).

- Reuse factor is

$$\frac{D}{R} = \sqrt{3N}$$

Wireless & Multimedia Network Laboratory™

Wireless Multimedia


CSIE

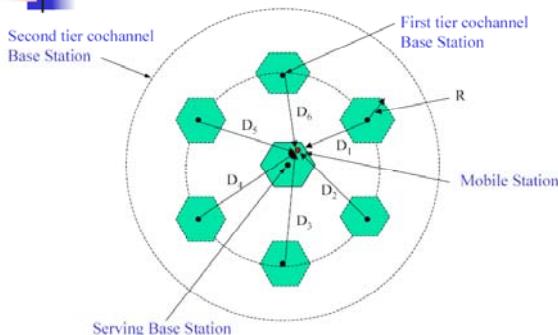
Reuse Distance (Cont'd)

- The cluster size or the number of cells per cluster is given by

$$N = i^2 + ij + j^2$$

where i and j are integers.

$$N = 1, 3, 4, 7, 9, 12, 13, 16, 19, 21, 28, \dots, \text{etc.}$$

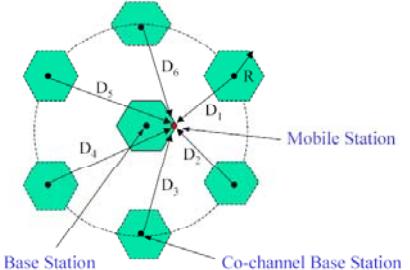

The popular value of N being 4 and 7.

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

CSIE

Cochannel Interference



Wireless & Multimedia Network Laboratory™

Wireless Multimedia

CSIE

Worst Case of Cochannel Interference

Wireless & Multimedia Network Laboratory™

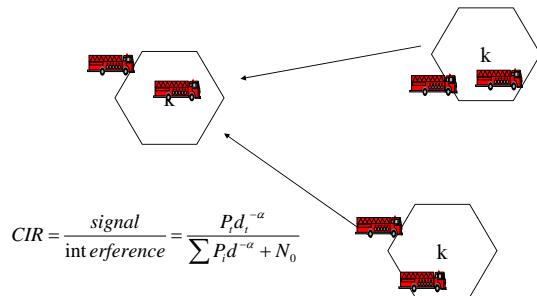
Wireless Multimedia

CSIE

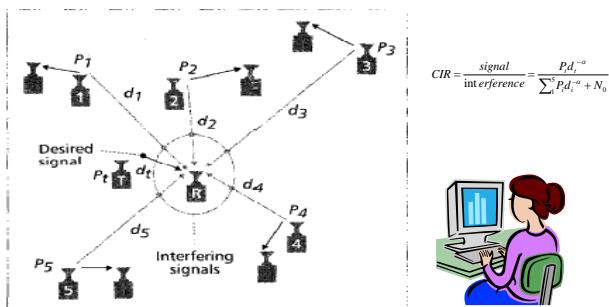
Cochannel Interference

- Cochannel interference ratio is given by

$$\frac{C}{I} = \frac{\text{Carrier}}{\text{Interference}} = \frac{C}{\sum_{k=1}^M I_k}$$


where I is co-channel interference and M is the maximum number of co-channel interfering cells.

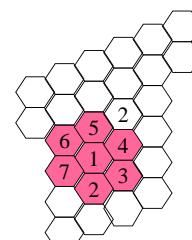
For $M = 6$, C/I is given by


$$\frac{C}{I} = \frac{C}{\sum_{k=1}^6 \left(\frac{D_k}{R} \right)^\gamma} \quad \text{where } \gamma \text{ is the propagation path loss slope and } \gamma = 2-5.$$

Channel Reuse

- The same channel is reused simultaneously by other sets (Co-channel)

Interference


How to improve CIR (Quality)

- Increase the transmitting power (Power Control)
- Increase the separating distance (Channel Reuse)

$$CIR = \frac{\text{signal}}{\text{interference}} = \frac{P_t d_t^{-\alpha}}{\sum P_i d_i^{-\alpha} N_0}$$

