SIP: Session Initiation Protocol

National Taiwan University
Department of Computer Science and Information Engineering

Outline

- o Introduction to SIP
- o SIP Architecture
- o Mobility Management
- o SIP and 3G Networks

Department of Computer Science and Information Engineering

Session Initiation Protocol (SIP)

Department of Computer Science and Information Engineering

Session Initiation Protocol

- o SIP is originally proposed by Columbia University and is specified by IETF.
- o SIP is an end-to-end application-layer protocol
 - Establish, modify and terminate interactive multimedia sessions, e.g., VoIP and video conference, between SIPbased users.
 - Signaling protocol.
 - Client-Server framework.
- o H.323 is a alternative signaling protocol to support

Department of Computer Science and Information Engineering

Microsoft Voice .NET Services

Department of Computer Science and Information Engineering

Features of SIP

- Text-based

 - Easy debugging Flexible and extensible
- o Less signaling comparing to H.323
- o Transport-layer independence
 - UDP is commonly used.
- o Forking a call request

 - Call forwarding
 Parallel rings at different places

Department of Computer Science and Information Engineering

H.323

The H.323 standard

The first version of H.325, which was intended for multimedia communications over local-area networks (I.ANs), appeared in 1996. Many found it to be lacking the functions needed for supporting VoIP in a broader environment. Consequently it was revised and H.323 version 2:—Packet-based multimedia communications systems—was released in 1988. This version of H.323 bas received more support than its predecessor, particularly among those network operators and equipment vendors who have a background in more traditional telephony H.323 is not an individual protocol, rather it is a complete wertcally integrated unite of protocolls that defines every component of a VoIP network—reminiable, guiceways, guelkespers, MCUs etandarde

- O.931 for call set-up
- · H.245 for exchanging information on ter-
- capabilities and creation of media channels
- H.245 for RAS-registration, admission and state
- RTP/RTCP for sequencing audio and video presented.
- . T.120 for data conferencing.

All these protocols—involving dozens of backens forth messages—are called upon in setting up a simp point-to-point voice call. In contrast, StP. is a simp protocol that specifies only what it needs to. For

Department of Computer Science and Information Engineering

o Introduction to SIP

- o SIP Architecture
- Mobility management
- o SIP and 3G Networks

Department of Computer Science and Information Engineering

Four SIP Logical Entities

- User agent
- Proxy Server
- o Registrar
- o Redirect Server

Department of Computer Science and Information Engineering

User Agent

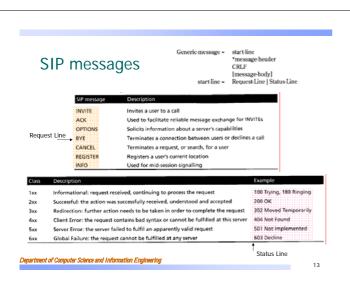
- User applications
- o Both software and hardware

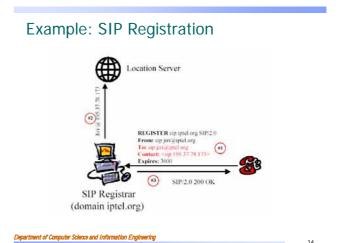
Department of Computer Science and Information Engineering

10

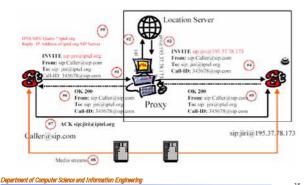
Type of SIP Servers

- Proxy Server
 - Application layer router used to relay SIP messages.
- Registrar
 - Accept registration request from user agent.
- Redirect Server
 - Redirects caller to other servers.

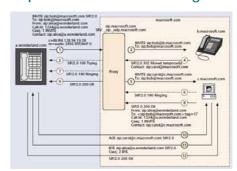

Typically, "SIP server" implements the functionality of Proxy, Registrar and Redirect Servers.


Department of Computer Science and Information Engineering

SIP Addressing


- o SIP give you a globally reachable address.
 - Email-like address.
 - $\circ \ sip: leonard@a.ntu.edu.tw$
 - o sip: 82828888@a.ntu.edu.tw
- User agents bind this address to Registrar by using SIP REGISTER message.
- Each user agent communicates with one another by using this address.

