TCP/P if 3% T 2 R

Oy

Spring 2002
Pk B Faibkigd
http.://wmlab.csie.ncu.edu.tw/course/tcp

2 40 23 24 78 -
S (1 2 F 7
241 4,
Winelloss Vicitmade & T/lels

AU TE

Wireless & Multimedia Network Laboratory™
T

CSE

CSE

Chapter 20:
TCP Bulk Data Flow

Wireless & Multimedia Network Laboratory™
L . Muftime:dia

] CSF
Introduction

¢ \What we will see:

* sliding window protocol: TCP uses a form of flow control called a
sliding window protocol

°* TCP’s PUSH flag

* slow start: the technique used by TCP for getting the flow of data
established on a connection, and then we examine bulk data throughput

[lﬁﬂmlusm]
Multime:lia

CSF
Normal Data Flow

¢ Examination:
° transfer 8192 bytes from svr4 to bsdi

° on bsdi:

¢ bsdi % sock -i-s 7777
® onsvr4:

¢ svrd % sock -i -n8 bsdi 7777
* Flags:

¢ -j:sink, read from the network and discard the data
¢ -s:as aserver

¢ -n8 : perform 1024-byte writes to the network

Wireless & Multimedia Network Laboratory™ ‘W"ﬁ"’sﬁ \
Multime:dia

Normal Data Flow CSE

svrd. 1056 bsdi. 7777
0.0 1 SYE\E;‘I 30581453M1305814529(0) _
T . <msEs 1024 i
SYIN 13672494091 367249409(0) >
0.002185 (0.0022) - ack 1305813530, win 4096, <mss 124>
0007295 (000517 3 ack 1. wwire 40r9a
—
=
0.017868 (0.0106) 4 PSH{ 1Y 025(1024) ack 1, win 4096 -
0.022699 (0.0048) 5 PSH_1025£04901024) ack 1, win 4096 -
0.027650 (0.0050) & PSH 204%:3073(1024) ack 1, win 4096 -
acl 2049, win 95 b
. L0001 =
Q027792 (0.0 } - ack 3073, win 3072 ds
D.031881 (0.0041) -
0.034789 (0.CO29) o PSH 3073:4097(1024) ack 1, swin <1096 .
_-
ack 4097, win 496 10
O.039276 (0.0045) et
0.044618 (0.0053) 11 PSH 4097:5121(1024) ack 1. win 4096
: = -
0.050326 (0.0057) 12 PSH] 5121:6145(10243 ack 1, win 4096 -
0.055286 (0.0050) 13 PSH s5145:F169(1024) ack 1, win 4096
ack 6145, win 4096 14
0.055441 (0.0002) et —— —
0.061742Z ((.0063) 15 PSH F162:83193(1024) ack 1. win 4096
—
aclk 8193, win 4096 16
0.066206 (0.0045) oo — —
0.066850 (0.0006) 17 FIMN 8193:8193(0) ack 1, win 4096
. o
ack B194, swin 4096 15
0.068216 (0.0014 |t)
¢ ’ BEIN 1:100) ack 8194, win 4096 119
O.0689358 (0.0011) et
0075414 (0.0061) 20 ack 2, win 4096

Figure 20.1 Transfer of 8192 bytes from svr4 to rsdi.

Wimlnsw
Multimesiia

CSF
Normal Data Flow

¢ (continued...)

¢ Segment 7 ACKs 2049, not 3073:
°* segment 4, 5, 6 arrives, |IP passes them to TCP in the same order

* TCP processes segment 4, the connection is marked to generate a
delayed ACK

* TCP processes segment 5: since TCP now has two outstanding
segments to ACK, the ACK of 2049 is generated (segment 7), and the
delayed ACK flag for this connection is turned off

* TCP processes segment 6: the connection is again marked for a delayed
ACK. But before segment 9 arrives, the delayed ACK timer goes off, then
segment 8 ACKs 3073

Wirelessp
Multime:lia

0.0

0002159 (0.0022)
0007097 (0.0049)

0.017558 (0.0105}
Q.022519 (G.Q050)
G.027456 (0.0049)

0.027595 (0.0001)
0.035231 (0.0076)
0.040258 (0.0050)