Approaches

- Fixed no flexibility
- Dynamic complexity
- Hybrid might be ok

Idealized grid of Hexagonal cells

Frequency Reuse

- Each BS is allocated a subset of carrier freqs
- Nearby BSs are allocated a different subset to avoid interference
- The total set is allocated to a small tessellating group of N neighboring BSs
 - Called "reuse cluster"
 - $1/N$ is the "reuse factor"
 - System capacity goes up by $\frac{\text{Area}_{\text{service}}}{N \times \text{Area}_{\text{cell}}}$
- Used in FDMA & TDMA based systems
 - Not required in CDMA which has universal frequency reuse
- Cells idealized as hexagons
 - Real cell footprints are amorphous
 - Hexagon close to a circle
 - Not appropriate for micro-cells, highways etc.

Reuse Cluster For Hexagonal Cells

- A tessellating group of N hexagonal cells is possibly only iff

- Frequency Reuse Distance D

- minimum distance between centers of co-channel cells
 - Depends on # of nearby cochannel cells, terrain, antenna height, transmit power etc.
- for hexagonal cells, $D = R \sqrt{3} N$
 - Where, R is the radius of hexagon (center to vertices)
- Increasing N, and therefore D, reduce co-channel interference (assuming R and transmit power are invariant)
- D/R is called the co-channel reuse ratio

Wireless & Multimedia Network Laboratory™

CSIE

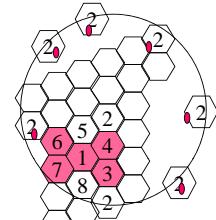
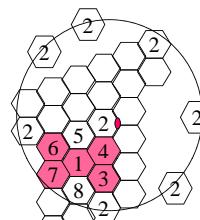
Determining Cluster Size

- If N is reduced while cell area is kept constant
 - more cluster needed to cover the service area
 - more channels per cell
 - more system capacity achieved
 - more co-channel interference co-channel cells are closer
- Goal is to maximize system capacity (or, capacity per unit area) subject to interference limitations
 - Minimum N such that carrier-to-interference ratio
 - $C/I \geq (C/I)_{min}$
 - Reverse co-channel interference
 - Interference at a BS from co-channel MHS in other BSs
 - Forward co-channel interference
 - Interference at a MH from other co-channel BSs
 - Adjacent channel interference
 - From signals in adjacent channel due to imperfect filters
 - Don't assign adjacent frequencies to the same cell and if possible immediate neighbors

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia

Determining Cluster Size N



- Goal is maximize system capacity (or, capacity per unit area) subject to interference limitations
 - minimum N such that carrier-to-interference ratio
 - $C/I \geq (C/I)_{min}$
 - reverse co-channel interference
 - interference at BS from co-channel MHS in other BSs
 - forward co-channel interference
 - interference at a MH from other co-channel BSs
 - adjacent channel interference
 - from signals in adjacent channels due to imperfect filters

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia

Calculating C/I

- Let i_0 be the number of co-interfering cells, and noise be negligible
- $C/I = \text{Carrier Power} / \text{All of the co-channel interference}$
- Where C is the desired carrier power and I_i is the signal of i-th interferer

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia

Calculating C/I

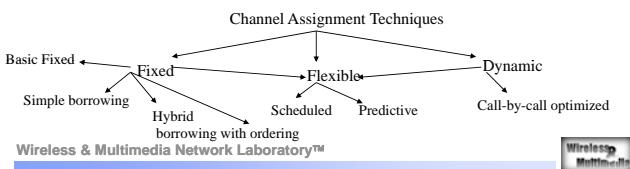
- Recall: $P_r(d) = P_r(d_0) \left(\frac{d}{d_0}\right)^n$
- For equal transmit powers and path loss exponents: $\frac{C}{I} = \frac{P_r^2}{\sum_{i=1}^n P_r^2}$
- Assume:
 - 1. n=4
 - 2. worst case is at $D_0 = R$ (when MH is at the fringe of its cell)
 - 3. only the six "first-tier" co-channel cells are considered
 - 4. $D_1 = D_2 = D_3 = D_4 = D_5 = D_6 = D$
- $C/I \sim (D/R)^4 / 6$ depends only on the ratio D/R

system	$(C/I)_{min}$	D/R	N
AMPS	18 dB	4.6	7
GSM	11 dB	3.0	4

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia

Microcells-Reducing Cell Area


- If cell area is reduced while N is kept constant
 - more clusters needed to cover the service area
 - C/I is unchanged because D/R is unchanged
 - system capacity grows quadratically with radius scale factor
- Small cells need lower RF transmitted power
 - longer battery, smaller mobile end-points
- Small cells result in higher cell-boundary crossing
 - more signalling overhead
 - performance degradation (more disruption)

