TCP/P if 3% T 2 R

Oy

Spring 2002
Pk B Faibkigd
http.://wmlab.csie.ncu.edu.tw/course/tcp

2 40 23 24 78 -
S (1 2 F 7
241 4,
Winelloss Vicitmade & T/lels

AU TE

Wireless & Multimedia Network Laboratory™
T

CSE

CSE

Chapter 18:
TCP Connection
Establishment and
Termination

Wireless & Multimedia Network Laboratory™
L D Muttimel!

] CSF
Introduction

¢ TCP is a connection-oriented protocol. Before either end can send
data to the other, a connection must be established between them.

* This establishment of a connection between the two ends differs from
a connectionless protocol such as UDP.

Eﬂlmlnsg]
Multime:lia

Connection Establishment and ¢57
Termination

¢ Scenario

* we type the following command on the system svr4:
svr4 % telnet bsdi discard

Trying 140.252.13.35 ...

Connected to bsdi.

Escape character is ‘.
A

telnet> quit

connection closed.

Wireless & Multimedia Network Laboratory™ ‘“"""053 \
Muttimelia

CS EF
¢ tcpdump Output (source > destination: flags)
.00 svrd,1037 > bsdi.discard: S 1415531521:1415531521(0
win 4096 <mss 1024>
2 0.002402 (0.0024) bsdi.discard > svrd4.1037: S 1823083521:1823083521(0)
ack 1415531522 win 4096
<mss 10245
3 0.007224 (0.0048) svrd.1037 > bsdi.discard: . ack 1823083522 win 4096
4 4.155441 (4.1482) svr4.1037 > bsdi.discard: F 1415531522:1415531522(0)
ack 1823083522 win 4096
5 4.156747 (0.0013) bsdi.discard > svrd4.1037: . ack 1415531523 win 4096
6 4.158144 (0.0014) bsdi.discard > svrd.1037: F 1823083522:1823083522(0)
ack 1415531523 win 4096
7 4.180662 (0.0225) svr4.1037 > bsdi.discard: . ack 1823083523 win 4096
Figure 18.1 tcpdump output for TCP connection establishment and termination.
Wireless & Multimedia Network Laboratory™ Wirelessp
I Mnttim 1

CSE

* flag characters output by tcodump for flag bits in TCP header

3-character c
flag abbreviation Description
S SYN synchronize sequence numbers
F FIN sender is finished sending data
R RST reset connection
P PSH push data to receiving process as soon as possible
none of above four flags is on

Figure 18.2 flag characters output by t cpdump for flag bits in TCP header.

* The other two TCP header flag bits - ACK and URG - are printed
specially by tcpdump.

Wireless & Multimedia Network Laboratory™
| em— Mottime”

CS F

¢ Time Line

svrd.1037 : bsdi.discard

S

YN
0.0 segment 1 1415531521:1415531521(0)
<mss 1024~
2 1(0
SYN 1823083521 .1823E;8$§§4i) segment 2
0.002402 (0.0024) ~clc 1215531522, <ms
0.007224 {(0.0048) segment 3 ack 1823083522

x L

FIN 141

4.155441 (4.1482) segment 4 5531522:1415531522(0) ack 1823083522

ack 1415531523 segment 5
4.156747 (0.0013)

FIN 1823083522:1823083522(0) ack 1415531523 | sooment 6
4.158144 (0.0014) /
4.180662 (0.0225) segment 7 ack 1823083523

Figure 18.3 Time line of connection establishment and connection termination.

Wireless & Multimedia Network Laboratory™
e

CSE

¢ Connection Establishment Protocol
* Three-way handshake

¢ The client sends a SYN segment specifying the port number of the server that
the client wants to connect to, and the client’s ISN.

¢ The server responds with its own SYN segment containing the server’'s ISN.
The server also acknowledges the client’'s SYN by ACKing the client’s ISN
plus one. A SYN consumes one sequence number.

¢ The client must acknowledge this SYN from the server by ACKing the server’s
ISN plus one.

* Active open
* Passive open

* The ISN should change over time, so that each connection has a different
ISN.

Wirelessp
Multimerlia

CS F

¢ Connection Termination Protocol

client : server

application close — &h
— deliver EOF to application

ack of FIN
‘//F[N//’- « application close

ack of FIn

Figure 18.4 Normal exchange of segments during connection termination.

