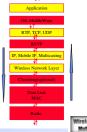


Topic 9:

Ad hoc Network (Mesh Network)


Eric Wu Dec 10, 2004

Wireless & Multimedia Network Laboratory™

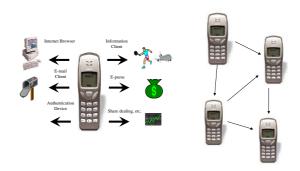
Two Issues for Collaborative Computing

- Network Layer Collaborative:
 - Ad hoc~ Infrastructure-less ~ support "anytime, anywhere"
 - To support communications between ad hoc nodes
 - To guide the packets effectively to satisfy different requirements
 - To adjust to dynamical topology change (due to Mobility)
- Application Collaborative:
 - Video Conferencing, News Broadcasting
 - Group of users to share the same information
 - Mobility Support

Wireless & Multimedia Network Laboratory™

Trend Evolution

- IP success
 - The involvement and level of responsibility of end users have dramatically increased
 - . The freedom has fueled creativity
- Infrastructure-less, self-organized networks
 - The network runs solely by operation of end users
 - Progress of electronic integration and wireless communication
 - Complement these infrastructures in cases where cost, constraints, or environment require self-organized solutions
 - Will be interconnected with the Internet and cellular networks


Wireless & Multimedia Network Laboratory™

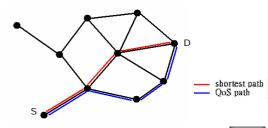
CS'E

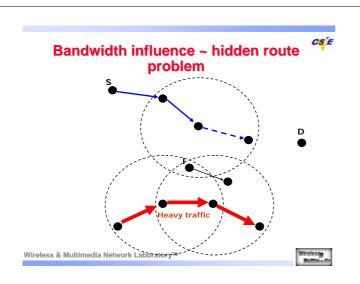
Mobile Computing to Pervasive Computing

Wireless & Multimedia Network Laboratory™

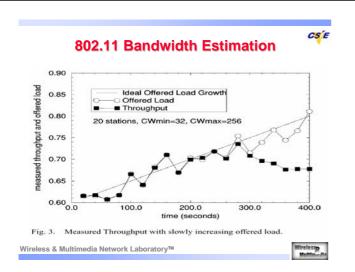
CS'E

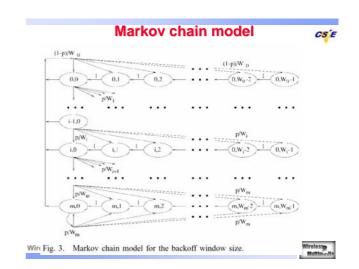
Mesh Network Scenario

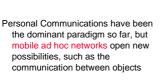



Wirelesso Multimedia

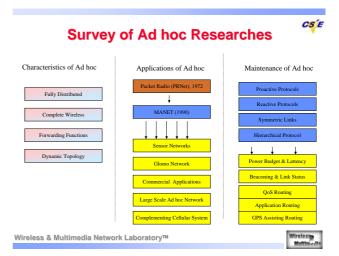
Why not existing routing protocol


 Existing routing protocol search for shortest path not guarantee any QoS.





Traffic aggregation of existing flow Bself: Tx or Rx by I. Bneighborhood: traffic between I's neighbors. Bboundary: connection cross I's access range. E Bavailable $(I) = B - \sum_{J \in N(I)} B_{\text{self}}(J)$. Wireless & Multimedia Network LaboratoryTM


Observations

Wireless & Multimedia Network Laboratory™

Wirelessp Multimedia

CS'E

Reading

- [Jean2001] Jean-Pieere Hubaux, Thumas Gross, Jean-Yues Le Boudec, and Martin Vetterli, "Toward Self-Organized Mobile Ad Hoc Networks: The Terminodes Project"
- [Prasant 2003] Prasant Morhapatra, Jian Li, and Chao Gui, "QoS in Mobile Ad Hoc Networks", IEEE Wireless Communications, June 2003

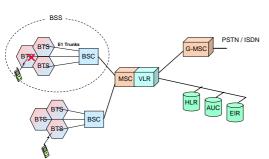
Wireless & Multimedia Network Laboratory™

CS'E

CS'E

Agenda

- Overview of Mobile Ad Hoc Networks
- Major Technical challenges:
 - Networking
 - Real time services
 - Software
- Long-term Research Project:
 - Terminodes Projects

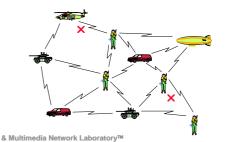


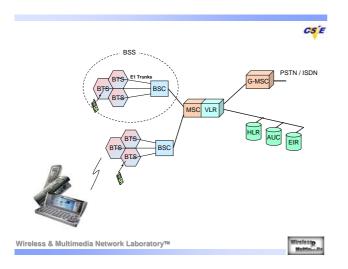
Wireless & Multimedia Network Laboratory™