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia

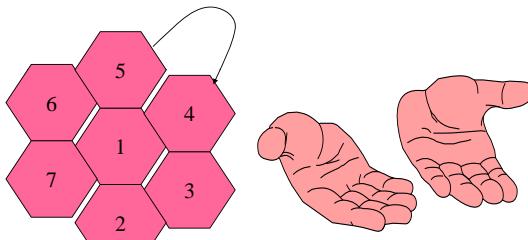
Channel Assignment in Cellular System

- ♦ Fundamental Problem
 - How to assign channels to requesting call at a BS ?
- ♦ Goal: Maximum Spectral Efficiency for a specified grade of service and a given degree of computational complexity
 - probability of new call blocking
 - probability of forced termination
 - link quality
- ♦ Maybe a "new" connection, or a connection undergoing "handoff"

Channel Assignment Techniques

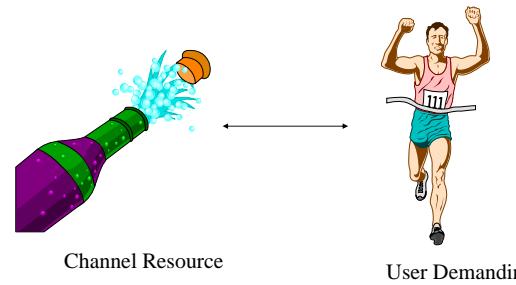
- ♦ Fixed
 - Basic Fixed
 - Simple borrowing
 - Hybrid borrowing with ordering
- ♦ Flexible
 - scheduled
 - predictive
- ♦ Dynamic
 - call-by-call optimized

Fixed Channel Assignment


- ♦ Basic strategy
 - each cell is statically allocated a subset of channels
 - a requesting call in the cell can only use channel allocated to that cell
 - if no available channel in that cell, the call is blocked
 - MSC only informs new BS about hand-off, & keep track of serving channel

Fixed Channel Assignment

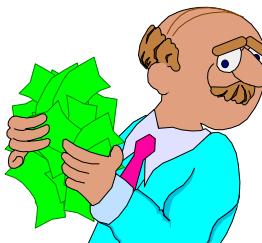
- ♦ Variation
 - borrow channel from neighboring BSs if all channels busy at BS under MSC supervision, and only if does not cause interference borrowed channels are "locked"
 - hybrid channel assignment
 - two groups of channels: fixed and borrowable
 - ratio determined a priori depending on traffic estimate
 - borrow-with-channel-ordering
 - fixed-to-borrowable channel ration varied on changing traffic condition
 - channels are rank ordered


Fixed Channel Assignment

- ♦ We might borrow from neighboring cells

Traffic & Resource

- ♦ Uniform Distribution



Wireless & Multimedia Network Laboratory™

Dynamic & Assignment

- ♦ Maybe I should assign you based on current condition

Wireless & Multimedia Network Laboratory™

CSIE

Issues to consider

- ♦ Selected Cost
- ♦ Blocking Probability
- ♦ Reuse Distance
- ♦ CIR
- ♦ QoS (Quality of Service)
 - current value
 - handoff value

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia

Dynamic Channel Assignment (DCA)

- ♦ Basic Features
 - channels not allocated to cells permanently
 - MSC allocated channel to a call from the global pool taking into account
 - Advantage: channel assignment may be retained across hand-off
 - Disadvantage: interruptions, deadlocks, instability