0040402 (0000173
Q.034691 (0.0064)

0.046930 (0.0001)
0.055466 (0.0085)
0.060522 (0.0051)

0.060662 (00001
0066479 (0.Q058)

0.067878 (0.0014)
0.068994 (0.0011}
0.087556 (0.0186)

Normal Data Flow

”~
S E
svrd 1057 bsdi.B888
1 5%]332182529:1332182529{0)
win 4096, <mss 1024 =
SYN 1394129409:1394120409(0) 2
o Aok 1332182530, win 4096, <mss 10245
3 aclk 1, wwin 409&
hg -
4 FSH 1:10Z25(1024% ack 1. win 4098
s PSH 1025:204%(1024) ack 1, win 4096
& PSH 20959 3073(102414) ack 1, win 4096
i
ack 2049, win 2096 7
—ig———
= "sH 3073:2097(10241) ack 1, win 409&
i
o PSH 4097:5121(1024) ack 1, win 4096
-
ack 4097, win 4096 —{ 10
S S—
1 PSH 5121:6145(10243 ack 1, win 2096
i
ack 5121, win 4096 iz
13 IPSH 6£145:7169(1024) ack 1. win L0596
14 PSH 7169:81931024) ack 1, win 4095 "
-
ack 7169, win 4096 15
16 FIMd 8193:3193(0) ack 1, win 4096
ack 8194, win 4096 17
i FIN 1:1{0} ack 8194, win 1095 18
|l —
19 ack Z, win 2096
]
Figure 20.2 Another transfer of 8192 bytes from swvrer4d4 tobasdi.
Wirelessp

Multimedia

Fast Sender. Slow Receiver rSE

sun.1181 bsdi.discard
0.0 1 SYN 650560000:690560000(0)
win 4096, <mss 14600> -
SYN 2566353409:2566353409(0) 2
0.002238 {00022 Fll— ack BO0R6000T, win 4096R, <mss 024>
0003020 (0.0008) 3 ack 1, win 4096
- -]
Z £
0.006806 (0.0038) 4 PSH 1:1025(1024) ack 1, win 4096
r —
0.008838 (0.0020) 5 PSH 1025:2049(1024) ack 1, win 4096
—
e
—
ack 4{]9?@
0.038562 (0.0265 o
BHE2 ((.0265) Lt Sk 4097, win 4096
.055994 (0.0174) ot
0.057815 (0.0018) 1ol 4097:5121(1024) ack 1, win 096 (
.
0.059777 ((.0020) 11 5121:6145(1024) ack T, win 4096
- —
0.06143% ((.0017) 12 6145:7169(1024) ack 1, win 4096
—~
0.062992 (0.0016) 13 FIN.PSH 7169£19321024) ack 1, win 4096
not Wghedie XY =
Ell:km\riﬂ D —1 14
0.071915 (D.0089 - .
7) ack 5194, win 4096 —15
(1.074313 {(0.0024)
¢ ‘ l FIN 1:1(0) ack 8194, win 4096 16
0075746 (0.0014) et
(0.076439 {0.0007) 17 ack 2, win 4096
]
Figure 20.3 Sending 8192 bytes from a fast sender to a slow receiver. 8

L Multimeslia

CSF
Fast Sender, Slow Receiver

¢ (continued...)

¢ Things we noticed:

* the sender transmits segment 4 to 7 to fill the receiver’'s window and then
waits for an ACK (since segment 2 telled the host sun the window size is
4096)

* the receiver sends the ACK(segment 8) but the advertised window is O:
the receiver has all the data, but it's all in the receiver ‘s TCP buffer

* another ACK (called a window update) is sent later, announcing that the
receiver can now receive another 4096 bytes: it does not acknowledge
any new data, it just advances the right edge of the window

* segment 13 contains 2 flag bits: PUSH and FIN.

[lﬂnmlussp]
Muitimelia

CSE

Sliding Windows

¢ [llustration of sliding windows:

offered window

|
- {advertised by receiver)
usable window
|
1 2 3 ‘ 4 5 6 | 7 8 9 11:; “'E 11
| - t
I‘r':t' TorfE hﬁi can't send until -
- - -
sent and - sent, not ACKed T window moves
acknowledged can sen

Figure 20.4 Visualization of TCP sliding window.

