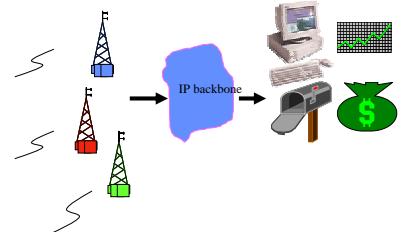
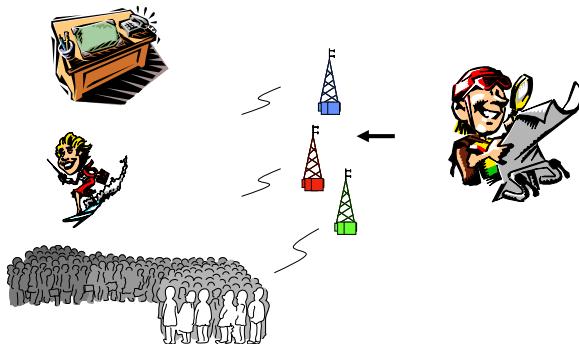


無線網路多媒體系統 Wireless Multimedia System (Topic 3)


Wireless Link I: Fundamental issues of Modulation and Multiple Access

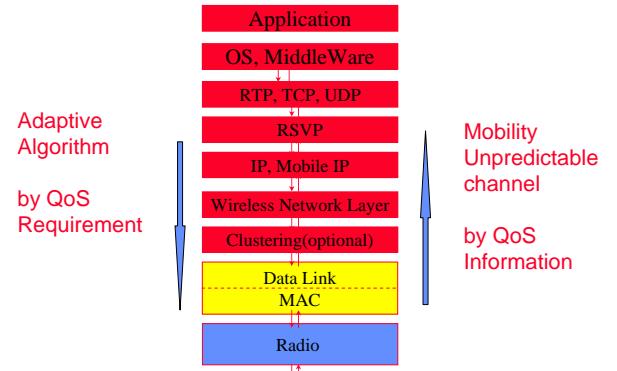
中央大學 吳曉光博士
<http://wmlab.csie.ncu.edu.tw/course/wms>

Wireless & Multimedia Network Laboratory™


How to deal with Radio Propagation

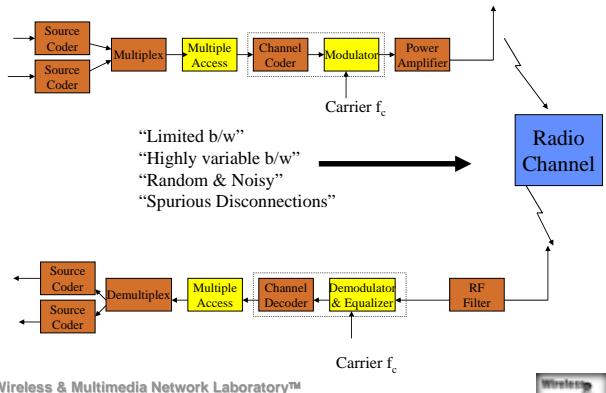
Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™


Where are you from?

Wireless & Multimedia Network Laboratory™

CSIE


QoS and Multimedia Traffic Support

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

Multiple Access & Modulation

Wireless & Multimedia Network Laboratory™

CSIE

Topic III Agenda

Wireless Link

- Deployment of "Pervasive Computing" and "Seamless Telecom services"
- Channel resource sharing in time, frequency, and code dimensions
- Spread Spectrum-direct sequence, frequency hopping, interference resistance
- Static techniques: TDMA, FDMA, CDMA
- Random access techniques: MACA, MACAW, 802.11 etc

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

What kind of multiple access environments?

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSE

Reading list for This Lecture

Required Reading:

- (David 95) David D. Falconer, F. Adachi, and B. Gudmundson, "Time Division Multiple Access Methods for Wireless Personal Communications", IEEE Communication Magazine January 1995
- (Bharghavan94) V. Bharghavan, A. Demers, S. Shenker, L. Zhang, "MACAW: A Medium Access Protocol for Wireless LANs, Proceedings of SIGCOMM'94
- (J.J.97) L. Fullmer and J.J. Garcia-Luna-Aceves, Solutions to Hidden Terminal Problems in Wireless Networks, Proceedings of SIGCOMM'97
- ("Thomas 2000) Thomas, "Paving the Way for Personal Area Network Standards: An Overview of the IEEE P802.15 Working Group for Wireless Personal Area Networks", Personal Communications February 2000

