

無線網路多媒體系統 Wireless Multimedia System

Lecture 5: Cellular Concepts 中央大學 吳曉光博士

http://wmlab.csie.ncu.edu.tw/course/wms

Wireless & Multimedia Network Laboratory¹¹

Mobility Support & Channel Reuse

Wireless & Multimedia Network Laboratory™

CS'E

Channel Assignment in Cellular System

- Fundamental Problem:
- Fixed Channel Assignment
- Dynamic Channel Assignment
- Hybrid Schemes
- Whole Channel Usage (CDMA)
- Reduce the Cell Size

Wireless & Multimedia Network Laboratory™

CS'E

Hand-off in Cellular Networks

- Transfer of mobile to a new channel when it crosses cell boundary
- Handoff delay
- Prioritizing handoffs to reduce probability of dropped calls
- Handoff Strategies
- Network Controlled handoff (NCHO)
- Mobile assisted handoff (MAHO)
- Mobile controlled handoff (MCHO)

Wireless & Multimedia Network Laboratory™

CS'E

Agenda

- Cellular Concepts
- Channel Assignments
- Handover
- Next Lecture: 3G WCDMA design

Wireless & Multimedia Network Laboratory™

Reading

- [Katzela96]Katzela, and M. Nahgshineh,"Channel assignment schemes for cellular mobile telecommunication systems: a comprehensive survey," IEEE Personal Communications, June 1996
- [Pollinin96], G.P. Pollini, "Trends in handover design, "IEEE Communications Magazine, March 1996.

Channel Allocation

- A given Channel Spectrum (or bandwidth) can be divided into a set of disjoint or non-interfering radio channel
 - Frequency Division
 - frequency band
 - Time Division
 - time slot
 - Code Division
 - modulation code

Wireless & Multimedia Network Laboratory™

- Replace single high power transmitter covering the entire service area with low power
 - Mobiles in sufficiently distant base-stations may be assigned identical channel (frequency, time slot, & code)
 - System capacity may be increased without adding more spectrum
- Major conceptual breakthrough in spectra congestion & user capacity
 - Required relatively minor technological changes frequency reuse & cochannel interference, channel allocation, hand-offs

Wireless & Multimedia Network Laboratory™

Cell Shape

CS'E

CS'E

- Increase the transmitting power (Power Control)
- Increase the separating distance (Channel Reuse)

$$CIR = \frac{signal}{\text{int erference}} = \frac{P_i d_i^{-\alpha}}{\sum P_i d^{\alpha} N_0}$$

Approaches

 Fixed no flexibility

 Dynamic complexity

 Hybrid might be ok

Wireless & Multimedia Network Laboratory™

CS'E

Frequency Reuse

- Each BS is allocated a subset of carrier freqs
- Nearby BSs are allocated a different subset to avoid interference
- The total set is allocated to a small tesselating group of N neighboring BSs
 - Called "reuse cluster"
 - 1/N is the "reuse factor"
 - System capacity goes up by Area N× Area
 - Used in FDMA & TDMA based systems
 - Not required in CDMA which has universal frequency
- Cells idealized as hexagons
 - Real cell footprints are amorphous
 - Hexagon close to a circle
 - Not appropriate for micro-cells, highways etc.

Wireless & Multimedia Network Laboratory™

Idealized grid of

Hexagonal cells

CS E

CS'E

Reuse Cluster For Hexagonal Cells

A tessellating group of N hexagonal cells is possibly only iff

- Frequency Reuse Distance D
 - · minimum distance between centers of co-channel cells
 - Depends on # of nearby cochannel cells, terrain, antenna height, transmit power etc.
 - for hexagonal cells, $D = R \sqrt{3 N}$
 - Where, R is the radius of hexagon (center to vertices)
 - Increasing N, and therefore D, reduce co-channel interference (assuming R and transmit power are invariant
 - D/R is called the co-channel reuse ratio