¢ offered window: 4 to 9

¢ usable window: 7 to 9 (computed by the sender)

[lﬂnmlussp]
Muitimelia

* & o o

CSE

Sliding Windows

(continued...)
the window closes: the left edge advances to right
the window opens: the right edge moves to the right

the window shrinks: the right edge moves to the left; The Host
Requirement RFC strongly discourages this

NEVER moves the left edge to the left: if an ACK were received that
implied moving the left edge to the left, it is a duplicate ACK, and
discarded

closes - __sh.ri.nks opens

window

Figure 20.5 Movement of window edges.

Wirelessp
Multime:lia

Sliding Windows

¢ An Example for the data transfer in Figure 20.1:

1 1024 [1025 2048 | 204 3072|3073 4096 | 2097 5120|5121 6ild4 (6145 7lag | 716 3192
r-—-—-————""~"~"—"~—"—"—"—"=—"—"=—"=—"=—"=——-——- - -
: window advertised by segment 2 :
L o o o e e e e L |
data sent in _|
I segments 4, 5, &
rFmT T T T T T T T - T T T T e e = = - = |
- — — AlKedby —i— window advertised by segment 7 I
segment 7 L O
ACKedby m -~~~ 77 7 T T T T T T L
—_ - = = window adwvertised by segment 8 I
segment& [- = 1
data sent in !
segment 9
ACKedby T 7 7 7 7 7 S o s ¥
—— — — — e window advertised by segment 10 |
segment 10, __ _ - = _
|_ data sent in '_r
segments 11,12, 13
__ACKedby " Twindow advertised
segment 14 L by segment 14
data sent in
segment 15
ACKed by
g e e = T — — — -

Figure 20.6 Sliding window protocol for Figure 2011

CS E

WIH!IES@
Multimeslia

]] CSE
Window Size

¢ The size of window offered by the receiver can usually be controlled
by the receiving process. This can affect the TCP performance.

* For file transfer between two workstations on a Ethernet, the common
default of 4096 bytes for both is not optimal: An approximate 40%

increase in throughput is seen by just increasing both buffer to 16384
bytes.

Wirelessp
Multime:lia

]] CSE
Window Size

¢ An Example: from sun (the client) to bsdi (the server)
* bsdi % sock -i -s -R6144 5555
* sun % sock -i -n1 -w8192 bsdi 5555
* Flag:
¢ -R6144 : set the size of the receive buffer (as 6144 bytes)
¢ -n1-w 8192 : perform one write of 8192 bytes

Wireless & Multimedia Network Laboratory™ ‘Wlmlasy \
Multime:dia

¢ (continued...)

a0

O.HO2282 (O.0023)
. OO30ST (O.0005)

D.0Z2Z2170 (001913
0.0Z24136 {00207
0.02a084 (00019
0027711 (00016}
O0.022333 (D.00D16)
QO30 1L0 (O.CO1E)

D.O0IA570 (001373
O02ae510 (O0.0019)
O.0-E8234 (000172

0050074 (O.0018)
0054250 (0.0O042)
COSE215 (000200
0058233 (G.O0020)
O.OSSS18 (O.O0013)
0.050167 {0.0005)

Figure 20.7

Window Size

sun. 1126

1 ST 12275200()0:12275200()0({]}

CS E

bsdi.5555

wwin 496, <rmss LGl =—
Sy 2363371521:23633F 152100

= aclk T357520001, win 6144, <mss 10245
3 ack i, win 4096

1:1025¢1024) ack 1, win 4096

1025204901 024) ack 1, wwin $0096

2042307301024y ack 1, win 4096

AO0GF. 5121 (1024} ack 1, win 4096

k3

5

=3

- PSH 3073:4097(1 024} ack 2, wain, 2
=

=

5121:6145(1 024} ack 1, swin 4096

IIEIAIN

ack 6145, win 20485

1a

11 H5145:F169(1024) ack 1, wwin L0996

1z FIN . FPSH =1 5S:8123(1024) ack 1, wwin 4096

11

ack 6145, win 405

13

ack 194, wwin 2048

14

ack 8194, win 4096

|)

15

ack 8194, wwin 6142

1la

FI™ 1:1{0% ack 5194, win 6144

17

18 ack 2, win 4094

IData transfer with receiver offering a window size of &1l4d bhytes.