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia

CSIE

Dynamic Channel Assignment

- ♦ DCA algorithms differ in distribution of control among BSs and MSC
 - Centralized DCA
 - ♦ can do a globally optimized channel assignment and call rearrangement BSs need to communicate with MSC e.g. Maximum Packing
 - Decentralized & Fully Decentralized DCA
 - ♦ rely only on local monitoring to make channel assignments
 - ♦ require limited local communication among cluster of BSs

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia

Flexible Channel Assignment

- ♦ Combine aspects of FCA and DCA
- ♦ Each cell is assigned a fixed set of channel
- ♦ Plus, a pool of channels is reserved for flexible assignment
 - MSC assigns these channels
- ♦ Flexible assignment strategies
 - Scheduled assignment: rely on known foreseeable changes in traffic pattern
 - Predictive assignment: based on measured traffic load at every BS

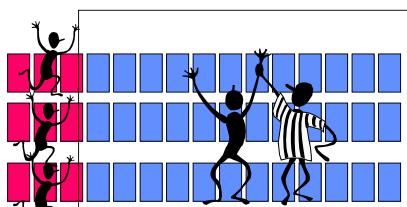
Wireless & Multimedia Network Laboratory™

Wireless & Multimedia

CSIE

MSC will pick up one for MH

- ♦ Here you go !



Wireless & Multimedia Network Laboratory™

Wireless & Multimedia

Flexible Channel Assignment

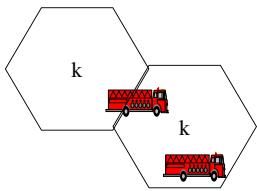
- Assign some of channel for minimum traffic requirement
- Keep all of the others in a service pool

Wireless & Multimedia Network Laboratory™

CSE

CSE

Handoff Handling

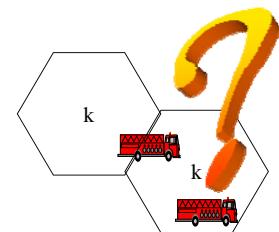

Keep the QoS while the user moves

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia

Handling Handoffs

- Handoff
 - change the radio channel
 - the same base station
 - the new base station
 - due to
 - the radio link degradation
 - channel reorder


Wireless & Multimedia Network Laboratory™

Wireless & Multimedia

CSE

What is going to happen ?

- The new cell must assign new channel
- We must reserve some hand off channel
- Some connection must be blocked !!

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia

Solutions for handoff

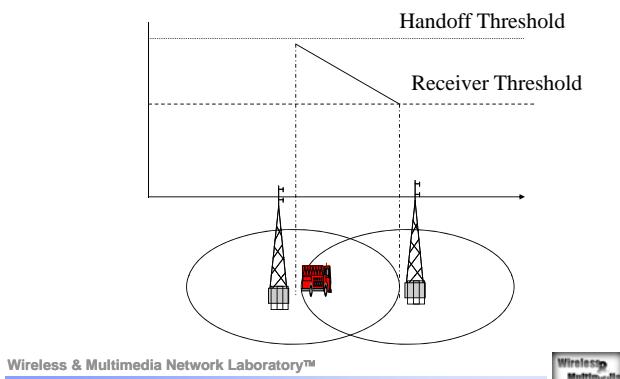
- Handoff Priority
 - guard channel for handoff
 - how much, inefficiency
- Queueing of Handoff request
 - take a seat for future handoff

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia

CSE

Guard Channel

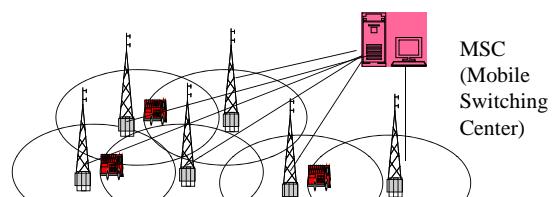

Reserved for Handoff

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia

Thresholds

CSIE

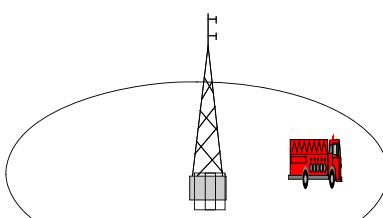

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

Who is going to take over Handoff

CSIE

- ◆ Yourself (Mobile Users)
- ◆ Infrastructure Network
 - Base Station
 - Mobile Switching Center


