Queueing Systems
Modeling and Performance Evaluation
with Computer Science

Spring, 2003
Dr. Eric Hsiao-kuang Wu

http://wmlab.csie.ncu.edu.tw/course/queueing
What is going to be covered?
(Queueing System)
Course Outline

• Probability
 – Discrete/Continuous random variable
 – Conditional Probability

• Queuing Modeling
 – M/M/1/k
 – Bulk Service, Bulk Arrival
 – M/G/1
 – G/G/1

• Case Studies:
 – Computer Applications
 – Wireless Network Applications
Lecture Progress (February, 2003)

- Queueing Systems
 - System Flow
 - Specification and Measure of Queueing System
- Notation and Structure for Basic Queueing Systems
- Probability Z transform
- Reference (Textbook2)
Daily Experiences

- Waiting in Line:
 - Waiting for breakfast
 - Stopped at a traffic light
 - Slowed down on the freeways
 - Delayed at the entrance to parking facility
 - Queued for access to an elevator
 - Holding the telephone as it rings..
• **Queueing Systems**
 – Systems of flow
• **A flow system is one in which some commodity flows, moves, or is transferred through one or more finite-capacity channels in order to go from one point to another**
• **Commodity: (produce the demand)**
 – Such as packet massage, telephone message, automobiles
• **Channel: (provide the service)**
 – Such as Internet, telephone network, the highway
Service and Demand

the service rate (or capacity) C

the arrival rate R

Dr Eric H.K. Wu, Computer Science
Steady and Unsteady Flow

• Whether the flow is steady or unsteady?
 – Steady: those systems in which the flow proceeds in a predictable fashion
 – If \(R < C \), a reliable and smooth fashion
 – If \(R > C \), the mean capacity is less than the average flow requirements, chaotic congestion occur
History of Computer Using

- Single User
- Batch
- Time-Sharing
- Sharing Communication line
- Network (1970’s)
Modeling

Real World

Mathematical Model of Real World

Verification

Solution to the Model

Approximate solution

Dr Eric H.K. Wu, Computer Science
Resource Sharing

- A resource is a device that can do works for you at a finite time
 - e.g. A communication Channel
 - e.g. A computer
- A demand requires work from resource
 - e.g. message
 - e.g. jobs (require processing)
User Behavior
Bursty Asynchronous Demands

- You cannot predict exactly when they will demand access
- You cannot predict exactly how much they will demand access
- Most of time they do not need access to resource
- When they ask for it, they want immediate access
Typical Traffic

- Interactive Traffic
 - Reliable Transmit
 - Short Response time
- Real Time traffic
 - High Throughput
 - File Tx

Dr Eric H.K. Wu, Computer Science
Resource Sharing

- Type 1: Everyone use his resource singly (not efficient).
- Type 2: Using Pool of resource sharing those resources (by switching) plus the cost of switch.
- Type 3: Using a large resource (as an unit).
Law of Large Number

- The first resource sharing principle
- Although each member of a Large population may behave in a Random fashion, the population as a whole behave in a predictable fashion.
 - This is the "smoothing " effect of large population
 - The predictable fashion presents a total demand equal to the sum of the average demands of each member
Conflict Resolution

- Queueing: one gets severed, others wait
- Splitting: Each get a piece of resource
- Blocking: One get served, all others are refused
- Smashing: Nobody gets served.
Response Time

• When the throughput and capacity go up, the response time will go down

• Economy of Scale
 – The second resource sharing principle
 – If you scale up throughput and capacity by some factor F, then you reduce response time by the factor
Economy of Scale

Original: \(B \) Block/sec \(C \) bit/sec
Scale: \(NB \) Block/sec \(NC \) bit/sec

\[T(NB,NC) = \frac{T(B,C)}{N} \]
Throughput, Efficiency, Response time

- If you scale the capacity more slowly than throughput while holding response time constant, then efficiency will increase.
- Key tradeoff among:
 - Efficiency = Throughput / Capacity
System of Flow

- Flow of a commodity (demand) through a finite-capacity channel (resource)
 - Steady Flow
 - Unsteady Flow
Steady Flow