Wirelessp
Multimedia

CSE

PUSH Flag

PUSH flag: a notification from the sender to the receiver for the
receiver to pass all the data that it has to the receiving process

In the original TCP specification, it was assumed that the
programming interface would allow the sending process to tell its TCP
when to set the PUSH flag.

Today, however, most APIs don’t provide a way for the application to
tell its TCP to set the PUSH flag. Indeed, many implementors feel the
need for the PUSH flag is outdated, and a good TCP implementation
can determine when to set the flag by itself.

Most Berkeley-derived implementations automatically set the PUSH
flag if the data in the segment being sent empties the send buffer.

“"ﬂ!'ﬂsm
Muttimefia

CSE

Slow Start

¢ As we've seen for the sender starts off by injecting multiple segments
iInto the network, up to the windows size advertised by the receiver.
This naive approach is OK when two hosts are on the same LAN but

reduce the throughput drastically of TCP connections between many
routers and slow links.

¢ TCP is now required to support an algorithm called slowstart:

* it operates by observing that the rate at which new packets should be

injected into the network is the rate at which the ACKs are returned by
the other end

“""!IES{”
Muttimefia

CSE

Slow Start

¢ Slow start adds another window to the sender’s TCP: the congestion
window, or, cwnd

¢ win: the window size advertised by the other end

¢ Operations of slow start:
* 1. initial connection, cwnd = 1 segment (announced by the other end)
* 2. the sender transmit up to the minimum(cwnd, win)

* 3. Each time an ACK is received, the congestion window is increased by
one segment

* 3. the sender starts by transmitting one segment and waiting for its ACK.
When that ACK is received, the congestion window is incremented from
one to two, and two segments can be sent. When each of those two
segments is ACKed, the congestion window is increased to four. This
provides an exponential increase.

Wirelessp
Multimerlia

Slow Start

¢ An Example:
vangogh.discard

sunrn-1118
0. cornd = 1 1 JI— 1:513(512) ack 1, winy 409s
J ack 513, win 8192 >
0.716330 {(0.7163) cxord = 2 —
O.716967 (0.0004) 3 E S13:10235(512) ack 1, win 2096
0. 717640 (0.0007) 4L 1025:1537(512) ack 1, vvin 4096
L ack 1025, win 192 5
1. 166086 (0.7182) crnrd = 32
1. 466778 (0.0007) eL 1537:20459(512) ack 1, win 4096
1.467425 (0.0006) 7f_ 2049:2561(522) ack 1, win 4096
ack 1537, win 8192 a8
1946065 (0.47863 crorrd = 4 et
1.946709 (0.0006] 9L Z561:3073(512) ack 1, win 4096
1.947350 (0.0006) 101|_ 3073:3585(512) ack 1, win 4096
5 g’ L ack 2049, win 8192 11
2. E7H084 (0.6287 crornd = 5 — :
‘ 3 T J ack 2561, win 8192 12
2.576294 ((.0002) cond = 6 et
Z.576841 (G.0005) 13[Fili PSSy 3585:4097(512) ack 1. %win 4095
r ack 30F3, win 5192 1
2.9060H 4 ((1.3292 -
3.085078 (D fsoc-} ack 3585, win 8192 J1 5
3‘226275 (0'2403} ack 4093, win F&E0]16
) (. ’ FIN 1:1(0) ack 4098, win 8192]17

2.356106 (0.0298)
3.356543 (0.0004) 18 ack 2, win 409

Figure 20.8 Example of slow start.

“"ﬂ!'ﬂsm
Muttimelia

CS E

Bulk Data Throughput

Eirrre 1 1 Eivrre 3: 2
sendar — e seruder — - |
|
1— o AR
rerpter X 1 -’lﬂlf ':f' =T ?. tirrre 9: 3 =
T | oo —
tirree 2: 1 térvre A0k = =
iy 3 1 tiree T1: a i
- M— e
1
tirpae d&: tierres 12)
——— TGO el T
— reCeiver — rECEiVEer
ack 1 ack =
Eirrie 5: e 13
| W W | = receiver
ack 1 ack 2 ack 3
EfFrreE 6 tirrte T:
ack 1 aclk 2 ack &
tirvFre 7o tivree 1.5:
|
'l
sender ———— serider ———— .
ack T ack 2 ack 3

Figure 20.9 Times 0—15 for bulk data throughput example.