Department of Computer Science and Information Engineering



Example: Session Establishment

15

Example: Session Forwarding

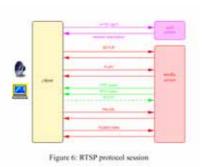
Department of Computer Science and Information Engineering

10

Session Description Protocol (SDP)

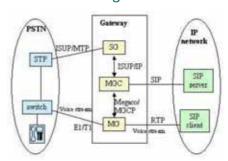
- o The message body of SIP
- SDP is used to describe a multimedia session

u = http://www.ietf.org
e = g.bell@bell-telephone.com
c = IN IP4 132.151.1.19
m = audio 3456 RTP/AVP 96
a = rtpmap:96 VDVI/8000/1
m = video 3458 RTP/AVP 31
m = application 32416 udp wb
a = orient:portrait


Department of Computer Science and Information Engineering

RTP, RTCP, and RTSP

- o Real Time Transport Protocol (RTP)
 - Encode and decode media stream
 - Recover the possible loss and jitter
- o Real Time Control Protocol (RTCP)
 - QoS feedback
 - ...
- o Real Time Streaming Protocol (RTSP)
 - Control stored media
 - VCR remote control
 - Support play, record, pause, fast forward, and etc.


Department of Computer Science and Information Engineering

RTSP protocol session

Department of Computer Science and Information Engineering

SIP Interworking with the SS7

Department of Computer Science and Information Engineering

20

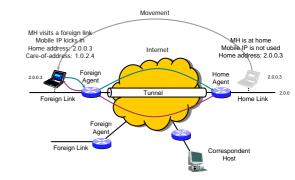
- Introduction to SIP
- o SIP Architecture
- o Mobility management
- o SIP and 3G Networks

Department of Computer Science and Information Engineering

21

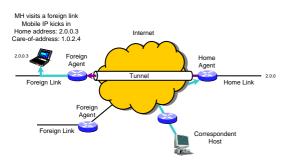
Wireless Technologies Convergence

Department of Computer Science and Information Engineering


22

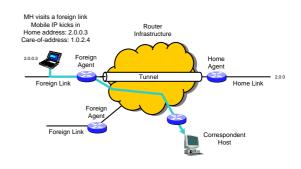
Mobility Management

- Mobility Classification
 - Roaming
 - Macro-mobility
 - o Domain mobility
 - Micro-mobility
 - Subnet mobility
- Solutions
 - Network layer solution: Mobile IP
 - Application layer solution: SIP


Department of Computer Science and Information Engineering

Mobile IPv4: Registration Example

Department of Computer Science and Information Engineering


Mobile IPv4: CH-to-MH Routing Example

Department of Computer Science and Information Engineering

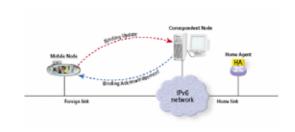
25

Mobile IPv4: MH-to-CH Routing Example

Department of Computer Science and Information Engineering

26

Mobile IPv4

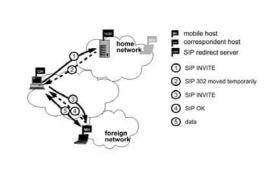

- o Triangle route problem
- Micro-mobility improvement
 - Cellular IP, Campbell in Column University.
 - Regional Registration, Perkins, Nokia Center.

• ...

Department of Computer Science and Information Engineering

2

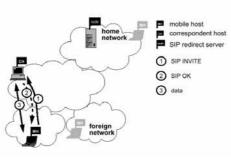
Mobile IPv6: Binding Update


Department of Computer Science and Information Engineering

28

Application Layer Mobility Using SIP

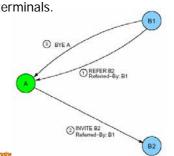
- o Terminal Mobility
- Session Mobility


Terminal Mobility

Department of Computer Science and Information Engineering

Department of Computer Science and Information Engineering

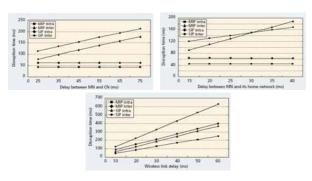
Terminal Mobility



Department of Computer Science and Information Engineering

31

Session Mobility

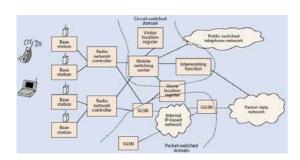

 Allow a user to maintain a media session even while changing terminals.