Wireless & Multimedia Network Laboratory™

Wireless Multimedia

Negotiating Procedure

CSIE

- ◆ Base Station
 - detect the receiving signal from MH
 - send a measurement order
- ◆ Mobile Host
 - measure on demand
 - measure all the time

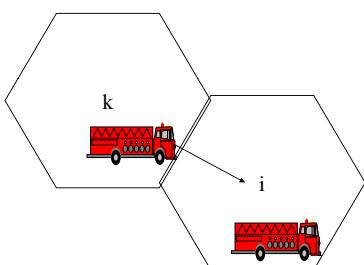
Wireless & Multimedia Network Laboratory™

Wireless Multimedia

Hand off Procedure

CSIE

- ◆ Decide the New Base Station
 - MSC picks the best for MH
 - MSC picks the candidate MH specify
- ◆ New Base Station decides to accept or not ?


Wireless & Multimedia Network Laboratory™

Wireless Multimedia

Call Queueing Scheme

CSIE

- ◆ Queue for a channel, handoff threshold, receiver threshold

Wireless & Multimedia Network Laboratory™

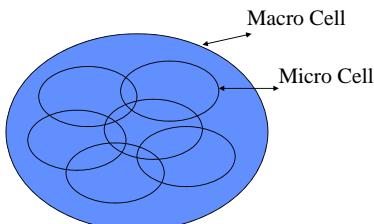
Wireless Multimedia

Trends in Hand over Design

CSIE

- ◆ Hand over and Hand off are the same
- ◆ Small cells -> more hand over
 - allocate network resource to reroute the call to the new base station
 - if not quick enough, QoS will drop dramatically

QoS ←→ Hand off


Wireless & Multimedia Network Laboratory™

Wireless Multimedia

Mobility Solution

CSE

- Multi-tiers
 - micro-cell and macro-cell
 - based on the speed
 - different schemes

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

Velocity Estimation

CSE

- Doppler Frequency is known -> Estimation of the velocity of the mobile users
- Mobility is estimated from the time spent in a cell

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

Handoff in Cellular Networks

CSE

- Transfer of mobile to a new channel when it crosses cell boundary
 - identify new base station, assign new channel
 - hand-off initiated at a carefully chosen signal level
 - avoid triggering handoff due to momentary fades

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

Hand-off

CSE

- Handoff delay & interruption
 - dropped (or on hold) connection if signal too low before handoff processed
 - performance degradation (disruption) in data stream
- Prioritizing handoffs to reduce probability of dropped call
 - connection dropped if no spare channels in new cell
 - guard channel : subset of channels reserved for handoff requests works well with DCA
- handoff queuing : time interval between handoff trigger & connection drop cell overlap, speed of mobile

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

Handoff in Cellular Networks

CSE

- Probability of unnecessary Handoffs
- Hard vs. Soft handoff
- Hand off rate
- Handoff also triggers rerouting in the network layer
- Handoff is tightly coupled to DCA, MAC, and Networking Routing

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

Handoff Strategies (I)

CSE

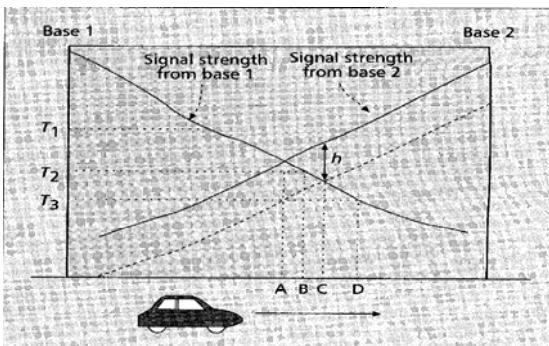
- Network controlled handoff (NCHO)
 - used in first generation analog cellular systems
 - link quality is only monitored by the serving BS and surrounding BS
 - handoff decision is made by the network (typically central agent)
 - handoff delays of several seconds (10) and infrequent link quality updates

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

Handoff Strategies (II)