Wimlnssp
Muitimeslia

Bulk Data Th

tirvre X5: A
sender —as—
sender ———.—
ack 3
tirrie T7: = F |
wenter —— [
tirrie T8 & 5 1
scercler — -
trrre 13 - & 5 4
Serde T —am—— — - receiver
Efrrre 20 = &)
— receiver
—— receiver
ack 4
Firmre 21 = &
— . recaeiver
———— TECSiver
ack 3 ack 5
Fivrre 22: =
—— rEeCeiver
. . — rEceiver
Aack 4 ack 5 ack &
Eivie 2.3:
sender ———.-— h . . . — TeCceiver
ack 4 aclk 5 aclk & ack 7

Figure 20,10

roughput

tirrre 2 &
sendaer — e
seruder ——— .
ack 5 ack & ack ¥
tirree 25 < =3
seruder —-—
Soendcder —-—-———]
acle & aclk 7 I
tirne 26 10 o>]
sernder —ae—
Setlder —-——
ack 7
Firnte 27 11 1 = =]

sernder —me—

|

Eirrte 28: 1z 11 10 >

sender ——-

|

ack 3
firrre 29: 13 1z 11 1
sernder —m——

|

acle B
firrre 30k 14 13 1> 11

seruder —ee—

ack 9

1

ack B ack ack 1
firvze 31 15 14 13 12
sender ——m-—
sender -
ack B ack @ ack 10 ack ¥1

Times 16— 31 for bulk data throughput example.

CS E

e TEeC2iver

—— e iver

——— FeCeiver

— - FECCiver

—— TExCEelver

— - TECEIVEF]

——— TECEIVEr

e TECEIVET

—— TECEVET

Wirelessp
Multimeilia

CSE

Bulk Data Throughput

¢ How big should the window be"?
°* min(cwnd, advertised window)

¢ Bandwidth-Delay Product.:
* Capacity (bits) = bandwidth (bits/sec) * round-trip time (sec)

¢ Examples:

°* T1line (1,544,000 bits/sec) across US (about 60ms) => bandwidth-delay
product (capacity) = 11,580 bytes

* T3 line (45,000,000 bits/sec) across US (about 60ms) => bandwidth
delay product (capacity)=337,500 bytes (>65,535) => Need new TCP
window scale option

[lﬁﬂmlusm]
Multime:lia

CSE

Bulk Data Throughput

¢ Relation between capacity, bandwidth and RTT:

}- RTT -

Figure 20.12 Doubling the bandwidth doubles the capacity of the pipe.

Wireless & Multimedia Network Laboratory™ ‘“""3'33% \
Multime:lia

] CSE
Congestion

¢ Congestion:

° can occur when data arrives on a big pipe (a fast LAN) and gets sent out
a smaller pipe (a slower WAN)

° can also occur when multiple input streams arrive at a router whose
output capacity is less than the sum of the inputs

router
R2Z2

roviter
R4 |

i — e Teceiver

|
1
1
1
1
1
I
I

- TECE]Ver

I I
router| B B i N
sender —-— R3 o R =
ack 3 ack 4 ack 5 ack &

ack 1 ack 2 aclke 7 ack &

Figure 20.13 Congestion caused by a bigger pipe feeding a smaller pipe.

"l"l'l!'ﬂsw
Multimeslia

A2 4

CSE

Urgent Mode

¢ TCP provides what it calls urgent mode, allowing one end to tell the
other end that “urgent data” of some form has been placed into the
normal stream of data.

¢ Telnet and Rlogin use urgent mode from thee server to he client
because it's possible for this direction of data flow to be stopped by
the client TCP (i.e., it advertises a window of 0). But if the server
process enter urgent mode , the server TCP immediately sends the
urgent pointer and the URG flag, even though it can’t send any data.

¢ The Urgent pointer just advances in the data stream, and its previous
position at the receiver is lost.