* half-close
* active close
® passive close

Wireless & Multimedia Network Laboratory™
B Ll

¢ Normal tcpdump Output

=1 O n @ Ha o

0.0

0.002402

0.007224
4,155441
4.156747
4.158144
4.180662

(0.0024)

(0.0048)
(4.1482)
(0.0013)
(0.0014)
(0.0225)

svrd,

bsdi

svrd,
svrd.

.discard > svrd.1037;:

bsdi

bsdi.

svrd

1037 > bsdi.discard:

.discard > svr4.1037:

1037 > bsdi.discard:
1037 > bsdi.discard:

discard > svrd.1037:
.1037 > bsdi.discard:

S

1415531521:1415531521(0)
win 4096 <mss 1024>

1823083521:1823083521(0)
ack 1415531522
win 4096 <mss 1024>

. ack 1 win 4096

F

1:1(0) ack 1 win 4096

. ack 2 win 4096

1:1(0) ack 2 win 4096

. ack 2 win 4096

Figure 18.5 Normal tcpdump output for connection establishment and termination.

Wireless & Multimedia Network Laboratory™
T

CSE

Multimelis

CSE

Timeout of Connection Establishment

¢ Scenario
There are several instances when the connection cannot be established.

To simulate this scenario we issue our telnet command after
disconnecting the Ethernet cable from the server’s host.

* tcpdump output

291008001:291008001(0)
win 4096 <mss 1024>

[tos 0x10]
S 291008001:291008001(0)
win 4096 <mss 1024>

1 0.0 bedi.1024 > svrd.discard: S

bsdi.1024 > svrd.discard:

5.814797 (_35,8148)

]

[tos 0x10]
S 291008001:291008001(0}

[

win 4096 <mss 1024>
(tos Ox10]

3 29.B15436 (24.0006) Dbsdi.1l024 > svrd.discard:

Figure 18.6 tcpdump output for connection establishment that times out.

Muttimelia

Wireless & Multimedia Network Laboratory™

CSE

* To see this we have to time the telnet command:

bsdi % date ; telnet svr4 discard ; date

Thu Sep 24 16:24:11 MST 1992

Trying 140.252.13.34 ...

telnet: Unable to connect to remote host: Connection timed out
Thu Sep 24 16:25:27 MST 1992

* The time difference is 76 seconds. Most Berkeley-derived system set a
time limit of 75 seconds on the establishment of a new connection.

Wirelessp
Multimerlia

CSE

¢ First Timeout Period

* what’s happening here is that BSD implementations of TCP run a timer
that goes off every 500 ms.

11 clock ticks x 500 ms/tick = 5.5 seconds
- - ok o
11 10 9 8 7 6 5 4 3 2 1 0
: | | RO B | | e e
| BRSO i o o 98 300 e i a8 RN
S e !
somewhere in here 500 ms -
application causes TCP P o Hek ['CP reschedules
timeout for 24 sec.

to set timeout for 6 sec.
(12 ticks) in the future

in the future

Figure 18.7 TCP 500-ms timer.

¢ Type-of-Service Field
* The BSD/386 Telnet client sets the field for minimum delay.

Wireless & Multimedia Network Laboratory™ ‘“"""‘*‘5% \
Multime:dia

CSE
Maximum Segment Size

¢ The MSS is the largest “chunk” of data that TCP will send to the other
end.

¢ When a connection is established,each end has the option of
announcing the MSS it expect to receive.

¢ In general, the larger the MSS the better, until fragmentation.

¢ |If the destination IP address is “nonlocal,” the MSS normally default to

¢ Example dhaisats MTU=1500 MTU=1500
‘ ; ' SLIP ‘ _J_ S
slip - bsdi T ‘t sun
e MTU=296 MTU=296 T
SYMN <mss 1460=>
g s
SYM <mss 256>
o N -
Figure 18.8 TCP connection from sun to s1ip showing MSS values.
Wireless & Multimedia Network Laboratory™ Wireles

Muttimedia

7

CSE

* We initiate a TCP connection from sun to slip and watch the segment

usina tcodump.
! B ¢ sun.l093 > slip.disa'ard: S 517312000:5173120001(0)
<mss 1460>

2 0.10 (0.00) slip.discard > sun.1093: S 509556225:509556225(0)
ack 517312001 <mss 256>

30,10 10.00) sun.1093 > slip.discard: . ack 1

Figure 18.9 tcpdump output for connection establishment from sun to slip.