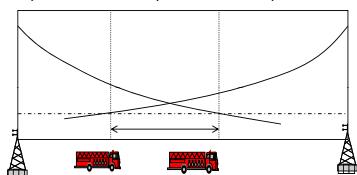
- Mobile assisted handoff
 - used in second generation digital cellular system
 - both the mobile and the serving BS measure link quality
 - only mobile measures link quality of alternate BSs
 - mobile periodically sends the link quality measurements to serving BS
 - handoff decision is made by the network
 - handoff delays of few seconds (1-2) and frequent link quality updates



Handoff Strategies (III)

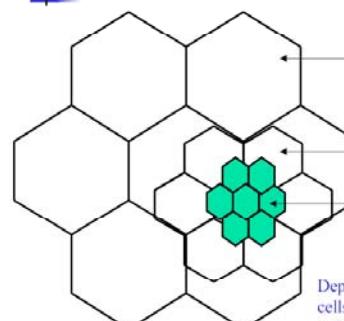
- Mobile controlled hand off
 - used in some new digital cellular systems
 - link quality measurements as in MAHO
 - serving BS relays link quality measurements to mobile
 - handoff decision is made by the mobile
 - handoff delays of about 100 ms

Handoff Scenario

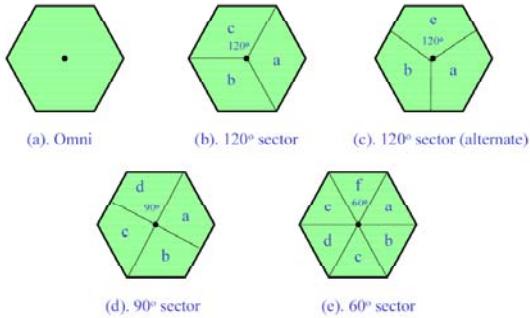


Handoff Initiation Strategies

- Relative signal strength
 - Always choose the strongest received BS
 - Too many unnecessary hand-offs
- Relative signal strength with threshold
 - Current signal < threshold, and other BS is stronger
 - May let MH stray too far into other cell; overlapping cell coverage
 - Effectiveness depends on knowledge of cross-over signal
- Relative signal strength with hysteresis (plus optionally dwell timer)
 - Hand-off only if new BS's signal is stronger by a hysteresis margin
 - Prevents ping-pong effect from rapid fluctuations
- Relative signal strength with hysteresis & Threshold
 - Hand-off only if current BS's signal below a threshold, and new BS's signal is stronger by the hysteresis margin
- Prediction techniques
 - Decide based on expected future value of received signal strength


Handoff Queueing

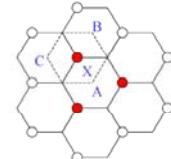
- Goal is to reduce handoff failure probability
 - Better to block a new call than to drop an existing one
 - Exploits overlap between cells to queue hand-off request in advance


- Handoff request is issued according to handoff initiation strategy
 - Request is queued
 - Decision must be made (handoff or failure) while MH still in handoff interval

Cell Splitting

Depending on traffic patterns the smaller cells may be activated/deactivated in order to efficiently use cell resources.