Wirelessp
Multimerlia

¢ An Example:
¢ bsdi % sock -i -s -P10 5555

-1 : sink

-P : pause 10 secs
-S8192 : using a send buffer of 8192 bytes
-n6 : write six 1024-byte writes

Urgent Mode

CSE

-U5: write 1 byte of data and enter urgent mode before writing the fifth
buffer to network

sur. s mock —w —1 —-né 88192 -5 badl 5555

connectsasd on 140,282 .13 33.130% to 14A0.252 .13 .35 .5555
SO _SMNDBRUTERE = 2192
TP MANSESG = 1024

wrrobe
wrote
wroribe
wirote
Wit e
wrote
wWr o e

1024 bhyvtes
1024 bhwvtes
1324 bywteaes
1024 bytrtaes

1 byte of urgent data

1024 bytes
1024 byites

[w

ifﬂlﬂﬁ@
Multimeslia

¢ (continued...)

[
L i o = s I s LR S SN

=l
s]

13
T4

15

1
17
18
19
20
21

0.0

0.073743
0.098969
0.157514
D.164267

G.167961
0.171596%
0.17618¢
0.180373
O0.180768

0.367533
O.368478

9.829712
2.831578

9.833303

9_835089
B.835913
9. 840264
D.H4Z2386
9.843622
G.544320

(G.0737)
{0.02327%
(0.0605);
(0.00e8)

(Q.0037)
(0.0040)
(0.0042)%
{0.0042;
{(0.0004)

{0.1868)
(0.0003)

(9_.4612)
(0.0015)

(0.0017)

(0.0018)
(0.0008)
{(0.0044)
{0.0021}
{0.0012}
(0. 0007

CS E

Urgent Mode

sun-1305 > hsddi.5555: P
sun.-1305 > bsdi . 5555: P
sun.1305 > bsdi.5555: F
bsdi. 55585 > sun.1305: .

sun.l305

sun.1305
sun.l13o0s
sun.-1305
sun.1305
s2un.1305%

VoM VY YV

bsdi.5555%: P

Iksdi.5555:
sdi.5555:
b=di.5555:
bedi.5555: .
badi.5555: .

bhsdi . 5555 > sun.1305: .
sun.l305 > bhsdi.5555:

bedi.5555 > =un.1305;
sun.l30s > bsdi. 5555 .

aun.l305 > bsdi.5585: .
bedi . 5558% > sun.1305: .

sun.l305 > bsdi.5555;

b=sdi.5555 > sun.1305:

bedi.5555 » sun.1305:;: .
bsdi.5555 > sun.1305: F
sun.l1l305 > bsdi.5585: .

FP eld45:6146(13

1:1025{(1024) ack 1 win 4096
1025:2049(1024) ack 1 win 40%6
2048:3073{(1024) ack 1 win 4098
ack 30732 win 1024

3073:4087 {1024y ack 1 win 4096

4096 40948
4096 40948
4096 40583
win 4096 40404
win 4096 40098

4097 win 0
1 win 4096 urg

ack 40%7 win 2048

4027:5121(1024) ack 1 win 4096
urg 4098
5121:6145(1024} ack 1 win 40%&

ack 4097 win 40926

ack 1 win 4096
ack 6147 win 2048

ack 5147 win 4056

1:1{0} ack 6147 win 4096

ack 2 win 40%9&

[

wWin
win
wWin

ack
ack
ack
ack
ack

i

ack
ack

4098 J—

Figure 20,14 tcpdump output for TCP urgent mode.

"l"l'l!'ﬂsw
Multimedia

¢ (continued...)

Urgent Mode

Write + write
=

write + write Q‘ write write
Lt | -y bv{

seq#| 1 124

1025 2046)200 3072|307 m%l 7

4098

321|512 6145

- - - - -

segment

—_—_ — = _...‘.. I —
‘ segment segment

-_— - -

Egﬂ'lEl"Lt

CSE

Wirelessp
Multime:lia

CSE
Summary

TCP Bulk Data Flow
push flag
slow start

bandwidth-delay product

* & ¢ o o

urgent mode

Wireless & Multimedia Network Laboratory™
Muttimeiia