* It's OK for a system to send less than the MSS announced by the other
end.

* If both hosts are connected to Ethernets, and both announce an MSS of
536, but an intermediate network the MTU of 296, fragmentation will
occur. The only way around this is the path MTU discovery mechanism.

Wireless & Multimedia Network Laboratory™ “"“’ﬁ"’sﬂ \
Multime:dia

CSE

TCP Half-Close

¢ Half close: TCP provides the ability for one end of a connection to
terminate its output, while still receiving from the other end.

¢ A typical scenario for a half close:

client server
application shutdown — (— = FIN
PRSI Caree o S S deliver EOF to application
ack {_T{ E[E‘I__ e
-‘——__________
data «— application write
application read ¢« -_—
e T __‘_'__Uif ata
s
FIN 1 = application close
deliver EOF to application «— .
————— ack of FIN
__________——_-

Figure 18.10 Example of TCP’s half-close.

Wireless & Multimedia Network Laboratory™ ‘“"""053 \
Muttimelia

CSE

¢ Why is there a half-close? One example is the Unix rsh(1) command,
which executes a command on another system. The command

sun % rsh bsdi sort < datafile

WAL P host sun host bsdi
datafile input -
o TCP connection
rsh s —= sort
: standard o
terminal --
El]_] tput T T L S — e P S . =

Figure 18.11 The command: rsh bsdi sort < datafile.

Wireless & Multimedia Network Laboratory™
Multime:lia

s

TCP State Transition Diagram

starting point

]
appl: passive open :
send: <nothing> !

¥

< . ,(L[&_;TEN
passive open

recv: SYMN appl: close
SYIN_SENT
send: SYN, ACK ; S = or timeout
g simultaneous open active open
.
e 0
L, i
o
0“\
o
S e et R =
L: | cl recv: FIN | ;
appl: | close - Tecv: FIN , I
send: | FIN ESTABLISHED AT CLOSE_WAIT)|
data fransfer state } - !
I
I l. 1
: appliclose |
" send: 1 FITN i
_____ ' : |
= simultaneous close | . ¥ :
! i NG I 1 LAST ACK) recv: ACK
1 — L —— e —
: (FIN_WAIT_ e L i kit) } - Q - | send: <nothing>
I I e T e e —I
| |
: recv: | ACK recv: | ACK -
. send: | <nothing> /e send: | <nothing>,
. " |
1 I
(] i
[y I
AT TI ATT
| (FIN_WAIT_2) e ME_WAIT }—oy S
! 2MSI. tirmeout !
 Foaiar TR S S L S et e e SR ot s e e 2]
—— indicate normal transitions for client
——— - indicate normal transitions for server
appl: indicate state transitions fa when application issues operation
recwv: indicate state transitions taken when segment received

send: indicate what is sent for this transition

Figure 18.12 TCP state transition diagram.

CSE

CS F

client server

LISTEN ({(passive open)

(active open) SYN_SENT w‘
SYN_RCVD
SYN K, ack J+1
ESTABLISHED
e
ESTABLISHED

: A4

(active close) FIN_WAIT_1 FIN A
\ CLOSE_WAIT (passive close)

_/ﬂ//hm’
FIN_WAIT 2

FIN N LAST ACK
TIME_WAIT /

Speaet LR
CLOSED

Figure 18.13 TCP states corresponding to normal connection establishment and termination.

Wireless & Multimedia Network Laboratory™ rele
I Muttim e

CSE

2MSL Wait State

The TIME WAIT state is also called the 2MSL wait state.

Every implementation must choose a value for the maximum segment
lifetime (MSL). It is the max. amount of time any segment can exist in
the network before being discarded.

The rule is: when TCP performs an active close, and sends the final
ACK, that connection must stay in the TIME_WAIT state for twice the
MSL.

Why 2MSL wait state?

* Let TCP resend the final ACK in case this ACK is lost (the other end will
time out and retransmit its final FIN).

* The socket pair defining that connection cannot be reused, until the
2MSL wait is over.

What are the differences between IP TTL and TCP MSL?