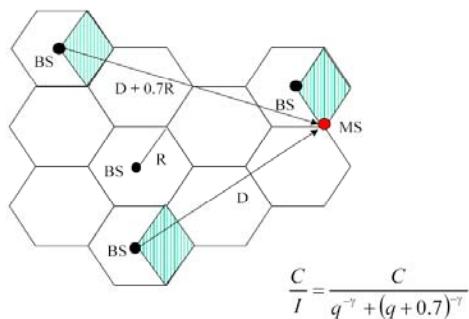
Cell Sectors by Antenna Design



Wireless & Multimedia Network Laboratory™

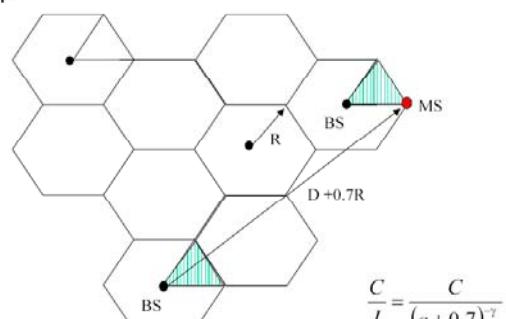
CSIE

Cell Sectors by Antenna Design


- Placing directional transmitters at corners where three adjacent cells meet

Wireless & Multimedia Network Laboratory™

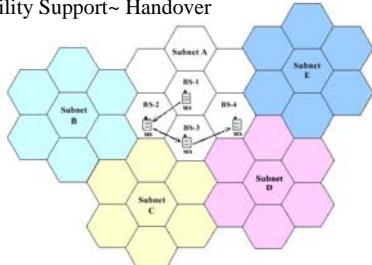
Wireless & Multimedia


Worst Case for Forward Channel Interference in Three-sectors

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia

Worst Case for Forward Channel Interference in Six-sectors


Wireless & Multimedia Network Laboratory™

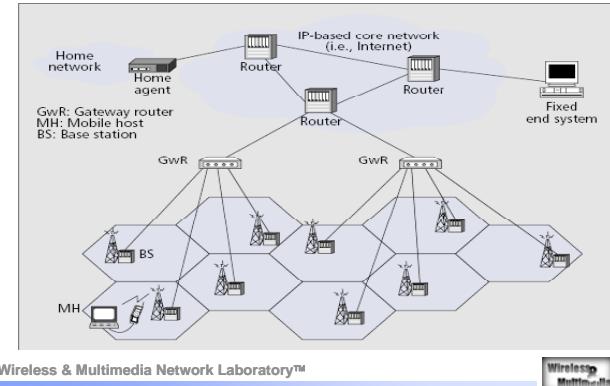
Wireless & Multimedia

Handoff Parameters

Mobility Support~ Handover

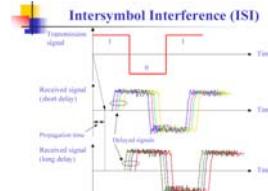
Wireless & Multimedia Network Laboratory™

Wireless & Multimedia

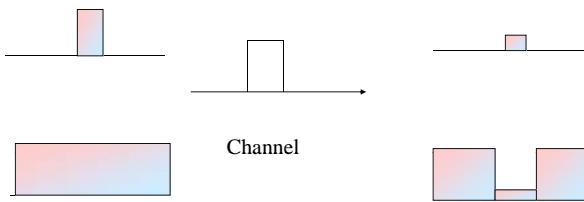

Performance Index

- Traffic Request: (QoS)
 - New Call Probability
 - Handoff Call Probability
 - Traffic Requirements (Bandwidth, delay)
 - Call Holding Time
 - Dwell Time (Channel Occupation) for a handoff call or new call
 - Delay/Distance/Un-necessary handoff
- Mobility:
 - Resident time in a cell
 - Hand off rate
- Channel Resource:
 - Channel assignment
 - Blocking Rate (New Call blocking rate, Handoff blocking rate)

Wireless & Multimedia Network Laboratory™

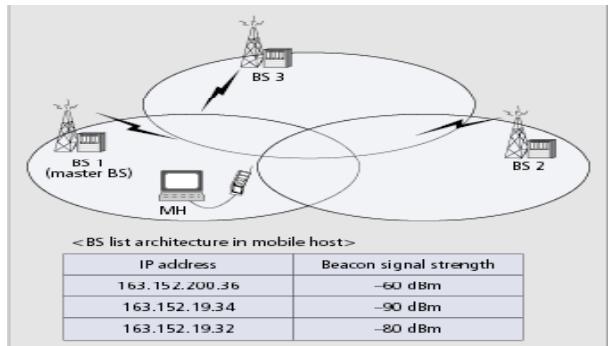

Wireless & Multimedia

IP-based 3G Wireless Network


Multi-path Effect (Time)

- RMS > Symbol Duration:
 - ISI (handled by Equalizer)
- RMS < Symbol Duration:
 - More than one paths signal arrive (might have different phases)

Coherence Bandwidth (Bandwidth)


- Coherence Bandwidth < BW of signal:
 - Frequency Selective Fading
- Coherence Bandwidth > BW of signal:
 - Flat Fading

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

BS and BS list in MS