Wireless & Multimedia Network Laboratory™

Determining Cluster Size

- more cluster needed to cover the service area
 - more channels per cell
- more system capacity achieved
- more co-channel interference co-channel cells are closer
- Goal is to maximize system capacity (or, capacity per unit area) subject to
 - Minimum N such that carrier-to-interference ratio
 - C/I (C/I)....
 - Reverse co-channel interference
 - Interference at a BS from co-channel MHs in other BSs Forward co-channel interference
 - Interference at a MH from other co-channel BSs
 - · Adjacent channel interference
 - From signals in adjacent channel due to imperfect filters Don't assign adjacent frequencies to the same cell and if possible immediate neighbors

Wireless & Multimedia Network Laboratory™

Determining Cluster Size N

- Goal is maximize system capacity (or, capacity per unit area) subject to interference limitations
 - minimum N such that carrier-to-interference ratio
 - C/I >= (C/I)_{min}
 - reverse co-channel interference
 - · interference at BS from co-channel MHs in other BSs
 - forward co-channel interference
 - interference at a MH from other co-channel BSs
 - adjacent channel interference
 - from signals in adjacent channels due to imperfect filters

imedia Network Laboratory™

Calculating C/I

Let i₀ be the number of co-interfering cells, and noise be negligible • C/I = Carrier / All of the co-channel interference

 $\sum_{i=1}^{l_0} I_i$

Where C is the desired carrier power and \mathbf{l}_{i} is the signal power of i-th interferer

Calculating C/I

• For equal transmit powers and path loss exponents: $\frac{C}{I} = \frac{D_s^*}{\sum_{i} D_s^*}$

 2. worst case is at D₀ = R (when MH is at the fringe of its cell) 3. only the six "first-tier" co-channel cells are considered

• 4. $D_1 = D_2 = D_3 = D_4 = D_5 = D_6 = D$

• C/I~ (D/R)4 / 6 depends only on the ratio D/R

system	(C/I) _{min}	D/R	N
AMPS	18 dB	4.6	7
GSM	11 dB	3.0	4

Wireless & Multimedia Network LaboratoryTh

Microcells-Reducing Cell Area

- IF cell area is reduced while N is kept constant
 - more clusters needed to cover the service aread
 - C/I is unchanged because D/R is unchanged.
 - system capacity grows quadratically with radius scale factor
- · Small cells need lower RF transmitted power
 - longer battery, smaller mobile end-points
- Small cells result in higher cell-boundary crossing
 - more signalling overhead
 - performance degradation (more disruption)

Wireless & Multimedia Network Laboratory™

Channel Assignment in Cellular System

- Fundamental Problem
 - How to assign channels to requesting call at a BS ?
- Goal: Maximum Spectral Efficiency for a specified grade of service and a given degree of computational complexity
 - · probability of new call blocking
 - probability of forced termination
 - link quality
- Maybe a "new" connection, or a connection undergoing "handoff"

Channel Assignment Techniques

- Fixed
 - Basic Fixed
 - Simple borrowing
 - Hybrid borrowing with ordering
- Flexible
 - scheduled
 - predictive
- Dynamic
 - call-by-call optimized

Wireless & Multimedia Network Laboratory™

Fixed Channel Assignment

- Basic strategy
 - · each cell is statically allocated a subset of channels
 - · a requesting call in the cell can only use channel allocated to that cell
 - if no available channel in that cell, the call is blocked
 - MSC only informs new BS about hand-off, & keep track of serving channe

Fixed Channel Assignment

- Variation
 - borrow channel from neighboring BSs if all channels busy at BS under MSC supervision, and only if does not cause interference borrowed channels are "locked"
 - hybrid channel assignment
 - two groups of channels: fixed and borrowable
 - ratio determined a priori depending on traffic estimate
 - borrow-with-channel-ordering
 - fixed-to-borrowable channel ration varied on changing traffic condition
 - channels are rank ordered