Further Reading

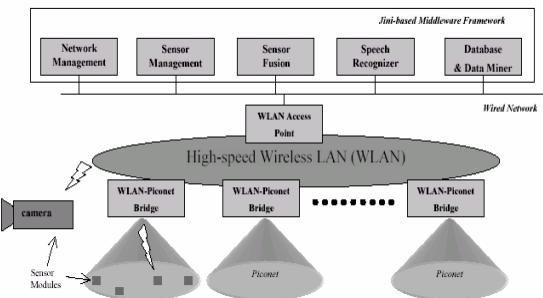
- (Vadu2000) Vaduvur Bharghavan, "Achieving MAC Layer Fairness in Wireless Packet Networks", IEEE MobileCom2000
- (Songwu Lu2000) Haiyun Luo, Songwu Lu, Vaduvur Bharghavan, "A New Model for Packet Scheduling in Multihop Wireless Networks", IEEE MobileCom2000
- (J.J.2001) L. Bao A New Approach to Channel Access Scheduling for Ad hoc Networks, IEEE MobileCom2001
- (Alex2001) A. Woo, David E. Culler, "A Transmission Control Scheme for Media Access in Sensor Networks", IEEE MobileCom2001
- (Gavin2001) G. Holland, N. Vaidya, P. Bahl, "A Rate-Adaptive MAC Protocol for Multi-Hop Wireless Network, IEEE MobileCom2001

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSE

Pervasive Computing Projects


Packet Oriented -> Multimedia Traffic

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSE

Smart Kindergarten (UCLA)

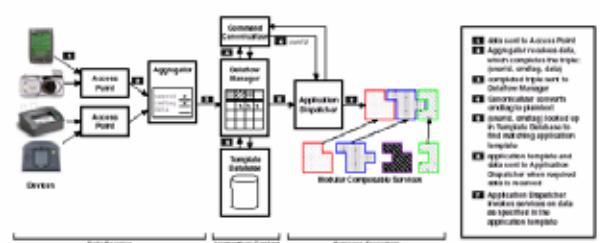
Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSE

Cricket Location-Support System (MIT)

- Beacon broadcast <-> Listeners
- Cricket Location-support system

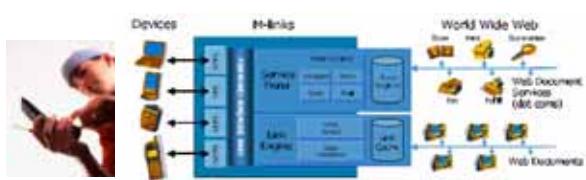


Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSE

Making Computer Disappear (Stanford) ADS (Appliance Data Services)



Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSE

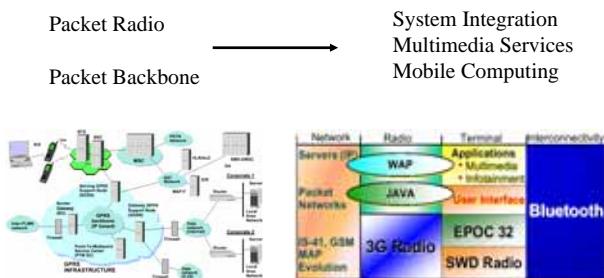
M-Links (Xerox)

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

CSE

Seamless Telecom Deployments


Circuit Services-> Data Services -> Multimedia

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

CSE

2.5 G & 3 G

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

CSE

Wireless Networking Technology

Telecom & Datacom

Circuit & Packet

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

CSE

MAC Design Issues

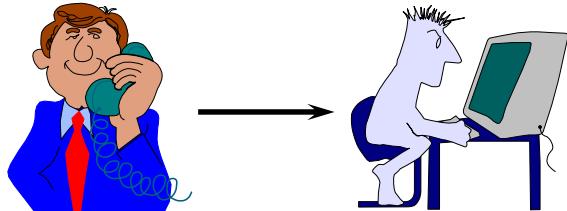
- ♦ What kind of Resource we have?
- ♦ How much you need and how often and how regular you need?
- ♦ How often you will initial request?
- ♦ How much traffic you could afford?
- ♦ How much "Promise" you could provide?
- ♦ How fair you are going to be?
- ♦ Control or "Let it be"?
- ♦ Power Saving Issues?
- ♦ Complexity?

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

CSE

Circuit Switch


- ♦ Cellular System
 - AMPS
 - GSM
- ♦ Voice System
 - Continue Traffic
- ♦ Circuit Set up
 - Reserve A trunk

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

CSE

HOW about Data

Wireless & Multimedia Network Laboratory™

CSE

Packet Radio

Packet Nature

- If we could deliver information by packet
- Bursty Type of Traffic
- Packet Size