Wirelessp
Multime:lia

¢ Example |

Scenario:

CSE

Sun % sock —v —s 6666

Connection on 140.252.13.33.6666 from 140.252.13.35.1081

s

Sun % sock —s 6666

Can’t bind local address: Address already in use

Sun % netstat

Active Internet connections

Proto Recv-Q Send-Q Local Address Foreign Address
Tcp 0 0 sSun.6666 bsdi.1081

(state)

Tl

ME_WAIT

[w

"ﬁ'ﬂsw
Muttimefia

CSE

¢ Example |l

* Scenario

Sun % sock —v bsdi echo
Connected on 140.252.13.33.1162 to 140.252.13.35.7
Hello there

Hello there

D

Sun % sock —b1162 bsdi echo

Can’t bind local address: Address already in use

Wirelessp
Multime:lia

CSE

¢ Example Il

* Scenario

Sun % sock —v —s 6666

Connection on 140.252.13.33.6666 from 140.252.13.35.1098
A7

Sun % sock —b6666 bsdi 1098

Can’t bind local address: Address already in use

Sun % sock —A —b6666 bsdi 1098

Active open erir: Address already in use

L

SO REUSEADD
R

Wirelessp
Multime:lia

CSE

¢ Quiet Time Concept

* The 2MSL wait provides protection against delayed segments from an
earlier incarnation of a connection. But this works only if a host with
connections in the 2MSL wait does not crash.

* What if a host with port in the 2MSL wait crashes, reboots within MSL
seconds, and immediately establishes new connections using the same
local and foreign IP address and port numbers corresponding to the local
ports what were in the 2MSL wait before the crash?

* To protect against this scenario, RFC 793 states that TCP should not
create any connections for MSL seconds after rebooting. It is called the
quiet time.

“"ﬂ!'ﬂsm
Muttimefia

¢ FIN_WAIT 2 State

CSE

Unless we have done a half-close, we are waiting for the application on
the other end to recognize that it has received an end-of-file notification
and close its end of the connection, which sends us a FIN. Only when the
process at the other end does this close will out end move from the

FIN. WAIT 2 to the TIME_WAIT state.

[w

"ﬁ'ﬂsw
Muttimefia

CSE
Reset Segment

¢ The RST flag is for “reset.”

¢ |n general, a reset is sent by TCP whenever a segment arrives that doesn’t
appear correct for the referenced connection.
¢ Connection Request to Nonexistent Port

° Scenario

Bsdi % telnet svr4 20000

Trying 140.252.13.34 ...

telnet: Unable to connect to remote host: Connection refussed

* This message is output by the Telnet client immediately.
* The packet exchange corresponding to this command

G bsdi.1087 > svr4.20000: S 297416193:297416193(0)
win 40986 <mss 1024>
[tos 0x10]
2 M.UU3T9L 40, 0038) svrd.20000 > bsdi+108?:_£LD:G{D} ack 297416194 win 0

Figure 18.14 Reset generated by attempt to open connection to nonexistent port.

Wireless & Multimedia Network Laboratory™ “"“’ﬁ"’sﬂ \
Multime:dia

CSE

¢ Aborting a Connection
* Qrderly release

* Abortive release
¢ Any queued data is thrown away and the reset is sent immediately.

¢ The receiver of the RST can tell that the other end did an abort instead of a
normal close.

* Scenario
Bsdi % sock —L0 svr4 8888

Hello, world
AD

[lﬂnmlussp]
Muitimelia

* Show the tcpdump output

CSE

1 0.0 bsdi.1099 > svrd.8888: S5 671112193:671112193(0)
<mss 1024>

2 0.004975 (0.0050) svr4d.8888 > bsdi.1099: S 3224959489:3224959489(0)
ack 671112194 <mss 1024>

3 0.006656 (0.0017) bsdi.1099 > svrd4.8888: . ack 1

4 4.833073 (4.8264) bsdi.1099 > svrd4.8888: P 1:14(13) ack 1

o 5.026224 (0.1932) svrd ., 8888 > bsdi.1099: . ack 14

6 9.527634 (4,5014) bsdi 1090 > gvrd 88688: R 14:14(0) ack]

Figure 18.15 Aborting a connection with a reset (RST) instead of a FIN.,

* The RST segment elicits no response from the other end — it is not
acknowledged at all. The receiver of the reset aborts the connection and
advises the application that the connection was reset.