Wireless & Multimedia Network Laboratory™

Fixed Channel Assignment

• We might borrow from neighboring cells

Traffic & Resource

Uniform Distribution

Wireless & Multimedia Network Laboratory™

CS'E

Dynamic & Assignment

Maybe I should assign you based on current condition

Wireless & Multimedia Network Laboratory™

CS'E

CS'E

Issues to consider

- Blocking Probability
- Reuse Distance
- CIR
- QoS (Quality of Service)
 - current value
 - handoff value

Wireless & Multimedia Network Laboratory™

Dynamic Channel Assignment (DCA)

- Basic Features
 - channels not allocated to cells permanently
 - MSC allocated channel to a call from the global pool taking into account
 - Advantage: channel assignment may be retained across hand-off
 - Disadvantage: interruptions, deadlocks, instability

Dynamic Channel Assignment

- DCA algorithms differ in distribution of control among BSs and MSC
 - Centralized DCA
 - can do a globally optimized channel assignment and call rearrangement BSs need to communicate with MSC e.g. Maximum Packing
 - Decentralized & Fully Decentralized DCA
 - rely only on local monitoring to make channel assignments
 - require limited local communication among cluster of BSs

Wireless & Multimedia Network Laboratory™

Flexible Channel Assignment

- Combine aspects of FCA and DCA
- Each cell is assigned a fixed set of channel
- Plus, a pool of channels is reserved for flexible assignment
 - MSC assigns these channels
- · Flexible assignment strategies
 - Scheduled assignment: rely on known foreseeable changes in traffic pattern
 - Predictive assignment: based on measured traffic load at every BS

Wireless & Multimedia Network Laboratory™

MSC will pick up one for MH

• Here you go !

Wireless & Multimedia Network Laboratory™

CS'E

Flexible Channel Assignment

- Assign some of channel for minimum traffic requirement
- Keep all of the others in a service pool

Handoff Handling

Keep the QoS while the user moves

Wireless & Multimedia Network LaboratoryTM

Handling Handoffs

- change the radio channel
 - the same base station
 - the new base station
- due to
 - the radio link degradation
 - channel reorder

Wireless & Multimedia Network Laboratory™

What is going to happen?

- The new cell must assign new
- We must reserve some hand
- Some connection must be blocked !!

- - how much, inefficiency
- Queueing of Handoff request
 - take a seat for future handoff

Wireless & Multimedia Network Laboratory™

CS'E

Guard Channel Reserved for Handoff Wireless & Multimedia Network Laboratory™

CS'E **Thresholds** Handoff Threshold Receiver Threshold Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

Hand off Procedure

CS'E

CS'E

- Decide the New Base Station
 - MSC picks the best for MH
 - MSC picks the candidate MH specify
- New Base Station decides to accept or not ?

Call Queueing Scheme

Queue for a channel, handoff threshold, receiver threshold

Wireless & Multimedia Network Laboratory¹¹

Trends in Hand over Design

- Hand over and Hand off are the same
- Small cells -> more hand over
 - allocate network resource to reroute the call to the new base station
 - if not quick enough, QoS will drop dramatically

Mobility Solution

- Multi-tiers
 - micro-cell and macro-cell
 - based on the speed
 - different schemes

Wireless & Multimedia Network Laboratory™

Velocity Estimation

- Doppler Frequency is known -> Estimation of the velocity of the mobile
 users
- Mobility is estimated from the time spent in a cell

Wireless & Multimedia Network Laboratory™

Handoff in Cellular Networks

- Transfer of mobile to a new channel when it crosses cell boundary
 - identify new base station, assign new channel
 - hand-off initiated at a carefully chosen signal level
 - avoid triggering handoff due to momentary fades

Hand-off

- Handoff delay & interruption
 - dropped (or on hold) connection if signal too low before handoff processed
 - performance degradation (disruption) in data stream
- Prioritizing handoffs to reduce probability of dropped call
 - connection dropped if no spare channels in new cell
 - guard channel: subset of channels reserved for handoff requests works well with DCA
 - handoff queuing: time interval between handoff trigger & connection drop cell overlap, speed of mobile