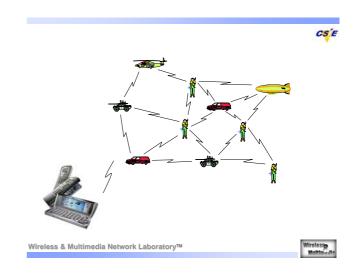
CS'E

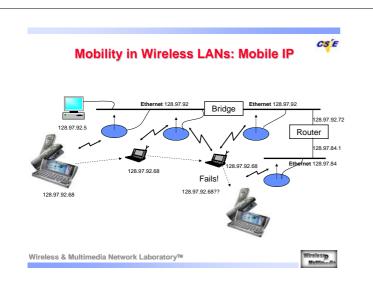
Cellular based

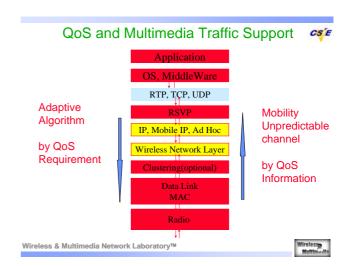
GSM Network Infrastructure


Wireless & Multimedia Network Laboratory™


Ad-hoc network




- No centralized controller (base stations)
- No wired inter-connection backbone
- Forwarding function should be provided by mobile nodes



Introduction

Self-Organized Mobile Ad Hoc Networks

Wireless & Multimedia Network Laboratory™

Overview (MANET)

- Packet Radio Networks ('70)
 - Research Results
 Radio Resource Allocation
 Network Organization
 - An Individual, handheld device
 - Military application (provide person-to-person communications on the battlefield)

Wireless & Multimedia Network Laboratory™

MANET

- Potential Applications:
 - Manmade disastersRelief operation
 - Military applications
 - Car-based networks
 - Sensor networks
 - The Provision of wireless connectivity in remote areas
 - Collaborative Computing, Video Conferences

Wireless & Multimedia Network Laboratory™

MANET, Peculiarities

- They can act independent of any provider
- They have to be highly cooperative: The tasks are distributed over the nodes
- Any operation is the result of the collaboration of a group of them
- The nodes rely on batteries for their energy, energy saving
- Power aware: the set of functions offered by a node depends on its available power
- Highly dynamic topology
- Security is difficult to implement

Technical Issues

- Routing
- Mobility Management
- IP Address
- Transport Layer
- Air Interface
- Security
- Power Management
- Standards and Products

Wireless & Multimedia Network Laboratory™

Routing

- Ad hoc routing
 - Different from traditional solutions in the Internet or cellular phone networks (relative stable, distributed routing databases)
 - IETF (The Internet Engineering Task Force) MANET address the challenge
 - Distant vector, links state, source routing (table driven, on-demand)
 - Geographic methods: nodes are informed of their own geographic position

Wireless & Multimedia Network Laboratory™

Routing Protocol

- Traditional Routing
 - Distance Vector (Bellman Ford)
 - Link State
- Ad Hoc Routing Protocols
 - DSDV
 - DSR
 - AODV
 - TORA

Wireless & Multimedia Network Laboratory™

Traditional Routing

С

B-C-1

R-R-1

A-B-2

2

В

A-B-1

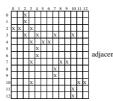
- Distance Vector (Table Driven)
 - Each node maintains its own routing table
 - Routing table contains
 - destination node indexnext hop
 - mext nop
 metric
 - metric
 - Periodic routing table exchange
- Disadvantage
 - Count-Infinity Problem
 - Convergence Problem

x 1 x 3 x 3 x 5 5 x ∞

Α

B-A-1

R-R-1


Wireless & Multimedia Network Laboratory™

Wirelesso Multimedia

Traditional Routing (Cont.)

- Link State Routing
- Procedures
 - Neighbor Discovery
 - Routing Information Broadcast
 - Shortest Path Finding (e.g. Dijkstra's algorithm)
- Disadvantage
 - short-live looping problem

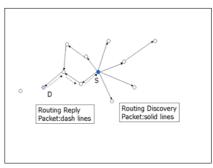
adjacency matrix

Wireless & Multimedia Network Laboratory™

Ad Hoc Routing - DSDV

- DSD
 - Destination Sequence Distance Vector Routing
 - Each route information is labeled with a increasing sequence number
 - Route info. with greatest number will be update
 - Route info. of broken link is broadcast with odd sequence one greater than the original sequence number
- Contribution
 - Main contribution of DSDV is freedom-loop guarantee
- Disadvantage
 - The periodic broadcast adds the overhead into the network

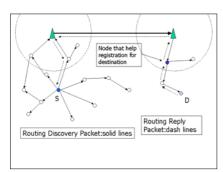
Ad Hoc Routing - DSR


- DSR
 - Dynamic Source Routing
 - Route Discovery
 - Source node flooding routing request (RREQ) packet
 - Destination (inter-node) node reply RREP packet that piggybacks the route info.
 - Source node caches the route info
 - Route Maintenance
 - The route info. will be remove after receiving RERR packet
- Advantage
 - Requires no periodical routing exchange
- Disadvantage
 - packet is larger because of carrying route info.