Wireless & Multimedia Network Laboratory™

Muttimelia

CSE

* We get the following error on the server for this exchange:
Svrd % sock —s 8888
Hello, world

Read error: Connection reset by peer

Wireless & Multimedia Network Laboratory™ “"“’ﬁ"’sﬂ \
Multime:dia

CSE

¢ Detecting Half-Open Connection

* Scenario: we’'ll execute the Telnet client on bsdi, connecting to the
discard server on svr4. We type one line of input, and watch it and reboot
the server host. This simulates the sever host crashing.

Bsdi % telnet svr4 discard
Trying 140.252.13.34 ...
Connected to svr4.

Escape character is ‘.
Hi there
here is where we reboot the server host
Another line and this one elicits a reset
Connection closed by foreign host.

“"ﬂ!'ﬂsm
Muttimefia

* Tcpdump output

I 0.0

2 0.004811 (0.0048)
3 0.006516 (0,0017)
§ 5.167679 (5.1612)
5 5.201662 (0.0340)
6 194.909929 (189.7083)

bsdi.1102 > svrd.discard:
svrd.discard > bsdi.1102:
bsdi.1102 > svrd.discard:

bsdi.1102 > svrd.discard:
svrd.discard > bsdi.1102:

bsdi.1102 > svrd.discard:

CSE

§ 1591752193:1591752193 (0)
S 26368001:26368001(0)

ack 1591752194
. ack 1

P 1:11(10) ack 1
. ack 11

P 11:25(14) ack 1

/ 194,914957 (0,0050) arp who-has bsdi tell svrd
d_194 015678 (0.0007) arp reply hadi ig-at 0.0.00:6F:94:40

104918220 (0,0025) svrd.digcard > bedi 1102: R 26368002:26368002(0)

Figure 1816 Reset in response to data segment on a half-open connection.

Wireless & Multimedia Network Laboratory™

Multimelis

] CSE
Simultaneous Open

¢ What is Simultaneous Open?

* ltis possible, although improbable, for two application to both perform an
active open to each other at the same time.

* Each end must transmit a SYN, and the SYNs must pass each other on
the network.

* |t also requites each end to have a local port number that is well known to
the other end.

(active open) SYN_SENT —~—— SYN J

._;,\{N_E________- SYN_SENT (active open)

& ™ SYN_RCVD
SYN_RCVD |- # (K ack]rl —

ESTABLISHED |
~——a ESTABLISHED

Figure 18.17 Segments exchanged during simultaneous open.

Wireless & Multimedia Network Laboratory™ “"“’ﬁ"’sﬂ \
Multime:dia

CSE

¢ An Example

* Scenario: We'll execute one end on our host bsdi, and the other end on
the host vangogh.cs.berkeley.edu. Since there is a dialup SLIP link
between them, the round-trip time should be long enough to let the SYNs
Cross.

Wirelessp
Multime:lia

On bsdi:

CSE

Bsdi % sock —v —-b8888 vangogh.cs.berkeley.edu 7777
Connected on 140.252.13.35.8888 to 128.32.130.2.7777
TCP_MAXMEG = 512

Hello, world

And hi there

Connection closed by peer

On the other end:

Vangogh % sock —v =b 7777 bsdi.tuc.onao.edu 88838
Connected on 128.32.130.2.7777 to 140.252.13.35.8888
TCP_MAXMEG = 512

Hello, world
And hi there
D

[w

iﬂ!'ﬂsm
Muttimefia

”~
CS E
* Tcpdump output
win 4096 <mss 512>
2 0.213782 (0.2138) vangogh.7777 > bsdi.B8888: S 1058199041:1058199041(0)
Win 2]
3 0.215399 (0.0016) bsdi.8888 > vangogh.7777: S 91904001:91904001(0)
SHSS al22,
4 0.340405 !0.12501 vangogh.???? > bsdi.8888: S 1058199041:1058199041 (0)
EEE:EIEﬁEﬁﬂZ:EEE:Elﬁ?
<mss 512>
5 5.633142 (5.2927) bsdi.8888 > vangogh.7777: P 1:14(13) ack 1 win 4096
6 6.100366 (0.4672) vangogh.7777 > bsdi.8888: . ack 14 win 8192
7 9.640214 (3.5398) vangogh.7777 > bsdi.B8888: P 1:14(13) ack 14 win 8192
8 9.796417 (0.1562) bsdi.f8888 > vangogh.7777: . ack 14 win 4096
9 13.060395 (3.2640) vangogh.7777 > bsdi.8888: F 14:14(0) ack 14 win 8192
10 13.061828 (0.0014) bsdi.8888 > vangogh.7777: . ack 15 win 4096
11 13.079769 (0.0179) bsdi.8888 > vangogh.7777: F 14:14(0) ack 15 win 4096
12 13,299940 (0.2202) vangogh.7777 > bsdi.8888: . ack 15 win 8192
Figure 18.18 Exchange of segments during simultaneous open.
Wireless & Multimedia Network Laboratory™ Wirelessp
I Multime:ita

(. |
_ CSFE
Simultaneous Close

¢ ltis also possible for both sides to perform an active close, and the
TCP protocol allow.