Wireless & Multimedia Network Laboratory™

CSE

Wireless & Multimedia Network Laboratory™

CSMA with Collision Detection/Avoidance

- ♦ CSMA/CD: enhancement to slotted or unslotted CSMA schemes
- ♦ Node monitors its own transmission
 - If collision detected, transmission is aborted without waiting for a NACK backoff and re-transmission procedure started
 - A jamming signal may be sent to get everybody else to abort too
- ♦ Problem: does not work with RF wireless
 - Cannot easily sense the channel while transmitting
 - MH's signal will dominate, need different receiving and transmitting antenna patterns
- ♦ But, does work well with infrared wireless.. Directional receivers
- ♦ Wireless networks stick with ACK/NACK approach
 - Popular called CSMA/CA
 - 802.11

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSE

RANDOM Access

- ♦ Give everybody freedom

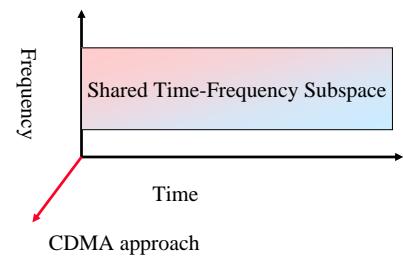
Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

Hawaii Story

- ♦ University of Hawaii
- ♦ ALOHA
 - Hello and Goodbye

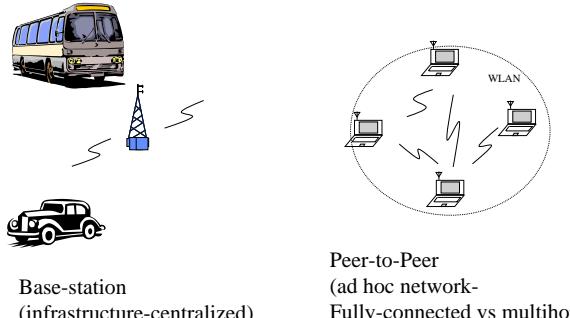
Wireless & Multimedia Network Laboratory™


Wireless & Multimedia Network Laboratory™

CSE

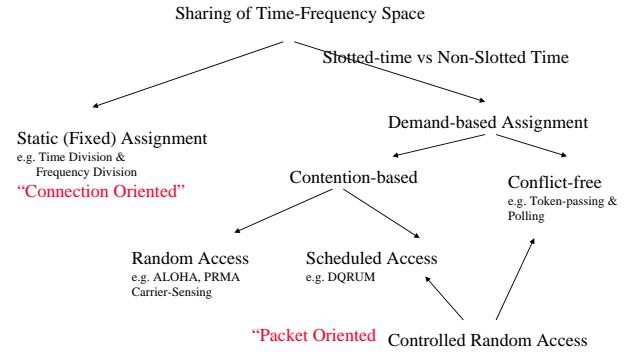
Multiple Access

Fundamental Problem


- How to share the Time-Frequency Space among multiple co-located transmitters?

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™


Base-station versus Peer-to-Peer Models

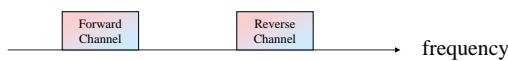
Wireless & Multimedia Network Laboratory™

CSE

Approaches to Wireless Multiple Access

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™


CSE

Frequency Division & Time Division Duplexing

CSE

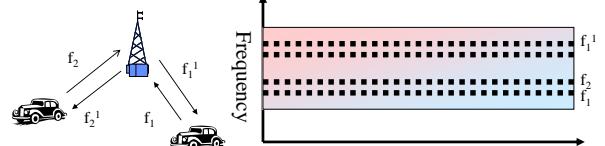

Frequency Division Duplexing (FDD)

- Two distinct frequency at the same time for the two directions
- Frequency separation must be coordinated to allow cheap RF technology
- Coordination with out-of-band users between the two bands
- Geared towards providing individual frequencies for each user

Time Division Duplexing (TDD)

- Two distinct sets of time slots on the same frequency for the two directions
- Time latency because only quasi-duplex
- No need for RF duplexer

Wireless & Multimedia Network Laboratory™


Wireless & Multimedia Network Laboratory™

CSE

Frequency Division Multiple Access (FDMA)

Assign different frequency bands to individual users or circuits

- Frequency band ("channel") assigned on demand to users who request service
- No sharing of the frequency bands: idle if not used
- Usually available spectrum divided into number of "narrowband" channels
 - Symbol time >> average delay spread, little or no equalization required
- Continuous transmission implies no framing or synchronization bits needed
- Tight RF filtering to minimize adjacent band interference
- Costly bandpass filters at basestation to eliminate spurious radiation
- Usually combined with FDD for duplexing

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSE

Example-AMPS Cellular System

CSE

User FDMA/FDD

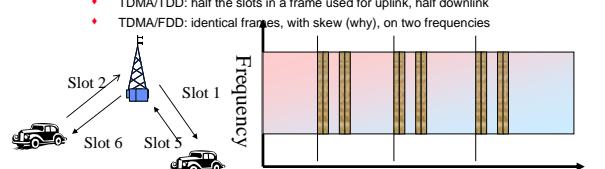
- A channel is a pair of frequency duplexed simplex channels
- Each simple channel is 30 KHz
- Simple channels are separated by 45 MHz (allow cheap RF duplexers)
- Forward link 869-894 MHz, reverse link 824-849 MHz
- Two carriers per market share the channels