Wireless & Multimedia Network Laboratory™

Wirelesso Multimed

Routing in ad hoc network environment only



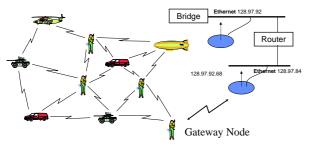
Wireless & Multimedia Network Laboratory™

CS'E

Routing in heterogeneous environment

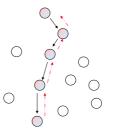
Wireless & Multimedia Network Laboratory™

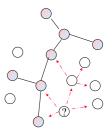
Heterogeneous Network Support



Wireless & Multimedia Network Laboratory™

Internet Interconnection and Mobile IP


 DSR support the seamless interoperation between an ad hoc network and the Internet


Wireless & Multimedia Network Laboratory™

Wirelessp Multimedia

On Demand Support Multicast & QoS

Bandwidth (QoS) Parameters

Multicast Join

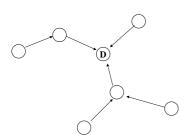
Ad Hoc Routing - AODV

- AODV
 - Ad-hoc On-demand Distance Vector
 - Shares the advantages of DSR and distance vector
 - Route Discovery
 - Similar to DSR
 - Route Maintenance Table Entry
 - Destination IP, Destination Sequence, Hop Count, Next Hop, Life Time
 - The route info. Is invalid if
 - Life Time is expired
 - Receive RERR packet

Wireless & Multimedia Network Laboratory™

CS'E

Ad Hoc Routing - TORA


- TORA
 - Temporally-Ordered Routing Algorithm
 - Routing procedures
 - Flood QUERY packet
 - UPDATE packet will be broadcast from destination or inter-node
 - HEIGHT info. is appended to UPDATE packet
 - the node receives UPDATE packet set its height and the forwarding UPDATE packet's height to a value one greater than original one
 - Source node send data to the destination via neighbor that have lower height with respect to the destination
- Advantage
 - Minimizes the reaction due to changes of network topology
- Disadvantage
 - Depend on Internet MANET encapsulation Protocol, the overhead is large

Wireless & Multimedia Network Laboratory™

CS E

Ad Hoc Routing - TORA (Cont.)

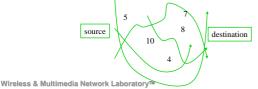
Directed acyclic graph rooted at destination

Wireless & Multimedia Network Laboratory™

ABR (Associativity-Based Routing)

- The metric is called degree of association stability.
- Basic Idea:
 - Each node periodically generates a beacon to signify its existence.
 - On receipt of the beacon, a neighboring node will increase the "tick" of the sender by 1.
 - A higher degree of association stability (i.e., ticks) may indicate a low mobility of that node.
 - A low degree of association stability may indicate a high mobility of that node.
 - When a link becomes broken, the node will set the tick of the other node to 0

Wireless & Multimedia Network Laboratory™



CS E

ABR Outline

- Route Discovery:
 - (similar to DSR)
 - On needing a route, a host will broadcast a ROUTE_REQUEST packet.
 - Each receiving host will append its address to the packet.
 - The association stability (represented by "ticks") is also appended in the ROUTE_REQUEST packet.
 - The destination node will select the best route (in terms of association stability), and then respond a packet to the source.

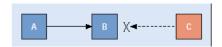
Wirelessp

• Route Reconstruction:

- On route error, a node will perform a local search in hope of rebuild the path.
- If the local search fails, a ROUTE_ERROR will be reported to the source.