(active close) FIN_WAIT 1 FIN J

PN K FIN_WAIT_1 (active close)
‘><- CLOSING
TIME_WAIT

T TIME_WAIT

Figure 18.19 Segments exchanged during simultaneous close.

Wireless & Multimedia Network Laboratory™
| em— Mottime”

TCP Options

CSE

¢ The only options defined in the original TCP specification are the end
of option list, no operation, and the maximum segment size option.

End of option list: kind=0

1byte
No operation: kind=1
I byte
maximum
Maximum segment size: | kind=2 | len=4 segment
i size (MS5)
1byte 1 byte 2 bytes
: , i shift
Window scale factor: kind=3 | len=3 I cnunj‘
1byte 1byte 1byte
Timestamp: kind=8 | len=10 timestamp value timestamp echo reply
“1byte 1byte ~ dbytes ~ dbytes

Figure 18.20 TCP options.

Wireless & Multimedia Network Laboratory™

Multime:lia

CSE

Kind: type of option
Len: the total length of option field, including kind and len bytes.

NOP: no operation option is to allow the sender to pad fields to a multiple
of 4 bytes.

Example:
<mss 512, nop, wscale 0, nop, nop, timestamp 146647 0>

Wirelessp
Multime:lia

CSE

TCP Server Design

¢ \When a new connection request arrives at a server, the server
accepts the connection and invokes a new process to handle the new
client.

¢ Under Unix the common technique is to create a new process using
the fork function. Ligntweight processes (threads) can also be used, if
supported.

¢ We need to answer the following questions: how are the port
numbers handled when a server accepts a new connection request
from a client, and what happens if multiple connection requests arrive
at about the same time.

Wirelessp
Multime:lia

¢ TCP Server Port Numbers
* We'll watch the Telnet server using the netstat command.

CSE

Sun % netstat —a —n —f inet
Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)
Tcp 0 0 *.23 ** LISTEN

* We now start a Telnet client on the host slip (140.252.13.65) that
connects to this server.

Proto Recv-Q Send-Q Local Address Foreign Address (state)
Tcp 0 0 140.252.13.33.23 140.252.13.65.1029 ESTABLISH
Tcp 0 0 *23 * LISTEN

[w

irelessp
Multimedia

CSE

¢ Restricting Local IP Address

If we specify an IP address to our sock program when we invoke it as a
server, that IP address becomes the local IP address of the listening end
point

Sun % sock —s 140.252.1.29 8888

restricts this server to connections arriving on the SLIP interface
(140.252.1.29). The netsate output:

Proto Recv-Q Send-Q Local Address Foreign Address (state)
Tcp 0 0 140.252.1.29.8888 *.* LISTEN
If we connect to this server across the SLIP link, from the host solaris
Proto Recv-Q Send-Q Local Address Foreign Address (state)
Tcp 0 0 140.252.1.29.8888 140.252.1.32.34614ESTABLISH
Tcp 0 0 140.252.1.29.8888 *.* LISTEN

"l"l'l!'ﬂsw
Multimedia

CSE

* But if we try to connect to this server from a host on the
Ethernet(140.252.13), the connection request is not accepted by the TCP

modulq.

L=

I 0.0 bsdi.1026 > sun.8888: § 3657920001:3657920001(0)
win 4096 <mss 1024>

2 0.000859 (0.0009) sun.8888 > bsdi.1026: R 0:0(0) ack 3657920002 win 0

Figure 1821 Rejection of a connection request based on local [P address of server.

The server application never sees the connection request — the rejection
is done by the kernel’s TCP module.

Wireless & Multimedia Network Laboratory™ ‘“"""‘*‘5% \
Multime:dia

CSE

¢ Restricting Foreign IP Address

* The interface functions shown RFC 793 allow a server doing a passive

open to have either a fully specified foreign socket or a unspecified
foreign socket.