Number of supported channels in AMPS

$$N = \frac{B_{\text{out}} - 2B_{\text{guard}}}{B_{\text{channel}}} = \frac{12.5 \text{ MHz} - 2(10 \text{ KHz})}{30 \text{ KHz}} = 416$$

Problem: set of active users is not fixed

- How is the FDMA/FDD allocated to a user who becomes active?
 - Static multiple access is not a complete solution .. Need a separate signalling channel with "demand-access".
 - Pure FDMA is basically "dead" in the digital world


Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

Time Division Multiple Access (TDMA)

Multiple user share frequency band via cyclically repeating "time slots"

- "channel" ==particular time slot reoccurring every frame of N slots
- Transmission for any user is non-continuous: buffer-and-burst digital data & modulation needed, lower battery consumption
- Adaptive equalization is usually needed due to high symbol rate
- Larger overhead-synchronization bits for each data burst, guard bits for variations in propagation delay and delay spread
- Usually combined with either TDD or FDD for duplexing
 - TDMA/TDD: half the slots in a frame used for uplink, half downlink
 - TDMA/FDD: identical frames, with skew (why), on two frequencies

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSE

TDMA

CSE

- ♦ **More features**
 - Simply mobility & link control.. Snoop for other BSs during idle slots
 - Pulsating power envelope: interference with devices such as hearing aids
- ♦ **Possible enhancements to basic TDMA to integrate non-voice services**
 - Different # of slots per frame to different users (variable bit rate)
 - Dynamically reassign time slots for "bandwidth on demand"

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

Packet Radio

CSE

Packet Nature

- If we could deliver information by packet
- Bursty Type of Traffic
- Packet Size

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

CSMA with Collision Detection/Avoidance

CSE

- ♦ CSMA/CD: enhancement to slotted or unslotted CSMA schemes
- ♦ Node monitors its own transmission
 - If collision detected, transmission is aborted without waiting for a NACK backoff and re-transmission procedure started
 - A jamming signal may be sent to get everybody else to abort too
- ♦ **Problem: does not work with RF wireless**
 - Cannot easily sense the channel while transmitting
 - ♦ MH's signal will dominate, need different receiving and transmitting antenna patterns
- ♦ **But, does work well with infrared wireless.. Directional receivers**
- ♦ **Wireless networks stick with ACK/NACK approach**
 - Popular called CSMA/CA
 - 802.11

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

RANDOM Access

CSE

Give everybody freedom

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

Hawaii Story

CSE

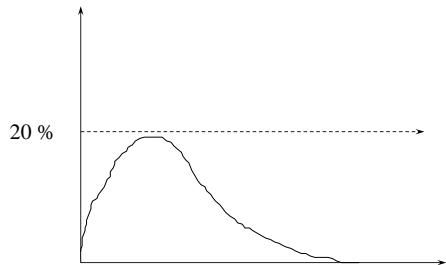
- ♦ University of Hawaii
- ♦ ALOHA
- Hello and Goodbye

Wireless & Multimedia Network Laboratory™

Wireless Multimedia

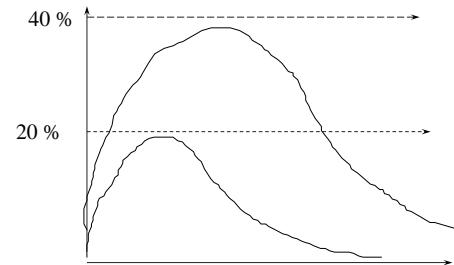
ALOHA System

CSE


- ♦ **If you want, transmit**
- ♦ **If no acks**
 - wait a random time
 - transmit the same packet again
- ♦ **Problem ?**
 - Collision ?
 - A lot of Users ?

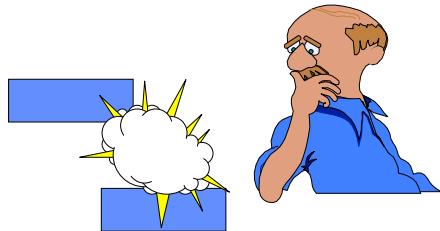
Wireless & Multimedia Network Laboratory™

Wireless Multimedia


Pure ALOHA Throughput

Wireless & Multimedia Network Laboratory™

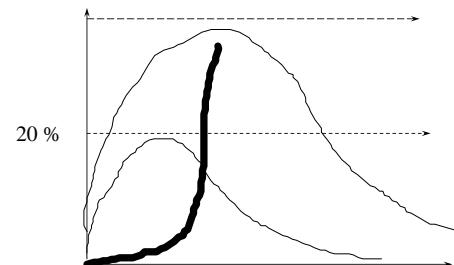
CSE


Slotted ALOHA Throughput

Wireless & Multimedia Network Laboratory™

CSE

Slotted ALOHA


Maybe We could do some arrangement ?