Department of Computer Science and Information Engine

32

Comparison

Department of Computer Science and Information Engineering


33

- o Introduction to SIP
- o SIP Architecture
- Internetworking
- Mobility management
- o SIP and 3G Networks

Department of Computer Science and Information Engineering

3

3G UMTS

Department of Computer Science and Information Engineering

Pure IP connectivity vs. Dedicated Multimedia subsystem

- Some mechanisms should be defined in 3G to support multimedia session transfers?
- Market Perspective
 - Subscriber perspective
 - Network operator perspective
 - Third-party service provider perspective

Department of Computer Science and Information Engineering

Subscriber Perspective

Advantages

- It is free and flexible to choose applications.
- Reuse application in wired-networks

Disadvantage

- Trouble to choose the application and service provider.
- The demand of service package and one bill.
- Some application may lose QoS guarantee.

Department of Computer Science and Information Engineering

37

Network Operator Perspective

Advantages

 Operators may not have experience in IP multimedia applications. They only focus in the IP connectivity.

Disadvantages

- Circuit-switch revenue will be decayed.
- Loss possible revenue for paving basic IP multimedia application, e.g., VoIP.
- Issue of customer dissatisfaction for IP multimedia applications.

Department of Computer Science and Information Engineering

3

Third-Party Service Provider Perspective

Advantages

 They don't have to bother the peculiarity of wireless networks. They don not need extensive knowledge of wireless telecommunication networks and protocols.

Disadvantages

• They are unable to take advantage of the wireless network, e.g., user location information.

Department of Computer Science and Information Engineering

39

IP Multimedia Subsystem (IMS)

- o Appear in Release 5 and beyond
- IMS comprises the network elements for control of multimedia sessions.
- o Network operator provides both
 - IP connectivity
 - Multimedia session management

Department of Computer Science and Information Engineering

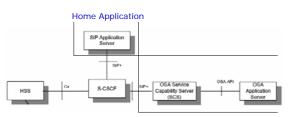
40

Basic Add-in Features

- Call State Control Function (CSCF)
 - Provisioning of call control for IP multimedia applications. P-CSCF, I-CSCF, S-CSCF.
- o Open Service Access (OSA)
 - Third-party are expected to stimulate innovative application, taking advantage of knowing the capabilities provided by wireless network providers.

Department of Computer Science and Information Engineering

IP Multimedia Subsystem


Media Resource
Function Processor

Media Resource
Function Controller

Boundary between
Indicator betw

Perform internetworking related functions with PSTN

Serving-CSCF

Third-paty application

Department of Computer Science and Information Engineering

43

S-CSCF

- o Session control.
- o Retrieve the information from HSS.
- o Connect to Application Servers.
- Each user agent needs to attach a S-CSCF before setup a session.
- o Analog to Registrar in SIP.

Department of Computer Science and Information Engineering

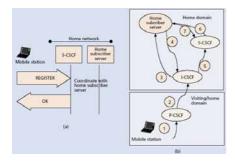
44

Proxy-CSCF (P-CSCF)

- o The first contact point within the IMS.
- Mobile node communicate with S-CSCF via P-CSCF. Direct communication with S-CSCF is not allowed.
 - Integrity protection of SIP signaling.
 - Compression due to sparse wireless resource (Sigcom).
 - Inspect SIP signaling if the mobile node is in a visited network.

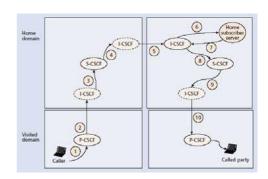
Department of Computer Science and Information Engineering

45


Interrogating-CSCF (I-CSCF)

- o Entry Point in a network operator.
- Hide the configurations, topology and capacity from outside.
- o Analog to Proxy and redirect servers in SIP.

Department of Computer Science and Information Engineering


46

Registration

Department of Computer Science and Information Engineering

Session Setup

Department of Computer Science and Information Engineering

Reference

Charles E. Perkins http://people.nokia.net/~charliep http://www.cs.columbia.edu/sip Mobile IP:

SIP:

IMS: 3GPP TS 23.228 v2.0 http://www.3gpp.org/ftp Thanks !!

National Taiwan University
Department of Computer Science and Information Engineering

Department of Computer Science and Information Engineering