* Unfortunately, most APIs don’t provide a way to do this.
* The three types of address bindings that a TCP sever can establish for

itself.
Local Address Foreign Address e Description M
locallP.lport | foreigniP. fport | restricted to one client (normally not éuppnrted} !
locallP, Iport * % restricted to connections arriving on one local interface: localIP
*. Iport * % receives all connections sent to Iport

Figure 18.22 Specification of local and foreign IP addresses and port number for TCP server.

Wireless & Multimedia Network Laboratory™ ‘“"""‘*‘5% \
Multime:dia

CSE

Incoming Connection Request Queue

* How dose TCP handle these incoming connection requests while the
listening application is busy?

¢ Each listening end point has a fixed length queue of connections that have
been accepted by TCP, but not yet accepted by the application.

¢ The application specifies a limit to this queue, commonly called the backlog.
This backlog must be between 0 and 5, inclusive.

¢ When a connection request arrives, an algorithm is applied by TCP to the
current number of connections already queued for this listening end point, to
see whether to accept the connection or not.

Saoi AR S R
Max # of queued connections

Backlog value —_— - it
Traditional BSD Solaris 2.2 |

REE
1
2

[v s JRN| BN =
Nk W=

Un e W

Figure 18.23 Maximum number of accepted connections allowed for listening end point.

Wirelessp
Multime:lia

CSE

¢ If there is room on this listening end point’s queue for this new connection, the
TCP module ACKs the SYN and completes the connection.

¢ If there is no room on the queue for the new connection, TCP just ignores the
received SYN.

¢ If the listening server doesn’t get around to accepting some of the already
accepted connections that have filled its queue to the limit, the client’s active

open will eventually time out.

* An example:
bsdi % sock -s -v -q1 -030 7777

\

Cause the program to sleep for 30
seconds before accepting any
client connections.

Set the backlog of the
listening end point to 1

Wirelessp
Multime:lia

CS F

* The tcpdump output

1 8.0 sun.l1090 > bsdi."777: 1617152000:1617152000(0)
0.002310 (0.0023) bsdi.7777 > sun.1090: S 4164096001:4164096001(0)
ack 1617152001
0.003098 (0.0008) sun.1l090 > bsdi.7777: . ack 1

3

4 4,291007 (4,2879) sun.1l091 > bsdi.7777: S 1617792000:1617792000(0)
5 § 293349 ¢ 0:0023) bsdi.7777 > sun.1091: S 4164672001:4164672001(0)
ack 1Rl 7795 001

6 4.2894167 { 0.0008) sun:109% > bhadl 7777: . ack L

7 Tadad 281 . (2, . 8378) sun.1082 > bsdi.7777: 8 1618176000:1618176000(0)
8. 10586787 (3.4248} sun.l1083 > bsdi.7777: S 1618B68B000:1618688000(0)
g 1 BESHLE [21391 sun.1082 > bsdi.7777: S 1618176000:1618176000(0)
WIS TR 1345y sun.1093 > bsdi.7777: S8 1618688000:1618688000(0)
11 . 24.695571 (8.4998) aun.1092 > pedi.7777: 5 1618176000:1618176000(0)
12 28.195454 [3.4999) sun.1093 > bsdi.7777: S 1618688000:1618688000(0)
13 28.197810 (0.0024) Dbsdi.7777 > 2un.1093: 5 4167808001:4167808001(0)

ack 1618688001
14 28.198639 | L0008) sun.1093 > bedi 7777 . ack 1

15 48.694931 (20.4963) sun. 1092 > bsdi.7777: 1618176000:1618176000(0)

16 48.697292 (0.0024) bsdi.7777 > sun.1092: S 4170496001:4170496001(0)
ack 1618176001

17 48.698145 (0.0003) gun.I09% = heds ,dITd: .cack. 1

L
[15]

Figure 18.24 tcpdump output for backlog example.

Wireless & Multimedia Network Laboratory™ relessp
I

Summary

Before two processes can exchange data using TCP, they must
establish a connection between themselves.

We used tcpdump to show all the fields in the TCP header.

Fundamental to understanding the operation of TCP is its state
transition diagram.

A TCP connection is uniquely defined by a 4-tuple: the local IP
address, local port number,foreign IP address, and foreign port
number.

CSE

“""!IES{”
Muttimefia