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSE

QoS & Delay

Wireless & Multimedia Network Laboratory™ **DELAY**

Wireless & Multimedia Network Laboratory™

Whenever Users are many

- ♦ No one will succeed
- ♦ Collides all the time

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSE

Reason

- ♦ No one really listen to other people
- ♦ No one really cares

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSMA

- ♦ Most LANs use CSMA
- ♦ Carrier Sense
- CSMA/CA: Collision Avoidance
- CSMA/CD: Collision Detection

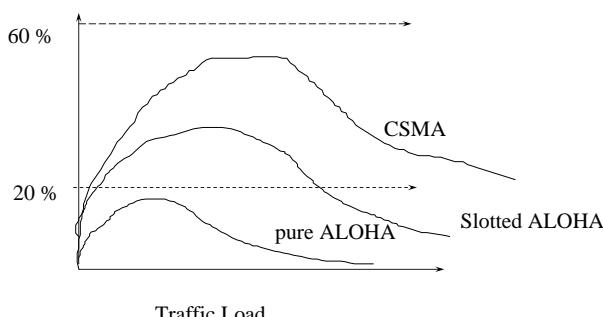
CSIE

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

CSMA

- ♦ Check if carrier is ok
- ♦ if the channel is free
 - transmit
- ♦ Otherwise, if the channel is busy
 - wait a random time and try again
 - Back off a random time


CSIE

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

CSMA

CSIE

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Integrated CSMA/TDMA MAC Protocol

- ♦ Hybrid of reservation and Random Access
- ♦ A frame is segmented into:
 - Two reservation intervals for isochronous traffic
 - One interval for random access traffic

CSIE

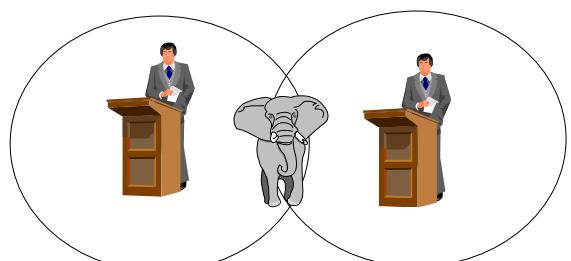
Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Can Support AP or Ad Hoc

CSIE

- ♦ AP (Access Point)
- ♦ Ad Hoc
 - Coordination Function will be distributed among all of the nodes of the ad hoc network

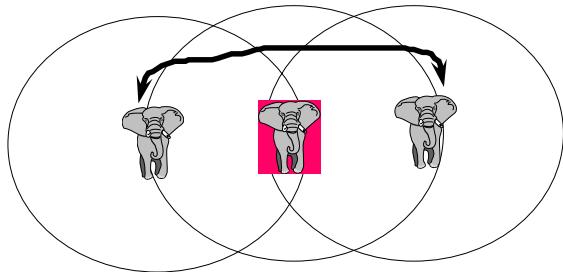

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

Challenge of Wireless Network

CSIE

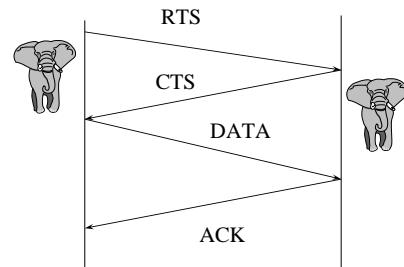
- ♦ Does "listen before you talk" work ?



Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

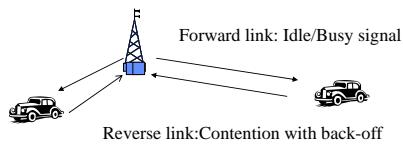
Hidden Terminal


- Due to transmission range

Wireless & Multimedia Network Laboratory™

CSIE

RTS/CTS/ACK

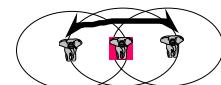

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSIE

Data Sense Multiple Access (DSMA)

- Variation of CSMA-also called inhibit Sense Multiple Access
- Basestation transmits a busy/idle message on a forward control channel
- Mobile listens on the forward control channel for the busy/idle message
- Mobile transmits on the reverse channel only if busy/idle message indicates that the reverse channel is free
- Back-off and retransmit if collision occurs nevertheless
- Used in CDPD (Cellular digital packet data)


Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSIE

Problems in Contention-based Wireless Multiple Access

- Near-Far effect**-characterized by capture ratio of the receiver
 - Strongest (near by) transmitter can capture the intended receiver
 - Weaker (far away) transmitters get ignored by the receiver
 - Depends on receiver and modulation used
 - Fairness terminal problem
- Hidden terminal problem**
 - Terminal "hidden" from the transmitter may disrupt the receiver
 - Makes carrier sensing ineffective
 - A cannot detect collisions at B due to transmission from C
 - Solve by using RTS/CTS control frame to reserve medium

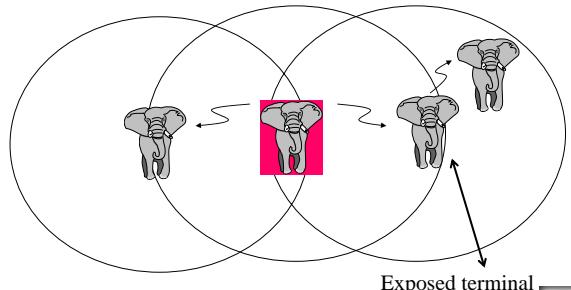
Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSIE

More on RTS/CTS

- RTS/CTS serve to "reserve" the medium**
 - RTS contains length of proposed transmission
 - CTS also contains length of proposed transmission
 - MHs overhearing RTS defer all transmissions until after CTS would have finished (including receiver turnaround time)
 - MHs overhearing CTS defer for length of data packet transmission
 - Retransmission happen only if no CTS is received in response to RTS
- Binary exponential backoff (BEB) has problems**
 - Does not provide fairness if every MH generate enough traffic to consume the channel
 - After collisions, the less-backed-off mobile wins eventually all but one MH are backed-off to B_{max}


Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSIE

Exposed Terminal Problem

- C will sense channel busy, and defer, but doesn't need to**
 - The C to D transmission can take place but is delayed

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSMA/CD?

- ♦ Collision Detection ?
- ♦ If a collision is detected, stop transmitting the present packet ?
- ♦ Is CSMA/CD possible ?
 - transmit and receive at the same time ?
 - CSMA wireless network, transmit and receive at the same frequency band
 - unlike Cellular System, uplink and downlink

Wireless & Multimedia Network Laboratory™

IEEE 802.11 MAC

- ♦ Support for multiple access PHYs; ISM band DSSS and FHSS, IR @ 1 and 2 Mbps
- ♦ Efficient medium sharing without overlap restrictions
 - Multiple networks in the same area and channel space
 - Distributed Coordination Function: using CSMA/CA
 - Based on carrier sense mechanism
- ♦ Robust against interference (e.g. co-channel interference)
 - CSMA/CA+ACK for unicast frame with MAC level retransmission
- ♦ Protection against Hidden terminal problem: Virtual Carrier Sense
 - Via parameterized use of RTS/CTS with duration information
- ♦ Provision for Time Bounded Services via Point Coordination Points
- ♦ Configurations: ad hoc & distributed system connecting access points
- ♦ Mobile-controlled hand-offs with registration at new basestation

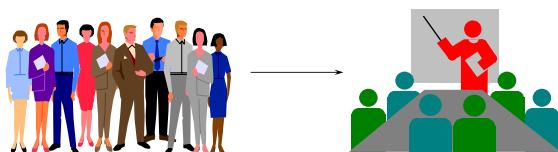
Wireless & Multimedia Network Laboratory™

Schedule Access-Reservation-based Protocols

- ♦ Also called "Demand Assigned Multiple Access"
- ♦ Central agent that acts a slot scheduler
- ♦ Sender request "reservations" for future time slots
- ♦ Central agent assigns a slot
- ♦ Data transmission in the assigned slot is done without contention
- ♦ Assumption is that data packets >> reservation request packets
- ♦ Overhead of reservation and acknowledgement messages
- ♦ Trades higher throughput (up to 80% utilization) for higher latency

Wireless & Multimedia Network Laboratory™

Order MAC Techniques

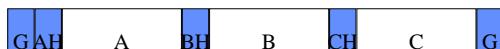

- ♦ Token Bus and Token Ring
 - Token are passed among nodes
 - How about wireless network ?
 - ♦ Nodes might leave ?
 - ♦ Break the Order
 - ♦ Take away the token

Wireless & Multimedia Network Laboratory™

From Distributed to Centralized Control

- ♦ from Random to Deterministic MACs

Wireless & Multimedia Network Laboratory™


Integrated CSMA/TDMA MAC Protocol

- ♦ Hybrid of reservation and Random Access
- ♦ A frame is segmented into:
 - Two reservation intervals for isochronous traffic
 - One interval for random access traffic

Wireless & Multimedia Network Laboratory™

Integrated MAC frame structure

Reservation based Reservation based Contention based

from AP to MS from MS to AP/MS from MS to AP/MS

CSE

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

Whenever you want ?