Mobility Management

- Broadcasting a paging message the whole network: won't scale well
- Different from centralized servers (either HLR in GSM), location must be distributed among the nodes
- Prediction of the future locations


Wireless & Multimedia Network Laboratory™

Radio Interface

CSMA/CA: hidden terminal

 Defining master and slaves roles: Bluetooth

Wireless & Multimedia Network Laboratory™

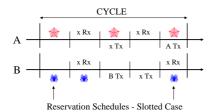
MACA/PR

- The key component
 - the MAC protocol for data transmission
 - Reservation scheme for real-time connection setup
 - QoS Routing algorithm

Wireless & Multimedia Network Laboratory™

MACA/PR - MAC

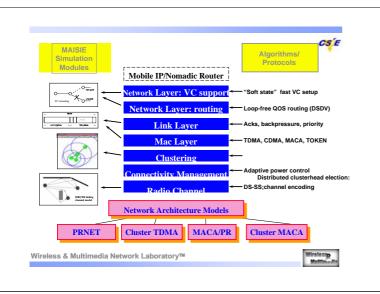
- Data-gram Traffic
 - RTS CTS PKT ACK
 - <RTS,CTS> for hidden terminal avoidance, ACK for retransmission
- Real-Time Traffic
 - < RTS CTS > PKT ACK
 - <RTS,CTS> used for first time transmission to set up the reservation
 - ACK for renewing the reservation, not recovery

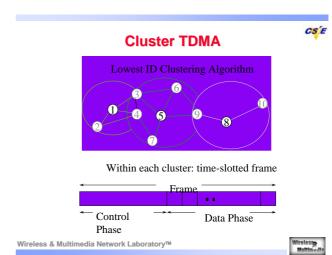

Wireless & Multimedia Network Laboratory™

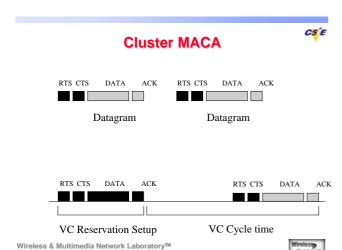
MACA/PR - Reservation/QoS Routing

- CYCLE is the max. interval allowed between two real-time packets
- Each node maintains its own reservation table
- DSDV routing is employed
- Bandwidth info. can be easily obtained via reservation table

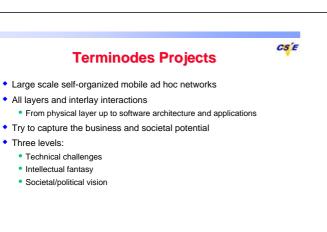
Wireless & Multimedia Network Laboratory™

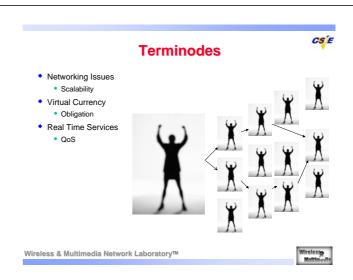



MACA/PR - Properties



- Asynchronous approach
- Low latency, low packet loss rate
 - Hidden Terminal Problem is solve automatically
- Fair bandwidth sharing
- Good mobility handling
 - Maintain secondary routing path
- Low implementation costs





Wirelessp Multimedia

CS'E **Networking Issues** Wireless & Multimedia Network Laboratory™

Routing for Terminode

CS'E

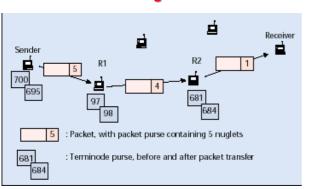
- Each Terminode has
 - A permanent unique node identier, EUI (End System Unique Identifier)
 - Location-Dependent Address (LDA)
- Geodesic Packet Forwarding:
 - The packet is forwarded to the neighbor closest to the direction in which the destination is located

Virtual Currency (Nuglet)

Service Availability is a major requirement for self-organization

• The End users must be given incentive to cooperate

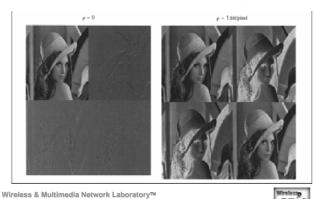
They must be encouraged to not overload the network


- Terminode local routing
 - MANET routing (link State, Distance Vector, Source Routing)

Wireless & Multimedia Network Laboratory™

Networking Issues

CS'E


Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

Multiple description coding

Real-Time Services over Ad hoc Networks

- · Real-Time Services
 - Voice or video over ad hoc networks
 - Unreliable <-> stringent delay
 - · Large error , node failure
- Redundancy, error correction codes over parallel connections

Software Aspects

- Software implementations:
 - Base software: Routing algorithms, accounting system and security system
 - Application software: Software that makes a collection of terminodes useful for a client
 - Flexible software architectures
- Resource Allocations
 - Contract
 - Loader
 - Dynamic checks

Wireless & Multimedia Network Laboratory™

Discussions

- Three Networks:
 - Telecom networks
 - The Internet
 - Self-Organized Mobile Ad Hoc Networks

	Network	Infrastructure	Security	Applications
	Telecom networks	Telcos	Telcos	Telcos (IN)
	Internet	ISPs + telcos	ISPs + users (PGP)	Users
	Self-org. ad hoc NW	Users + vendors	Users + vendors	Users