- Demand are known, constant smooth: predictable
- Single Channel:
 - $R = \text{Arrival Rate (Cans/Sec)}$
 - $C = \text{Capacity (Cans/Sec)}$
 - if $R \leq C$ Fine
 - $R > C$ Chaos
Network of Channels

- Max-Flow Min-Cut Theorem
- R < C for each channel
- Maximum Flow, label the node, find a path
Unsteady Flow (I)

- Arrival time of Demand: Unpredictable
- Size (Service time) of Demand: Unpredictable
- Single Channel:
 - Queue Length
 - Waiting Time
 - Sever Utilization
 - Throughput
 - Probability kills you
Unsteady Flow (II)

- Network of Channel
 - capacity
 - throughput
 - Response Time
 - Efficiency
 - design

Combinatorics and probabilities kill you
General Queueing System

- How to improve the system performance
- How to model the system
Review of Queueing

- Markovian Queue, Birth-Death Model
- Erlangian Distribution
- Parallel Networks of Queues
How often they arrive

how long they will stay
= service time + waiting time
What we are interested?

- How long we are going to wait?
- How big the queue size should be?
Observation 1

- Each customer could be characterized as the following:
 - how often the traffic produced?
 - how many services it may require?

Arrival Rate Service Rate
Observation 2

- Some users might be in the queue

Number of users in the system
Observation

- Current State depends on Previous State
Computer Queue System

• Markovian Chain:
 – current state depends on previous one state only
 – time domain
 • discrete
 • continuous
 – state domain:
 • discrete
 • continuous
Birth-Death Process

- Transitions are allowed between neighbors:
 - $P(k)$ to $P(k+1)$
 - birth happen (arrival)
 - $P(k)$ to $P(k-1)$
 - death happen (death)
- Possion and Exponential Distributions are memoryless
M/M/1

\[\lambda \quad \lambda \quad \lambda \quad \lambda \]

\[0 \quad 1 \quad 2 \quad 3 \quad 4 \]

\[\mu \quad \mu \quad \mu \quad \mu \quad \mu \]

Number of buffers <-> Number of Customers

Rate in = Rate out (Flow balance)

Sum of P(k) = 1

Memoryless
Format

- **M / M / 1 / 2**

 - Number of buffer size
 - Number of server
 - Amount of service a customer require
 \[B(x) = P[\text{service time} \leq x] \]
 - Arrival Time
 \[A(t) = P[\text{interarrival time} \leq t] \]
Probability

- $\sum P(k) = 1$
- $P(k) \leq 1$
- $\mathbb{E}[N] = \sum k P(k)$
- $\rho = \lambda / \mu$
General Queueing System

- $C(n)$ \(\text{nth customer to enter the system} \)
- $N(t)$ \(\text{number of customer in the system at time } t \)
- $a(n)$ \(\text{arrival time for } C(n) \)
- $t(n)$ \(\text{interarrival time between } C(n-1) \text{ and } C(n) \)
- $x(n)$ \(\text{service time for } C(n) \)
- $w(n)$ \(\text{waiting time for } C(n) \)
- $S(n)$ \(\text{system for } C(n) \)
Time-diagram notation

- Servicer
 - $S(n)$
 - $C(n)$
 - $C(n-1)$
 - $C(n+1)$
- Queue
 - $W(n)$
 - $t(n)$
 - $C(n)$

Dr Eric H.K. Wu, Computer Science
Classical M/ M/ 1 Queueing

- Single Server Queue
- Poisson Arrival Process
- Exponential Distribution for service time
- M stands for memoryless
M/ M/ 1 Analysis

- State-transition-rate diagram

\[
\begin{align*}
\text{a} & \quad \text{a} \\
0 & \quad 1 & \quad 2 \\
\text{u} & \quad \text{u} \\
\quad & \quad \text{c} & \quad \text{n}
\end{align*}
\]
What you should need for Queueing modeling

- Probability (such as arrival rate, service rate)
- Transform (z-transform, Laplace transform)