- Ask the permission from the Control Point

Wireless & Multimedia Network Laboratory™

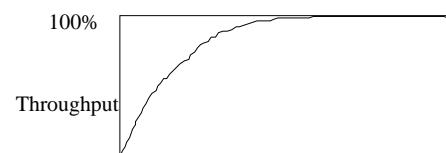
Wireless & Multimedia Network Laboratory™

Deterministic MACs

CSE

Ask Permission

- slow down the lightning fast access
- improve the throughput and response time when traffic is heavy
- guaranteed bandwidth requirements
- FDMA, CDMA, TDMA


Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

Flexibility

CSE

- Traffic is light, it is left to be mostly random
- Traffic is heavy, the control point allocates bandwidth deterministically

Wireless & Multimedia Network Laboratory™

Offered Traffic

Comparison of MACs

CSE

Random Access: CSMA

- Under light load: Fast Response Time
- Under heavy load: Throughput declines
- Simple to implement

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

Comparison of MACs

CSE

Deterministic protocols: FDMA, TDMA, CDMA

- Able to provide guaranteed bandwidth
- Larger average delay
- Smaller delay variance

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

Comparison of MACs

- ♦ Mixture: CSMA/TDMA
 - Under Light Load: Fast Response Time
 - Under heavy load: Throughput approaches TDMA
 - Higher overhead

Reservation/Polling MAC

- ♦ How to provide fairness and short message together ?
- ♦ Reservation and Polling

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

Fairness Problem

- ♦ Could you guarantee someone to transmit ?

Wireless & Multimedia Network Laboratory™

Stock Trading

- ♦ Everybody would like to do the stock trading as soon as possible
- ♦ The fairness of the MAC is utmost importance

Wireless & Multimedia Network Laboratory™

IBM Polling Solution

- ♦ TDMA system
 - slow average access time but fair
 - a node has a packet to send, it sends a request to the control point
 - the control point will poll the users in turn
 - the data transmission is acknowledged
 - no ad hoc networking is possible

Wireless & Multimedia Network Laboratory™

Multiple Access Techniques for Different Traffic Types

Type of Traffic	Multiple Access Technique
Short, bursty messages	Random access protocol
Long, bursty messages Large number of users	Schedule access (Reservation) protocol
Long, Bursty message Small number of users	Reservation protocols with fixed TDMA reservation channel
Deterministic traffic	FDMA, TDMA, CDMA

Wireless & Multimedia Network Laboratory™

Our Adventures !

CSE

Homework you are going to do!

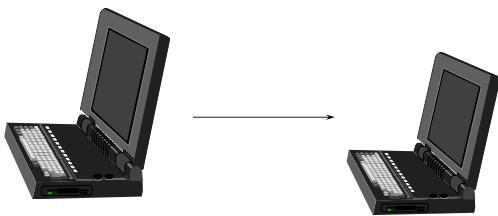
Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

CSE

Wireless Communications

♦ Mobile Communications



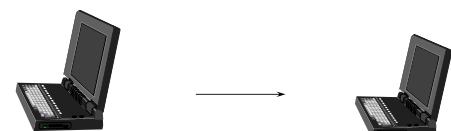
Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

How does wireless transmission succeed ?

CSE

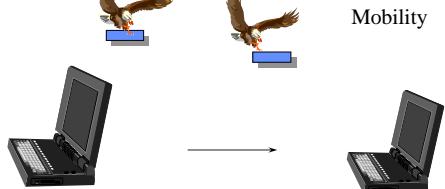
Wireless & Multimedia Network Laboratory™


Wireless
Multimedia

CSE

Single Hop Experiments

Distance
Packet Size
Data Rate
Mobility

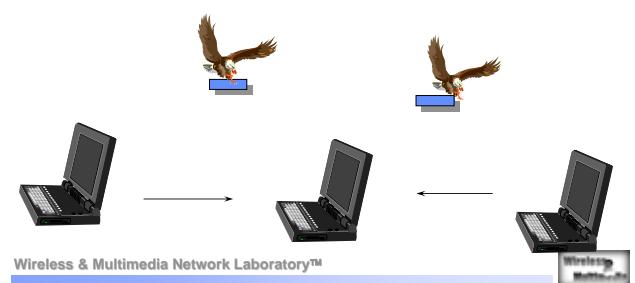

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

CSMA/CA & RTS/CTS Comparison Experiments

CSE

Distance
Packet Size
Data Rate
Mobility



Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

CSE

Hidden Terminal Experiments

Wireless & Multimedia Network Laboratory™

Wireless
Multimedia

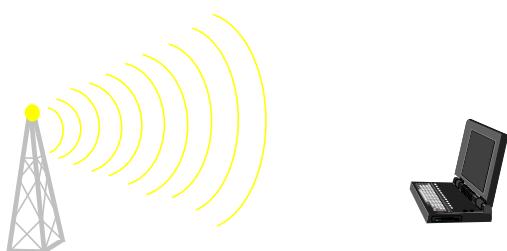
ACK Study

- End to End Acknowledgment
- Hop by Hop Acknowledgement

Wireless & Multimedia Network Laboratory™

CSE

Current Status


- Most Wireless LAN
 - use CSMA/CA random access
- Mobile Data:
 - Random Access
 - Slotted ALOHA
- Data over GSM
 - Circuit Switch