Wireless & Multimedia Network Laboratory™

Handoff in Cellular Networks

- Probability of unnecessary Handoffs
- · Hard vs. Soft handoff
- Hand off rate
- Handoff also triggers rerouting in the network layer
- Handoff is tightly coupled to DCA, MAC, and Networking Routing

Wireless & Multimedia Network Laboratory

Handoff Strategies (I)

- Network controlled handoff (NCHO)
 - used in first generation analog cellular systems
 - link quality is only monitored by the serving BS and surrounding BS
 - handoff decision is made by the network (typically central agent)
 - handoff delays of several seconds (10) and infrequent link quality updates

Wireless & Multimedia Network Laboratory™

Handoff Strategies (II)

- Mobile assisted handoff
 - used in second generation digital cellular system
 - both the mobile and the serving BS measure link quality
 - only mobile measures link quality of alternate BSs
 - mobile periodically sends the link quality measurements to serving BS
 - handoff decision is made by the network
 - handoff delays of few seconds (1-2) and frequent link quality updates

Wireless & Multimedia Network Laboratory™

CS'E

Handoff Strategies (III)

- Mobile controlled hand off
 - used in some new digital cellular systems
 - link quality measurements as in MAHO
 - serving BS relays link quality measurements to mobile
 - handoff decision is made by the mobile
 - handoff delays of about 100 ms

Wireless & Multimedia Network Laboratory™

Handoff Scenario

Wireless & Multimedia Network Laboratory™

Handoff Initiation Strategies

- Relative signal strength
 - Always choose the strongest received BS
 - Too many unnecessary hand-offs
- Relative signal strength with threshold
 - Current signal < threshold,, and other BS is stronger
 - May let MH stray too far into other cell; overlapping cell coverage
 Effectiveness depends on knowledge of cross-over signal
- Relative signal strength with hysteresis (plus optionally dwell timer)
 - Hand-off only if new BS's signal is stronger by a hysteresis margin
 - Prevents ping-pong effect from rapid fluctuations
- Relative signal strength with hysteresis & Threshold
 - Hand-off only if current BS's signal below a threshold, and new BS's signal is stronger by the hysteresis margin
- Prediction techniques
 - Decide based on expected future value of received signal strength

Handoff Queueing Goal is to reduce handoff failure probability • Better to block a new call than to drop an existing one

- - Exploits overlap between cells to queue hand-off request in advance

- Handoff request is issued according to handoff initiation strategy
 - · Request is queued
 - Decision must be made (handoff or failure) while MH still in handoff interval

Wireless & Multimedia Network Laboratory™

CS'E

Performance Index

CS'E

- Traffic Request: (QoS)
 - New Call Probability
 - Handoff Call Probability
 - Traffic Requirements (Bandwidth, delay)
 - Call Holding Time
 - Dwell Time (Channel Occupation) for a handoff call or new call
 - Delay/Distance/Un-necessary handoff
- Mobility:
 - Resident time in a cell
 - Hand off rate
- Channel Resource:
 - Channel assignment
 - Blocking Rate (New Call blocking rate, Handoff blocking rate)

Wireless & Multimedia Network Laboratory™

IP-based 3G Wireless Network

Wireless & Multimedia Network Laboratory™

CS'E

Multi-path Effect (Time)

- RMS > Symbol Duration:
 - ISI (handled by Equalizer)
- RMS < Symbol Duration:
 - More than one paths signal arrive (might have different phases)

Wireless

CS'E

Coherence Bandwidth (Bandwidth)

- Coherence Bandwidth < BW of signal:
 - Frequency Selective Fading
- Coherence Bandwidth > BW of signal:
 - Flat Fading

Wireless & Multimedia Network Laboratory™

BS and BS list in MS