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSE

Whenever a Computer Comes to new AP

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSE

Association

Establishing an association between a station and an AP

Re-Association

Handover to another AP

Authentication

When a station convince an AP its identity

Privacy

Encryption of the data

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSE

Basic Scenario



Fig. 1. A is sending a packet to B when C should decide whether to transmit to D.

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSE

Hidden and Exposed Stations

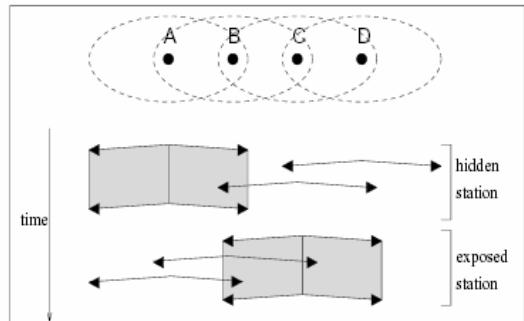


Figure 1: Hidden and Exposed Stations

CSE

Wireless & Multimedia Network Laboratory™

Capture Effect/Near Far Problem

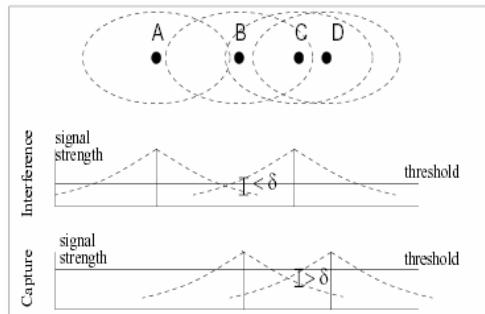
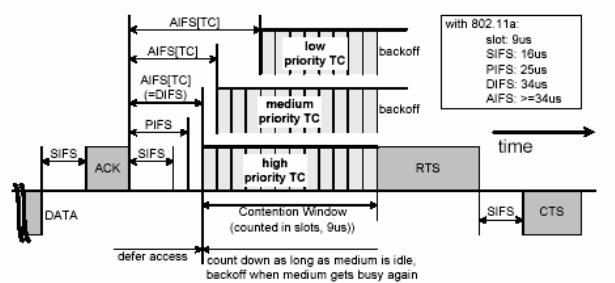
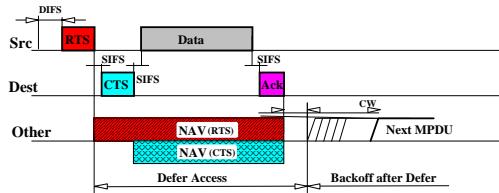



Figure 2: Interference and Capture

Wireless & Multimedia Network Laboratory™

CSIE


802.11 E

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

802.11

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSIE

Interference Issue for CSMA/CA

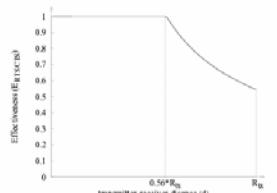
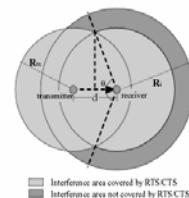
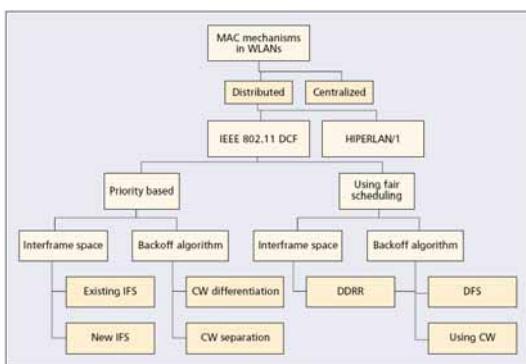




Fig. 1. Effectiveness of RTS/CTS handshake when d is larger than $T_{SNR}^{-\frac{1}{2}} + R_{tx}$ and smaller than R_{tx} .

Fig. 2. Effectiveness of RTS/CTS handshake for TWO-RAY GROUND model and SNR threshold as 10.

QoS issue for 802.11

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

Wireless & Multimedia Network Laboratory™

CSIE